当前位置: 仪器信息网 > 行业主题 > >

天燃气人工煤气检测仪

仪器信息网天燃气人工煤气检测仪专题为您提供2024年最新天燃气人工煤气检测仪价格报价、厂家品牌的相关信息, 包括天燃气人工煤气检测仪参数、型号等,不管是国产,还是进口品牌的天燃气人工煤气检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合天燃气人工煤气检测仪相关的耗材配件、试剂标物,还有天燃气人工煤气检测仪相关的最新资讯、资料,以及天燃气人工煤气检测仪相关的解决方案。

天燃气人工煤气检测仪相关的资讯

  • 煤气化行业煤气成分监测实例剖析
    我国是以煤炭为主要一次能源的国家,一次能源消费中煤炭的占比达到62%。但我国的煤炭利用技术总体上是落后的,在煤炭的转化利用过程中普遍存在效率低、污染严重等问题。随着能源问题的日益突出,洁净煤技术越来越多地应用于实际生产过程中,其中大规模煤气化、煤气化多联产技术成为了煤炭综合应用的主要方向之一。 近年来红外煤气分析仪越来越多地应用于实际煤气化煤气分析当中,本文将结合Gasboard-3100在不同领域的实际应用,帮助大家更好的了解煤气分析仪在煤气化行业应用优势。煤气分析仪(在线型)Gasboard-3100 根据煤气化应用领域的不同,煤气分析仪可实现煤气热值分析和煤气成分分析两种用途。通常的应用如下:工业燃气应用 作为工业燃气,一般热值要求为1100-1350大卡热的煤气,可采用常压固定床气化炉、流化床气化炉均可制得。主要用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品或半成品。实际应用中通常需要精确控制加热温度,以达到工艺或质量控制目的,燃气的热值稳定性就尤为重要。Gasboard-3100针对H2和CH4的测量采用了测量补偿技术,可保证实际热值测试结果的准确性,为燃气的燃烧测控提供了有效有力的数据依据。民用煤气应用 民用煤气的热值一般在3000-3500大卡,同时还要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为适用。与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。出于安全、环保及经济等因素的考虑,要求民用煤气中的H2、CH4、及其它烃类可燃气体含量应尽量高,以提高煤气的热值;而CO有毒其含量应尽量低。Gasboard-3100测试煤气热值可知道气化站的煤气混合,保证燃气热值;同时可测得CO、H2、CH4的实际浓度,有效控制CO浓度,保证燃气安全。冶金还原气应用 煤气中的CO和H2具有很强的还原作用。在冶金工业中,利用还原气可直接将铁矿石还原成海棉铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。因此,冶金还原气对煤气中的CO含量有要求。Gasboard-3100可实时有效测量CO或H2浓度,指导调整气化工艺,保证产气效率。化工合成原料气 随着新型煤化工产业的发展,以煤气化制取合成气,进而直接合成各种化学品的路线已经成为现代煤化工的基础,主要包括合成氨、合成甲烷、合成甲醇、醋酐等。 化工合成气对热值要求不高,主要对煤气中的CO、H2等成分有要求,一般德士古气化炉、Shell气化炉较为合适。目前我国合成氨的甲醇产量的50%以上来自煤炭气化合成工艺。若煤气成分中CO2浓度过高,直接会影响合成工序压缩机的运行效率(一般降低10%左右),必然造成电耗和压缩机维修费用增加。Gasboard-3100用于CO、CO2、H2等气体的浓度测量,用于指导合成气工艺控制,可保证化工产品的产量和质量,同时可达到节能的目的。煤制氢应用 氢气广泛的用于电子、冶金、玻璃生产、化工合成、航空航天、煤炭直接液化及氢能电池等领域,目前世界上96%的氢气来源于化石燃料转化。而煤炭气化制氢起着很重要的作用,一般是将煤炭转化成CO和H2,然后通过变换反应将CO转换成H2和H2O,将富氢气体经过低温分离或变压吸附及膜分离技术,即可获得氢气。实际应用中由于CO含量的增加,必然会导致变换工序中变换炉的负荷增加。它不但会使催化剂的使用寿命缩短,而且使变换炉蒸汽消耗增加。Gasboard-3100红外煤气分析仪用于煤气成分分析,提供煤气中各气体成分的浓度数据,指导气化和转换工艺的控制,可起到节能增效的作用。 此外,Gasboard-3100红外煤气分析仪还可在煤气化多联产的应用中提高化工生产效率,提供清洁能源,改进工艺过程,以达到效益最大化,有助于提升产业技术水平。 随着煤气化技术在国内的应用和发展,对于煤气化过程的监测和控制提出了更高的要求。Gasboard-3100红外煤气分析仪集成了红外、热导和电化学三种气体传感器技术,可实现对煤气的成分分析和热值分析。在实际应用中解决了H2测量补偿和CH4测量抗干扰的问题,更广泛地应用于工业燃气、民用煤气、冶金、化工等行业,可指导工艺控制和改善,并达到节能增效的作用,有利于促进煤气化技术的提升。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 在线气体分析系统监测电捕焦油器中煤气含氧量的真相
    煤气生产过程中产生焦油的一部分以极其微小的雾滴悬浮于煤气中,其粒径1~7μm。煤气中的焦油雾会在后续的煤气净化过程中被洗涤下来而进入溶液或吸附于管道和设备上,造成溶液污染、产品质量降低、设备及管道堵塞。下面来看看在线气体分析系统监测电捕焦油器中煤气含量的真相。1、电捕焦油器的安全操作要求 捕集煤气中焦油雾的设备有机捕焦油器和电捕焦油器两种,我国目前主要采用电捕焦油器捕集煤气中的焦油雾。电捕焦油器按沉淀极的结构可分为管式、蜂窝式、同心圆式和板式等类型。电捕焦油器都是利用高压静电作用下产生正负极,使煤气中的焦油雾在随煤气通过电捕焦油器时,由于受到高压电场的作用被捕集下来。由于煤气易燃易爆,就必须保证电捕焦油器的安全操作。另外,电捕焦油器电极间有电晕,可能会发生火花放电现象。如果煤气中混有氧气,当煤气与氧气的混合比例达到爆炸极限时就会发生爆炸。2、煤气中氧含量的控制 煤气中氧气的主要来源有以下几方面 一是生产过程中因设备及管道泄漏而进入的空气; 二是气化用气化剂过剩或短路; 三是在煤气生产过程中,会有一定量的空气进入煤气中。为保证混入的空气与煤气混合后不达到爆炸极限,就应控制煤气中的氧气含量。 《城镇燃气设计规范》( GB 50028-2006)规定,当干馏煤气中氧的体积百分数大于1%时,电捕焦油器应发出报警信号。当氧的体积百分数达到2%时,应设有立即切断电源的措施。《工业企业煤气安全规程》(GB 6222-2005)中也有此规定。这些规定都是以煤气中氧的体积百分数不得超过1%为界限。3、煤气中氧含量与爆炸极限的关系 不同煤气的爆炸极限各不相同,各种人工煤气的爆炸极限见下表。各种人工煤气的爆炸极限(%体积) 从上表可知,对于焦炉煤气、油煤气和直立炉煤气,当达到煤气的爆炸上限时,煤气中氧的体积百分数为12%~13.5%(即煤气中的空气体积百分数达60%左右)时才能形成爆炸性气体。而正常生产情况下,煤气中空气量不可能达到如此高的程度,因此煤气中氧体积百分数低于1%的控制指标可以适当放宽。 对于发生炉煤气及水煤气,当煤气中空气的体积百分数达到30%左右(即煤气中氧体积百分数达到6%以上)时才能达到爆炸极限。以爆炸极限范围最宽的水煤气为例,如果控制煤气中氧的体积百分数≤3%,相当于煤气中空气的体积百分数≤14. 3 %,这时距离其爆炸上限(空气体积百分数为29.6%)还相当远,还有相当大的缓冲空间。因此,从爆炸极限角度分析,控制煤气中氧的体积百分数≤3%应是安全的。4、建议 首先,实际生产过程中一般建议企业采用必要的在线气体分析系统,实时在线监测煤气成分中O2含量,如在线气体分析系统Gasboard-9021,该系统针对多焦油、粉尘、水汽的特定工况设计,通过控制单元可自动化完成样气净化,保证系统长期稳定工作,降低运维成本。其气体分析单元煤气分析仪(在线型)Gasboard-3100可设定O2的高低报警输出,当O2浓度超过报警设定值时,继电器开关触点闭合,外接声光报警器接收信号,可发出声光报警,提醒操作人员采取必要的安全措施;同时可在线测量煤气中CO、O2等气体浓度并自动计算显示煤气热值,为工艺运行提供数据参考。 该在线气体分析系统已广泛应用于煤气化、生物质气化等领域,如安徽某新能源发电股份公司在电捕焦装置后端采用Gasboard-9021用于O2含量监测,将煤气O2含量控制在0.8%以下,以确保电捕焦装置的正常运行,保证工艺现场安全;同时实时监测煤气化炉运行情况,分析煤气成分并计算自动显示煤气热值,为工艺运行提供数据参考,以进生产工艺,提高煤气生产品质及产量。项目现场防尘分析小屋 其次,在实际生产过程中控制煤气中氧的体积百分数低于1%很难进行操作,许多企业采用氧的体积百分数≤1%时切断电源的控制程序,故经常发生断电停车事故,影响后续工序的正常生产。随着工艺、设备及控制技术的发展和操作人员素质的提高,相当一部分企业能够控制煤气中的氧体积百分数≤1 %,如上海的几个煤气厂、焦化厂,均能够控制电捕焦油器煤气中氧的体积百分数≤1%。但国内大部分相关企业都反映很难控制电捕焦油器煤气中氧的体积百分数≤1%,大部分企业都控制在2%~4%。国内外多年的实际生产运行,没有因煤气含氧量过高而发生电捕焦油器爆炸的情况。 从理论上分析及国内外企业多年的生产实践看,控制电捕焦油器煤气中的氧体积百分数≤3%是可行的。为满足安全生产的要求,建议当煤气中的氧体积百分数≥2%时自动报警,当煤气中的氧体积百分数达到3%时切断电源。对于用一氧化碳变换的低热值煤气,氧的体积百分数>0.5%时应自动报警,并控制煤气中的氧体积百分数≤1%。这是由于采用镍系催化剂对煤气含氧量的要求。(来源:工业过程气体监测技术)
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 工业燃煤、燃气、电热三大锅炉投资运行费用对比
    在锅炉选型时,我们常常对该选择哪种锅炉存在困惑,现从锅炉的投资、运行成本以及环境效益上,为大家解析燃煤、燃气、电热三大锅炉该如何正确选型。另外,在线红外煤气分析系统Gasboard-9000系列也能帮你有效的监测工业锅炉工况,提高锅炉运行效率。表1.一次性投资表2.运行费用  由表1与表2可得,锅炉投资成本由低至高分别为:燃煤锅炉、电热锅炉、燃气锅炉;锅炉运行成本由低至高分别为:燃煤锅炉、燃气锅炉、电热锅炉。燃煤锅炉使用时间最为悠久,也是燃料价格较低的一款燃料锅炉,在成本上具有较大优势,但随着国家对环境问题的越发重视,城市治理改造力度的不断加大,“煤改气”工程的逐步实施,以煤炭为主要燃料的燃煤锅炉已不适宜当今环境发展的需求。  以天然气为燃料的燃气锅炉与电能为动能的电热锅炉均属于清洁环保锅炉,在环境效益方面优胜于燃煤锅炉。虽然燃气锅炉前期投资成本高于电热锅炉,但后续运行成本低于电热锅炉,长期运行燃气锅炉成本优势明显。因此从投资、运行成本与环境效益方面考虑,燃气锅炉是目前锅炉选型的首选。  四方仪器在线红外煤气分析系统Gasboard-9000系列,可有效监测锅炉运行过程中的CO、CO2、CH4、H2、O2等气体浓度变化与热值,帮助你更好的调节锅炉运行工况,提高锅炉运行效率!(来源:微信公众号@工业过程气体监测技术)
  • 燃气集团泄漏检测车8个“鼻孔”查漏气
    近日,一台保险杠上长了8个“鼻孔”的怪车缓慢行驶在江北区读书梁附近,驾驶室内安装的一台电脑屏幕格外引人注目。这是我市正式投用的首台燃气泄漏检测车,只要用它“嗅一嗅”,就能快速检测出路面上发生燃气泄漏的地方。   “鼻孔”能辨不同气体   昨日上午10点,两名探测队员开着检测车从重庆燃气集团公司出发,沿建北二路一线进行巡查,检测车前端配备的8个探头垂落地表,持续不断地将路面上的气体输入后车厢内的工业计算机进行浓度分析,并将数据传输到副驾驶座前的显示屏,由工作人员进行监控。重庆市燃气集团管道公司探测科副科长袁昕介绍,检测车可以通过鉴别甲烷和乙烷的含量,分辨出天然气和沼气,方便工作人员及时排解安全隐患。   燃气泄漏检测车会报警   袁昕表示,如果有气体泄漏,燃气泄漏检测车会发出警报并立即计算浓度,在不影响安全的情况下,工作人员将气体采样并送到公司进行专门的气体成分分析。当确定是天然气泄漏后,调度中心会根据现场勘测的数据,及时派出抢险队队员和合适的仪器进行抢修。“如果发现危急情况,比如说气体浓度过高达到5%~15%的爆炸临界点,就会立即用车载仪器进行气体成分分析,及时将数据传回调度室。”   此外,车上还配备了手持检测仪,可将采集的气体样本进行更为精确的浓度分析。   主城管道10天就检测完   据悉,目前燃气集团共引进了两台燃气泄漏检测车,全面检测主城燃气管道。据袁昕称,以前靠人工作业每人每小时最多只能检测两公里,工作辛苦且统计数据繁琐,容易出现重复劳动,无法满足现实需求,而现在的检测车每天工作5~6小时,可以检测50~80公里管线,主城天然气管道10天就可以检测完毕。   加气站缺气随时能调配   据了解,除燃气泄漏检测车外,重庆燃气集团还配备了信息化管理系统,保证高峰期供气。记者昨日在重庆燃气集团调度中心看到,大屏幕上正显示着各加气站实时情况。   “我们会根据大屏幕上的实时监控图,调配各个CNG加气站的供气量。”调度中心副总调度长刘革伟表示,虽然目前市民用气基本得到满足,但出租车交班前后仍是加气高峰期,有排队现象。“如果出现了这种情况,调度中心会临时采取调配。”此外,重庆燃气集团抢险科还有100多人24小时坚守岗位,随时准备出动解决燃气泄漏事故。
  • 多组分检测:让煤气分析再简单一点
    煤的气化是我国煤化工工业的重要组成部分,特别是在石油资源日益紧张的条件下显得更加重要。煤气成分的检测分析是气化炉优化控制的前提,也是煤化工行业其他工序的重要参数。此外,高炉、转炉,焦炉以及玻璃,陶瓷等工业领域也经常需要进行煤气成分的检测。本文将详细介绍一种采用新型的电调制多组分红外气体分析方法,配合最新发展的MEMS 技术热导 TCD 气体传感器以及长寿命电化学 O2、H2S传感器开发的集成化多组分煤气分析仪Gasboard-3100的技术应用。希望对你从事煤气成分检测有所裨益。1红外线多组分气体分析上图为 ndir 红外气体分析原理图:以 CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm 波长的窄带滤光片后,由红外传感器监测透过4.26um 波长红外光的强度,以此表示 CO2气体的浓度,如果在探测器端放置一种具备四元的探测器,并配备四种不同波长的滤光片,如CO2、CO、CH4以及参考的滤光片,就可在一台仪器内完成对煤气成分中 CO2、CO、CH4的同时测量。煤气分析仪Gasboard-3100红外测量部分技术在一体化的四元探测器上安装有四个不同的滤光片(CO2、CO、CH4、参考),可实现对三种气体的同时测量(如下图)。 滤光片一体化四元红外探测器2MEMS 技术热导 tcd分析目前国内H2分析大都采用双铂丝热敏元件制成的热导元件,体积大精度低,传感器的死区(dead space)大。煤气分析仪Gasboard-3100采用了国际最新发展的基于MEMS技术的TCD气体传感器,只需要加上合适的电压就可以输出一个与浓度对应的毫伏级信号。3电化学氧气、硫化氢分析在煤气成分分析中,O2是一个安全参数,有些时候H2S 也是一个重要参数。煤气分析仪Gasboard-3100采用了一种长寿命(6年)的电化学 O2传感器和H2S 传感器,该传感器实际上是一种微型电流发生器,配合高精度的前置放大电路,直接输出与浓度对应的电压进入仪器测控系统。4多组分煤气分析仪特点煤气分析仪Gasboard-3100包括用于CO、CO2、CH4的 NDIR 红外气体探测器,测量 H2的TCD热到探测器,O2、H2S 探测器;ADUC842测控系统及软件; ICD、键盘、打印机、气泵、以及报警等外部装置。电调制红外光源传统的红外气体分析仪采用连续红外热辐射型光源,如镍锘丝、硅碳棒等红外加热元件,其发出红外光的波长在2~15μm之间,由于其热容量大,通常采用切光片对光源进行调制。因此需要一个同步电机带动切光片旋转,其缺点在于存在机械转动。抗振性差,攻耗大,不适合于便携设备。其次为保证调制的频率,还需要严格同步的电机以及驱动电路,使得系统复杂化,成本也大大增加。煤气分析仪Gasboard-3100采用了国际上最新研制的一种类金刚石镀膜红外光源。该光源采用导电不定型碳(CAC)多层镀膜技术,热容量很低,因此升降温速度很快,其调制频率最高可以达到200HZ,新型电调制光源的使用,使得红外气体分析技术在仪器体积、成本、性能等方面都有实质性的提高。气体干扰校正从原理上讲,CO,CO2,CH4之间由于采用了特征波长,彼此测量间没有相互干扰,但是由于受当前滤光片生产工艺的限制,滤光片具有一定的带宽,CO 与CO2,以及 CO2与参考通道之间具有一定的干扰,因此成分之间具有一定的干扰,如果不加以校准,测量的误差将达到10% 以上,很难达到工业应用的要求,如按照单一标准气体 CO2标定后,如果通入不含CO2的70%的 CO进入仪器,CO2读数将达到7%左右。为了消除红外分析气体之间的相互干扰,煤气分析仪Gasboard-3100设置了10点标定程序,采用计算机算法得到了气体干扰校正方法,通过该方法的使用,可使CO、CO2、CH4的精度达到2%以上。研究表明,采用以往单一组分红外气体分析仪组成的煤气分析系统,如果直接采用测量读数,将可能得到不准确的测量结果。同时,煤气成分中的CO、CH4、N2、O2对 H2的测量准确性影响不大,主要是CO2的影响。通过大量实践证明,CO2对H2的影响是线性的,每1%含量的CO2将降低 H2含量为0.08%, 如果没有 CO2数据的校准,当CO2含量达到40%,则H2的误差将超过3%。这也充分说明,要想得到准确的煤气成分分析结果,各组分必须同时测量。测量流量控制虽然红外以及电化学气体分析在一定程度上受测量流量影响较少,但是对于 TCD 热导H2分析来说,气体流量的稳定直接关系到 H2的测量精度。为了保证测量流量的稳定,煤气分析仪Gasboard-3100采用了微型的柱塞气泵,将测量气体压缩到0.2mPa, 通过气体稳压和稳流阀后进入气体分析仪,这样可以将整个气体的测量流量维持在1L/min。流量的稳定在一定程度上,也提高了红外以及电化学气体测量的精度和稳定性。通过以上技术的采用,多组分煤气分析仪可以实现以下组分和精度的测量(表1),并已经应用在包括高炉、转炉、煤气发生炉等工业现场,取得了良好的成绩。表1:多组分煤气分析仪技术参数结论(1)通过采用新型电调制红外光源,省却了以往红外气体分析仪器复杂和昂贵的电机调制系统,大大降低了系统成本和功耗。实现了CO、CO2、CH4的同时测量。(2)通过采用MEMS 技术的 TCD 热导,以及长寿命的 O2、H2S 电化学气体传感器与红外气体测量的组分,实现了煤气多组分的同时在线测量。(3)红外测量组分间由于受滤光片带宽的限制,存在一定的相互干扰,通过计算机校正算法可以将组分的测量精度提高到2%以上,这也说明,以往单一组分的红外气体分析仪直接用于煤气分析,很可能造成测量数据不准确。(4)TCD 热导 H2分析必须进行 CO2气体的校准,否则将可能造成超过3%的误差。因此如果仅仅采用单一H2分析仪而没有其他气体气体的校准,以往组合式的煤气成分监测系统很可能得不到准确的测量数据。
  • 案例分享:某煤化工企业高炉煤气在线监测项目技术方案探析
    煤气作为钢铁、有色、化工、新能源等工业领域重要的能源载体,为了有效、安全、合理地利用,其成分、热值及氧含量等各种参数监测具有至关重要的意义。下文将与大家分享云南一化工企业高炉煤气在线监测项目,阐述其气体分析技术方案及其对企业的价值。 方案概述 在企业生产过程中,科学高效利用发生炉煤气,可助推集团实现提产增效,在节能降耗上能创造良好的经济效益和社会效益。 该企业使用的在线气体分析系统Gasboard-9021是专门针对发生炉煤气含尘、含湿、含焦油的特定工况而设计的,由预处理单元、控制单元、分析单元三部分构成,采用PLC程序控制,自动完成水洗器换水、采样、故障处理等操作,可实现24小时无人值守,保证系统长期稳定、准确、连续自动在线运行。 系统原型:在线气体分析系统Gasboard-9021 系统分析单元采用煤气分析仪Gasboard-3100,用于在线测量煤气中CO、CO2、CH4、CnHm、H2、O2等气体浓度,并实时计算煤气热值,从而帮助企业提高发生炉煤气利用效率,达到节能降耗、保证安全生的目的。 此外,该系统可通过多种接口将测量数据传输到上级集中控制系统,为实现远程监测、调整现场工艺提供实时依据。技术方案 预处理单元:采用先进水洗器、一级活性炭过滤器、气水分离器、电子冷凝器除去样气中的粉尘、焦油、水分等诸多杂质,为分析仪表提供洁净样气,同时具备可再生能力,保证系统运行稳定。 控制单元:采用SIEMENS PLC作为核心控制元件,OMRON中间继电器作为输出元件,控制系统自动运行。 分析单元:我司自主研发的煤气分析仪Gasboard-3100,用于在线测量煤气中CO、CO2、CH4、CnHm、H2、O2等气体浓度并自动计算热值,具有在线动态补偿功能,能有效消除CO、CO2、CH4气体对H2检测的影响。 其它:配备校准装置,包含标准气体、减压阀、校准管线和接头等。 方案价值 该企业使用在线气体分析系统Gasboard-9021,同时在线监测CO、CO2、H2、CH4、O2及热值,帮助操作人员实时控制炉膛中的CO、CO2 含量及其分布,并据此控制进风和布料工艺, 实现了保护炉体、降低焦铁比例、降低能耗的目的。此外,通过对H2的测量,能够有效的判断炉膛是否存在漏水现象。 整套设备具有技术方案先进、结构简明、部件性能可靠、自动化程度高、操作简便、维护量小 的优势,大幅减轻了企业人工成本。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源
  • 气体检测仪器仪表产业发展现状深度分析
    作为仪器仪表的一个重要分支,气体检测仪器仪表(也称“气体探测器”)应用领域广泛,覆盖了工业、农业、交通、科技、环保、国防、航天航空及日常生活等各方面。通常,工业过程气体监控分析仪器划归分析仪器领域,常见的气体检测仪器仪表通常小型化、便携或固定式、独立工作或联成网络,广泛适用于石油、化工、冶金、采矿、制药、半导体加工、喷涂包装等工业现场和家庭、商场、液化气站、煤气站、加油站等民用/商用需防火防爆、预防中毒、空气污染的场所,以及农业温室气体检测、沼气分析和沼气安全监控和环保应急事故、恐怖袭击、危险品储运等方面。   近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元 2007年仪器仪表行业总产值达3078亿元,增长率高达28.5% 据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 1755.9亿元,同比增长23.8%,其中分析仪器、环境监测仪器仪表增长率高达32%。   科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。   从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。   未来一段时间,使用半导体和催化原理的气体检测仪器仪表依靠着价格优势仍会占据部分低端市场。电化学传感器及检测仪器,在精度要求高的低浓度毒性气体、有机蒸汽、酒精气体、氧气监测领域综合优势突出。红外气体传感器及仪器适用于监测各种易燃易爆、二氧化碳气体,具有精度高、选择性好、可靠性高、不中毒、不依赖于氧气、受环境干扰因素较小、寿命长等显著优点。这些优点将导致电化学、红外原理的气体检测仪器占领更广泛的行业高端市场,并在未来逐步成为市场主流。据不完全预测统计,未来几年国内每年各行业使用红外原理气体检测仪器仪表的需求量将达到170万台(套),市场容量约为68亿元 使用电化学原理的气体检测仪器仪表的需求量将达400万台(套),市场容量约为56亿元,前景广阔、增长迅速。   当前我国经济正处于高速增长期,国家对安全及环保的高度重视、相关政策和法规陆续出台,极大地刺激了气体仪器仪表行业市场容量的迅速扩大。   1)燃气行业   我国已建成了包括西气东输、陕京二线、忠武线、涩宁兰线以及冀宁联络线等在内的天然气输气干线。十一五期间,还要逐步完善全国油气管线网络,适时建设第二条西气东输管道及陆路进口油气管道。另外,中国还计划2010年使天然气在能源消费组合中的比重提高一倍,以减少对煤炭的依赖。据国家发改委公布的计划显示,2005年天然气在中国能源消费总量中所占比重为2.8%,2010年天然气在中国能源消费总量中所占比重应达到5.3%的目标水平。因此国家加大了对气田的开采和探寻力度,随之而来的是越来越多的国内气田投入生产。根据国家发改委网站公布的《能源发展“十一五”规划》,2010年天然气产量的目标将达920亿立方米,较07年产量增加逾50%。大量的天然气田开发和管道建设必将大大增加对天然气气体检测设备的需求,高性能的红外气体检测仪器仪表得到了难得的发展机遇。在气体的开采、处理、输送、使用环节,可燃气体检测仪器的需求将达到数十万台。   2)石油石化   从我国产业发展看,“十一五”期间,我国石油、化工业将遵照基地化、大型化、一体化的方向,优化发展基础化工原料,积极发展精细化工,淘汰高污染化工企业。据了解国家将在资源丰富和市场需求旺盛的地区建设若干个千万吨级炼油企业和百万吨级乙烯的炼化一体化基地,形成环渤海湾、环杭州湾、珠江三角洲等具有国际竞争力的炼化企业群。首批将建设四个国家级石油储备基地:宁波镇海、浙江舟山、山东青岛和辽宁大连 ,四个石油储备基地的总容量将达到1600万立方米。3年内,还将逐步形成20个左右的千万吨级原油加工基地。   在2008中国将会先期开始建设三大炼油工程,即:中国石油广西大炼油,总投资超百亿元,年加工原油1000万吨 中国石化青岛大炼油,总投资约125亿元,年炼油能力1000万吨 中国海油惠州大炼油 基建投资约人民币193亿元,年加工能力为1200万吨。国家还将采取园区化模式发展乙烯工业。近期即将上马七大乙烯工程, 2010年乙烯产能预计达到583万吨。这些近期开建或者规划的大型石油石化项目会大量使用相关的气体检测仪器仪表,尤其是高性能的、更具优势的红外光学类气体检测仪器。   国内石油石化产品需求保持稳步增长的同时,对石油石化产品的质量、品种等也将提出更多和更高的要求。组成原油的主要元素是碳、氢、硫、氮、氧,并且含硫、 氧、氮的化合物对石油产品有害, 在石油加工中需尽量除去。这就使生产加工过程中一氧化碳、二氧化硫、硫化氢等毒性气体和苯、醛、酮等有机蒸气大量产生,对生产安全、环境保护造成威胁。目前普遍采用气体检测分析的方法予以控制,在石油生产中对可燃气体的泄漏检测、对氢、氧等环境气体的监控也需要使用气体检测仪表。据估计平均每万吨成品油生产去需用气体检测仪器仪表约 40台(套),其中可燃气体20台(套),以目前成品油2.2亿吨的年产量计算,气体检测仪器仪表年需求量约在88万台(套)左右,其中可燃气体检测仪器约44万台(套)、毒性气体检测仪器约22万台(套)、其它有机蒸汽及气体分析设备等22万台(套)。而各类油气站,对可燃气体、一氧化碳、二氧化硫、硫化氢等毒性气体和苯、醛、酮等有机蒸气检测的气体检测器需求量也很大,主要用于安全防护,防止中毒与爆炸事故,平均每各油气站需用气体检测仪器仪表约 7.2台(套)。2007年国内加油站总数量已超过10万座,则此方面对可燃气体检测仪器仪表年需求量约在72万台(套)左右。综合以上数据按每套气体检测仪器仪表按2500元计算分析目前在整个石油石化行业气体检测仪器仪表的市场容量约为40亿左右。   3) 化工   随着石油资源的日益紧张,煤化工作为我国中长期能源发展战略的重点,必将在今后的长期发展中占据重要的地位。我国规划投资逾1万亿元大力发展煤化工产业,计划在全国打造七大煤化工产业区,分别是黄河中下游、蒙东、黑东、苏鲁豫皖、中原、云贵和新疆。与此同时化工企业向煤化工转型已成趋势,相继有双环科技、泸天化、云天化、柳化股份、湖北宜化纷纷涉足煤炭企业,向煤化工转移做准备。   在工业路线中无论是炼焦工业、煤气化-合成氨、煤基甲醇、煤制合成油、煤化工联产都对气体报警产品有广泛的需求,尤其是对二氧化硫、硫化氢、一氧化碳、氯气、氨气等气体传感器需求量非常大,初步计算,平均每万吨焦炭生产需用气体传感器约 22台(套),其中可燃气体10台(套)、毒性气体12台(套) 以目前焦炭2.6亿吨的年产量计算,需用可燃气体检测仪器26万台(套),毒性气体检测仪器超过31.2万台(套),合计年需求量约在57.2万台(套)左右,按每套气体检测仪器仪表2000元计算,目前在整个煤化工行业气体检测仪器仪表的市场容量将达11.44亿元。   精细化工、生物化工、专用化工、农用化工等大型化学制造工业园区对气体检测器也有广泛需求。在最新颁布的《危险化学品建设项目安全设施目录》明确规定须安装“压力、温度、液位、流量、组份等报警设施,可燃气体、有毒有害气体、氧气等检测和报警设施。 ”目前我国已在建的化工园区达60多家。依托长江水系的长江经济带和长江三角洲地区,形成了四川西部化工城、苏州工业园、上海化学工业区等化工园 依托珠江水系的珠江经济带和泛珠江三角洲地区,形成了茂名、惠州、珠海等化学工业园区。仅上述化学工业园区内,进驻的化工企业总计就超过7300家,生产领域覆盖了基础化学原料及合成材料、化学原料及化学制品制造、农药、专用化学品和橡胶制品等门类,对气体检测产品的需求是全方位的,几乎涵盖了所有气体种类,其中以有机蒸汽、可燃其它、含硫含氮毒气检测产品最多。随着国家安检总局对化工、危化品加工安全要求的不断严格,化工、危化品加工领域气体检测仪器仪表的用量也逐年增加,现在年市场容量约30万台(套),其中可燃气体约22.7万台(套),有机蒸汽和毒性气体约7.3万台(套)。按每套产品2000元计算将有6亿元以上的市场规模。   4)冶金行业   冶金行业对气体检测使用最多最广泛的主要集中在钢铁和铝生产方面。我国是全球第一大钢铁生产国。2006-2010年期间,我国钢铁产能将增长2.4亿吨,基本与“十五”期间增长的 2.6亿吨产能相当,企业产能规模增长迅速。2007年国内百万吨级产能规模的企业122家,千万吨级的企业有十三家,分别是鞍本集团、宝钢、新唐钢、武钢、马钢、沙钢、首钢、济钢、莱钢、华菱集团、包钢、太钢、安阳钢铁,其中鞍本集团产能2800万吨,宝钢集团达到2750万吨(不包括八一500万吨),新唐钢2600万吨,武钢1800万吨(不包括柳钢600万吨)。   按目前国内企业在建项目和兼并重组趋势,到2010 年,2000万吨以上规模企业将达到6家,其中鞍本集团和宝钢集团产能都将超过4000万吨,新唐钢集团规模将超过3000万吨,而首钢集团、山东钢铁集团、武钢集团规模也将在2500万吨以上。同时,未来还将有新的千万吨级企业出现。总之,2010年前我国钢铁工业仍处在规模扩张时期,而到2010年以后,我国钢铁工业发展方向将由数量级扩张向质量级提升方向发展。钢铁企业的快速发展和扩张,特别是新建钢铁生产项目对气体检测产品存在巨大的需求。   除了钢铁以外,铝业行业的不断发展导致相关企业对气体传感器的需求也不断增加。目前,我国已经形成了山东淄博、河南郑州、山西河津、河南中州、贵州贵阳、广西平果六大氧化铝基地,最近又批准了广西华银和晋北两个氧化铝基地,加上拟批准的两个氧化铝项目,全国最终将形成十大氧化铝基地。   在钢铁、炼铝行业广泛应用的是一氧化碳、二氧化硫、硫化氢、氮氧化物等气体传感器,主要是监测燃料燃烧状况,提高燃料利用率,节能降耗 监测废气状况,降低污染 同时也检测工业场所气体泄漏,保障生产安全、预防职业病。百万吨级产能规模的企业,平均每年需用气体检测仪器仪表约1100台(套),千万吨级钢铁企业年需求量约为4000台。 若以百万吨规模钢铁企业116家,千万吨级企业10家计算,冶金行业中仅钢铁企业毒性气体检测仪器年需求量就在16万台(套)以上。加上铝冶炼等冶金行业,由此推之,冶金行业年需求量应在26万台(套)以上。   综合以上数据按每套气体检测仪器仪表按2000元计算分析目前在整个冶金行业气体检测仪器仪表的市场容量约为5.2亿左右。   5)煤炭行业   支撑我国经济快速发展的能源产业重点之一的煤炭产业,对各种瓦斯传感器装备数量更为庞大。我国是世界最大煤矿安全仪器装备国,也是重要的煤矿安全仪器生产国之一。目前我国重点煤矿各种瓦斯传感器装备数量以百万计,但是安全问题仍然严峻,伤亡人数和财产损失空前巨大。因此国家对煤矿安全要求也愈加重视。根据国家发改委公布的《煤炭工业“十一五”发展规划》,2006年全国煤炭产量初步统计为23.25亿吨,其中国有重点煤矿11.25亿吨、地方国有煤矿 3.08亿吨、乡镇煤矿8.92亿吨。在煤矿行业中,年产百万吨的矿井的安全监控系统最少需要安装瓦斯传感器20个,且每年有30%的更换率。由此计算每年气体传感器的总需求量为116万个,有18亿元以上的市场规模。其中30%可能需要使用红外测量原理的气体检测设备,这不仅提高了煤矿瓦斯检测水平,而且对气体检测行业的升级也是一个极大的拉动。   6)环保保护   随着国家环保控制力度的不断加大,环保领域气体检测仪器仪表的用量也逐年增加,在锅炉烟气检测、大气质量检测等方面应用越来越多,环保领域气体传感器的用量逐年增加。环保领域主要使用的是毒性气体传感器,主要用于检测烟气、尾气、废气等环境污染气体。应用最多的是定电位电解式电化学气体传感器,对CO、H2S、 NH3、SO2、NOX、Cl2及其它化合物蒸气,如HCl、HCN等有毒气体的检测。其具体应用包括锅炉烟气检测、大气质量检测等方面应用,随着环境保护要求的提高,其需求量将迅速增加。在锅炉烟气检测方面,我国运行中的锅炉约有15000台,每台锅炉至少有两个烟道,烟气分析传感器至少需配备两台,仅此一项需求就在3万台以上。环境气体监测涉及的方面更为广泛,从环境大气监测到工业气体排放检查,都要使用气体传感器与分析检测仪器仪表。根据《环境空气质量检测规范》的规定,国家环境空气质量评价点的设置数量应按每25-30km2建成区面积设1个监测站,并且不少于8个点。由此计算环保检测领域每年的气体检测器需求大于10万台。年市场容量约10万台(套)。按每套产品5000元计算将有5亿元以上的市场规模。   7)航空航天、现代军事、防化反恐等需求量   我国航天事业发展迅猛,现代化强大海军的建设,潜艇与水面舰只,甚至航母都在发展计划之列 所有这些领域,都涉及串舱等密闭、半密闭空间毒性、爆炸性气体检测技术。国际局势的动荡,恐怖活动和生化战争时有可能发生,对于各种杀伤性毒气的监测在警用安全防护、防化反恐方面的需求也日益迫切。这些高精尖技术领域的气体传检测方面应用需要大量的气体检测仪器仪表,估计每年总需求量超过3万台(套),主要为毒性气体检测需求,会形成3亿元以上的市场规模。   8)室内空气质量控制   随着安全健康意识的增强,人们越来越迫切地对地下商城、地下车库、商务大厦、轨道交通等空间内的空气质量或中央空调自动换气进行控制。该领域主要是对二氧化碳气体浓度进行检测。由于二氧化碳气体化学性质极为稳定,一般的化学检测方法无法对它进行测量,但红外气体传感器却能很方便的对二氧化碳进行检测。   在农业大棚或孵化室中,动植物生长过程与二氧化碳气体浓度密切相关。二氧化碳气体浓度的多少直接影响着该农产品的产值,并且不同植物、动物生长过程中对二氧化碳浓度需求各不同,所以在种植、养殖过程中对二氧化碳定期的检测是必要的。该领域二氧化碳气体的检测,红外方法是最好的选择。   来自国家蔬菜工程技术研究中心的数据表明,我国设施园艺总面积已占世界的80%,其中设施蔬菜面积近3000万亩。大棚总数量近2000万个,其中我国大型连栋温室制造已形成产业,数量达150万个。大型连栋温室对气体检测的要求主要集中在检测二氧化碳气体。   据测算,上述领域先进的红外气体检测器需求量将达到30万台。按每台2000元计算可形成6亿元的产业规模。   9)其它用户需求   在制药、食品、农村沼气测量、市政管网、污水处理、城市管网、通讯电力、半导体制造等领域,气体检测仪器也有广泛的市场空间。   制冷、食品行业需要检测氨气的浓度,市政方面用于自来水处理和下水道污水处理的氯气、硫化氢气体需要检测,医疗卫生需要检测氧气。相关传感器的总计需求量每年约在10万台(套)以上。加上其它行业特殊气体检测(如半导体、电力等),综合来看,该领域毒性气体检测仪器仪表具有较大的市场规模。   地下城市管网是每个城市建设的重大项目之一,也是人们和谐生活的基础设施保障。在我国,地下管道、通讯电力管网常因沼气、燃气含量过高,引发爆炸事件,导致人员伤害、设施损毁。要实现安定和谐的城市生活,城市地下管网安全问题必须彻底解决。目前,我国只有少数城市由国外进口红外气体检测仪对城市地下管网进行检测。通常一个地级城市的市政管网(燃气、电信、电力)仅维护竖井会达到数百个,中心城市更是达到数千之多,均迫切需要成本适中、工作可靠的危险气体监测装置。可见地下水管道、市政管线维护领域是推广红外气体传感器的重要市场,前景广阔,可望达到数十万台套。   随着国家经济发展和能源短缺,迫使我国不得不从新能源和可再生能源上解决我国能源紧张的矛盾。2007年5月农业部颁布了《农业生物质能产业发展规划》,明确指出了沼气、生物液体燃料、秸秆能源是“十一五”期间的生物质能的重点发展对象。计划到2015年,农村户用沼气总数达到6000万户左右,年生产沼气233亿立方米左右,并逐步推进沼气产业化发展。到2015年,建成规模化养殖场、养殖小区沼气工程8000处,年产沼气6.7亿立方米。” 而在《全国农村沼气服务体系建设方案》中明确要求各级政府重点支持配备各种服务设备,包括沼气检测设备(甲烷检测仪)。按照“以项目村为依托建立乡村沼气服务网点,每个网点具备为 300-500个沼气农户服务的能力”的要求计算,2015年,农村6000万沼气用户需建成服务网点12-20万个,配用沼气检测仪器数量也达12万台以上,主要以红外气体检测仪器为主。   10)国家“十一五” 规划中还明确提出要振兴我国装备制造业,积极发展大型石油化工、煤化工设备、百万吨级大型乙烯、大型PTA装置   大力发展汽车、火车、船舶、飞机等运输设备和海洋石油工程装备、大型矿石和原油运输船、集装箱船、液化天然气船、高附加值船舶及配套设备。这些大型装备在制造和使用过程中大都需要对可能产生的易燃易爆、有毒有害气体进行监控检测。通常这些大型成套设备对红外气体检测仪器具有更迫切的需求,相关市场容量可达数万台套。   11)道路交通安全检测领域   来自公安部交管局的最新信息显示:截至2008年6月底,我国汽车保有量达6122万辆,且增速迅猛,给道路交通安全执法带来压力,导致道路交通事故发生率居高不下。在所有导致死亡的交通事故原因中,酒后驾驶排在超速行驶,不按规定让行和违法占道行驶之后居第四位,占事故发生总量的10%~15%。酒后交通事故导致的死亡人数平均每年以惊人的的速度上升。   判断一个人是否酒后驾驶,最简单可行的方法是现场检测驾驶人员的呼气中的酒精含量。该方法也是发达国家警察系统主要采用的检测方式。根据2008年12月20日,公安部发布了修订后的《道路交通安全违法行为处理程序规定》中明确提到,调整抽血检验程序,提高执法效率。规定对经呼吸测试达到或者超过醉酒临界值,当事人对测试结果有异议的才进行抽血检验,从而减少了执法环节,提高了执法效率,也为呼出气体酒精含量的检测有效性提供了法律依据。当前,采用电化学传感器的呼出气体酒精含量检测器是能够满足法规要求而又经济的唯一解决方案。   目前,全国各交警队正在普及推广呼出气体酒精含量检测器,使用量增长迅速。近5年来,机动车和驾驶员的数量每年分别以10%、15%以上的速度递增,交警的执法力度不断增加.2007年全国交警总人数在20万人以上,而相关报道表明,目前警用酒精检测仪装备配备率低于10%,国家计划在未来3年内在主要交警队普及呼出气体酒精含量检测器配备,以配备率达到60%计算,未来3年电化学呼出气体酒精含量检测器需求量也有 10万台以上。   12)民用燃气泄漏及一氧化碳检测   随着我国大气田的不断发现和西气东输工程的投入使用,燃气使用普及率大幅度提高。家庭燃气安全事故时有发生,燃气的安全使用却来越被重视,安装可燃气体报警器已成为多个城市的强制性要求。全国约9000万天然气及液化石油气用户,如果十分之一使用可燃气体报警器,总量即达900万台,按每台100元计算,则有9亿元的市场容量。   家庭、商业场所使用非电能烹饪、取暖,均可能不完全燃烧产生一氧化碳气体。一氧化碳是无色无味的气体,不易觉察,极易产生危险。全球范围历年因一氧化碳中毒事件造成大量人员伤亡。因此各国政府对民用一氧化碳检测极为重视。如:在2006年我国卫生部,中宣部、教育部、公安部、民政部、建设部、信息产业部、国家环境保护总局、中国气象局、国务院新闻办公室就联合制定了《非职业性一氧化碳中毒事件应急预案》 同年12月建设部联合十部委向各地下发了《关于加强非职业性一氧化碳中毒防范工作的通知》,要求,各地区、各有关部门要认真做好非职业性一氧化碳中毒防范工作。2007年教育部也根据自身教育系统内的特点下发了《教育部关于做好2007年秋冬季中小学幼儿园安全工作的预警通知》,要求有条件的学校要在学生宿舍安装一氧化碳报警装置。   另一个需要安装气体报警器的是使用燃气热水器特别是直排式燃气热水器的场所。由于燃气热水器使用不当或质量缺陷导致发生不完全燃烧,造成一氧化碳中毒现象时有发生。国家统计局中国行业企业信息发布中心发布的《2006年消费品市场重点调查报告》显示,仅2006年我国共生产燃气热水器即达到836.96万台。截止2006年底,我国颁发燃气热水器生产许可证企业153家,燃气热水器社会拥有量已在3,000万台以上,其中 50%以上是直排式。为了安全,国家技术监督局已发布强制性标准(GB6932-94),要求燃气热水器必须有防止不安全燃烧的保护装置,要求上述热水器 5年内安装完一氧化碳报警(控制)器,仅此每年就需要600万台。   从另一个角度看,我国家庭或公共场合使用燃气能源烹饪、取暖、洗浴非常普及并快速发展,全国超过13亿人口,按3亿个家庭计算,如果有百分之一的家庭使用也有300万的市场容量,加上公共场合的使用每年也有不小于350万的市场容量。   欧美等发达国家,由于冬季取暖大量使用壁挂炉,各国对一氧化碳检测也都极为重视。目前美国、英国和加拿大一些国家立法规定新建房屋和现有住宅必须安装一氧化碳报警器。目前,国外一氧化碳报警器已进入超市大量销售,年用量超百万台。   综合以上市场信息,可以预见,各种气体检测仪表伴随我国经济的快速发展也将迎来高速增长的时期。相对于近几年仪器仪表行业20%以上的市场增长速度。气体检测仪器仪表行业的速度更是达到惊人的30%。据测算,未来5年,上述领域对家庭商业应用的气体检测仪器需求量可达1000万台以上 工业可燃气体检测仪器的需求超过500万台,其中红外气体检测仪器的需求量将达到170万台(套)、市场容量约为68亿元 测量毒性气体的电化学仪器仪表需求量将达到 400万台(套)、市场容量约为56亿元,市场前景广阔,增长迅速。   广阔的市场需求极大的刺激了国内气体检测仪器仪表生产企业的创新和成长。国内民用气体检测器总产量从2000年的190万台增加到2008年310万台,工业用气体检测器总产量从2000年的17 万台增长至 2008年的96万台。据统计目前国内气体检测仪器仪表企业已有三百余家,其中年营业额超过2000万的气体检测仪器仪表企业不足二十
  • 『应用案例』钢铁厂电炉煤气的回收与应用
    目前,世界钢铁制造采用的炼钢方式主要有转炉炼钢和电炉炼钢两种。其中,相比转炉炼钢,电炉炼钢具有工序短、投资省、建设快、节能减排效果突出等优势。据测算,炼钢使用1吨废钢,可减少1.7吨精矿的消耗,比使用生铁节省60%能源、40%新水,可减少排放废气 86%、废水 76%、废渣 72%、固体排放物(含矿山部分的废石和尾矿)97%。电炉炼钢主要利用电弧热,在电弧作用区,温度高达4000℃。冶炼过程一般分为熔化期、氧化期和还原期,在炉内不仅能造成氧化气氛,还能造成还原气氛,因此脱磷、脱硫效率很高。同时,电炉炼钢多用于生产优质碳素结构钢、工具钢和合金钢,这类钢材质量优良、性能均匀;在相同含碳量时,电炉钢的强度和塑性优于平炉钢。且电炉炼钢用相近钢种废钢为主要原料,也有用海绵铁代替部分废钢;通过加入铁合金来调整化学成分、合金元素含量。电炉炼钢过程中将产生大量电炉煤气,电炉煤气中含有CO、H2、CH4及其他碳氢化合物等可燃气体成分和潜热。由于电炉煤气中的CO含量高达60%,热值高,属于洁净能源,充分利用该资源势在必行。近年来因能源价格上涨,煤炭价格涨幅较大,燃煤成本占热电成本构成比例已达70%~80%,因此,将矿热炉冶炼过程中烟气净化回收的煤气用于热电厂掺烧煤粉发电,既能节能环保,又能提高经济效益。典型工况条件如下:某客户是华南和西南地区的钢铁联合企业,拥有2650m3高炉、150吨转炉、360m2烧结机、6m焦炉、1550mm和1250mm冷轧板带生产线、2032mm和1450mm热轧板带生产线、2800mm中厚板生产线、高速线材及连轧棒材生产线、连轧中型生产线等一批先进工艺装备,主导产品为冷轧卷板、热轧卷板、中厚板、带肋钢筋、高速线材、圆棒材、中型材等。* 过程分析挑战性该应用测量氧气含量采用电化学氧传感器,配置样品预处理系统;由于过程气中的SO2,CH4等背景气干扰,存在测量值误差及波动范围很大,传感器寿命短,预处理系统维护量大,备品配件消耗量大且响应时间慢等缺点。该工艺流程测量点位于电炉上的煤气回收管线,过程气具有温度高、粉尘含量高且具有一定腐蚀性等特点。* 梅特勒托利多解决方案为适应高温、高粉尘恶劣工况条件,采用取样过程分析的解决方案,GPro500激光氧气分析取样池的解决方案,具有取样池体积小、响应速度快、系统结构紧凑、测量稳定性及精度高、备品备件消耗低等特点。* 选型配置:GPro500取样池探头+M400Type3采用激光在线取样池,实现在线激光氧分析,可以实时、快速、准确测量过程气体中的氧含量,保障生产过程安全及效率。与传统取样式电化学氧分析仪系统相比,具有独特技术优势:GPro500在线激光氧分析仪凭借产品的技术先进性,灵活的过程连接方式,响应速度快,测量准确及可靠性,运行成本低,在炼钢炼铁行业得到广泛应用,并通过实际现场应用检验,运行稳定、可靠,积累了丰富的行业应用经验。* 部分图片来源于网络
  • 双轮驱动 推动高端气体检测仪器国产化进程——“创新100”走进湖北锐意
    为助力国产科学仪器发展,筛选和扶持一批优秀的科学仪器产品和企业,在中国仪器仪表行业协会、中国仪器仪表学会、北京科学仪器装备协作服务中心等单位的支持下,由仪器信息网主办、我要测网协办的“国产科学仪器腾飞行动”于2013年9月5日正式启动。秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选、挖掘一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研、视频、线下座谈会等方式展现其基本情况,在企业发展的关键时期“帮一把”。近期国家出台了一系列大气污染防治政策,指导和支持开展减污降碳等方面相关工作,以气体分析仪器为主营产品的企业也将迎来发展契机。国产仪器“创新100”企业报道,带您了解这家气体检测分析领域的国产仪器企业——湖北锐意自控系统有限公司(以下简称“湖北锐意”)。仪器信息网:请问公司创立的初衷和定位是什么,当初为何选择进入这个赛道?公司经历了怎样的发展历程? 湖北锐意:湖北锐意为四方光电股份有限公司(股票代码688665)的全资子公司,成立于2010年,是一家专业提供气体成分及流量测量方案的高新技术企业,服务于环境监测、过程气体监测、智慧计量等领域。在2003年至2010年,公司创新研发出多款基于不同技术原理的气体分析仪器,逐步呈现出成熟的产品矩阵。2010年至2021年,湖北锐意积极发挥气体检测分析技术上的优势,各类仪器仪表形成规模化生产与销售,不断完善的产品多次荣获国家级重大奖项。与母公司四方光电一起逐步形成了智能气体传感器与高端气体分析仪器双轮驱动的发展格局。湖北锐意凭借长期的技术沉淀、严格的质量体系及国际化视野,产品已出口多个国家和地区,正在朝着气体分析仪器仪表高端增值应用领域的国际品牌迈进。里程碑事件: 2003年成功研发非分光红外气体传感器2006年获得“重点高新技术产品”荣誉2007年获得“重点自主创新产品:红外烟气分析仪”荣誉2008年获得“国家重点新产品:便携式红外沼气分析仪”荣誉2010年湖北锐意自控系统有限公司成立,承担科技型中小企业技术创新基金项目、武汉大循环经济示范区省预算内投资改革实验专项项目、2011年湖北省发改委重点产业振兴和技术改造项目2011年获得“国家重点新产品:微流红外烟气分析仪”荣誉2013年获得“国家重点新产品:红外煤气分析仪”荣誉2016年荣获中国仪器仪表学会颁发的“2016年度优秀产品奖”2017年荣获湖北省知识产权局颁发的“第十届湖北省专利奖金奖”;基于紫外差分吸收光谱技术开发的烟气分析仪进入市场2018年激光拉曼光谱气体分析仪通过“国家重大科学仪器设备开发专项”验收 2019年适用于机动车尾气排放检测新国标的尾气传感器模组及尾气分析仪器实现规模化销售2020年开发了国产化高端发动机排放测试系统,广泛应用于非道路机械、柴油车、汽油车以及发动机排放检测2021年母公司“四方光电”科创板上市;“天然气中硫化物光谱检测技术研究及应用”项目荣获“2021年度中国石油与化工自动化行业科技进步一等奖”; “国家质量基础设施体系”专项“引领典型行业率先碳达峰的质量基础协同控制技术体系研究与应用”项目获得科学技术部国家重点研发计划专项立项仪器信息网:请问公司当前的研发情况怎样?请简单介绍一下公司的研发团队和研发产品? 湖北锐意:公司是湖北省认定的“工程技术研究中心”与“企业技术中心”。现有研发工程师110+,国务院特殊津贴专家1名,教授级高级工程师2名。人员背景覆盖物理、光学、材料学、电子工程、工业自动化、机械设计、软件工程等专业,形成了一支在气体传感器及气体分析仪器研究开发方面具有较强理论功底和丰富开发经验的队伍。公司拥有各类实验设备300余套,建设有万级无尘光学实验室,0.33%不确定音速喷嘴气体流量标定实验室沼气工程物联网平台。实验中心分为综合实验区和温度实验区两部分,可以开展跌落试验、振动试验、高低温冲击试验、老化试验及抗腐蚀性试验。累计获得113项专利,其中包括37项境内发明专利、2项国际PCT专利,完成软著登记50余项。荣获工信部工业强基重点“产品、工艺”一条龙应用计划示范企业。产品与技术被列入:国家重点新产品、国家发改委产业振兴项目、国家工信部物联网技术开发专项武汉市成果转化专项、国家重大科学仪器设备开发专项。基于四方光电核心气体传感技术平台的优势,湖北锐意开发了系列非分光红外(NDIR)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业,在节能减排中发挥重要作用。湖北锐意自主研发生产的便携式红外沼气分析仪、微流红外烟气分析仪、红外煤气分析仪曾相继获得国家重点新产品证书,红外煤气分析仪获得中国仪器仪表学会优秀产品奖荣誉,其核心技术获得湖北省发明专利金奖。湖北锐意“微流红外烟气传感器研究及产业化”获得工信部2019年工业强基工程重点“产品、工艺”一条龙应用计划示范项目,公司获得“一条龙”应用计划示范企业。仪器信息网:公司主推的产品及型号是什么,产品/技术可应用于哪些领域,有哪些典型用户?湖北锐意:烟气排放检测领域主推产品:温室气体排放分析仪Gasboard-3000GHG、紫外烟气分析仪Gasboard-3006UV、紫外烟气分析仪(超低量程)Gasboard-3000UV、烟气分析仪(在线型)Gasboard-3000、烟气分析仪(低量程在线型)Gasboard-3000Plus、激光氨逃逸气体分析仪GasTDL-3000等。汽车/发动机排放气体检测领域主推产品:发动机排放测试系统Gasboard-9801、发动机排放全流稀释定容采样系统(CVS)Gasboard-9802、便携式排放测试系统(PEMS)Gasboard-9805、汽车排放气体分析仪Gasboard-5230/5260、汽车排放气体分析仪Gasboard-5000等。煤气成分及热值检测领域主推产品:激光拉曼光谱气体分析仪LRGA-3100、原位激光过程气体分析仪GasTDL-3100、煤气分析仪(在线型)Gasboard-3100、便携红外天然气热值分析仪Gasboard-3110P、在线气体分析系统Gasboard-9021/9031等。沼气成分及流量检测领域主推产品:红外气体分析仪(防爆型)Gasboard-3500、沼气分析仪(智能便携型)Gasboard-3200Plus、超声波气体流量计BF-3000、在线沼气监测系统Gasboard-3500UV等。产品主要应用于钢铁、煤化工、天然气及煤层气、沼气、节能环保和高校实验室,典型用户如攀钢集团、鞍钢、首钢集团、阳煤集团、曲靖众—化工、中国石化、淮南矿业、晋城煤层气、广东九丰燃气、北京盈和瑞、山东十方环保、各省节能监测中心以及华中科技大学等高校。仪器信息网:与国内外同类型产品相比,您认为公司的主要竞争优势有哪些,增长点在哪里? 湖北锐意:与国内外同类产品相比,公司最主要的竞争优势是全面掌握着核心气体传感技术平台的组合优势,在检测精度、稳定性及抗干扰能力上处于行业领先地位。在产品布局上形成系列化高端排放检测设备的研发生产,从实验室研发所用的气体排放检测设备,到项目现场应用的在线检测系统,以及用于移动污染源监测的便携式气体分析仪。凭借自有技术及自产产品,公司能够快速响应订单需求,能够满足客户“一站式采购”气体传感解决方案的诉求。目前公司的主要竞争对手有:日本horiba、日本岛津、日本富士、美国赛默飞世尔、奥地利AVL、德国E+H、德国德图、瑞士ABB等企业。自成立以来,公司在专业技术团队的带领及完善管理体制的保障下,逐步在研发能力、技术水平、产品矩阵、规模生产、客户资源及应用领域等多方面形成自身独特的竞争优势,从而形成较强的抗风险能力和可持续发展能力。仪器信息网:您如何评价公司目前的发展情况,您对公司未来发展有怎样的愿景?湖北锐意:经过十余年潜心研发,公司已较为全面地掌握了气体传感核心技术平台,拥有包括非分光红外(NDIR)、光散射探测(LSD)、超声波(Ultrasonic)、紫外差分吸收光谱(UV-DOAS)、热导(TCD)、激光拉曼(LRD)在内的技术积累,构建了较为完整且定位高端的气体检测分析技术体系,尤以光学技术仪器最为突出。通过上述技术平台的杠杆撬动作用,公司能够凭借一项技术或多项技术的组合进入到诸多终端市场和具体应用领域,从而最大化研发投入的产业转化效率和经济价值。目前公司已在环境监测与工业过程监测方面储备有完善成熟的核心技术,未来,凭借前瞻性战略部署、长期积累的核心技术及产业化转化能力,并借助产学研合作单位的力量,公司将在气体检测分析领域持续突破,推动我国气体分析仪器行业的不断向前发展。仪器信息网:您如何看待国产科学仪器的发展前景,未来还有哪些机会值得关注?湖北锐意:无论从国家政策,还是市场发展趋势来看,科学检测仪器的高端国产化替代都是势在必行的一股洪流。目前湖北锐意已形成从高端激光光谱(拉曼、TDLAS技术)到红外、紫外、超声波、电化学、氧化锆等技术原理的高、中、低端完整气体分析仪器应用解决方案及产业化,对替代进口、做大做强我国科学仪器产业、提高工业流程自动化水平具有重要意义。将大力推动钢铁冶金、煤化工、石油炼化、天然气等国家战略产业以及控排减碳、烟气治理、移动源污染治理等领域高端装备的国产化。在发动机排放检测领域,湖北锐意开发并量产了发动机实验室排放检测设备(直采+CVS),PEMS设备,以及I/M站尾气分析检测设备,形成了全套发动机排放检测产品阵列。在新车实验室检测设备领域,由于发动机排放法规体系参考欧美建立,相关的检测方法和检测设备基本也是照搬国外。国内各个排放检测认证中心以及主机厂放检测设备仍然是进口产品的天下。发动机排放检测设备长期依赖进口,主要带来如下几个方面的不利影响:一是我国的检测和认证系统核心关键设备受制于国外,与我国内燃机和汽车工业的发展实力和现状严重不匹配;二是进口采购成本和使用维护成本较高,企业及检测机构负担较重;三是核心技术受制于国外,不利于我国排放检测技术的创新和发展。湖北锐意经过潜心研发,推出了针对新车检测的直采分析系统、CVS系统及PEMS系统,目前已经批量进入市场。在工业过程气体检测领域,湖北锐意开发了激光拉曼光谱气体分析仪,无论实验室台式检测,还是项目现场的在线防爆系统检测分析,湖北锐意针对不同应用需求均可定制专用性解决方案。实现一台仪器解决工业过程气体全流程监测,可在线实时检测十余种气体组分,无需载气与耗材,抗干扰能力极强,可取代气相色谱GC与质谱MS,是工业检测领域国产高端替代的一大重点方向。湖北锐意公司的发展战略一直围绕服务国家重点行业以及重要需求,不断加大高端气体排放检测设备的研发及产业化力度,推动高端国产气体检测仪器的国产化进程。仪器信息网:您认为企业当前面临的最大困难或挑战是什么,希望借助“创新100”获得怎样的资源或帮助?湖北锐意:公司的仪器仪表产品具有性能优良、种类丰富、需求响应速度快等优势,但仍需要在行业内扩大知名度。寻求行业专家与协会合作,获得参与行业标准制定及行业报告引用等合作机会。参与到更多重大项目及客户产品研发工作中,持续提升市场占有率。附:“创新100”介绍秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,借助报道、走访、调研等方式,在企业发展的关键时期“帮一把”。项目自启动以来,已收到超过180家企业的踊跃申请,通过输出公益性的宣传报道,组织企业研学、参观交流、主题讨论等各类资源对接活动,得到广大科学仪器企业与用户单位的高度关注与一致好评,现已成为中国科学仪器市场颇具影响力的特色活动,对于提升国产仪器品牌影响力,为行业筛选优质仪器企业贡献重要力量。为延续“国产科学仪器腾飞行动”精神,筛选和服务更多国产科学仪器潜力企业,“创新100”将于2022年继续进行,为国产仪器企业输送更多公益资源。诚邀具备实力、符合条件的创新企业扫码申报“创新100”。报名通道及活动专题:https://www.instrument.com.cn/zt/chuangxin100-2021
  • 技术探秘:厌氧发酵原位提纯直接制取生物天然气CH4浓度高达94%
    近日在湖南某沼气工程现场,工作人员惊奇地发现:仅通过厌氧发酵工艺,竟然直接制取出了CH4浓度高达94%的生物天然气!众所周知,一般沼气生产生物天然气要经过净化和提纯两个步骤,才可得到高甲烷浓度的生物天然气,以用作管道燃气、热电联供、生产压缩天然气和罐装燃气等。而该沼气工程项目并没有复杂的净化、提纯过程,就制出了CH4浓度高达94%的生物天然气,让人匪夷所思!发酵罐 据了解,该项目厌氧发酵罐规模为800m3 ,其发酵原料主要来源于种猪养殖场的粪便与尿液,项目数据监测则采用武汉四方光电子公司-四方仪器自控的沼气工程监测方案Gasboard-9230产品,用以对沼气流量,沼气成分,发酵罐温度和PH值等数据的监测与无线传输。对于直接通过厌氧发酵产出CH4浓度高达94%的沼气,所有人的第一反应是检测仪器出了故障。为了解决大家心里的困惑,公司派出检测人员,携带系列专业气体检测仪器,逐一对项目产出的沼气成分进行检测。大中型沼气工程监测现场 工作人员首先使用100%CH4和50%CO2的标准气体,对现场一体化沼气分析系统Gasboard-9060进行校准。对一体化沼气分析系统Gasboard-9060进行校准 首先,采用该在线检测设备对现场沼气成分进行检测,结果显示CH4浓度为94.39%!根据以往经验,在没有进行提纯前,沼气成分中的CH4一般在40-65%之间,很难超过70%。如今却是94.39%。一体化沼气分析系统Gasboard-9060的检测数据 随后,使用公司最新研发的沼气分析仪(智能便携型)Gasboard-3200Plus进行检测。该产品采用非分光红外气体分析技术,其分析仪器检测显示的结果依然达到了94.42%!与在线仪器无差别,仪器故障的可能性逐渐被排除。用最新沼气分析仪(智能便携型)Gasboard-3200plus再次检测Gasboard-3200Plus的检测数据 考虑到沼气中除含有甲烷外,可能还含有复杂的烷烃成分(乙烷等),在红外吸收光谱中,甲烷的中红外吸收特征波长易受乙烷影响,从而影响检测设备对甲烷浓度的测量。为了排除这种可能,检测人员提出采用公司的红外煤气分析仪Gasboard-3100再检测一次。煤气分析仪Gasboard-3100同样采用非分光红外气体分析技术,可同时测量煤气、生物燃气的热值,以及甲烷、乙烷等气体浓度,最重要的是可排除乙烷影响并准确检测甲烷浓度。然后,检测结果仍是惊人的96.08%的高浓度!自此,仪器故障、检测不准的原因被彻底排除了。用煤气分析仪(在线型)Gasboard-3100检测排除干扰可能Gasboard-3100的检测数据 排除了仪器故障问题,但疑云仍未拨开!为此,四方仪器总经理熊友辉博士携带相关气体成分检测仪器驱车300多公里,亲临项目现场对该沼气项目再次进行了深入调查研究与分析。熊博士在监测现场 现场在线监测系统显示仪器进气流量正常,这次Gasboard-9060监测系统显示CH4浓度为91.38%。Gasboard-9060的检测数据Gasboard-3200Plus的检测数据便携红外天然气热值分析仪Gasboard-3110P的检测数据 从这次现场的检测数据来看,厌氧发酵产出的沼气CH4含量确实在90%以上,检测数据可靠性没有问题。但是有一个现象引起了大家的重视,就是该项目安装的超声波沼气流量计BF-3000的瞬时流量接近是零,累计流量只有1500多立方米。也就是说,安装监测系统一个月以来,平均每日的产气量只有50m3左右,显然这个沼气工程没有达到设计的中温发酵1.0(800m3)的容积产气率,即使是常温发酵,容积产气率0.3(240m3)也没有达到。为了探其究竟,熊博士与业主进行了深入的交流。超声波沼气流量计BF-3000累计流量显示数据 由于发电机组噪音大,发电也不能上网,生产的沼气用途不大,因此实际发电没有正常进行,只是偶尔需要的时候发电。同时沼气发酵产生的沼液沼渣也需要处理,而附近没有可以完全消纳沼液沼渣的场所,因此厌氧发酵装置无法真正发挥作用。由于本项目位于一个大型的水库附近,粪污排放受到严格控制,为了彻底解决问题,业主将干清粪的粪便用于生产有机肥,清粪的粪水和尿液通过沉淀池后一部分进入发酵罐用于生产沼气,一部分通过自行设计的微曝气池再进入额外设计的好氧生化氧化池进行水处理,发酵罐产生的沼液沼渣也排入好氧生化氧化池进行污水处理后达标排放。微曝气池好氧生化池 由于大量废水进入厌氧发酵罐产生的沼气不被经常使用,更易溶于水的CO2被溶解(水洗沼气净化提纯就是利用这个原理),并随着大量低浓度的沼液一起排出,造成发酵罐中沼气CH4含量的不断升高。至此,沼气工程项目直接制取高浓度生物天然气的原因终于真相大白。通过持续脱除溶解在发酵液中的CO2,沼气中CH4含量持续升高,甚至达到接近天然气的水平。其实国外正在进行厌氧发酵沼气原位提纯的研究,通过改变厌氧发酵过程中CO2、H2等含量,脱除CO2或增加H2含量等都可以显著提高沼气中的CH4含量,达到直接制取生物天然气的目标。 通过本次调研我们也发现,限制我国大型养殖企业沼气工程发展的难点在于沼液沼渣的处理,沼液看似是一种有机肥,但是受有机肥覆盖面积、长期使用适应性以及需求季节性的影响,企业都很难妥善处理沼液的利用问题,沼渣以及基于干粪形成的有机肥倒是不存在销售出路问题。如果不能有效处理沼液问题,采用干湿分离,冲水粪尿采用污水处理工艺或许是一个更加正确的选择。 目前,大型畜禽粪便沼气工程或许需要一次整体系统性的技术提升,才能够从一个不健康的产业中走出来!(来源:微信公众号@沼气工程及其测控技术)
  • 护航亚运!“5G+北斗” ZERO高精度检测系统开启燃气巡检新模式
    10月8日晚,第十九届亚洲运动会在杭州圆满闭幕。作为史上规模最大、参赛人数最多的一届亚运会,对城市安全保障工作也提出了极大考验。特别是燃气安全问题,如何及时发现泄漏风险消除隐患,就需要高效、快速、灵敏的检测设备来实现。 为确保亚运期间燃气安全平稳运行,杭州萧山新奥燃气公司采用普瑞亿科“ZERO车载式高精度天然气泄漏检测系统”和“ZERO便携式高精度天然气泄漏检测系统”,针对亚运核心500米范围内重点区域的场馆、保障酒店、保障医院的燃气管道及附属设施,以及亚运场所1公里范围内严控区域的地下天然气管网、工商业用户、重点居民用户进行高精度检测。 ZERO车载式高精度天然气泄漏检测系统相对于传统检测车(ppm级)精度提升了1000倍,通过中红外激光光谱技术对周边环境气体进行检测分析,精度可达10亿分之一,可对行车距离150米范围内进行覆盖;与人工检测方式相比,检测车具有检测范围大、辐射面广、检测效率快、精准度高、可快速定位泄漏点等优势,能对天然气泄漏隐患做到提前发现与及时处置,从而避免事故发生。 ZERO便携式高精度天然气泄漏检测系统采用5G数据传输,搭载北斗高精准定位系统,在快速、精准查找泄漏点方面表现出色,极大地提高了巡检效率,协助新奥更高效地管理和控制潜在的泄漏风险。 除了高精度车载系统,普瑞亿科还可以针对不同的应用场景提供系统解决方案,以满足不同用户的检测需求—— 普瑞亿科提供的天然气泄漏检测系统基于先进的中红外直接吸收光谱技术,核心的CH4 C2H6分析仪具有1ppb/s和0.5ppb/s的灵敏度,极高的灵敏度和快速的响应时间确保设备能在高速路面走航和无人机记载等高速运行的工具上获得可信的数据,这不仅仅保证了天然气泄漏的准确度、更提高了天然气泄漏测量的速率。尤其是该产品具有相对最小的重量和最低的功耗,确保设备能在无人机上挂载、能在传统汽车上车载,抑或是电动自行车、摩托车车载,甚至是手提/肩背使用。优越的性能、合理的价格和宽泛的适用场景决定了ZERO泄漏检测系统正在引导着天然气泄漏检测的发展方向。 针对本系统解决方案,我们配置了ZERO All-in-One 组合式天然气泄漏检测系统,主要包含ZERO(Plus)车载式系统、ZERO Flight 飞行版系统、ZERO(Plus)便携式系统三位一体的立体解决方案,以满足高速车载走航测量、高空飞行测量和便携式精准定位测量需要;同时系统包含必要的现场硬件和软件、服务器端及智慧客户终端。 ZERO依托5G、大数据、物联网等现代信息技术,从设备、系统到云实现数字化集成,在降低成本的同时,为用户提供一站式全方位天然气泄漏解决方案,搭建从采集处理、分析到决策支持的数据闭环,以数字技术赋能燃气安全管理,从而实现城市智慧管网、智慧燃气的全链条、数字化集中管理。
  • 从超声波燃气表的发展窥探领先的中国技术
    随着燃气输气管道的兴建与普及,燃气表如雨后春笋般涌现,从机械式到电子式,从膜式到超声波,新概念新技术的不断涌现,各种流量计的准确度及使用范围也在不断提高。目前市场上主流的燃气表有两种,一种为传统式的机械式膜式燃气表,一种为电子式膜式燃气表,而超声波燃气表正以强劲的势头在燃气表市场中崭露头角。一、机械式膜式燃气表机械式膜式燃气表,是通过机械滚轮实现的,机械滚轮根据使用的气量进行加操纵,每使用一个单位,滚轮技术加一,实现气量计量记录。 膜式燃气表工作原理机械式膜式燃气表的优点是技术成熟、计量可靠、质量稳定,但其结构复杂、体积大,安装费用较高,人工抄表花费大,这些缺点使其发展受到了一定的阻碍。二、电子式膜式燃气表电子式膜式燃气表是在传统机械式基础上进行改进,增加了电子计量方式、显示功能、预支费和远程抄表功能,实现了半电子化。最核心部分是增加电子计量方式,通常情况下,会在机械滚轮上,并在最高精度位置装有磁铁,并且在滚轮的上下方装有两个干簧管,当磁铁没到达干簧管位置时,俩干簧管断开;当磁铁转到其中一个干簧管位置时,干簧管吸合。电子式膜式燃气表技术上改进小,计量可靠性得到保证,新增的电子计量方式,实现了半电子化,有效解决了人工抄表的难题。但传统皮膜表不适合用在较脏的沼气管道上,沼气中的气体杂质、水汽会造成较大程度的机械磨损,影响计量的准确度。同时在高浓度H2S条件下容易被腐蚀,对燃气表本身寿命产生严重的影响,使用寿命变短;其承压能力也相对较差,在压力波动时容易损坏;这些无疑制约着膜式燃气表的发展。三、超声波燃气表自20世纪90年代,气体超声波燃气表开始应用,包括时差式超声波流量计、频差式超声波流量计、插入式超声波流量计等。 超声波燃气表由于其全电子机构特点,与以往的机械表相比在机械噪音、精度、量程、可重复性以及寿命、维护上都有着绝对优势。如现在市面上的超声波流量计BF-2000,体积小、重量轻,重复性好,压损小,使用寿命长;智能化,全电子式的结构,可以扩展为预支费表或无线抄表功能。 超声波燃气表BF-2000 该超声波流量计主要用于测量户用沼气中CH4的流量和浓度,采用时差法,利用一对超声波换能器相向交替(或同时)收发超声波,通过观测其在介质中的顺流和逆流传播时间来测量流体的流速,再通过流速来计算流量,是一种间接、非接触式的测量仪表,测量精度高、量程宽、耐压力、耐腐蚀;体积较小,便于安装。 时差法工作原理现在国内市面上的超声波燃气表的探头主要进口于日本、欧洲等地区。而该款超声波流量计的特制陶瓷探头为自主研发,已申请了国家专利,并实施了PCT国际专利保护,是国内第一款自主研发的采用超声波气体流量技术的测量仪表。同时该超声波流量计无皮膜,探头采用特制陶瓷超声波探测器,无可拆卸部件,进一步提高了流量计的耐腐蚀性和可抗压能力;内置温度传感器,其温度测量功能,能缩短冬天(0℃)、夏天(37℃)的计量误差,保证了不同时期流量计测量精度的稳定性。超声波气体流量技术对在高水分、高浓度H2S、多杂质条件下的沼气都能进行较为稳定的计量,且保持较长的工作寿命。那么只要对燃气表的测量组分进行调整,超声波气体流量技术对煤气、天然气等较为干净的气体进行计量,其优势更不在话下了。不难看出,超声波燃气表较传统皮膜燃气表而言,在精度、量程、可重复性、耐腐蚀、抗压力、使用寿命等方面,都有这无可比拟的优势,是传统膜式燃气表的最佳替代产品,也是燃气公司提高管理和效益的优先选择。
  • 测试通过!ZERO正式入驻萍乡 高精准燃气泄漏检测系统护航城市安全
    近日,为有效推动江西省萍乡市湘东区部署开展的城镇燃气管道及设施“带病运行”问题专项治理工作,萍乡新奥长丰燃气公司引进了一个高科技“新武器”——搭载了由普瑞亿科自主研发的ZERO天然气泄漏检测系统的高精准检测车,在全区范围内部署燃气隐患排查整治行动。 ZERO车载式高精度天然气泄漏检测系统相对于传统检测车(ppm级)精度提升了1000倍,通过中红外激光光谱技术对周边环境气体进行检测分析,精度可达10亿分之一(ppb级),可对行车距离150米范围内进行覆盖;与人工检测方式相比,检测车具有检测范围大、辐射面广、检测效率快、精准度高、可快速定位泄漏点等优势;经过最新的中红外直接吸收光谱技术采集 CH4 C2H6 数据,并通过整合气象参数(风速、风向、气压、温湿度等)、行车轨迹并进行逻辑运算,在不超过80km/h的车速下,高效获得天然气是否泄漏及泄漏浓度、泄漏位置等信息;相关信息将直接上传到燃气公司监管平台实行远程调度处理,能对天然气泄漏隐患做到提前发现与及时处置,从而避免事故发生。 为验证高精准检测车远距离快速巡检的能力,5月16日上午,特邀请萍乡市燃气发展服务中心技术人员,对湘东镇道田段市政管网、香榭帝景居民小区燃气设施开展燃气巡查测试,巡检测试过程中,仪器发出警报音。 此次测试环节显示,检测车能准确判断可能存在的泄漏点,系统也会自动生成巡检轨迹和报表,更高效、快捷地识别和锁定泄漏点,大大提高了燃气泄漏预警和险情处理工作效率,高精准检测车的引进对萍乡市湘东区燃气安全检查和隐患排查防范于未然,是确保安全生产的重要措施及保障。 除了高精度车载系统,普瑞亿科还可以针对不同的应用场景提供系统解决方案,以满足不同用户的检测需求—— 普瑞亿科提供的天然气泄漏检测系统基于先进的中红外直接吸收光谱技术,核心的 CH4 C2H6 分析仪具有1ppb/s和0.5ppb/s的灵敏度,极高的灵敏度和快速的响应时间确保设备能在高速路面走航和无人机记载等高速运行的工具上获得可信的数据,这不仅仅保证了天然气泄漏的准确度、更提高了天然气泄漏测量的速率。尤其是该产品具有相对最小的重量和最低的功耗,确保设备能在无人机上挂载、能在传统汽车上车载,抑或是电动自行车、摩托车车载,甚至是手提/肩背使用。优越的性能、合理的价格和宽泛的适用场景决定了ZERO泄漏检测系统正在引导着天然气泄漏检测的发展方向。 针对本系统解决方案,我们配置了ZERO All-in-One 组合式天然气泄漏检测系统,主要包含ZERO(Plus)车载式系统、ZERO Flight 飞行版系统、ZERO(Plus)便携式系统三位一体的立体解决方案,采用5G数据传输,搭载北斗高精准定位系统,以满足高速车载走航测量、高空飞行测量和便携式精准定位测量需要;同时系统包含必要的现场硬件和软件、服务器端及智慧客户终端。 ZERO依托5G、大数据、物联网等现代信息技术,从设备、系统到云实现数字化集成,在降低成本的同时,为用户提供一站式全方位天然气泄漏解决方案,搭建从采集处理、分析到决策支持的数据闭环,以数字技术赋能燃气安全管理,从而实现城市智慧管网、智慧燃气的全链条、数字化集中管理。
  • 定制GC课堂系列三丨水煤气、半水煤气、焦炉煤气傻傻分不清楚——岛津煤气分析方案
    我国总体能源格局是“富煤、贫油、少气”,煤炭在我国有着丰富的储备。煤炭从单一燃料向煤化工原料转变已成为高效利用主流方式之一。在煤化工中煤气化工艺占有重要地位,所生产的煤气可作为气体燃料、合成液体燃料、化工品等多种产品的原料。 根据不同加工方法,煤气主要有水煤气、半水煤气、空气煤气、焦炉煤气,它们有什么区别呢?岛津煤气专用分析系统探究不同类型煤气本质区别:组分、浓度。 方案设计● GC主机、双TCD检测器、三阀五柱分析系统。● 满足水煤气、半水煤气、空气煤气、焦炉煤气检测分析。● Nexis GC-2030、GC-2014、GC-2014C多种机型自由选择。 优势● 13分钟内可完成H2、O2、N2、CH4、CO、CO2、C2H4、C2H6和C2H2煤气主要组分分析,可兼顾常量H2S分析。● 双TCD通道,组分全量程分析。● 可选配热值分析软件。● 交钥匙解决方案,出厂设备随机带原厂方法文件、数据等相关资料。 流路图煤气分析流路图 色谱图煤气分析流路图 色谱图TCD2通道色谱图 注:岛津可根据用户需求提供定制化分析方案,具体可联系当地营业。
  • PPI疯涨之下“夹缝生存”的环境监测仪器企业
    通常而言,反映物价水平最直接的数据便是全国居民消费价格指数(CPI)和工业生产者出厂价格指数(PPI),但如今这两个数据出现了问题。据国家统计局公开发布数据显示,2021年5月全国CPI同比上涨1.3%,涨幅低于预期。而PPI同比上涨9.0%,涨幅创2008年以来新高,其中生产资料价格上涨12%,涨幅扩大2.9个百分点,是拉动PPI上涨的主要因素。图1:2020年5月-2021年5月工业生产者出厂价格指数(PPI)涨跌幅 据相关分析,PPI上涨主要与能源和矿产等原材料价格大幅上涨有关。5月份,国际原油、铁矿石、有色金属等大宗商品价格大幅上涨,带动国内石油相关行业价格上涨,其中石油和天然气开采业价格环比上涨1.7%,同比上涨99.1%,黑色金属冶炼和压延加工业和有色金属冶炼和压延加工业价格分别环比上涨6.4%和4.4%,同比上涨38.1%和30.4%。当然,PPI同比9%的涨幅有一部分原因是去年低基数造成的,去年5月PPI同比涨幅为-3.7%,但是,相关能源、原材料等快速且持续涨价仍是主要原因。 PPI 上涨意味着企业生产成本的提高,如果成本上涨的影响不能转移到消费端,企业的利润空间将会被缩小。从CPI的微弱涨幅可以看出,上游原材料的涨价并未顺利向下游消费端传导,成本上涨的压力主要由中下游生产企业承受,其中受影响较大的行业包括中游的金属制品、电气机械、通用设备、交运设备等制造业及下游的汽车制造业、建筑行业等。 为了解PPI上涨对国内仪器企业生产经营的影响,本文以泛环境监测行业为例,通过2021年1-5月气体或烟雾分析仪(Hs编码:90271000)的海关进出口数据及相关企业2021年Q1财报数据,分析相关仪器进出口价格变化、相关生产企业经营成本及利润的变化。1、2021年1-5月气体或烟雾分析仪(Hs编码:90271000)海关进出口数据分析 气体或烟雾分析仪的编码为9027.1000。依据《品目注释》中对于归入该税号的上述产品的定义,在品目9027中,只要检测对象为气体或者烟雾的优先归入9027.1项下;其次,用途必须是用于分析炼焦炉、煤气发生炉、高炉等的可燃气或燃烧副产品(燃烧过的气体),其检测对象气体可以是二氧化碳、一氧化碳、氧气、氢气、氮气或碳氢化合物、二氧化硫、氨气等,其检测结果为上述成分的含量。归类于此海关编码下的详细产品包括臭氧检测仪、气体分析系统、气体分析仪、烟气在线监测系统、氧分析仪等。表1:2021年1-5月气体或烟雾分析仪进口量及进口金额统计数据年月进口量(单位:台)同比涨跌幅进口金额(单位:人民币/万元)同比涨跌幅202101242170623.0%5149928.8%202102182950320.5%38945-9.9%202103232243311.8%527005.9%202104283056873.8%51390-1.0%202105214917923.4%44140-16.9% 从海关进口情况来看,2021年1-5月,我国气体或烟雾分析仪进口量呈波动性变化,其中2月进口量最小,约为182万台,4月的进口量最大,约为283万台。同比上年来看,进口量增长较为明显,其中4月的增长幅度最大,同比上涨73.8%,3月增长幅度最小,同比上涨11.8%。虽然进口量同比上年均有较明显增长,然而进口金额同比上年却没有相同的增长趋势。2021年1-5月,我国气体或烟雾分析仪进口金额呈波动性变化 ,其中3月的进口金额最大,约为52700万元,2月的进口金额最小,约为38945万元。同比上年来看,除了1月的进口金额有明显的增长之外,2-5月的进口金额同比上年均有不同程度的下跌,其中5月降幅最大,同比约下降16.9%。图2:2021年1-5月气体或烟雾分析仪进口平均单价变化 2021年1-5月,海关气体或烟雾分析仪进口平均单价呈波动性变化,其中3月的进口平均单价最高,约为226.9元,4月的进口平均单价最低,约为181.6元。同比上年来看,除了1月的进口平均单价略有增长之外,2-5月的进口平均单价均有不同程度的下跌,其中4月的进口单价降幅最大,同比约下降43.1%。表2:2021年1-5月气体或烟雾分析仪出口量及出口金额统计数据年月出口量(单位:台)同比涨跌幅出口金额(单位:人民币/万元)同比涨跌幅202101330829248.2%2720096.1%2021022294824232.3%16667169.0%202103280378649.5%1964941.9%202104347027038.7%2460258.4%202105378921888.3%2493916.6%从海关出口情况来看,2021年1-5月,我国气体或烟雾分析仪出口量呈波动性增长,其中2月进口量最小,约为229万台,5月的出口量最大,约为379万台。同比上年来看,出口量增长非常明显,其中2月的增长幅度最大,同比上涨232.3%,4月增长幅度最小,同比约上涨38.7%。从出口金额来看,2021年1-5月,我国气体或烟雾分析仪出口金额呈波动性变化,其中2月的出口金额最少,约为16667万元,1月的出口金额最大,约为27200万元。同比上年来看,出口金额增长也非常明显,其中2月的增长幅度最大,同比约上涨169.0%。图3:2021年1-5月气体或烟雾分析仪出口平均单价变化2021年1-5月,海关气体或烟雾分析仪出口平均单价呈波动性变化,其中1月的出口平均单价最高,约为82.2元,3月的出口平均单价最低,约为70.1元。同比上年来看,除了1月的出口平均单价有明显增长之外,2-5月的出口平均单价均有不同程度的下跌,其中5月的出口平均单价降幅最大,同比约下降38.1%。据了解,不仅是国内PPI在持续上涨,欧美PPI也在加速上涨。而从海关进出口数据来看,2021年1-5月,无论是出口的气体或烟雾分析仪抑或是进口的气体或烟雾分析仪,其平均单价都没有随着PPI的上涨而升高,甚至有不同程度的下跌。同比上年来看,除1月以外,虽然2-5月气体或烟雾分析仪的海关进出口量均比上年有明显增长,其进出口平均单价却都有着不同程度的明显下跌。这从侧面表明,PPI上涨并没有带来气体或烟雾分析仪的价格上涨。不过,值得注意的是,以上表格统计的仅是以人民币为单位的价格/金额,而实际上跨境贸易中以人民币计价结算的占比并不高,此处还要考虑近期人民币汇率波动对价格/金额的影响。2、部分环境监测仪器上市企业2021年Q1财报数据分析表3. 部分环境监测仪器上市企业2021年第一季度营业收入/成本统计上市企业营业收入(单位:人民币/万元)同比涨跌幅营业成本(单位:人民币/万元)同比涨跌幅净利润(单位:人民币/万元)先河环保1910811.0%1018225.7%1091聚光科技5241616.4%3023135.0%-8299雪迪龙2258692.6%1166766.1%2725皖仪科技6620174.1%3134185.9%-1206力合科技1708021.0%832220.1%5698蓝盾光电945727.6%595333.6%6474从财报数据来看,2021年第一季度,国内上市环境监测仪器企业的营业收入和营业成本同比上年均有明显增长,并且除了个别企业(雪迪龙、力合科技)之外,大多数企业营业成本的增长幅度要明显高于营业收入的增长幅度。例如,先河环保2021年第一季度的营业收入虽然同比上涨了11.0%,但营业成本却大幅增长,涨幅高达25.7%,远高于营业收入的增长,因而导致其毛利率下降。再比如聚光科技2021年第一季度营业收入同比上涨16.4%,营业成本的上涨幅度却高达35.0%,归母净利润为-8299万元,较上年同期亏损增加。总体来看,2021年第一季度,国内上市环境在线监测仪器企业的营业成本均有较大程度的上涨,且大部分企业的营业成本增长幅度要高于营业收入的增长幅度,导致相应毛利率有所下降,企业净利润也有所下降。3、PPI上涨对环境监测仪器企业的成本冲击据了解,环境监测仪器生产主要以各种零部件的安装集成为主,所需的原材料主要包括各种传感器件、电子元器件、控制器件等标准或非标准件,涉及到的配套材料和辅助耗材主要有接头、喷漆、导轨、螺丝、 管卡、锁扣、钢瓶、橡胶管、扎带、填 缝剂、机柜木箱、盖板/侧板等。其中,标准件一般由公司直接从外部供应商采购,非标准件则由公司根据产品需求进行个性化设计和定制。从相关行业PPI来看,金属制品业出厂价格环比上涨1.6%,橡胶和塑料制品业出厂价格环比上涨0.2%,电气机械和器材制造业价格环比上涨1.3%。这表明,PPI持续上涨导致国内环境环境监测仪器企业的生产成本加大,企业利润进一步缩小,企业生存空间被严重挤压。另一方面,PPI上涨对环境监测仪器企业出口的成本冲击也非常大。要知道,除了原材料涨价之外,人工费用和运输费用等越来越高也是导致企业成本加大的重要因素。尤其是对于出口企业来说,除了原材料价格上涨带来的成本压力之外,还受到各区域防疫封锁措施增加的时间及储运成本、国家市场集装箱供应不足抬升的航运成本、劳动力紧缺带来的生产成本及人民币升值的影响和压力等。不过,值得庆幸的是,大宗商品价格的持续上涨,已经引起监管层的关注,国务院、央行、发改委等机构纷纷对大宗商品价格上涨表态,并出台相应政策保供稳价。随着基数因素的改善以及中国在过去一段时间应对大宗商品价格上涨的措施正在发挥作用,大宗商品价格上涨或将接近尾声,PPI再创新高的可能性有限,中下游制造企业盈利状况有望改善。表4:各机构对大宗商品价格上涨持续表态扫二维码加绿仪社为好友 及时了解更多环境监测行业深度分析!
  • 武汉四方光电成功开发出煤气在线监测系统
    基于公司自主开发的NDIR红外气体分析仪器,配合最新开发的TCD热导H2分析技术。武汉四方光电科技有限公司开发成功完整的煤气在线监测系统。该系统包括样品取样、预处理、反吹、气体分析、数据传输、数据库等先进技术。 该系统检测技术主要解决了一下主要难题:(1)CO/CO2的相互干扰。(2)CO2、CH4等对热导H2测量精度的影响。(3)取样气体流量对H2分析传感器的影响。该系统已经在我国大型钢铁公司得到应用。
  • 恒美-食品中蛋白质检测仪减少人工操作-新品
    点击了解更多产品详情→食品中蛋白质检测仪 食品中蛋白质检测仪是一种高效、精确、可靠的检测设备,对奶粉的检测有着重要的帮助。首先,蛋白质检测仪可以准确地测定奶粉中的蛋白质含量,确保奶粉的营养成分符合标准。其次,蛋白质检测仪可以检测奶粉中是否含有过量的添加剂或有害成分,如三聚氰胺等,从而确保奶粉的安全性。 此外,食品中蛋白质检测仪还可以检测奶粉的质量和纯度,确保奶粉的品质符合市场需求和消费者期望。因此,蛋白质检测仪在奶粉生产和质量控制中起着重要的作用,有助于提高奶粉的质量和安全性,保障消费者的健康和权益。 另外,食品中蛋白质检测仪还具有高效、自动化的特点,可以大幅度提高奶粉生产企业的生产效率和生产能力。通过蛋白质检测仪检测奶粉的过程,可以减少人工操作,降低人为误差的发生,提高检测的精度和准确性。此外,蛋白质检测仪还具有数据处理和分析功能,可以对检测结果进行统计和分析,为奶粉生产企业提供更全面、更准确的质量控制数据和方案。因此,蛋白质检测仪在奶粉生产和质量控制中的应用前景广阔,有望成为奶粉生产企业的必备设备和核心技术。
  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
  • 如何对气烧石灰窑的入炉煤气热值进行准确测量
    因入炉煤气资源丰富,且属于可被循环利用的废气,故煤气是气烧石灰窑最理想的燃料,如高炉煤气、转炉煤气、焦炉煤气、电石尾气(煤气)、发生炉煤气等。由于气烧石灰窑的煅烧温度,关系到石灰质量,煅烧温度又与入炉煤气的热值直接相关,同时入炉煤气热值高、火焰短等因素易造成石灰窑的过烧或生烧现象,所以必须对入炉煤气的热值进行分析,以便现场工作人员根据实际工况调节窑内煅烧温度,提高气烧石灰窑的生产效率与企业经济效益。煤气分析仪(在线型)Gasboard-3100 煤气中贡献热值的气体有CO、CH4、CnHm和H2,所以在实际生产过程中,企业多采用在线煤气成分及热值分析仪对入炉煤气浓度进行实时在线测量,并根据成分浓度计算得出煤气的热值。由四方仪器自控系统有限公司研发推出的煤气分析仪(在线型)Gasboard-3100采用将自主知识产权的红外气体传感器与基于MEMS技术的热导传感器、电化学O2传感器相结合的方法,以消除气体间的相互干扰和外界因素对测量结果的影响,实现对煤气中CO、CO2、CH4、CnHm、H2及O2多组分的同时测量,并根据组分浓度计算得出准确度高的煤气热值,可替代燃烧法热值仪。一、CO、O2、CO2、CH4对H2的干扰校正 从上表可以看出,煤气主要成分中CO、O2与背景气N2的热导系数相当,对H2的测量结果影响不大,但是CO2、CH4对H2测量影响明显。通过理论分析,如果气体成分中含有CO2,会使H2的测量读数偏低;如果气体成分中含有CH4,会使H2的测量读数偏高。因此为了得到准确的H2浓度,需对H2浓度进行CO2、CH4的浓度校正。 此外,对于检测H2的热导测量通道,实验证明,煤气成分中CO、O2对H2的测量准确性影响不大,主要是CO2、CH4的影响。Gasboard-3100可对煤气中的各组分进行分析测量,并将各组分间的相互影响进行浓度校正和补偿,最大限度的减小煤气中CO、O2、CO2、CH4对H2的影响,保证H2浓度测量的准确性。二、控制流量波动对H2测量的影响 由于热导传感器的基本原理是通过对气体流动带走的热量计算进行换算,如果采用直接流通式的热导检测池,很难控制气流,从而影响H2浓度的准确测量;且目前国内对H2浓度的分析大都采用双铂丝热敏元件制成的热导元件,体积大,精度低,传感器死区大。Gasboard-3100配置了基于MEMS技术的热导传感器,采用了旁流扩散式的热导检测池,流量在0.3~1.5L/min的范围内波动对热导传感器的测量无影响,可有效减少因流量波动对H2浓度测量结果的影响。旁流扩散式的热导检测池三、CnHm浓度测量,保证热值测量准确性 在煤气成份中,特别是焦炉煤气,除CH4外,还含有CnHm。现市面上大多数红外分析仪仅以CH4为测量对象,并以此来计算煤气热值。而Gasboard-3100除对CH4浓度进行测量外,同时还可测量CnHm浓度(如C3H8),将CH4与CnHm的浓度折合成碳氢化合物的总量,以此计算得出煤气热值,保证入炉煤气热值测量的准确性。四、CnHm与CH4干扰的浓度修正甲烷、乙烷、丙烷、丁烷的红外吸收光谱 根据红外吸收原理,在甲烷特征波长3.3um左右,甲烷与乙烷等碳氢化合物有吸收干扰,从而导致热值测试不准。对此,Gasboard-3100在软件上进行了升级,产品采用abc系数修正算法,预先在软件运算过程中插入CnHm与CH4的浓度修正系数,修正CnHm与CH4的相互干扰,确保测量结果的准确性。五、单光源、双光束减小零点与量程漂移为减少因为光源不稳定以及电子元器件老化造成的零点和量程漂移,Gasboard-3100内置了自动调零装置,可实现对仪器零点的自动标定,以减小零点漂移,相应减小量程漂移。同时,Gasboard-3100基于NDIR气体分析技术,采用单光源双光束法对煤气中不同波长的组分进行测量。光源经过两个不同波长的滤光片,进行滤光处理,得到两个不同波长的信号:检测信号与参考信号。检测信号与参考信号的强度之比与光源强度的波动及电子元器件的老化等因素无关,这样就最大限度的减小了光源不稳定及电子元器件老化造成的零点、量程漂移,从而保障了仪器测量的准确性与稳定性。单光源、双光束技术原理图 高准确度的煤气热值有利于正确指导工作人员调节现场工况,保证石灰窑炉的煅烧温度,既能提高出炉石灰的质量,又可合理使用回收煤气,真正地实现节能降耗,提高企业经济效益。作为武汉四方光电旗下的全资子公司,四方仪器始终秉承“把握关键技术,实现产业创新”的发展理念,以自主知识产权的传感器核心技术为依托,致力于煤气分析仪器的研发创新、生产及销售,为我国煤气能源的高效利用提供更加合理、有效的行业解决方案。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源
  • GC-7860-DM煤气分析专用气相色谱仪
    GC-7860-DM煤气分析专用气相色谱仪   (推荐行业石油化工)   适用于水煤气、半水煤气、焦炉气、高炉煤气等的快速分析。   GC-7860气相色谱仪配置单阀双柱、热导检测器用于煤气分析。组分包括H2、O2、N2、CO、CO2,CH4。检测范围H2为5%-100%,其他为1ppm-100%(体积分数)。   如要检测H2S,只要增加火焰光度(FPD)检测器和H2S分析专用柱即可,双通道并联,一次进样即可得到H2S、H2、O2、N2、CO、CO2,CH4组分的含量,其中H2S检测范围1ppm-100%。   该系统配置经济合理,操作维护简单,分析效率高,且性能稳定,重复性高。分析时间可控制在8min或者5min以内。   煤气分析谱图   图表 1 煤气分析谱图(H2)      图表 2 煤气分析谱图(He)
  • 十堰燃气爆炸事故“敲警钟”,FLIR GF77让你“看”见天然气,安全查泄漏!
    湖北十堰燃气爆炸事故6月13日6时40分许,湖北十堰市张湾区艳湖社区集贸市场发生燃气爆炸。截至目前,事故已造成25人死亡,目前现场搜救仍在继续。6月14日,国务院安委办、应急管理部召开全国安全防范工作视频会议,会议要求,要深刻汲取近期事故教训,举一反三全面排査安全风险隐患。天然气经常被当做燃料广泛用于生产生活中但天然气泄漏导致的事故时有发生因此使用其作为燃料的企业们一定要在天然气生产、运输、存储的过程中严格进行气体泄漏的检测与监控尽力杜绝安全隐患的发生保证企业、员工和群众的生命财产安全!天然气泄漏的“克星”:FLIR GF77系列生活中,广泛被使用的燃料——天然气,它的主要成分是甲烷,像甲烷这种无色、无味、无臭的气体,它可能外表“风平浪静”,内在早已“波涛汹涌”,稍不留神,就可能引发严重的爆炸!小菲推荐使用FLIR GF77系列热像仪,有了它再细微的甲烷泄漏,也能轻松被捕捉到,避免造成大面积的泄漏!FLIR GF77系列热像仪能够检测甲烷和其他气体泄漏,适用于油气田、燃气公司、LNG、工业厂区、可再生能源工厂、天然气发电厂以及天然气供应链沿线的各个企业。FLIR GF77:精确定位,安全检测全新款FLIR GF77可以从安全距离扫描气体排放情况,可实时显示逃逸的甲烷等气体,实现更快、更高效的气体泄漏检测。高效的泄漏检测与修复(LDAR)有助于消除泄漏隐患,维护生产安全和保护环境,同时避免原料泄漏产生的经济损失。FLIR GF77是一款突破性的非制冷型光学气体成像红外热像仪,可更换镜头检测多种气体。它提供两种波段:低波段 (LR)和高波段 (HR)。LR用于可视化甲烷、一氧化二氮、二氧化硫、R-134a和R-152a。HR可视化六氟化硫、氨和乙烯。当然,借助内置热成像仪还能检查关键组件。FLIR GF77a:实时监控,及时警报FLIR为工业自动化市场带来了气体泄漏可视化监测的有效解决方案:GF77a。这是一款非制冷热像仪,可对天然气和其他工业气体进行7x24连续监测泄漏,实时光学成像。这款热像仪可为石油和天然气企业、天然气运输管道、场站、罐区和天然气发电厂提供连续、自动的天然气泄漏监测功能,自动发现泄漏,锁定泄漏点并报警。FLIR GF77a集成了FLIR行业的多种特色功能,搭载高灵敏度模式(HSM),可提高泄漏检测能力,远程自动对焦,可确保不同距离物体成像的清晰度和测量精度。GF77a机身小巧、重量轻盈,可搭载无人机进行巡检,具备夜视功能,白天夜间均可巡航观测,尤其是夜间及突发时间,可远距离发现泄漏,准确找到泄漏点。将甲烷等作为燃料的企业往往面临着检测任务庞大+气体无色不易察觉等困难FLIR GF77系列光学气体热像仪可实现大面积快速扫描,定位泄漏点实时监控,及时报警将甲烷气体泄漏的苗头扼杀在摇篮里尽力避免重大事故的发生!
  • 国务院发布《空气质量持续改善行动计划》,重点市县加快配备这些环境监测仪器
    为持续深入打好蓝天保卫战,国务院近日印发《空气质量持续改善行动计划》。这是继2013年“大气十条”之后的第三个国家层面的保卫蓝天行动计划。行动计划要求以改善空气质量为核心,以减少重污染天气和解决人民群众身边的突出大气环境问题为重点,以降低细颗粒物(PM2.5)浓度为主线,开展区域协同治理,远近结合研究谋划大气污染防治路径,扎实推进产业、能源、交通绿色低碳转型。文件中提到,京津冀及周边地区、长三角、汾渭平原为本次行动计划的重点区域。预计到2025年,全国地级及以上城市PM2.5浓度比2020年下降10%,重度及以上污染天数比率控制在1%以内;氮氧化物和VOCs排放总量比2020年分别下降10%以上。京津冀及周边地区、汾渭平原PM2.5浓度分别下降20%、15%,长三角地区PM2.5浓度总体达标,北京市控制在32微克/立方米以内。《空气质量持续改善行动计划》还强调要强化能力建设。其中包括提升大气环境监测监控能力、强化大气环境监管执法和加强决策科技支撑三方面内容。其中,提升大气环境监测监控能力。完善城市空气质量监测网络,基本实现县城全覆盖,加强数据联网共享。完善沙尘调查监测体系,强化沙源区及沙尘路径区气象、空气质量等监测网络建设。重点区域城市加强机场、港口、铁路货场、物流园区、工业园区、产业集群、公路等大气环境监测。地级及以上城市开展非甲烷总烃监测,重点区域、成渝地区、长江中游城市群和其他VOCs排放量较高的城市开展光化学监测。重点区域和其他PM2.5未达标城市继续开展颗粒物组分监测。加强大气环境监测系列卫星、航空、地基等遥感能力建设。完善空气质量分级预报体系,加强区域预报中心建设。开展亚洲地区沙尘暴监测预报预警服务及技术研发。在沙尘路径区开展沙尘源谱监测分析,聚焦北京市进行沙尘源解析,评估各地沙尘量及固沙滞沙成效。强化大气环境监管执法。拓展非现场监管手段应用。加强污染源自动监测设备运行监管,确保监测数据质量和稳定传输。提升各级生态环境部门执法监测能力,重点区域市县加快配备红外热成像仪、便携式氢火焰离子检测仪、手持式光离子化检测仪等装备。加强重点领域监督执法,对参与弄虚作假的排污单位和第三方机构、人员依法追究责任,涉嫌犯罪的依法移送司法机关。文件具体内容如下:国务院关于印发《空气质量持续改善行动计划》的通知国发〔2023〕24号各省、自治区、直辖市人民政府,国务院各部委、各直属机构:现将《空气质量持续改善行动计划》印发给你们,请认真贯彻执行。国务院        2023年11月30日     (本文有删减)空气质量持续改善行动计划为持续深入打好蓝天保卫战,切实保障人民群众身体健康,以空气质量持续改善推动经济高质量发展,制定本行动计划。一、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大精神,深入贯彻习近平生态文明思想,落实全国生态环境保护大会部署,坚持稳中求进工作总基调,协同推进降碳、减污、扩绿、增长,以改善空气质量为核心,以减少重污染天气和解决人民群众身边的突出大气环境问题为重点,以降低细颗粒物(PM2.5)浓度为主线,大力推动氮氧化物和挥发性有机物(VOCs)减排;开展区域协同治理,突出精准、科学、依法治污,完善大气环境管理体系,提升污染防治能力;远近结合研究谋划大气污染防治路径,扎实推进产业、能源、交通绿色低碳转型,强化面源污染治理,加强源头防控,加快形成绿色低碳生产生活方式,实现环境效益、经济效益和社会效益多赢。(二)重点区域京津冀及周边地区。包含北京市,天津市,河北省石家庄、唐山、秦皇岛、邯郸、邢台、保定、沧州、廊坊、衡水市以及雄安新区和辛集、定州市,山东省济南、淄博、枣庄、东营、潍坊、济宁、泰安、日照、临沂、德州、聊城、滨州、菏泽市,河南省郑州、开封、洛阳、平顶山、安阳、鹤壁、新乡、焦作、濮阳、许昌、漯河、三门峡、商丘、周口市以及济源市。长三角地区。包含上海市,江苏省,浙江省杭州、宁波、嘉兴、湖州、绍兴、舟山市,安徽省合肥、芜湖、蚌埠、淮南、马鞍山、淮北、滁州、阜阳、宿州、六安、亳州市。汾渭平原。包含山西省太原、阳泉、长治、晋城、晋中、运城、临汾、吕梁市,陕西省西安、铜川、宝鸡、咸阳、渭南市以及杨凌农业高新技术产业示范区、韩城市。(三)目标指标。到2025年,全国地级及以上城市PM2.5浓度比2020年下降10%,重度及以上污染天数比率控制在1%以内;氮氧化物和VOCs排放总量比2020年分别下降10%以上。京津冀及周边地区、汾渭平原PM2.5浓度分别下降20%、15%,长三角地区PM2.5浓度总体达标,北京市控制在32微克/立方米以内。二、优化产业结构,促进产业产品绿色升级(四)坚决遏制高耗能、高排放、低水平项目盲目上马。新改扩建项目严格落实国家产业规划、产业政策、生态环境分区管控方案、规划环评、项目环评、节能审查、产能置换、重点污染物总量控制、污染物排放区域削减、碳排放达峰目标等相关要求,原则上采用清洁运输方式。涉及产能置换的项目,被置换产能及其配套设施关停后,新建项目方可投产。严禁新增钢铁产能。推行钢铁、焦化、烧结一体化布局,大幅减少独立焦化、烧结、球团和热轧企业及工序,淘汰落后煤炭洗选产能;有序引导高炉—转炉长流程炼钢转型为电炉短流程炼钢。到2025年,短流程炼钢产量占比达15%。京津冀及周边地区继续实施“以钢定焦”,炼焦产能与长流程炼钢产能比控制在0.4左右。(五)加快退出重点行业落后产能。修订《产业结构调整指导目录》,研究将污染物或温室气体排放明显高出行业平均水平、能效和清洁生产水平低的工艺和装备纳入淘汰类和限制类名单。重点区域进一步提高落后产能能耗、环保、质量、安全、技术等要求,逐步退出限制类涉气行业工艺和装备;逐步淘汰步进式烧结机和球团竖炉以及半封闭式硅锰合金、镍铁、高碳铬铁、高碳锰铁电炉。引导重点区域钢铁、焦化、电解铝等产业有序调整优化。(六)全面开展传统产业集群升级改造。中小型传统制造企业集中的城市要制定涉气产业集群发展规划,严格项目审批,严防污染下乡。针对现有产业集群制定专项整治方案,依法淘汰关停一批、搬迁入园一批、就地改造一批、做优做强一批。各地要结合产业集群特点,因地制宜建设集中供热中心、集中喷涂中心、有机溶剂集中回收处置中心、活性炭集中再生中心。(七)优化含VOCs原辅材料和产品结构。严格控制生产和使用高VOCs含量涂料、油墨、胶粘剂、清洗剂等建设项目,提高低(无)VOCs含量产品比重。实施源头替代工程,加大工业涂装、包装印刷和电子行业低(无)VOCs含量原辅材料替代力度。室外构筑物防护和城市道路交通标志推广使用低(无)VOCs含量涂料。在生产、销售、进口、使用等环节严格执行VOCs含量限值标准。(八)推动绿色环保产业健康发展。加大政策支持力度,在低(无)VOCs含量原辅材料生产和使用、VOCs污染治理、超低排放、环境和大气成分监测等领域支持培育一批龙头企业。多措并举治理环保领域低价低质中标乱象,营造公平竞争环境,推动产业健康有序发展。三、优化能源结构,加速能源清洁低碳高效发展(九)大力发展新能源和清洁能源。到2025年,非化石能源消费比重达20%左右,电能占终端能源消费比重达30%左右。持续增加天然气生产供应,新增天然气优先保障居民生活和清洁取暖需求。(十)严格合理控制煤炭消费总量。在保障能源安全供应的前提下,重点区域继续实施煤炭消费总量控制。到2025年,京津冀及周边地区、长三角地区煤炭消费量较2020年分别下降10%和5%左右,汾渭平原煤炭消费量实现负增长,重点削减非电力用煤。重点区域新改扩建用煤项目,依法实行煤炭等量或减量替代,替代方案不完善的不予审批;不得将使用石油焦、焦炭、兰炭等高污染燃料作为煤炭减量替代措施。完善重点区域煤炭消费减量替代管理办法,煤矸石、原料用煤不纳入煤炭消费总量考核。原则上不再新增自备燃煤机组,支持自备燃煤机组实施清洁能源替代。对支撑电力稳定供应、电网安全运行、清洁能源大规模并网消纳的煤电项目及其用煤量应予以合理保障。(十一)积极开展燃煤锅炉关停整合。各地要将燃煤供热锅炉替代项目纳入城镇供热规划。县级及以上城市建成区原则上不再新建35蒸吨/小时及以下燃煤锅炉,重点区域原则上不再新建除集中供暖外的燃煤锅炉。加快热力管网建设,依托电厂、大型工业企业开展远距离供热示范,淘汰管网覆盖范围内的燃煤锅炉和散煤。到2025年,PM2.5未达标城市基本淘汰10蒸吨/小时及以下燃煤锅炉;重点区域基本淘汰35蒸吨/小时及以下燃煤锅炉及茶水炉、经营性炉灶、储粮烘干设备、农产品加工等燃煤设施,充分发挥30万千瓦及以上热电联产电厂的供热能力,对其供热半径30公里范围内的燃煤锅炉和落后燃煤小热电机组(含自备电厂)进行关停或整合。(十二)实施工业炉窑清洁能源替代。有序推进以电代煤,积极稳妥推进以气代煤。重点区域不再新增燃料类煤气发生炉,新改扩建加热炉、热处理炉、干燥炉、熔化炉原则上采用清洁低碳能源;安全稳妥推进使用高污染燃料的工业炉窑改用工业余热、电能、天然气等;燃料类煤气发生炉实行清洁能源替代,或因地制宜采取园区(集群)集中供气、分散使用方式;逐步淘汰固定床间歇式煤气发生炉。(十三)持续推进北方地区清洁取暖。因地制宜成片推进北方地区清洁取暖,确保群众温暖过冬。加大民用、农用散煤替代力度,重点区域平原地区散煤基本清零,逐步推进山区散煤清洁能源替代。纳入中央财政支持北方地区清洁取暖范围的城市,保质保量完成改造任务,其中“煤改气”要落实气源、以供定改。全面提升建筑能效水平,加快既有农房节能改造。各地依法将整体完成清洁取暖改造的地区划定为高污染燃料禁燃区,防止散煤复烧。对暂未实施清洁取暖的地区,强化商品煤质量监管。四、优化交通结构,大力发展绿色运输体系(十四)持续优化调整货物运输结构。大宗货物中长距离运输优先采用铁路、水路运输,短距离运输优先采用封闭式皮带廊道或新能源车船。探索将清洁运输作为煤矿、钢铁、火电、有色、焦化、煤化工等行业新改扩建项目审核和监管重点。重点区域内直辖市、省会城市采取公铁联运等“外集内配”物流方式。到2025年,铁路、水路货运量比2020年分别增长10%和12%左右;晋陕蒙新煤炭主产区中长距离运输(运距500公里以上)的煤炭和焦炭中,铁路运输比例力争达到90%;重点区域和粤港澳大湾区沿海主要港口铁矿石、焦炭等清洁运输(含新能源车)比例力争达到80%。加强铁路专用线和联运转运衔接设施建设,最大程度发挥既有线路效能,重要港区在新建集装箱、大宗干散货作业区时,原则上同步规划建设进港铁路;扩大现有作业区铁路运输能力。对重点区域城市铁路场站进行适货化改造。新建及迁建大宗货物年运量150万吨以上的物流园区、工矿企业和储煤基地,原则上接入铁路专用线或管道。强化用地用海、验收投运、运力调配、铁路运价等措施保障。(十五)加快提升机动车清洁化水平。重点区域公共领域新增或更新公交、出租、城市物流配送、轻型环卫等车辆中,新能源汽车比例不低于80%;加快淘汰采用稀薄燃烧技术的燃气货车。推动山西省、内蒙古自治区、陕西省打造清洁运输先行引领区,培育一批清洁运输企业。在火电、钢铁、煤炭、焦化、有色、水泥等行业和物流园区推广新能源中重型货车,发展零排放货运车队。力争到2025年,重点区域高速服务区快充站覆盖率不低于80%,其他地区不低于60%。强化新生产货车监督抽查,实现系族全覆盖。加强重型货车路检路查和入户检查。全面实施汽车排放检验与维护制度和机动车排放召回制度,强化对年检机构的监管执法。鼓励重点区域城市开展燃油蒸发排放控制检测。(十六)强化非道路移动源综合治理。加快推进铁路货场、物流园区、港口、机场、工矿企业内部作业车辆和机械新能源更新改造。推动发展新能源和清洁能源船舶,提高岸电使用率。大力推动老旧铁路机车淘汰,鼓励中心城市铁路站场及煤炭、钢铁、冶金等行业推广新能源铁路装备。到2025年,基本消除非道路移动机械、船舶及重点区域铁路机车“冒黑烟”现象,基本淘汰第一阶段及以下排放标准的非道路移动机械;年旅客吞吐量500万人次以上的机场,桥电使用率达到95%以上。(十七)全面保障成品油质量。加强油品进口、生产、仓储、销售、运输、使用全环节监管,全面清理整顿自建油罐、流动加油车(船)和黑加油站点,坚决打击将非标油品作为发动机燃料销售等行为。提升货车、非道路移动机械、船舶油箱中柴油抽测频次,对发现的线索进行溯源,严厉追究相关生产、销售、运输者主体责任。五、强化面源污染治理,提升精细化管理水平(十八)深化扬尘污染综合治理。鼓励经济发达地区5000平方米及以上建筑工地安装视频监控并接入当地监管平台;重点区域道路、水务等长距离线性工程实行分段施工。将防治扬尘污染费用纳入工程造价。到2025年,装配式建筑占新建建筑面积比例达30%;地级及以上城市建成区道路机械化清扫率达80%左右,县城达70%左右。对城市公共裸地进行排查建档并采取防尘措施。城市大型煤炭、矿石等干散货码头物料堆场基本完成抑尘设施建设和物料输送系统封闭改造。(十九)推进矿山生态环境综合整治。新建矿山原则上要同步建设铁路专用线或采用其他清洁运输方式。到2025年,京津冀及周边地区原则上不再新建露天矿山(省级矿产资源规划确定的重点开采区或经安全论证不宜采用地下开采方式的除外)。对限期整改仍不达标的矿山,根据安全生产、水土保持、生态环境等要求依法关闭。(二十)加强秸秆综合利用和禁烧。提高秸秆还田标准化、规范化水平。健全秸秆收储运服务体系,提升产业化能力,提高离田效能。全国秸秆综合利用率稳定在86%以上。各地要结合实际对秸秆禁烧范围等作出具体规定,进行精准划分。重点区域禁止露天焚烧秸秆。综合运用卫星遥感、高清视频监控、无人机等手段,提高秸秆焚烧火点监测精准度。完善网格化监管体系,充分发挥基层组织作用,开展秸秆焚烧重点时段专项巡查。六、强化多污染物减排,切实降低排放强度(二十一)强化VOCs全流程、全环节综合治理。鼓励储罐使用低泄漏的呼吸阀、紧急泄压阀,定期开展密封性检测。汽车罐车推广使用密封式快速接头。污水处理场所高浓度有机废气要单独收集处理;含VOCs有机废水储罐、装置区集水井(池)有机废气要密闭收集处理。重点区域石化、化工行业集中的城市和重点工业园区,2024年年底前建立统一的泄漏检测与修复信息管理平台。企业开停工、检维修期间,及时收集处理退料、清洗、吹扫等作业产生的VOCs废气。企业不得将火炬燃烧装置作为日常大气污染处理设施。(二十二)推进重点行业污染深度治理。高质量推进钢铁、水泥、焦化等重点行业及燃煤锅炉超低排放改造。到2025年,全国80%以上的钢铁产能完成超低排放改造任务;重点区域全部实现钢铁行业超低排放,基本完成燃煤锅炉超低排放改造。确保工业企业全面稳定达标排放。推进玻璃、石灰、矿棉、有色等行业深度治理。全面开展锅炉和工业炉窑简易低效污染治理设施排查,通过清洁能源替代、升级改造、整合退出等方式实施分类处置。推进燃气锅炉低氮燃烧改造。生物质锅炉采用专用锅炉,配套布袋等高效除尘设施,禁止掺烧煤炭、生活垃圾等其他物料。推进整合小型生物质锅炉,积极引导城市建成区内生物质锅炉(含电力)超低排放改造。强化治污设施运行维护,减少非正常工况排放。重点涉气企业逐步取消烟气和含VOCs废气旁路,因安全生产需要无法取消的,安装在线监控系统及备用处置设施。(二十三)开展餐饮油烟、恶臭异味专项治理。严格居民楼附近餐饮服务单位布局管理。拟开设餐饮服务单位的建筑应设计建设专用烟道。推动有条件的地区实施治理设施第三方运维管理及在线监控。对群众反映强烈的恶臭异味扰民问题加强排查整治,投诉集中的工业园区、重点企业要安装运行在线监测系统。各地要加强部门联动,因地制宜解决人民群众反映集中的油烟及恶臭异味扰民问题。(二十四)稳步推进大气氨污染防控。开展京津冀及周边地区大气氨排放控制试点。推广氮肥机械深施和低蛋白日粮技术。研究畜禽养殖场氨气等臭气治理措施,鼓励生猪、鸡等圈舍封闭管理,支持粪污输送、存储及处理设施封闭,加强废气收集和处理。到2025年,京津冀及周边地区大型规模化畜禽养殖场大气氨排放总量比2020年下降5%。加强氮肥、纯碱等行业大气氨排放治理;强化工业源烟气脱硫脱硝氨逃逸防控。七、加强机制建设,完善大气环境管理体系(二十五)实施城市空气质量达标管理。空气质量未达标的直辖市和设区的市编制实施大气环境质量限期达标规划,明确达标路线图及重点任务,并向社会公开。推进PM2.5和臭氧协同控制。2020年PM2.5浓度低于40微克/立方米的未达标城市“十四五”期间实现达标;其他未达标城市明确“十四五”空气质量改善阶段目标。已达标城市巩固改善空气质量。(二十六)完善区域大气污染防治协作机制。国家统筹推进京津冀及周边地区大气污染联防联控工作,继续发挥长三角地区协作机制、汾渭平原协作机制作用。国家加强对成渝地区、长江中游城市群、东北地区、天山北坡城市群等区域大气污染防治协作的指导,将粤港澳大湾区作为空气质量改善先行示范区。各省级政府加强本行政区域内联防联控。鼓励省际交界地区市县积极开展联防联控,推动联合交叉执法。对省界两侧20公里内的涉气重点行业新建项目,以及对下风向空气质量影响大的新建高架源项目,有关省份要开展环评一致性会商。(二十七)完善重污染天气应对机制。建立健全省市县三级重污染天气应急预案体系,明确地方各级政府部门责任分工,规范重污染天气预警启动、响应、解除工作流程。优化重污染天气预警启动标准。完善重点行业企业绩效分级指标体系,规范企业绩效分级管理流程,鼓励开展绩效等级提升行动。结合排污许可制度,确保应急减排清单覆盖所有涉气企业。位于同一区域的城市要按照区域预警提示信息,依法依规同步采取应急响应措施。八、加强能力建设,严格执法监督(二十八)提升大气环境监测监控能力。完善城市空气质量监测网络,基本实现县城全覆盖,加强数据联网共享。完善沙尘调查监测体系,强化沙源区及沙尘路径区气象、空气质量等监测网络建设。重点区域城市加强机场、港口、铁路货场、物流园区、工业园区、产业集群、公路等大气环境监测。地级及以上城市开展非甲烷总烃监测,重点区域、成渝地区、长江中游城市群和其他VOCs排放量较高的城市开展光化学监测。重点区域和其他PM2.5未达标城市继续开展颗粒物组分监测。加强大气环境监测系列卫星、航空、地基等遥感能力建设。完善空气质量分级预报体系,加强区域预报中心建设。开展亚洲地区沙尘暴监测预报预警服务及技术研发。在沙尘路径区开展沙尘源谱监测分析,聚焦北京市进行沙尘源解析,评估各地沙尘量及固沙滞沙成效。地级及以上城市生态环境部门定期更新大气环境重点排污单位名录,确保符合条件的企业全覆盖。推动企业安装工况监控、用电(用能)监控、视频监控等。加强移动源环境监管能力建设,国家和重点区域省份建设重型柴油车和非道路移动机械远程在线监控平台。(二十九)强化大气环境监管执法。拓展非现场监管手段应用。加强污染源自动监测设备运行监管,确保监测数据质量和稳定传输。提升各级生态环境部门执法监测能力,重点区域市县加快配备红外热成像仪、便携式氢火焰离子检测仪、手持式光离子化检测仪等装备。加强重点领域监督执法,对参与弄虚作假的排污单位和第三方机构、人员依法追究责任,涉嫌犯罪的依法移送司法机关。(三十)加强决策科技支撑。研究低浓度、大风量、中小型VOCs排放污染治理技术,提升VOCs关键功能性吸附催化材料的效果和稳定性。研究分类型工业炉窑清洁能源替代和末端治理路径,研发多污染物系统治理、低温脱硝、氨逃逸精准调控等技术和装备。推进致臭物质识别、恶臭污染评估和溯源技术方法研究。开展沙尘天气过程发生发展机理研究。到2025年,地级及以上城市完成排放清单编制,重点区域城市实现逐年更新。九、健全法律法规标准体系,完善环境经济政策(三十一)推动法律法规制修订。研究启动修订大气污染防治法。研究修订清洁生产促进法,明确企业使用低(无)VOCs含量原辅材料的法律责任。研究制定移动源污染防治管理办法。(三十二)完善环境标准和技术规范体系。启动环境空气质量标准及相关技术规范修订研究工作。研究制定涂层剂、聚氨酯树脂、家用洗涤剂、杀虫气雾剂等VOCs含量限值强制性国家标准,建立低(无)VOCs含量产品标识制度;制定有机废气治理用活性炭技术要求;加快完善重点行业和领域大气污染物排放标准、能耗标准。研究制定下一阶段机动车排放标准,开展新阶段油品质量标准研究。研究制定生物质成型燃料产品质量、铁路内燃机车污染物排放等强制性国家标准。鼓励各地制定更加严格的环境标准。(三十三)完善价格税费激励约束机制。落实峰谷分时电价政策,推进销售电价改革。强化价格政策与产业和环保政策的协同,综合考虑能耗、环保绩效水平,完善高耗能行业阶梯电价制度。对港口岸基供电实施支持性电价政策,推动降低岸电使用服务费。鼓励各地对新能源城市公共汽电车充电给予积极支持。研究完善清洁取暖“煤改电”及采暖用电销售侧峰谷电价制度;减少城镇燃气输配气层级,合理制定并严格监管输配气价格,建立健全终端销售价格与采购价格联动机制,落实好清洁取暖气价政策。完善铁路运价灵活调整机制,规范铁路货运杂费,研究推行“一口价”收费政策,广泛采用“量价互保”协议运输模式。完善环境保护税征收体系,加快把VOCs纳入征收范围。(三十四)积极发挥财政金融引导作用。有序扩大中央财政支持北方地区清洁取暖范围,对减污降碳协同项目予以倾斜。按照市场化方式加大传统产业及集群升级、工业污染治理、铁路专用线建设、新能源铁路装备推广等领域信贷融资支持力度,引导社会资本投入。按要求对银行业金融机构开展绿色金融评价,吸引长期机构投资者投资绿色金融产品。积极支持符合条件的企业、金融机构发行绿色债券,开展绿色债券信用评级,提高绿色债券的信息披露水平。十、落实各方责任,开展全民行动(三十五)加强组织领导。坚持和加强党对大气污染防治工作的全面领导。地方各级政府对本行政区域内空气质量负总责,组织制定本地实施方案。生态环境部要加强统筹协调,做好调度评估。国务院各有关部门要协同配合落实任务分工,出台政策时统筹考虑空气质量持续改善需求。(三十六)严格监督考核。将空气质量改善目标完成情况作为深入打好污染防治攻坚战成效考核的重要内容。对超额完成目标的地区给予激励;对未完成目标的地区,从资金分配、项目审批、荣誉表彰、责任追究等方面实施惩戒;对问题突出的地区,视情组织开展专项督察。组织对重点区域开展监督帮扶。(三十七)推进信息公开。加强环境空气质量信息公开力度。将排污单位和第三方治理、运维、检测机构弄虚作假行为纳入信用记录,定期依法向社会公布。重点排污单位及时公布自行监测和污染排放数据、污染治理措施、环保违法处罚及整改等信息。机动车和非道路移动机械生产、进口企业依法公开排放检验、污染控制技术等环保信息。(三十八)加强宣传引导和国际合作。广泛宣传解读相关政策举措,大力普及大气环境与健康基本理念和知识,提升公民大气环境保护意识与健康素养。加强大气环境管理和防沙治沙国际合作。推广中国大气污染治理技术和经验、防沙治沙实用技术和模式,讲好中国生态环保故事。(三十九)实施全民行动。动员社会各界广泛参与大气环境保护。政府带头开展绿色采购,全面使用低(无)VOCs含量产品。完善举报奖励机制,鼓励公众积极提供环境违法行为线索。中央企业带头引导绿色生产,推进治污减排。强化公民环境意识,推动形成简约适度、绿色低碳、文明健康的生活方式,共同改善空气质量。
  • 科捷气相色谱仪/液化气中二甲醚检测气相色谱仪促销
    科捷气相色谱仪/液化气中二甲醚检测气相色谱仪促销 南京科捷液化气中二甲醚检测气相色谱仪销售热线:025-83738955,尹先生13951792301 新闻报导广州液化气充装二甲醚将吊销充装证 10月11号广州质监局和广州城管委联合主办液化石油气行业市场监管和诚信经营活动启动仪式。相关负责人透露,接下来将对充装单位进行诚信评级,对充装二甲醚、充装非自有气瓶等严重违法行为的不诚信企业,实施停业整顿或吊销充装证的处罚。 二甲醚为易燃气体。与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧化剂易燃烧爆炸。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。气体比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。 为保证广大消费者的利益,南京科捷分析仪器有限公司提供液化气中二甲醚检测方案,方案内容如下,检测结果符合《GB/T 13610-2003天然气的组成分析气相色谱法》,《GB/T 10410-2008 人工煤气和液化石油气常量组分气相色谱分析法》。 科捷气相色谱仪检测石油液化气中二甲醚主要配置: TCD检测通道 ► 六通阀 1只,用于气体进样和填充色谱柱切换 ► 分析柱1:&Phi 3× 3m 1根 ► 分析柱1:&Phi 3× 3m 1根 ► 热导检测器 1只 ► 分离分析:H2、O2、N2、CH4、CO2、CO FID检测通道 ► 六通阀 1只,用于气体进样 ► 分流/不分流毛细管进样器 1只 ► 毛细管柱:氧化铝 30m× 0.53mm× 20um 1根 ► FID检测器 1只 ► 分离分析:CH4、C2H6、C2H4、C3H8、C3H6、iC4H10、nC4H10、正丁烯、异丁烯、反丁烯、顺丁烯、异戊烷、正戊烷、1,3-丁二烯、异己烷、正己烷 N2000双通道色谱工作站 1套 ► 信号通道A 用于TCD检测通道信号数据采集 ► 信号通道B 用于FID检测通道信号数据采集 科捷液化气中二甲醚检测气相色谱仪主要特点   1、全兼容惠普HP5890II气相色谱仪,可直接接驳HP5890微型单丝热导检测器、氢火焰离子化检测器及相关检测器控制板.仪器技术指标、性能,检测器灵敏度可与HP5890相媲美!   2、全新集成数字电子电路,控制精度高,性能稳定可靠,温控精度可达0.01℃.   3、独特的进样口设计解决进样歧视;双柱补偿功能不仅解决升温带来的程序漂移,而且减去背景噪音的影响,可以得到更低的最小的检测限。   4、柱箱容积大,智能后开门系统无级可变进出风量,缩短了程序升/降温后系统稳定平衡时间;加热炉系统:(温度范围)环境温度+7℃~400℃.三阶程序升温,升温速率0-50℃/min;增量0.1℃/min可以由用户重新校正炉温,并随意设定最高温度。由用户决定加热炉温度平衡时间。   5、可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、甲烷转化炉.   6、检测器系统:火焰离子检测器容易拆卸和安装,便于清洁或更换喷嘴;高阻值单柱热导检测器检测灵敏度高,基线稳定快(15分钟即可稳定);输入信号可进行对数放大,减少干扰,提高灵敏度.可选配TCD、ECD、NPD。   7、具有开机自诊断功能、秒表功能(方便流量测定)、运转定时器功能、停电储存保护功能、键盘锁定功能。 科捷液化气中二甲醚检测气相色谱仪技术指标   1、温控   控温范围:室温上7℃~400℃(增量0.1℃)   程升阶数:三阶   程升速率:0.1℃~50℃/min(增量0.1℃)   2、检测器TCD   敏感度:&ge 10000mV· ml/mg(正十六烷)   基线噪声:&le 30uV(载气为99.999的氢气 金秋10月,科捷液化气中二甲醚检测气相色谱仪大促销,欢迎来电详询优惠资讯!联系电话:025-83738955,尹先生13951792301
  • 南宁:燃气表若检测出现问题 用户将不用付检测费
    《南宁市燃气管理条例》12月1日起实施 燃气表若检出问题 用户不用付检测费 如果燃气公司认为燃气表计量有问题,燃气公司将承担起检测更换的义务,但如果用户提出这个问题,检测更换费用谁来承担?10月10日,南宁市人大常委会发布公告称,《南宁市燃气管理条例》(以下简称《条例》)已经自治区十二届人大常委会第六次会议批准通过,将于12月1日起施行。新修订的《条例》对上述问题进行了明确:如果用户提出对燃气表校验,校验无问题的,费用由用户承担;校验有问题的,燃气公司承担检测费,还需免费更换燃气表 如果用户提出检测 付费将分两种情况 现象:去年9月中旬,家住南宁嘉园小区的赵女士遇到烦心事:燃气公司工作人员称她家的燃气表坏了,要上门更换。更换燃气表后,赵女士家的燃气就被停供了。燃气公司称,她之前已经透支了500多立方天然气,每立方4.6元,需要补交2000余元后才能恢复正常供气。对此,赵女士表示不能理解。她说,如果老燃气表出问题,燃气公司得拿出确凿的证据,证明确实是用户的失误或者故意为之,而导致透支燃气费用,而不是依托自己的强势,直接停供用户的天然气,以此逼迫用户不明不白地缴费。“再说,计量表所有权属于燃气公司,如果出现问题导致计量不准,也应该由燃气公司承担相应后果和责任”。 新规:《条例》明确,用户对燃气表的准确度有异议的,可以向供气的管道燃气经营企业提出检测申请,企业应当按照与用户约定的时间或者在接到申请之日起3日内,委托法定的计量检定机构进行检测。经检测,燃气表误差在国家允许范围的,因检测产生的费用由用户承担;误差超过国家允许范围的,检测费用由燃气企业承担,并免费为用户更换合格的燃气表,拆表前6个月的燃气费用,按用气量的检测结果多退少补。 说法:南宁市燃气管理处副主任陈华建说,如果燃气公司提出燃气表有问题,费用肯定由燃气公司承担,但如果是用户提出,则视不同情况付费。但拆表检验期间,燃气公司应该给用户提供临时表。
  • 中科院研制成功燃气监测系统 0.05秒“嗅”出安全隐患
    由中科院合肥物质研究所研制的&ldquo 城市天然气管网监测系统&rdquo ,近日通过了国家安全生产监督管理总局组织的专家鉴定,有望实现产业化推广。该系统在50毫秒内即可迅速检测出泄漏点。   去年11月,山东青岛发生输油管道爆燃事故 今年8月1日,台湾高雄又发生天然气管道爆炸。当整座城市坐落在有着燃、爆危险的天然气管网上,如何实现有效的安全监控是一个世界性难题。   系统由中科院合肥物质研究所和安徽中科瀚海光电技术发展公司联合研发而成,采用激光吸收光谱检测技术,通过气体分子对激光波长的改变识别甲烷,检测灵敏度达到0.05%。   &ldquo 系统采用定点实时监测和移动巡检相结合的方式,可以实时将检测数据传输到远程监控中心,为安全调度、应急处置提供依据。&rdquo 中科瀚海负责人李树广介绍,所谓&ldquo 定点&rdquo 就是对储气场站、调压站等易泄漏点进行24小时全天候监控 &ldquo 巡检&rdquo 则是通过巡检车查出地下管道的微小泄漏隐患,并以红黄绿不同的颜色标示在电子地图的轨迹上,对严重泄漏即时报警,从而实现有效监控。   专家鉴定组副组长、中国燃气学会副秘书长李颜强认为,该系统的亮点在于可以对每一辆运行中的燃气运输车辆进行定位和泄漏监测。通过与北斗定位系统的一体化融合,把燃气运输车辆的安全状态实时传送,一旦发生泄漏立刻向驾驶员和监控中心报警。
  • 赫施曼助力焦炉煤气中氰化氢含量的测定
    焦炉煤气中含有氰化氢,氰化氢本身有剧毒,其水溶液腐蚀设备和管道,在系统中产生引起管道堵塞的铁盐,因此要进行脱除,并检测其具体含量。其检测标准为YB/T 4495-2015(焦炉煤气 氰化氢含量的测定 硝酸银滴定法)。原理是用氢氧化钾溶液吸收煤气中的氰化氢,加入醋酸镉溶液,使吸收液中的硫化物都形成难溶硫化镉沉淀过滤除去。在pH11条件下,用硝酸银标准溶液滴定,氰离子与硝酸银作用形成可溶性银氰络合离子,过量的银离子与试银灵指示剂反应,溶液由黄色变为橙红色即为终点,根据消耗硝酸银标准溶液的体积计算煤气中氰化氢含量。试验要先对硝酸银标准溶液进行标定(四次滴定),计算出其准确浓度:移取25.00mL氯化钠标准溶液各三份,加50mL水,加入3滴~4滴铬酸钾指示剂溶液,在不断摇动下,用硝酸银标准溶液滴定至溶液由黄色变为砖红色即为终点,记录滴定消耗体积。在标定的同时做空白试验。经计算确定了硝酸银标准溶液浓度后,再进行取样和测定(两次滴定,样品滴定和空白滴定)。标准中特别指出,所用的滴定管是5mL棕色微量滴定管,分度值要达到0.02mL。棕色滴定管,比一般的透明滴定管的观察、读数等更加困难,操控也需多加练习和足够的耐心。赫施曼的光能滴定器和电子滴定器,均有10、20、50mL三个规格,最小分度为0.01mL或0.001mL(电子滴定10mL),对于硝酸银这类需要避光的试剂,换用附带的棕色挡光板即可。均可实现抽提加液、手转/手按控制滴定速度、屏幕直接读数,可解决常规滴定管的三大难点:灌液慢、控速难,读数乱(不同人、不同位、不同次的凹液面读数均有可能出现偏差)。
  • 四合一气体检测仪:多气体同步监测,安全尽在掌握
    在我们生活和工作的众多场景中,气体安全至关重要。无论是在充满复杂气体环境的工业车间,深邃的矿井巷道,还是可能存在燃气泄漏隐患的家庭厨房,都离不开一个可靠的守护者——四合一气体检测仪。  四合一气体检测仪是一种高效、便捷的安全监测设备,能够同时检测并显示四种不同的有害气体浓度,通常包括可燃气体(如甲烷、丙烷等)、有毒气体(如一氧化碳、硫化氢等)、氧气浓度以及可能存在的其他特定有毒气体(如二氧化氮、氯气等),具体检测气体种类会根据不同型号和应用场景有所差异。这种设备在化工、石油、天然气、冶金、消防、环保、地下管道维护等多个领域具有广泛的应用,是保障人员安全、预防事故发生的重要工具。  这款检测仪凭借其先进的传感器技术和精准的数据分析系统,能够迅速而准确地检测出常见的四种气体,包括可燃气体、一氧化碳、硫化氢和氧气。对于可燃气体,它能在第一时间感知到浓度的细微变化,哪怕是极其微量的泄漏也逃不过它的“法眼”。当一氧化碳这种无色无味却极具危险性的气体出现时,四合一气体检测仪会立即发出警报,为人们争取到宝贵的应对时间。硫化氢作为一种具有强烈刺激性气味的有毒气体,它也能精确地进行监测和预警。而氧气浓度的监测更是关键,无论是在高海拔地区还是封闭空间内,氧气含量的变化都可能对人体健康造成重大影响,四合一气体检测仪能够确保我们始终处于合适的氧气环境中。  在实际应用中,它的便捷性和高效性也令人称赞。其操作简单易懂,无论是专业的技术人员还是普通的工作人员都能轻松上手。它具有清晰直观的显示屏,能够实时显示各种气体的浓度数值,让使用者一目了然。同时,它还具备声光报警功能,一旦检测到气体浓度超出安全范围,就会立即发出强烈的声光信号,及时提醒周围的人员采取相应的安全措施。  在矿井作业中,四合一气体检测仪为矿工们的生命安全提供了坚实的保障。矿井下的气体环境复杂多变,稍有不慎就可能引发重大安全事故。有了它,矿工们可以随时了解周围气体环境的状况,安心工作。在工业生产线上,它能有效预防因气体泄漏导致的火灾、爆炸等事故,降低企业的安全风险和经济损失。  总体而言,四合一气体检测仪以其卓越的多气体同步监测功能,为我们的生产和生活带来了可靠的安全保障。让我们在面对各种复杂的气体环境时,都能做到心中有数,安全尽在掌握,它无疑是我们在气体安全领域不可或缺的得力助手。随着科技的进步和需求的不断增长,未来气体检测仪将更加智能化、网络化,为各行各业的安全生产提供更加全面、高效的解决方案。
  • 燃煤锅炉整治有望开启烟气排放连续监测市场
    全面整治燃煤小锅炉是大气污染防治行动计划的主要内容之一。业界预计,未来五年该市场需求将达400亿元。   分析认为,工业锅炉整治将造就数个CEMS(烟气排放连续监测系统)市场,雪迪龙等有望受益。   全国工商联环境服务业商会秘书长骆建华表示,锅炉脱硫、燃煤改燃气、关停是整治燃煤小锅炉的主要路径。   据悉,此前市场普遍认为燃煤锅炉整治的市场将面临资金以及行政力量不足的局面。证券分析师认为,随着相关政策的次第出台,市场对于锅炉整治的偏见将被逐步纠正。同时,工业锅炉整治将带来CEMS市场的成倍增长。   &ldquo 目前,锅炉脱硫存在的主要问题是设施运行率低&rdquo ,骆建华称,脱硫设施的安装率已经达到较高的水平,但运行率低是导致燃煤锅炉排放污染物多的主要原因。   据统计,目前国内的工业锅炉基数约为62万台左右,其中安装脱硫设施的数量较为可观。据上述分析师测算,假设5-10%的锅炉进行脱硫,将至少带来5万台CEMS的新增需求,过去10年销售的CEMS仅1.2万台,5万台相当于再造数个CEMS市场。   雪迪龙作为烟气监测仪器市场的龙头,将从中受益。该公司在火电、钢铁、水泥等行业监测仪器的市场占有率大约为35%。该分析师认为,公司原市场将随着脱硝高峰期的结束而萎缩。而燃煤锅炉整治将带来数倍于火电行业的新增监测仪器需求。   另外,聚光科技、先河环保也是烟气连续排放监测仪器的生产商。   与此同时,骆建华还指出,燃煤锅炉改造的另一大重点在于开展&ldquo 煤改气&rdquo 工作,需要大力勘探和开发、以及增加天然气进口数量。   继6月14日,国务院发布大气污染防治十条措施以来,环保部部长周生贤此前透露,《大气污染防治行动计划》(下称《计划》)全文将于近期发布。该计划涵盖10条35项具体措施,将投资1.7万亿元用于大气治理工作,将重点严控高耗能、高污染行业新增产能,严格治理机动车污染、提升燃油品质,提高清洁能源比重。   而作为《计划》的纲领性文件,大气污染防治十条措施在第一条就提出要整治燃煤小锅炉。根据中信证券发布的研报显示,预计2013-2017年,燃煤工业锅炉治理需求有望达400亿元。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制