当前位置: 仪器信息网 > 行业主题 > >

土壤剖面水分监测系统

仪器信息网土壤剖面水分监测系统专题为您提供2024年最新土壤剖面水分监测系统价格报价、厂家品牌的相关信息, 包括土壤剖面水分监测系统参数、型号等,不管是国产,还是进口品牌的土壤剖面水分监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤剖面水分监测系统相关的耗材配件、试剂标物,还有土壤剖面水分监测系统相关的最新资讯、资料,以及土壤剖面水分监测系统相关的解决方案。

土壤剖面水分监测系统相关的方案

  • 土壤剖面水分监测系统在青海省农林科学院完成安装
    2021年7月,青海省农林科学院TRIME-PICO IPH 2 TDR 剖面土壤水分测量系统的安装调试已经完成,仪器现已投入正常使用。仪器主要应用于贵南荒漠生态系统监测区域土壤剖面水分和电导率的动态监测。
  • PR2土壤剖面水分探头用于多次生物多样性生态系统功能研究实验
    PR2土壤剖面水分传感器可以迅速、精确、可靠的测量土壤剖面不同深度的土壤水分含量。PR2使用新的专利传感技术使得它可以精确测量土壤绝对含水量。广泛适用于多种类型的土壤。
  • SCG-N土壤CO2剖面监测仪在蜥蜴研究方面的应用
    北京易科泰生态技术公司采用国际先进传感器与数据采集技术,专业生产SCG-N土壤剖面CO2/O2监测系统及SoilBox343便携式土壤呼吸测量仪,可以同步测量监测土壤CO2、O2、土壤温度及土壤水分等,是农业部学科群项目、中科院CERN网络等的主要观测研究设备。
  • Diviner2000便携式土壤剖面水分速测仪在湖北工业大学完成安装培训
    湖北工业大学的用户就将应用Diviner2000便携式土壤剖面水分速测仪对多个监测站点的土壤剖面水分进行定点长期监测。我司技术工程师配合老师冒雨对该仪器的安装演示、操作使用和数据处理进行了详细的培训,以期为该仪器在用户的科学研究应用中发挥其应有的贡献。
  • SCG-N土壤剖面CO2/O2梯度监测技术
    二氧化碳(CO2)是最重要的温室气体,大气二氧化碳浓度在很大程度上受到土壤CO2通量的影响,土壤的CO2释放即土壤呼吸,包括三个生物学过程(即土壤微生物呼吸、根系呼吸、土壤动物呼吸)和一个非生物学过程,即含碳矿物质的化学氧化作用。 土壤呼吸的影响因素众多,包括土壤水分、温度等,其中土地的植被覆盖是一个重要因素。不同植被覆盖的土壤呼吸状况是目前已建立的长期监测CO2通量网站的重要研究对象之一,是研究世界碳循环的重要课题,对生态学、环境科学及地球表层系统科学意义重大。 目前基于呼吸室方法(Chamber-based method)测量土壤表层CO2通量的仪器很多,如英国ADC公司生产的SRS便携式土壤呼吸测量系统及ACE土壤呼吸监测系统,还有易科泰生态技术公司采用扩散式传感器集成生产的SoilBox343便携式土壤呼吸测量仪及OTC-Auto群落光合呼吸监测系统等。呼吸室法的缺点是不能了解土壤表层以下(地下)的情况,如根系呼吸、异养呼吸等。在此背景下,SCG(Soil-CO2 gradient)土壤剖面CO2测量监测技术就显得特别重要,通过不同深度的土壤剖面原位CO2测量,可以精准测量碳在土壤中的产生、运移、扩散过程(土壤中碳的周转),特别是随着O2传感器技术的发展,还可以同步测量O2浓度,进而分析土壤O2消耗、呼吸商及与其它温室气体排放的关系等。
  • 北温带干旱地区土壤剖面二氧化碳通量的变化特征
    摘 要:采用开放式样杆方法,对干旱土纲的4 种土壤类型进行了土壤剖面CO2 通量的观测研究,主要结果为:①干旱地区土壤剖面CO2 通量的变化趋势是:在0-60 cm 深度范围内随土壤深度增加而增加,60 cm 为转折点,之后,随土壤深度增加而减小。②土壤剖面CO2碳通量平均值为660 μmol/(m2h),在-9076-16 988 μmol/(m2h)范围内变化,如果土地利用/土地覆盖发生改变(0-70 cm 深度),将可能有254.6 t CO2/(km2a)从土壤向大气释放。③土壤种类不同,CO2 通量明显不同,森林土壤释放量大于草原土壤。④在通量-深度曲线中,各土壤类型均出现1-2 个拐点,变化原因与土壤剖面结构和根系分布有关,钙积层的有无、厚度起决定作用。⑤存在季节变化,植物生长季节的CO2 通量远大于其他季节,其他季节可能有土壤吸收二氧化碳现象。由此应避免在植物生长季节施工动土,以减少土壤CO2向大气中释放。⑥本研究建议:善待土壤,谨慎动土。关键词:土地利用和覆盖变化;二氧化碳气体释放和吸收;气候变暖;栗钙土;灰钙土;山地灰褐土;粗骨土
  • 核磁共振技术检测土壤界面作用
    土壤界面作用对土壤生态系统的功能和稳定性至关重要。它不仅影响土壤中的水分利用效率和养分供应,还通过调控土壤中的气体交换和化学反应,影响土壤的碳循环和养分循环过程。此外,土壤界面作用还对土壤中的微生物活动、植物生长和土壤生物多样性等产生重要影响。因此,深入理解和研究土壤界面作用对于优化土壤管理、保护农田生态系统、提高农业产量和实现可持续土壤利用具有重要意义。
  • SisuROCK 高光谱成像技术检测土壤有机碳(SOC)和总氮(TN)
    土壤有机质,尤其是有机碳和氮,在陆地生态系统中起着重要的作用,通过土壤管理增加土壤固碳可抵消全球化石燃料排碳的5-15%。高光谱成像技术可以将土壤特性测量从点尺度提升至空间尺度,是土壤科学管理、土壤有机质研究的有力工具。加拿大阿尔伯特大学的研究者Sorenson利用Specim SisuROCK高光谱成像系统,采集三种不同轮作土壤剖面(a连续作物、b连续牧草、c作物和牧草混合农业生态轮作)的VNIR-SWIR高光谱数据,结合元素分析仪获取的各土壤样品有机碳(SOC)和总氮(TN)含量数据,基于小波分析与贝叶斯正则化神经网络建立SOC和TN预测模型。结果表明,轮作中添加牧草增加了土壤SOC和TN的含量,但这些变化多集中在表层。这一结果具有重要的土地利用与管理意义,为用户提供决策支持,同时证明SisuROCK高光谱成像技术是研究土壤剖面中有机质空间分布的重要工具。北京易科泰生态技术有限公司长期致力于生态-农业-健康领域仪器的研发、应用与推广,为土壤养分、污染、重金属检测、土壤-植物互作关系研究提供从实验室到野外,从地面到无人机遥感全方位解决方案。
  • 鼓风干燥箱在土壤水分检测中的应用研究
    土壤水分是农业生产和生态环境研究中的重要参数。本文介绍了鼓风干燥箱在土壤水分检测中的应用方法、原理及其优势,为提高土壤水分检测的准确性和效率提供了参考。
  • 土壤碳研究监测技术
    土壤表层 CO2 通量(CO2 efflux),或称土壤呼吸,是生物圈碳循环的主要组成部分,约占整个生态系统呼吸的四分之三(Law et al., 2001)。由于土壤呼吸在全球变暖中的潜在和富有争议的角色地位,土壤 CO2 通量已成为当前气候变化研究的热点。另一方面,全球FLUXNET 网络涡度相关 CO2 通量测量数据也需要通过土壤呼吸监测来解析和解释。土壤呼吸测量方法一般有气体抽样分析法、林冠下层涡度相关法及呼吸室法,由于前两种方法存在一些缺陷,呼吸室法(Chamber technique)已越来越被得到广泛的应用,另外近几年来土壤剖面 CO2 连续测量监测技术也越来越引起高度重视。有研究报道认为,土壤呼吸与总初级生产力(GPP)和冠层光合作用呈相关关系,同时与根系动态也呈很强的相关关系,但有关直接的野外测量数据仍然缺乏(Tang et al.,2005)。为了对我国土壤碳研究提供方法技术支撑,易科泰生态技术公司特与国外先进仪器技术研发公司合作,就目前国际通用的有关研究技术方法汇总如此,详细内容可咨询易科泰生态技术公司 Ecolab 实验室:info@eco-lab.cn或 info@eco-tech.com.cn.
  • 淡水藻类细分剖面浮标实时监测藻类
    藻类细分剖面浮标系统是由我公司自主研发的全国首套在线监测浮标,该浮标能够实现原位、自动对水体垂向的藻类浓度进行高频测试。浮标最大检测深度可达30m,目前该浮标已在杭州市千岛湖库区内投放运行。它的出现不但大大减少了环保工作人员的工作量,而且提高了检测频次,系统已成为千岛湖高频自动监测系统的重要组成部分。
  • 土壤水分温度速测仪分析红薯对土壤的要求
    以上内容就是通过土壤水分温度速测仪对红薯生长环境的检测,详细介绍了红薯对土壤水分、温度的要求。不同作物对土壤水分、温度的需求不同,我们要通过土壤水分温度速测仪进行精确检测,然后精确的浇水并提高土壤温度。
  • 奥斯恩土壤墒情监测站实时监测土壤水分状况推进现代农业体系建设方法
    土壤墒情监测站是一种高精度、高灵活度的土壤水分测量仪器。经过对土壤介电常数的分析,能够准确地反映土壤中的水分含量。管状土壤含水率自身具有体积小、携带便当、装置操作维护简单等特性。仪器采用多种供电计划,可支持太阳能+锂电池供电计划。采用抗冲击包装,确保运输和贮存安全
  • 土壤侵蚀之崩岗崩壁不同土层水分运动特征研究
    在位于福建省安溪县龙门镇洋坑村一处特征明显的崩壁上,安装了一套由22个TDR探头组成的“EMS-PICO TDR土壤水分监测系统”,在南方崩岗发生区,安溪县崩岗数量为福建省最多的地区,因此选择典型活动型崩岗为研究对象。土壤水分是土壤重要的组成物质,对崩岗的发生发展起到促进作用。崩壁水分进入母质层,使得母质土层中的土壤被水流带走进而对崩岗的稳定性造成严重的威胁。
  • 土壤旱情(墒情)监测的系统解决方案
    土壤旱情(墒情)监测的系统解决方案主要利用国际上最先进的在线监测和便携式监测设备,监测土壤含水量、地下水位、降雨、空气温湿度、蒸发量、风速风向等指标,为抗旱、地下水测报等工作提供全面、及时、准确的数据。结合现有各系统中的水文、降雨、气象等数据,实现抗旱、地下水信息的综合管理,为抗旱救灾、水利调配等提供依据。这套方案主要包括旱情自动监测站和移动墒情监测站两部分。
  • 利用蒸渗仪研究降雨对土壤CO2排放的影响
    为了观察降雨前后土壤剖面CO2和地表通量的时间变化与CO2土壤气体输运之间的关系,在可控自然环境下进行了两个不同时期的试验。实验在160厘米深度的蒸渗仪中注入纯 CO2,并在其表面模拟强降雨事件2周。 在整个实验过程中,连续监测土壤剖面CO2气体浓度和地表通量。这些测量结果表明,通过通量室测量的通量与剖面浓度一致。结果表明,降雨入渗和土壤中CO2的冲刷导致了大气中CO2通量的显著下降。
  • 易科泰植物生理生态监测系统在西藏那曲安装完成
    近日,北京易科泰生态技术有限公司为西藏那曲市环境保护局安装完成了EMS-ET植物生理生态监测系统、SCG-N土壤剖面CO2梯度监测系统、根系生态监测系统。那曲位于西藏偏北处,地处唐古拉山脉与念青唐古拉山脉之间,拥有草原面积6.32亿亩,以及大量的野生植物,平均海拔4450米以上,高寒缺氧,气候干燥,易科泰植物生理生态监测系统将助力高海拔,高原气候的环境监测与作物研究。
  • 助力“第三次全国土壤普查”——钢研纳克土壤检测综合解决方案
    近日,国务院下发通知,为全面掌握我国土壤资源情况,国务院决定自2022年起开展第三次全国土壤普查。本次普查对象为全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。   普查内容为土壤性状、类型、立地条件、利用状况等。其中,性状普查包括野外土壤表层样品采集、理化和生物性状指标分析化验等;类型普查包括对主要土壤类型的剖面挖掘观测、采样化验等;立地条件普查包括地形地貌、水文地质等 利用状况普查包括基础设施条件、植被类型等。
  • EcoChem系统在土壤耕地质量监测中元素快检的应用
    EcoChem土壤耕地质量监测与评价系统主要针对土壤质量的碳氮指标,养分元素,微量金属元素,重金属污染元素以及土壤分级分类等多种指标进行快速评价。使得土壤耕地评价工作变得简单,精准,可量化。
  • EcoChem系统在土壤耕地质量监测中元素快检的应用
    由于土壤中农药的残留累积、重金属污染和生物污染等问题的出现,人类开始对土壤耕地质量因人类污染造成的变化进行研究和评价。另外不同等级和地域的土壤特性也不相同,如何对这些土壤进行分类鉴别,乃至建立我国土壤库也是目前的一项重要工作。土壤耕地质量监测及评价工作主要集中在土壤物理指标、化学指标和生物学指标等范围进行。EcoChem土壤耕地质量监测与评价系统主要针对土壤质量的碳氮指标,养分元素,微量金属元素,重金属污染元素以及土壤分级分类等多种指标进行快速评价。使得土壤耕地评价工作变得简单,精准,可量化。
  • 便携式土壤呼吸和植物生理生态定点观测系统及其应用
    该系统由便携式土壤呼吸仪SoilBox-343、植物生理生态定点观测系统EMS-ET、叶绿素荧光自动监测仪Monitoring Pen MP110组成,可以很方便的在原位测量如下参数:土壤呼吸速率;植物生理生态指标,包括茎流、茎杆生长量、叶温、冠层温度、空气温湿度、风速风向、光合有效辐射、土壤水分、降雨量等;叶绿素荧光参数,如F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、PAR、Area、Mo、Sm、PI、ABS/RC等50多个叶绿素荧光参数,及3种给光程序的光响应曲线、3种荧光淬灭曲线、OJIP曲线等。
  • 使用平衡顶空系统和甲醇萃取法检测受到石油污染的土壤
    治理地下储存罐中石油的溢出和渗漏是生态修复项目的重要组成部分。对土壤的清除与处置方式根据存在的污染物及其浓度来确定。此类污染物与特定的目标分析物相关。其中的一些化合物属于挥发性有机物的类别,用于确定污染的严重程度。使用的分析技术必须可在各种浓度范围内准确地测定这些组分。使用EPA 8260 分析方法“使用气相色谱/ 质谱联用仪 (GC/MS) 测定挥发性有机化合物” 可测定土壤中的挥发性有机化合物。气相色谱/ 质谱联用仪为这种分析提供了一种新的方式,有助于确保正确进行识别。有多种方法可用于从土壤样品中萃取挥发性有机物。EPA 5035 方法是一种吹扫捕集技术,用于测定土壤中低浓度的挥发性有机化合物(VOC)。EPA5030 方法是一种吹扫捕集技术,使用甲醇(MeOH) 萃取法分析土壤中的高浓度挥发性有机化合物。EPA 5021 方法是一种常规方法,使用平衡顶空系统测定土壤中的挥发性有机化合物。相对于前两种吹扫捕集方法,5021 方法方法并不受浓度的限制。甲醇萃取法是在挥发性有机化合物分析中使用的一项技术。“对于从土壤中回收挥发性有机化合物,尤其是对于具有较高辛醇 - 水分配系数的分析物以及含有有机碳的基体,相比于完全依赖蒸汽分离的方法,甲醇萃取法是一种极为有效的方法。但是,这种萃取技术会引入稀释系数,该系数会影响对相关分析物的检测能力。本应用简介将介绍如何结合使用甲醇萃取、压力平衡时间进样技术以及质谱检测来有效测定低浓度的VOC。
  • 易科泰提供土壤动物及土壤呼吸监测全面技术方案
    土壤是复杂的生态系统,可为土壤生物提供多样的生存环境。土壤生物要生存,就需要进行自身的新陈代谢。它们通过地表吸收氧气,释放二氧化碳,这就是通常所说的土壤呼吸。严格意义上讲,土壤呼吸是指未被扰动土壤中产生二氧化碳的所有代谢作用。土壤呼吸的生物学过程包括植物根系的呼吸、土壤微生物的呼吸和土壤动物的呼吸。
  • 复合铝深度剖面元素分布分析
    辉光放电光发射光谱仪在固体材料的常规分析中占有重要 的、不可替代的一席之地,它可对具有层状结构的材料(如 热处理、锌涂层、镀锌)进行了快速的深度剖面分析。不仅具有基体总量分析的能力,而且还具备深度剖面分析能 力,在生产控制或进货检验中有着广泛的应用。本注释应证 明GDA650在复合铝多元素深度剖面分析中的性能̷̷
  • 利用Soilbox-343土壤呼吸测量系统研究施肥对土壤呼吸的影响
    2018年1月,河北农大、中国农科院、吉林农科院的研究人员共同发表在《植物营养与肥料学报》(2018年中国知网显示《植物营养与肥料学报》复合影响因子为3.779,综合影响因子为2.440;万方数据显示影响因子为2.33)的文章中,利用Soilbox-343便携式土壤呼吸测量系统和TRIME-PICO便携式土壤水分测量仪研究长期施肥对玉米农田土壤呼吸和水分的影响。
  • 车载式土壤电导率测量系统在精准农业中的应用
    精准农业是近年来国际农业科学研究的热点领域,也是当今世界农业发展的新潮流。研究人员希望通过精准农业技术体系的使用降低生产成本, 提高和稳定农产品产量和质量, 增加经济收入, 减少环境污染。 土壤中的盐分、水分、有机质含量、土壤压实度、质地结构等,均不同程度影响土壤电导率变化。通过测定土壤电导率,可为分析产量、评价土壤生产能力、制定精准施肥处方提供重要依据。传统的样方抽样调查不仅费时费力,还由于抽样密度过低不能真实反应其时空变化,对于大尺度调查而言车载式土壤电导率测量系统无疑是最佳选择。
  • PerkinElmer:使用平衡顶空系统和甲醇萃取法检测受到石油污染的土壤中邻二甲苯
    治理地下储存罐中石油的溢出和渗漏是生态修复项目的重要组成部分。对土壤的清除与处置方式根据存在的污染物及其浓度来确定。此类污染物与特定的目标分析物相关。其中的一些化合物属于挥发性有机物的类别,用于确定污染的严重程度。使用的分析技术必须可在各种浓度范围内准确地测定这些组分。使用EPA 8260 分析方法“使用气相色谱/ 质谱联用仪 (GC/MS) 测定挥发性有机化合物” 可测定土壤中的挥发性有机化合物。气相色谱/ 质谱联用仪为这种分析提供了一种新的方式,有助于确保正确进行识别。有多种方法可用于从土壤样品中萃取挥发性有机物。EPA 5035 方法是一种吹扫捕集技术,用于测定土壤中低浓度的挥发性有机化合物(VOC)。EPA5030 方法是一种吹扫捕集技术,使用甲醇(MeOH) 萃取法分析土壤中的高浓度挥发性有机化合物。EPA 5021 方法是一种常规方法,使用平衡顶空系统测定土壤中的挥发性有机化合物。相对于前两种吹扫捕集方法,5021 方法方法并不受浓度的限制。甲醇萃取法是在挥发性有机化合物分析中使用的一项技术。“对于从土壤中回收挥发性有机化合物,尤其是对于具有较高辛醇 - 水分配系数的分析物以及含有有机碳的基体,相比于完全依赖蒸汽分离的方法,甲醇萃取法是一种极为有效的方法。但是,这种萃取技术会引入稀释系数,该系数会影响对相关分析物的检测能力。本应用简介将介绍如何结合使用甲醇萃取、压力平衡时间进样技术以及质谱检测来有效测定低浓度的VOC。
  • PerkinElmer:使用平衡顶空系统和甲醇萃取法检测受到石油污染的土壤中二溴氟甲烷
    治理地下储存罐中石油的溢出和渗漏是生态修复项目的重要组成部分。对土壤的清除与处置方式根据存在的污染物及其浓度来确定。此类污染物与特定的目标分析物相关。其中的一些化合物属于挥发性有机物的类别,用于确定污染的严重程度。使用的分析技术必须可在各种浓度范围内准确地测定这些组分。使用EPA 8260 分析方法“使用气相色谱/ 质谱联用仪 (GC/MS) 测定挥发性有机化合物” 可测定土壤中的挥发性有机化合物。气相色谱/ 质谱联用仪为这种分析提供了一种新的方式,有助于确保正确进行识别。有多种方法可用于从土壤样品中萃取挥发性有机物。EPA 5035 方法是一种吹扫捕集技术,用于测定土壤中低浓度的挥发性有机化合物(VOC)。EPA5030 方法是一种吹扫捕集技术,使用甲醇(MeOH) 萃取法分析土壤中的高浓度挥发性有机化合物。EPA 5021 方法是一种常规方法,使用平衡顶空系统测定土壤中的挥发性有机化合物。相对于前两种吹扫捕集方法,5021 方法方法并不受浓度的限制。甲醇萃取法是在挥发性有机化合物分析中使用的一项技术。“对于从土壤中回收挥发性有机化合物,尤其是对于具有较高辛醇 - 水分配系数的分析物以及含有有机碳的基体,相比于完全依赖蒸汽分离的方法,甲醇萃取法是一种极为有效的方法。但是,这种萃取技术会引入稀释系数,该系数会影响对相关分析物的检测能力。本应用简介将介绍如何结合使用甲醇萃取、压力平衡时间进样技术以及质谱检测来有效测定低浓度的VOC。
  • PerkinElmer:使用平衡顶空系统和甲醇萃取法检测受到石油污染的土壤中五氟苯
    治理地下储存罐中石油的溢出和渗漏是生态修复项目的重要组成部分。对土壤的清除与处置方式根据存在的污染物及其浓度来确定。此类污染物与特定的目标分析物相关。其中的一些化合物属于挥发性有机物的类别,用于确定污染的严重程度。使用的分析技术必须可在各种浓度范围内准确地测定这些组分。使用EPA 8260 分析方法“使用气相色谱/ 质谱联用仪 (GC/MS) 测定挥发性有机化合物” 可测定土壤中的挥发性有机化合物。气相色谱/ 质谱联用仪为这种分析提供了一种新的方式,有助于确保正确进行识别。有多种方法可用于从土壤样品中萃取挥发性有机物。EPA 5035 方法是一种吹扫捕集技术,用于测定土壤中低浓度的挥发性有机化合物(VOC)。EPA5030 方法是一种吹扫捕集技术,使用甲醇(MeOH) 萃取法分析土壤中的高浓度挥发性有机化合物。EPA 5021 方法是一种常规方法,使用平衡顶空系统测定土壤中的挥发性有机化合物。相对于前两种吹扫捕集方法,5021 方法方法并不受浓度的限制。甲醇萃取法是在挥发性有机化合物分析中使用的一项技术。“对于从土壤中回收挥发性有机化合物,尤其是对于具有较高辛醇 - 水分配系数的分析物以及含有有机碳的基体,相比于完全依赖蒸汽分离的方法,甲醇萃取法是一种极为有效的方法。但是,这种萃取技术会引入稀释系数,该系数会影响对相关分析物的检测能力。本应用简介将介绍如何结合使用甲醇萃取、压力平衡时间进样技术以及质谱检测来有效测定低浓度的VOC。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制