当前位置: 仪器信息网 > 行业主题 > >

威廉姆斯平行板塑度仪

仪器信息网威廉姆斯平行板塑度仪专题为您提供2024年最新威廉姆斯平行板塑度仪价格报价、厂家品牌的相关信息, 包括威廉姆斯平行板塑度仪参数、型号等,不管是国产,还是进口品牌的威廉姆斯平行板塑度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合威廉姆斯平行板塑度仪相关的耗材配件、试剂标物,还有威廉姆斯平行板塑度仪相关的最新资讯、资料,以及威廉姆斯平行板塑度仪相关的解决方案。

威廉姆斯平行板塑度仪相关的资讯

  • 官宣!蔡司成为威廉姆斯车队官方合作商
    2021年世界一级方程式锦标赛举办前夕,蔡司和威廉姆斯车队宣布达成合作伙伴关系,蔡司正式成为该车队的官方供应商。通过此次合作,蔡司将为风洞、质量检验及原型测试部门提供一系列质量保证解决方案,为车队设备提供强有力的安全保障。目前,车队位于格罗夫的工厂安装了一台新款工业计算机断层扫描系统ZEISS METROTOM 1500,将扩展团队内部能力,对组件质量的精确性提供更深入的见解,同时,确保精确和稳健的质量控制过程。未来,蔡司将在提高车队业务效率的变革中发挥不可或缺的作用。威廉姆斯车队技术合作与创新部门负责人Al Peasland表示:“非常荣幸,在光学领域技术创新先锋 - 蔡司集团成立175周年之际,成为威廉姆斯赛车官方合作伙伴。作为工业测量领域全球领导者,蔡司追求卓越的激情将为威廉姆斯车队注入工业测量新动力。世界一级方程式锦标赛竞争激烈,驱动着参赛车队不断朝着更高精度和更高质量的赛道竞速。如今威廉姆斯车队正启程踏上转型升级的征程,我们很高兴与蔡司携手一道,掀开车队发展新篇章。”蔡司集团执行董事兼工业质量与研究部门负责人Jochen Peter博士表示:“安全性和可靠性是世界一级方程式锦标赛不可或缺的前提。正因如此,全球的客户都非常信赖蔡司及我们的产品,这是因为蔡司就是高品质的象征。蔡司非常荣幸能够为车队提供先进的工业质量解决方案,凭着我们对精度和质量的不懈追求,助力威廉姆斯车队再创佳绩。”关于威廉姆斯大奖赛工程公司威廉姆斯大奖赛工程公司的核心业务是为世界一级方程式锦标赛设计、开发赛车。作为世界领先的一级方程式车队,自1977年成立以来,斩获了十六项世界一级方程式锦标赛冠军。其中九项是联合考斯沃斯、本田、雷诺荣膺车队总冠军称号。其余七项冠军称号来自车手锦标赛,由Alan Jones、Keke Rosberg、Nelson Piquet、Nigel Mansell、Alain Prost、Damon Hill及Jacques Villeneuve等优秀赛车手荣膺这一殊荣。威廉姆斯始终致力于碳中和发动机等领域的创新,并将为2022年E级方程式锦标赛的第3代赛车提供电池系统。公司将其混合动力领域的专业知识扩展到一级方程式比赛之外,开发出创新的混合动力系统,有助于减少公共交通等各种应用中的碳排放。
  • 邵峰院士荣获肿瘤免疫学界顶级大奖 威廉 科利奖
    2022年9月27日,美国纽约癌症研究所(Cancer Research Institute)将2022 年度威廉 科利奖(William B. Coley Award)授予北京生命科学研究所(NIBS)邵峰院士(炎明生物联合创始人),哈佛医学院 Judy Lieberman 和吴皓,基因泰克 Vishva Dixit 四位科学家。其中,邵峰院士是自 1979 年以来首位基于在中国本土做出的原创科学发现而获此殊荣的科学家,并作为获奖代表进行主旨演讲。威廉 科利奖(William B. Coley Award)是肿瘤免疫学届顶级大奖,该奖项于 1975 年设立,以纪念肿瘤免疫治疗先驱威廉 科利博士。威廉 科利奖由美国纽约癌症研究所(Cancer Research Institute)负责评审,授予在基础免疫和肿瘤免疫学领域做出重大贡献的杰出科学家,他们的科学发现使人类对免疫系统、癌症和其他疾病有了深刻的理解,推动了基于人体免疫系统的多种疗法的发展。利用免疫系统对抗癌症,并不是最近才诞生的新概念。早在 100 多年前,威廉 科利医生就曾对癌症患者注射细菌或细菌产物,以求增强免疫系统的活性,治疗癌症。一些资料表明,威廉 科利在他 40 年的行医生涯里,曾对近 1000 名癌症患者进行过类似的治疗,是当之无愧的癌症免疫治疗先驱。遗憾的是,受限于当时的科技水平,威廉 科利开创的这种免疫疗法概念太过超前,疗效也不够稳定,并未得到重视和推广。如今,经过多年的研究发展,在众多科学家的努力下,肿瘤免疫疗法成为肿瘤研究中最为重要的领域,多款通过调节病人免疫系统来进行肿瘤治疗的药物已经获得批准上市,以威廉 科利命名的基础免疫学和肿瘤免疫学奖项——威廉 科利奖,也成为免疫学领域的最重要的奖项之一。在获得威廉 科利奖的科学家中,迄今已有多位获得了诺贝尔奖。2011 年诺贝尔生理或医学奖获得者 Ralph M. Steinman、Jules A. Hoffmann、Bruce A. Beutler 分别于 1998、2003 及 2006 年获得该奖项;James P. Allison 和本庶佑分别于 2005 及 2014 获得威廉 科利奖,并于 2018 年获得诺贝尔生理或医学奖。耶鲁大学的华人科学家陈列平博士,由于在 PD-1/PD-L1 信号通路的卓越贡献于 2014 年获得威廉 科利奖;美国西南医学中心的华人科学家陈志坚博士由于在 cGAS-STING 信号通路的卓越贡献于 2020 年获奖。邵峰院士邵峰院士因在细胞焦亡(pyroptosis)领域的原创性发现获得 2022 年度威廉 科利奖。邵峰实验室 2015 年在世界上首次揭示了 GSDMD 作为炎症性 caspase 底物来执行细胞焦亡的分子机制。在近 10 年的研究中,又陆续将这一家族的其它蛋白 GSDME 和 GSDMB 的机制阐明。基于细胞焦亡的免疫激活特性,也开创性的建立了通过细胞焦亡来提高抗肿瘤免疫活性的概念框架。这些工作不仅重新定义了细胞焦亡的生物学概念,同时也深刻的改变了大家对程序性细胞死亡的传统认识。
  • 第三届药品快检技术研讨会开幕
    仪器信息网讯 2014年1月13日,由中国食品药品检定研究院和美国药典委员会共同主办的&ldquo 第三届药品快速检测技术研讨会暨第四届中美药品分析技术与检测方法研讨会&rdquo 在上海华亭宾馆举行,会议为期一天半。来自WHO、美国FDA、USP等机构及制药行业药检系统、制药企业及第三方检测等单位的多位业内人士参加了本次研讨会,与会人员逾500人。 会议现场 中国食品药品检定研究院副院长李波主持开幕式 大会中方共同主席、中国食品药品检定研究院院长李云龙致开幕词   李云龙院长在致辞中提到,本届研讨会的主题是:&ldquo 药品快检与药品质量保障&rdquo 、&ldquo 药品分析技术创新与发展&rdquo 。本次会议将就药品检验技术与方法、药品快检技术2个重点领域的新技术、新方法、新动向和国际先进的要求进行研讨和交流。旨在进一步提高药品检验检测能力和水平,全面发挥技术支撑、技术监督、技术保障和技术服务作用 进一步推广、应用和发展药品快检技术,为严厉打击制售假劣药品的违法犯罪行为提供技术支持 进一步促进各国技术优势互补,倡导搭建全球药品检验检测和打击假劣药品技术交流和资源共享平台,为相关国家加强药品监督管理提供强有力的技术保障。   此外,WHO药品质量保证行动计划负责人Sabine Kopp 博士和美国药典委员会(USP)首席执行官罗杰L.威廉姆斯博士在开幕式上致辞。 WHO药品质量保证行动计划负责人 Sabine Kopp 博士 美国药典委员会(USP)首席执行官 罗杰L.威廉姆斯博士   本届大会邀请多位业内专家作专题报告(后续报道,敬请期待!),并吸引多家仪器厂商参加会议展览。以下为部分参展商。 赛默飞世尔科技 安捷伦科技(中国)有限公司 布鲁克(北京)科技有限公司 沃特世科技(上海)有限公司 岛津企业管理(中国)有限公司 默克化工技术(上海)有限公司 北京普析通用仪器有限责任公司 必达泰克光电科技(上海)有限公司 天津市天大天发科技有限公司 四川威斯派克公司 英特格雷(天津)科技有限公司 广州达元食品安全技术有限公司
  • 英国豪迈收购CenTrak公司,加强传感器和通讯技术在医疗卫生中的应用
    2016年2月5日,全球领先的安全、健康和环保技术的跨国投资集团——英国豪迈(Halma)宣布从私人股东处收购CenTrak公司。CenTrak的总部设在美国宾夕法尼亚州的纽顿市。此举进一步壮大了集团的医疗设备事业部的规模,并将先进的传感器和通信技术引入了医疗和卫生保健的业务中。CenTrak公司的Logo。CenTrak公司(centrak.com)设计并制造传感器和专用通信技术,为医疗机构提供最可靠和准确的位置数据,从而确保遵守法规并改善病患照顾的水平。通过与领先的医疗保健应用提供商建立战略伙伴关系,CenTrak技术使实时参数监测成为现实,包括病人、工作人员和医疗设备的位置、病人安全、手部卫生遵从性以及环境/温度条件。该笔收购的现金对价为1.4亿美元(9590万英镑),该对价可进行调整,如果净资产多于或少于预先确定的数量(预计该调整影响不大),可以进行美元折合。预计该收购可以立即提高收入,收购资金来自英国豪迈的自有现金及债务融资。截至2015年12月31日,全年未审计帐目的报告收入(不包括净递延收入)为4380万(3000万英镑)以及税前利润1020万美元(700万英镑)。2015年的净递延收入为660万美元(450万英镑),将在未来的财政期间予以确认。根据英国豪迈的充分授权的管理原则,收购以后,CenTrak公司的首席执行官和管理团队将继续以其各自的身份管理公司。CenTrak并入集团的医疗设备事业部的同时,将连带其一系列在全球市场中提供利基应用服务的医疗设备公司。集团的首席执行官(CEO)安德鲁威廉姆斯(Andrew Williams)先生认为:“CenTrak的加入对我们的医疗部门来说是令人兴奋的,因为CenTrak拥有的一系列传感器和通信技术。与我们的基础设施安全和环境分析部门正在使用的类似,但重点更侧重于医疗和卫生保健应用。我们期待与CenTrak的管理团队精诚协作,实现经济增长战略,其中包括进一步渗透美国市场、国际扩张,以及从长期来看,能够在豪迈其他部门拓展潜在的新应用。”欲了解详情,请联系:英国豪迈股份有限公司(Halma plc)电话:+44 (0) 1494 721111安德鲁威廉姆斯(Andrew Williams),首席执行官凯文汤普森(Kevin Thompson),财务总监MHP Communications公司电话:+44 (0) 20 3128 8100瑞秋赫斯特(Rachel Hirst)/安德鲁杰奎斯(Andrew Jaques)注意:英国豪迈收购安全、健康和环保市场上的成功企业,并不断对创新、管理发展与国际扩张进行投资,从而进一步帮助这些公司实现发展。在过去的10年间,豪迈大约花费了6.5亿英镑收购30多家企业,其交易规模从100万英镑1亿英镑不等。英国豪迈每三年就会收购一家德勤评定的北美地区成长最迅速的企业。其创新技术已安装于世界各地600多所医疗机构,其中包括美国退伍军人事务部。(www.centrak.com/department-veterans-affairs-standardizes/)受CenTrak专利保护的Clinical-Grade Visibility?实时定位系统(RTLS)技术使得医疗保健机构能精准地在房间、海湾、床和椅子上定位资源。竞争对手的系统准确提供位置数据,但不确切。(www.centrak.com/videos/)CenTrak延迟为各种合同提供不间断系统维护支持有关的收入(2015年660万美元的净递延收入)。这些延迟的收入将在未来合同存续期间得到确认。该声明的目的不是为当前财政期间或任何未来财政期间预测利润。此外,该声明并不意味着豪迈的每股收益将一定与英国豪迈的每股历史收益相匹配或高于其每股的历史收益。截至2015年12月31日,CenTrak的资产总额为2620万美元(1790万英镑)。美元与英镑的兑换率为1.46美元:1英镑。
  • Sigma-Aldrich成功参展国际药品快检/第三届中美药品检测研讨会
    Sigma-Aldrich成功参展第二届国际药品快速检测技术研讨会第三届中美药品分析技术与检测方法研讨会 由中国食品药品检定研究院与美国药典委员会(USP)共同主办,浙江省食品药品检验所承办的第二届国际药品快速检测技术研讨会暨第三届中美药品分析技术与检测方法研讨会于2011年11月15日在杭州第一世界大酒店盛大开幕。中国食品药品检定研究院院长李云龙先生、美国药典委员会首席执行官罗杰・ 威廉姆斯博士、FDA药品审评和研究中心药物分析室主任卢辛达・ 布斯女士、浙江省食品药品监督管理局副局长陈时飞先生出席开幕式并致辞。来自国内外各药品检验检测机构、科研院所,知名药企等相关领域的专家、学者近五百人参加了本次会议。 作为世界上最大的化学、生物、分析试剂和色谱耗材生产商和供应商,Sigma-Aldrich公司有幸收到邀请并参与此次盛会。与会期间,Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka重点展示了与药品检验相关的分析/色谱产品,并且在现场举办了抽奖活动,展品和活动都得到了与会专家的热切关注和踊跃参加。 Fluka药物标准品和药物杂质标准品 可溯源到美国药典(USP),欧洲药典(EP)和英国药典(BP)标准品 按照药典规定方法使用GMP验证过的设备进行分析 根据ISO 17025和 ISO Guide 34通过质量平衡法对标准品进行定值 提供符合ISO Guide 31规定的完整的标准品证书 包装和美国药典(USP),欧洲药典(EP)标准品相似 Supelco品牌的液相色谱柱主要系列 Ascentis Express系列(超高纯)-Fused-Core熔融核(2.7µ m)技术,可实现快速分离和HPLC上的UPLC效果 Ascentis系列(超高纯)-第四代产品,最大化健合相覆盖率,优良的重现性和质量稳定性 Discovery系列(超高纯)-经典的液相色谱柱,在药物研发和生产企业一直备受推崇,应用广泛 Supelcosil系列-品种齐全,拥有超过40种健合相,多种色谱柱被列为美国和欧洲药典指定色谱柱 Astec手性柱系列-Chirobiotic V和Chirobiotic T等多种手性固定相供选择,可适合大多数手性样品的分离 Fluka高品质GC顶空溶剂(Solvents suitable for GC-HS) 纯度高-0.2µ m膜过滤 灵敏度高-特别适用于检测痕量有机挥发性杂质(OVIs) 保质期长-储存在惰性气体下 技术参数符合USP,Ph.Eur.和ICH 关于Sigma-Aldrich:美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 美国一实验室研发出新型真空紫外激光
    据美国物理学家组织网近日报道,美国托马斯杰斐逊国家加速器实验室的科学家制造出了一种新式真空紫外激光,其亮度是目前最强激光的100倍。   这种激光由该实验室的自由电子激光装置所产生,它能以光子形式发出真空紫外光,光子的能量为10电子伏特,波长为124纳米。之所以称其为真空紫外光是因为其会被空气中的分子所吸收,需要在真空中使用。   该实验室自由电子激光部门副主任乔治尼尔说:“我们首次成功地发出10电子伏特的光子。使用杰斐逊实验室紫外线演示自由电子激光装置上的一个耦合输出镜子,我们将真空紫外线谐振光发送到一个校准的真空紫外线(VUV)光电二极管上,同时,我们测量出,每个微脉冲中的完全相干光的能量为5纳米焦耳。”   这项研究奇迹将为许多以前无法进行的研究打开一扇大门。例如,这种自由电子激光可以用来测定物质的年龄,这些物质存在的时间可能超出了碳元素年代测定法可以测定的年代。放射性碳测定法使科学家能估算很多年龄超过6.2万岁的物质的年代。放射性氪测定法使科学家能测定10万到100万年前的物质,而从自由电子激光器发出的这种10电子伏特的光可以产生亚稳定的氪原子。另外,这种方法有助于研究海洋环流模式,并且绘制出地下水的运动情况,同时测算极地冰的年代。   自由电子激光装置研究项目主管管根威廉姆斯表示:“这种新式激光也是研发能源和环保领域新材料的一个完美工具,在开始这些运用之前,我们仍然还有很多工作要做。”并表示将于明年3月之前再次把激光引入一个实验室中,进行测量和实验。
  • 中美药典2011年第一次高层会谈在北京举行
    2011年4月21日,中美药典2011年第一次高层会谈在北京举行。会谈就双方互聘国际事务顾问、合作谅解备忘录(MOU)双方工作组的进展情况、进一步合作内容以及MOU续签等进行了充分的讨论,以进一步深化中美两国药典会的合作。国家食品药品监督管理局副局长兼国家药典委员会秘书长吴浈、美国药典会首席执行官罗杰?威廉姆斯(Roger Williams)先生、国家药典委员会副秘书长周福成、王平以及双方各工作组成员出席了此次会谈。   首先进行了双方互聘国际事务顾问仪式。经国家食品药品监督管理局批准,国家药典委员会将特别聘请罗杰先生为国际事务名誉顾问。罗杰先生也代表美国药典会向吴浈秘书长颁发国际事务特别顾问证书。吴浈秘书长在聘书发放仪式上指出,自2008年中美双方药典委员会签署合作备忘录以来,罗杰先生积极推动中美药典合作,为两国药品合作、构构建中美国际论坛、促进技术人员交流等作出了不懈努力和重要贡献,是中国药典会聘请的第一位外籍专家。   会议期间,双方汇报了MOU三个工作组的进展情况、并对如何深化合作、扩大合作领域等进行了初步的探讨。吴浈秘书长指出,中美双方在现有的较完善的合作框架下,可以继续开拓其他的合作领域,使两国药典会的合作更加深入与广泛。同时,会议就双方所提出的各项意见及建议初步达成协议并形成合作意向。   最后会议进行了MOU协议续签仪式。此次会议的召开,标志着中美药典双方合作进入到崭新的阶段。
  • 德祥科技赞助并参展“广州第二届中美药品分析技术与检测方法研讨会”
    德祥科技赞助并参展&ldquo 广州第二届中美药品分析技术与检测方法研讨会&rdquo 2009年11月6日下午,由中国药品生物制品检定所与美国药典会联合主办,广州市药品检验所承办的&ldquo 第二届中美药品分析技术与检测方法研讨会&rdquo 在广州正式召开。国家食品药品监督管理局边振甲副局长、中国生物制品检定所李云龙所长、美国药典会首席执行官罗杰&bull 威廉姆斯博士任大会主席,广州市政府陈绍康副秘书长出席了会议开幕式,并作重要讲话。   此次会议是今年6月18日&mdash &mdash 广州市药品检验所与美国药典会签署合作备忘录后,在广州召开的首次国际性药学学术会议。大会邀请了中国生物制品检定所金少鸿副所长、国家药典会周福成副秘书长、世界卫生组织(WHO)、美国药典会(USP)等多名国内外药学专家作大会报告,会议将为两国的专家学者及科研人员提供互相交流的平台,同时也为全国药检系统、药品生产、研究单位的科研人员提供一次了解当今世界最新药品分析技术、质量标准控制手段及标准品开发与使用的良好平台。   德祥科技为制药行业用户提供了专业解决方案,并有样机现场演示,参会人员对德祥科技产品表现出浓厚的兴趣。   通过此次交流与合作,将进一步促进两国药品分析与质量控制技术的共同发展,加强中美双方在药品质量方面的控制,达到提高药品质量,为全人类提供高品质药品,改善生活质量的目标 也将为广州培养出更多的国际药学专家,参与更多国际事务,促进广州医药产业又好又快发展,对保障人民群众用药安全起到积极作用。   参加此次研讨会的还有来自国家药典委员会、全国省市级药检所、香港特别行政区卫生署、高等院校及药品生产企业的代表共400余人。
  • 美国首个海外药典光谱数据库实验室在鲁揭牌
    大众网济南3月20日讯 20日上午,由美国药典会与山东省食品药品检验所合作建立的美国药典光谱数据库重点实验室在省食品药品检验所揭牌。这是美国本土外全球第一个挂牌的美国药典光谱数据库重点实验室。实验室的建立 ,将对进一步满足食品药品快检需求,打击假冒伪劣食品药品提供利器。   据介绍,实验室的共建是中美两国药品监管和标准建设的一件大事,顺应了两国政府对食品药品安全监管的新要求,尤其是光谱检测的准确、快速、无损的特点,非常适合食品药品快检的需要,是打击假冒伪劣食品药品的利器。同时,通过建立合作实验室等形式,可以充分学习美国药典会先进的实验室管理理念,有利于全面提升山东省食品药品检验的技术水平和能力,可以预见该实验室的建立将会进一步促进双方在药学前沿领域的研究工作,为保障公众用药安全发挥重要的作用。   美国药典会总裁罗杰.威廉姆斯博士、中国药典会书记、副秘书长刘沛、山东省食品药品监督管理局局长陈绍民、山东省食品药品检验所所长辛仁东等出席了实验室揭牌仪式。
  • CCAA与UL签署合作谅解备忘录重点在培训
    本报讯 (记者丁 莹)近日,记者从中国认证认可协会(CCAA)获悉,CCAA已经与美国安全检测实验室公司(UL)签署合作谅解备忘录。今后双方将利用UL的技术资源和CCAA在中国已有的网络培训平台,开展合作范围内的人员能力培训,并计划不断扩大合作领域,以期推动中美认证认可工作不断进步。   据了解,CCAA成立后即承担了认证认可从业人员的注册、培训等与人员能力、行为有关的工作,并于2010年起在国家认监委的指导下开展了继续教育工作,致力于提高从业人员的专业能力和职业素质。经过4年多的发展,已经形成了运作顺畅的继续教育工作体系,建成了管理规范的网络教育平台,培养了一批业务精湛的专家队伍。截至目前,累计开发课程48门,开设培训班逾1200个,培训学员超过20万人次。   为进一步提高继续教育工作,不断提高从业人员素质的需要,CCAA坚持以开放的态度积极与相关方面开展合作。UL与中国认证认可有着长期良好的合作关系,在相关检测领域具有很强的专业能力,并拥有一支专业化的技术团队。UL非常重视人才队伍的培养,自主研发了多门专业水平高、设计科学合理的培训课程,特别是其互动性、启发性学习模式富有新意,学习体验舒适,培训评估效果良好。因此,双方决定本着合作共赢、优势互补、资源共享、技术交流的原则在培训等方面开展合作。   据介绍,本次合作的主要内容是开展与认证有关的培训业务,先期工作重点为网络培训领域的合作,之后将根据工作需要,逐步扩展至其他相关业务领域。按照协议,在具体的实施中,一方面CCAA将选择部分UL已经自主研发的课程,纳入认证认可从业人员继续教育课程体系,利用CCAA网络教育平台进行授课。目前,已经有两门课程上线供广大认证认可从业人员学习,剩余课程也将陆续上线。另一方面CCAA将组织人员与UL共同开发适用课程,拓展合作深度,扩大课程适用对象,从而不断促进认证认可从业人员专业技术能力的持续提高,为认证认可工作的发展打下坚实基础。   据了解,在过去的一年,中美两国货物贸易额达5821.1亿美元,同比上升4.9%。中国已经成为美国的第二大贸易伙伴,以及第一大进口来源地。随着中美的贸易关系在竞争与合作中前进,越来越多的产品在两国之间流通,更多的&ldquo 中国制造&rdquo 将越过大洋到达美国消费者的手中。这种更具活力的双边经贸关系,对两国的认证认可事业的发展和国际互认也提出了更高的要求。   CCAA负责人表示,与UL的合作既是良好合作历史的传承,又是强强联合的深化 既是满足认证认可工作深化改革的需要,也是中美认证认可事业共同促进的诉求。UL的课程内容的专业性、课程设计的先进性,CCAA在行业的影响力和认证认可工作的辐射能力,对提高中国认证认可行业从业人员的能力,增强UL的在华业务发展,都有着积极的影响和深远的意义。   UL总裁、首席运营官威廉姆斯表示,此次合作不仅是UL和CCAA合作的里程碑,对中国制造也具有深远的意义,它标志着双方为助力中国企业提升国际市场地位而开展合作的新起点,将为中国乃至世界范围的企业、行业和消费者带来益处。
  • 豪迈集团收购MAXTEC公司 扩大氧气分析及氧气输送产品业务能力
    致力于生命安全技术的全球性集团豪迈(Halma)近日收购位于美国犹他州的Maxtec LLC 公司。Maxtec提供在医疗和非医疗应用中的氧气分析和输送产品,是涵括产品设计、制造和分销领域。他们专注于呼吸道护理的创新产品,包括用于医院急诊病房的氧气传感器和分析仪。 Maxtec将作为豪迈医疗事业部的一部分,整合进入该事业部旗下另一家子公司博纯(Perma Pure)进行管理,博纯提供同样应用于急诊室的的医用除湿产品。 Maxtec领导团队的核心成员保持不变,公司业务也将继续在其现有工厂中运营。豪迈集团首席执行官安德鲁威廉姆斯(Andrew Williams)表示:“ Maxtec的业务非常契合我们的企业宗旨,并进一步扩大了我们在诊断产品和急性健康护理领域的地位。它带来的技术和市场地位,将加速博纯(Perma Pure)在医疗水分管理产品方面的增长。同时,它也为我们增加了一个在氧气分析和氧气传输产品上的新细分市场,而该市场受到人口老龄化以及心脏病和呼吸道疾病患病率上升的推动在持续增长。我很高兴地欢迎Maxtec加入豪迈集团,并期待支持其未来的发展。”Maxtec首席执行官Bruce Brierley补充到:“加入豪迈并在我们共有的坚实业务基础上继续发展让我们很兴奋。 Maxtec专注于气体传感、分析和传输领域,而豪迈则是帮助我们更快发展的理想家园。我们拥有人才、客户、分销合作伙伴和供应商,加入一个拥有和我们的使命和技术高度契合的企业目标并以此为发展驱动的集团公司,将确保我们公司在未来的发展。”
  • 岛津参展第二届国际药品快速检测技术研讨会
    2011年11月15 -16日,第二届国际药品快速检测技术研讨会暨第三届中美药品分析技术与检测方法研讨会在杭州第一世界大酒店隆重举办。此次研讨会由中国食品药品检定研究院与美国药典委员会共同主办,浙江省食品药品检验所承办。本次大会主题为&ldquo 药品质量与公众健康&rdquo ,围绕快检技术、药品检验技术及方法、标准物质、实验室质量管理这4个重点领域进行研讨和交流。 中国食品药品检定研究院院长李云龙、美国药典委员会首席执行官罗杰威廉姆斯博士、FDA药品审评和研究中心药物分析室主任卢辛达布斯、浙江省食品药品监督管理局副局长陈时飞出席开幕式并发表讲话。 此次会议共有学术报告四十余场,来自中检院、FDA、USP和各食品药品检验所、药品生产企业、科研院所等相关领域的专家、学者近五百人参加了本次会议。 岛津公司作为世界知名的分析仪器供应商,积极参与此次研讨会。岛津公司除了提供完善的药物研发解决方案,同时也致力于药品快检技术的开发。从2007年开始,岛津公司即开始投入力量研制开发车载液相色谱仪系统,以配合第二代药品快速检测车研发的需要。 药品快速检测车是根据国家食品药品监督管理局部署,中国食品药品检定研究院主持研制开发的特种车辆。目前全国已装备药品检测车400余台,其中部分为配备了岛津车载HPLC系统的2.5代药品快检车。 岛津车载HPLC系统解决了快速检测车开发中一系列的难题,配置了高灵敏度的二极管阵列检测器,能对各种药品进行初步的快速筛查,对结果可疑的样品在技术上也可以在检测车上用高效液相方法进行定性和定量测定,从而使得快速检测的效率大大提高。该套装备可以在最短时间内出具药品检验结果,极大地增强了快速检测车的稳定性与检测能力,大大提高了监管效能,使药品监管进一步上升到了现场确证、现场处理的新阶段,实现了真正的&ldquo 移动实验室&rdquo 。该设备已经在2010年广州亚运会、2011年深圳大运会期间投入运行,为赛场及周边地区食品、药品安全提供了有力的保障。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 不认识质谱四太子?你可能学了“假”化学!
    二十一世纪,对于质谱大师们而言,是一个值得庆贺的时代。但是对于一百多年以前的研究人员和学者而言,这项分析技术的诞生足以让他们感到振奋不已。  在质谱技术刚刚出现的十几年里,有四位科学家做出了重大贡献,他们四人一时之间霸占着质谱领域发展的头版位置,这四位“质谱太子”被这种新技术不断激励,年复一年的刷新着数据的准确率和分辨率。  正是威廉维恩(Wilhelm Wien)发现了正电荷粒子射线在强大磁场作用下会发生偏转,从此质谱技术向人类敞开了大门。维恩测量了正电粒子束在磁场作用下的偏移,并得出阳极射线由带正电的粒子组成,并且它们不比电子重的结论。大约20年后维恩所使用的方法在形成了质谱学,实现了对多种原子及其同位素质量的精确测量,以及对原子核反应所释放能量的计算。  约瑟夫约翰汤姆森(J.J. Thomson)捕获到了感光板上偏移射线的抛物线图。《英国皇家学会学报A》在1913年经同意后再版发布了约瑟夫约翰汤姆森的研究,名为:Bakerian Lecture: rays of positive electricity。  在威廉维恩发现磁场对正电粒子的偏移作用后,约瑟夫约翰汤姆森(J.J. Thomson)发现沿x轴移动并以适当角度撞击平面的正电粒子在y轴平行电磁力的作用下会发生偏移。而质荷比的不同决定了射线偏移情况的不同,并导致其撞击到平面上位置的不同。  射线撞击到平面上的轨迹为一条抛物线,为了捕获到这些信息,汤姆森试图让射线降落到感光板(一块涂有硫化锌的小玻璃片)上。他对粒子同时施加一个电场和磁场,并调节电场和磁场直至造成的粒子的偏转互相抵消,让粒子仍作直线运动。  这样,从电场和磁场的强度比值就能算出粒子运动速度。而一旦确定速度后,单靠磁偏转或电偏转就可以测出粒子的电荷与质量的比值。汤姆森用这种方法来测定“微粒”电荷与质量之比值。  汤姆森还得到另外一个关键发现:在最纯净的氖气体中存在两种带电粒子的抛物线,一个对应的原子重量为20,另一个是22。依据当时的技术他还无法做出解释,但不久后他的发现被认为是有史以来第一次暗示稳定元素存在同位素的可能。  约瑟夫约翰汤姆森自己也承认即使他的诸多科学发现具有重大意义,但是他所使用的技术是非常有限的。实际上,一些射线撞击到射线管内壁上会产生“金属灰尘”,因此射线管需要经常清理,而且感光板上的抛物线的强度有时候不足以得到准确的测量结果。  弗朗西斯阿斯顿(Francis Aston)为了提高抛物线信号的强度,毅然决然的自愿接受实验挑战。他设计了一种仪器,可以将射线汇聚到一起,这种射线可以撞击焦平面的一个具体点位。阿斯顿设计的仪器有两条平行缝隙,在两块电磁充电板的作用下,这两条缝隙可以汇集射线,以此来模拟光学透镜的聚焦效果。  这就是质谱仪的雏形。这台仪器不仅拥有更好的测量强度和准确度,而且和汤姆森的仪器相比,阿斯顿的仪器分辨率也更大。阿斯顿使用自己的摄谱仪解决了之前关于氖气悬而未决的问题,成为历史上第一个证明稳定元素存在同位素的科学家。  弗朗西斯阿斯顿在剑桥大学的实验中。1922年诺贝尔化学奖给予他发现同位素的贡献。  在质谱仪诞生的第一段里程碑中,另外一个值得我们注意的就是在美国芝加哥大学亚瑟登普斯特(Arthur Dempster)为质谱技术的发展做出的重要贡献。  登普斯特的摄谱仪其实指的是一台磁扇形分析器(magnetic sector analyzer),这是一种使用超强磁场将离子束偏转角度控制在180° 范围内的磁分析仪器。这台仪器可以将一定质荷比的光束集中穿过一道狭窄的缝隙。  这种仪器免去了使用感光板所带来的不便,可以使用静电计对离子束进行实时的检测。登普斯特也开创了使用电子轰击法产生正离子的先河。  登普斯特的这两项发明在业内引起来极大的反响,从他开始,质谱仪才有了名正言顺的身份,他发明的仪器也成为后来商用仪器的原型。  在测定元素同位素丰度和质量方面,邓普斯特和阿斯顿也做出了重要的工作。他们发现铀原子分裂时会释放巨大的能量,在第二次世界大战即将爆发之际,他们打算使用裂解高纯度铀的方法制造威力强大的武器——原子弹。  在十九世纪四十年代,阿尔弗莱德O. C.尼尔(Alfred Otto Carl Nier)首次使用质谱仪制备出了纯净的铀235和铀238,并确定铀235与慢中子的裂变有关。其实这项分离铀235的实验就是所谓的“曼哈顿计划”。
  • 英国豪迈收购Deep Trekker,拓展环境监测市场,增加水下检测新能力
    4月14日,英国豪迈集团收购了总部位于加拿大安大略省的Deep Trekker Inc.(以下简称Deep Trekker)。Deep Trekker是一家致力于研发和生产可远程操作的水下机器人的制造商。其产品可用检查、测量、分析和维护,服务于水产养殖、可再生能源和海洋科学研究等市场。Deep Trekker水下机器人还可以保护和维护关键基础设施,包括海上风电场和水产养殖等行业,且让海洋科学和研究成为可能。Deep Trekker先进的水下监测技术在确保环境更清洁的同时,还可提高水下检查的安全性。全球为应对气候变化和污染所采取的措施,带动了Deep Trekker的发展,这些措施包括了高速发展的可再生能源领域和更可持续的捕鱼方式。英国豪迈集团对Deep Trekker公司的收购,不仅扩大了其在环境监测方面的市场领域,也增加了水下检测的新能力。Deep Trekker将作为一家独立的公司运行,加入到英国豪迈环境与分析事业部。英国豪迈集团首席执行官安德鲁威廉姆斯评论道:“此次对Deep Trekker的收购,是一个令人兴奋的决定。Deep Trekker与我们的宗旨高度一致,无论是在协助确保更清洁的环境方面,还是在提高水下检查的安全性方面。正如我们的宗旨一样,它为许多市场的增长提供了新机会,其驱动力是不断加强的健康、安全和环境监管,以及全球应对气候变化、废物和污染的措施。”携手Deep Trekker水下监测设备,英国豪迈的所有公司将并肩前行,充分利用先进的科学技术及创新,提升解决方案与服务,尽可能协助解决环境方面亟须解决的难题。英国豪迈集团成立于1894年。作为一家致力于生命安全技术的全球性集团,英国豪迈集团提供创新产品和方案,解决当今世界面临的诸多关键问题。英国豪迈的宗旨是每一天都致力于为每个人创造一个更安全、更清洁、更健康的未来。这也定义了我们经营的三大市场领域:安全、环境、健康。集团主要业务遍及英国、欧洲、美国和亚太地区,在20个国家拥有超过7000名员工,并在伦敦证券交易所上市,是英国富时100指数的成份股公司。
  • 2013年药典学术发展研讨会召开
    2013年11月13-14日,国家药典委员会在广州组织召开了2013年药品质量控制技术及药典发展学术研讨会议。本次会议是药典委自2011年第一届药典委员会科学年会以来召开的第三次年度科学研讨会议,旨在围绕药品质量控制技术与药典发展,对国内外的最新科学研究成果展开学术交流,探讨药品标准领域的合作与发展,搭建药品质量控制和药品标准技术交流的平台。广州市食品药品监督管理局和食品药品检验所为本次大会的召开给予了大力支持。   国家药典委员会王平副秘书长在致辞中指出,随着社会和经济的发展,特别是健康产业的飞速发展,药品的质量和安全已成为世界各国政府和公众愈发关注的焦点和热点问题。近几年来,在国家食品药品监督管理总局的领导下,国家药典委员会在《中国药典》和药品标准工作方面采取了一系列措施,不断拓展,保证药品质量,促进产业发展。   随后,王平副秘书长向参会代表介绍了国家药品标准工作的发展和变化。一是2006-2010年&ldquo 十一五&rdquo 期间,中央政府投入了大量的人力物力财力,对已上市药品实施了国家药品标准提高行动计划,提高了4000多种药品的标准 其中大部分体现在2010年颁布实施的现行版《中国药典》收载品种总计4567个,通过国家药品标准提高活动计划,以国家基本药物目录为核心的众多药品质量的大中高度,大众用药品的安全性收到明显的加强,药品质量的可控性和有效性得到进一步保障。   二是2011-2015年&ldquo 十二五&rdquo 期间,药品标准所发挥的社会效益与经济效益成效显著,影响深远,2015年版药典收载品种预计达到6500个左右 在此期间,中国药典高度重视科研立项工作,充分发挥药典委员们的学科优势和主力军作用,科学选题认真论证,以提高药品安全保障和质量控制水平为目标,以完善国家药品标准体系为重点,着力促进成熟实用的新技术、新方法在《中国药典》中推广和应用。   三是继续推进国家药品标准体系建设。通过进一步梳理和优化工作流程,我国药品标准管理工作日趋完善,药品标准管理办法也列入CFDA的立法计划,国家药品标准形成机制逐步改善,管理程序不断优化,标准信息更加公开透明。与此同时,药品标准专业机构和合作部门不断壮大,药品标准人才队伍素质和能力持续增强。   四是不断加强《中国药典》的国际合作。近年来,我委坚持增进国际交流与合作,秉承国内国际协同发展的原则,采取多种举措加强国际合作,促进药品全球化发展,与有关国家的药典机构开展了卓有成效的交流与合作。特别是与美国药典会之间建立起了协调互动、合作共赢的良好关系,双方共同举办了六届药典论坛、三届全球领导者会议,同时开展了一系列标准相关的合作,有些合作仍将继续深化。此外,中国药典会和英国药典会签署协议,并积极参与了支持WHO的《国际药典》的制定工作。   会议期间,美国药典委员会首席执行官(中国药典委员会国际事务顾问)罗杰· 威廉姆斯先生、日本厚生省PMDA药典与标准部部长小笠原弘道博士、刘昌孝院士、魏于全院士,李波、李大魁、屠鹏飞、程翼宇等13位来自国内外药品标准管理部门、检验机构、高校、生产企业的知名专家和学者,就中美药典战略合作发展、《日本药局方》编制、转化研究与监管科学、生物治疗前沿、质谱联用技术在生物样品分析中应用、疫苗WHO预认证案例分析、药品质量与临床用药、中药有害残留物限量制定原则、中药质量面临的挑战及质量标准发展思路、中药品质调控策略、2015版药典收载生化药和质量控制技术、纳米药物制剂技术进展、大数据时代的药品质量控制等专题,向与会代表做了精彩的学术报告。WHO药品质量保证与安全项目负责人赛宾库珀博士由于日程安排与大会时间冲突,专门为大会录制了以建立&ldquo 良好药典制定规范&rdquo (GPhP)为主题的视频报告。   会议结束时,王平副秘书长对大会进行了总结,认为本次会议学术气氛浓厚,内容广泛,水平先进,起到了&ldquo 开短会、讲实效&rdquo 的效果。他强调,药品标准的提高和新版药典的制修订工作责任重大,使命光荣,离不开医药界同行的共同努力,衷心希望与会的各制药企业、科研机构和其他相关机构的代表和专家,在埋头于实验室工作的同时要善于抬头看路,具备国际化眼光和战略思维,及时把科研成果转化为标准实践,积极思考如何应对数据时代对传统思维和传统药品监管带来的巨大冲击和挑战,为新版药典以及国家药品标准的制修订工作荐言献策。   国家药典委员会将继续主办年度科学会议,汇集和展示国际药品标准的先进经验以及中国药典委员和专家的最新研究进展,做到决策科学民主、讨论百家争鸣、成果及时转化,不断提升《中国药典》的科学水平,推动标准各项工作稳步快速发展。
  • 鼎昊源PlateSmart小型板式离心机(甩板机)特价促销火热进行中!
    鼎昊源PlateSmart小型板式离心机(甩板机)特价促销火热进行中! 小体积,大用途,甩板利器!可离心PCR板、酶标板、深孔板和细胞培养板的小型板式离心机(甩板机)&mdash &mdash 鼎昊源PlateSmart6.5折特价促销火热进行中! 北京鼎昊源科技有限公司是一家专业开发生产生命科学仪器的高科技公司。我们立志于推广民族品牌的优质生命科学仪器,&ldquo 做中国最大的生命科学仪器制造商&rdquo 是我们的目标!公司现拥有分子生物学产品、细胞工程学产品及生物实验室常规仪器等多个系列产品。其中,公司研发生产的PlateSmart小型板式离心机(甩板机),小体积,大用途,是甩板利器!可离心PCR板、酶标板、深孔板和细胞培养板!该机详细信息如下: 产品图片:如右 订货编号:0401269 性能特点: 大力矩盘式无刷电机驱动; 微电脑控制,数字显示时间和转速; 定时调速功能; 瞬时离心功能; 快速制动功能; 体积小,重量轻; 安全门锁,开盖自动停机。 具体参数: 样品容量:4块酶标板或2块PCR板/深孔板; 最大转速:2000rpm; 最大RCF:600g; 转速可调范围:500-2000rpm; 定时范围:1-99分钟; 连续最大温升:12℃; 控制系统:微电脑控制; 噪音水平:60dB(A); 驱动系统:大力矩盘式无刷电机直接驱动; 外形尺寸:31cm× 38cm× 30cm; 电源:220V/50Hz 150W; 净重:12Kg; 为答谢广大用户的支持与信任,鼎昊源PlateSmart小型板式离心机(甩板机)现进行6.5折特价促销,促销时间为6月1日至10月31日。欢迎垂询订购!同时诚邀有志之士加入我们,携手推广民族优质品牌! 电话订购:010-85584421、85584156; 邮件订购:sales@dhsci.com 合作代理:18601371900(李经理)
  • 英国豪迈发布2015-16财年半年报,收益率保持强劲增长
    安全、健康及环境技术的投资集团——英国豪迈(halma.cn)于2015年11月17日宣布了集团截至2015年10月3日的前27周的半年财务业绩:重要财务数据 变化20152014持续经营 收益+11%3.797亿英镑3.409亿英镑调整后的税前利润1+8%0.747亿英镑0.690亿英镑税前法定利润+5%0.642亿英镑0.612亿英镑 调整后的每股收益2+8%15.19便士14.05便士法定每股收益+6%13.27便士12.57便士每股期中股利3+7%4.98便士4.65便士 销售利润率4 19.7%20.2%总投入资本利润率5 14.7%15.6% 负债净额 0.934亿英镑1.363亿英镑收益1增加了11%,调整后的税前利润增加了8%。固定汇率下的自然增长5:收益增加了7%,利润增加了4%。在所有主要地区的固定汇率下的自然收益增长5。在美国和欧洲的增长较为强劲,英国和亚太地区有较大的进展。在所有领域的收益增长。在基础设施安全、医疗和环境与分析领域的固定汇率下的自然收益和利润增长较为强劲。在过程安全领域的利润较低,反映了严格的费用控制与市场多样化投资之间的平衡。除了2015年5月的一次收购行为之外,我们还在上半年末期之后收购了Firetrace公司,收购金额为0.730亿英镑。所有事业部的收购渠道更加平衡。较强的现金流和对自然增长的投资和并购的财务能力提高。负债净额为0.83亿英镑(2015年3月:1.01亿英镑)。每股期中股利增加了7%,达4.98p(2014/15: 4.65p)。试算信息:进行调整以除去收购无形资产的摊销、收购项目和的处置资产损益的总额为0.104亿英镑(2014/15: 费用金额为780万英镑)。详情请参考简明财务报表附注2。进行调整以除去收购无形资产的摊销、收购项目、处置资产损益和相关税费的摊销。详情请参考简明财务报表附注6。每股宣告的期中股利。销售利润率定义为来自于持续性经营的调整后1的税前利润除以持续性经营活动的收入。自然增长率和总投入资本利润率(ROTIC)为非公认会计原则的考核指标,管理层用来衡量来自于集团资产基础的收益。目前,ROTIC的计算采用平均总投入资本。上一期的数据已经重新表述。详情请参考简明财务报表附注9。所有主要区域的收益增长下表中显示了每个区域的收入增长模式,包括潜在的固定汇率下的自然增长率(计算方法排除了汇率、收购和处置资产的影响)。尽管每个市场的情况不同,但英国豪迈在所有的主要区域都取得了收入增长。美国市场的业绩显著,增长了20%,欧洲大陆、英国和亚太地区也取得了良好的进展。在英国豪迈的传统市场(美国、欧洲大陆和英国)之外的市场收益增长了9%,占到总收益的26.0%(2014/15: 26.5%)。在近东和中东市场的增长较为强势,而南美市场的收益较低,主要是由于能源市场的低迷影响了我们的过程安全事业部的收益。在亚太地区,印度、韩国和中国市场的良好增长抵消了澳大利亚市场的不佳表现。按地区的外部市场收益半年 2015/16半年 2014/15 百万英镑占总额%百万英镑占总额%变化百万英镑增长%固定汇率下的自然增长%美国124.533%104.131%20.420%10%欧洲大陆85.222%79.223%6.08%10%英国71.519%67.220%4.36%5%亚太地区59.716%56.316%3.46%1%其他国家38.810%34.110%4.714%6% 379.7100%340.9100%38.811%7%所有四个事业部的收益增长基础设施安全事业部和医疗设备事业部继续其良好的增长势头。而环境与分析事业部的预期回暖弥补了过程安全事业部较差的贸易环境。按事业部的外部市场收益半年 2015/16半年 2014/15 百万英镑百万英镑变化百万英镑增长%固定汇率下的自然增长%过程安全事业部77.873.64.26%(1%)基础设施安全事业部122.4112.79.79%8%医疗设备事业部92.378.413.918%12%环境与分析事业部87.276.211.014%10% 379.7340.938.811%7%英国豪迈的首席执行官安德鲁威廉姆斯(Andrew Williams)评论道:“豪迈在上半年取得了较大的进展,在多变的市场环境下创造了有史以来最高的营业额和利润额。我们产品、客户和终端市场细分的多样化是我们成功的基础。自上一期末,我们的订单总额一直高于今年的收益和去年的订单总额。我们已经收购了Firetrace公司,这表明我们有能力在自然增长之外进行高质量的收购。豪迈在下半年将会按照预期继续保持增长的势头。”
  • 英国豪迈发布2020/21财年业绩,连续第18年取得创纪录利润
    英国豪迈是一家致力于生命安全技术的全球性集团,以每一天为每个人创作一个更安全、更清洁、更健康的未来为宗旨。近日,该集团公布了截至2021年3月31日止的2020/21财年12个月的业绩。 财务亮点增长20212020持续经营总收入-2%13.182亿英镑13.384亿英镑经调整税前利润+4%2.783亿英镑2.67亿英镑经调整每股收益+2%58.67便士57.39便士法定税前利润+13%2.529亿英镑2.241亿英镑法定每股收益+10%53.61便士48.66便士每股总股息+7%17.65便士16.50便士销售回报率21.1%19.9%总投资资本回报率14.4%15.3%负债净额2.562亿英镑3.753亿英镑 取得创纪录利润:经调整税前利润增长4%;固定汇率下,有机收入增长1%;法定税前利润增长13%,其中包括出售Fiberguide Industries获得的2160万英镑收益。集团四个事业部中,三个事业部的报告利润均有所增长;固定汇率下,其中两个事业部的有机收入有所增长。总收入减少2%,其中上半年下降5%,下半年增加2%。固定汇率下,总有机收入下降6%,其中上半年下降11%,下半年同比持平。各主要地区的收入表现稳健:亚太地区略有增长,其中豪迈中国实现了两位数的增长;美国和欧洲大陆保持稳定;英国的收入小幅下降。高回报率:销售回报率为21.1%,总投资资本回报率为14.4%。为未来增长持续投资:研发支出占比5.3%。现金生产能力强大:得益于良好的营运资本控制,现金转化率高达104%。并购活动自下半年开始出现反弹,新财年中将继续保持良好势头。强大的资产负债表和优越的流动性支持着增值收购和股息增长。全年每股总股息增长7%,连续第42年增长5%及以上。运营和可持续发展亮点在未参加英国政府员工支持计划的情况下,自筹资金实施员工休假计划。2021年3月底与 2020年3月底的员工总数持平。为支持企业成长,加快了包括运营IT和数字产品开发项目在内的计划中的技术投资。增加企业影响力:新的可持续发展框架将我们的增长目标以更积极的形式释放出来,令豪迈得以专注于对自身及利益相关者而言最重要的领域。按照将气温变化控制在1.5℃以内的目标,设定 2030年的直接排放和能源间接排放减排目标,力争 2040年实现直接排放和间接排放的净零排放。做出新的公开承诺,包括:自2022年6月1日起,向整个英国区员工支付实际生活工资;签署《改变种族比例章程》;首次披露英国区和美国区员工的性别薪酬差距。任命路易斯梅金女士(Dame Louise Makin)为董事会指定主席,哈马士米斯特里(Dharmash Mistry)为非执行董事。路易斯女士将在2021年7月的股东大会上继任保罗沃克(Paul Walker)。宣布自2021年4月起成立一个新的事业部,促使英国豪迈的运营与企业宗旨更好地保持一致,即专注于安全、环境和健康市场。英国豪迈集团首席执行官安德鲁威廉姆斯(Andrew Williams)表示:“英国豪迈的宗旨是每一天都致力于为每个人创造一个更安全、更清洁、更健康的未来。它支撑着我们的发展战略、财务模式、文化和组织设计。50年来,这些要素的结合和协调为所有利益相关者创造了可持续增长的价值。这些因素结合在一起,不仅令我们能够在全球疫情流行期间保持发展,也让我们具有足够的灵活性,这对于一方面应对短期挑战、另一方面为快速变化的未来未雨绸缪而言至关重要。我们的发展还得益于我们的团队在各业务领域坚持不懈的努力,多样化的市场及其基本增长动力赋予我们的弹性,以及我们提供的解决方案的价值。未来一年,我们预期各市场将进一步复苏,尽管速度不尽相同。同时,我们也意识到汇率、通货膨胀、供应链限制等潜在的不利因素。今年开局喜人,从1月初到5月底,以固定汇率计算的有机收入同比增长了10%,截至目前的订单收入超过去年同期,此外还有良好的潜在收购机会。目前预计,在固定汇率下,全年有机利润增长率有望达两位数,销售回报率将进一步恢复正常水平。我们期待着在今年和更久的将来不断取得进步。”英国豪迈集团成立于1894年。作为一家致力于生命安全技术的全球性集团,英国豪迈集团提供创新产品和方案,解决当今世界面临的诸多关键问题。英国豪迈的宗旨是每一天都致力于为每个人创造一个更安全、更清洁、更健康的未来。这也定义了我们经营的三大市场领域:安全、环境、健康。集团主要业务遍及英国、欧洲、美国和亚太地区,在20个国家拥有超过7000名员工,并在伦敦证券交易所上市,是英国富时100指数的成份股公司。关于英国豪迈(官微:英国豪迈HALMA)
  • 1976年诺贝尔化学奖得主利普斯科姆逝世 享年91岁
    1976年诺贝尔化学奖获得者、哈佛大学教授威廉利普斯科姆(William Lipscomb)于4月14日因肺炎及并发症不幸逝世,享年91岁。 威廉利普斯科姆(图片来源:哈佛大学)   利普斯科姆于1919年出生,1941年从美国肯塔基大学毕业,同年进入加州理工学院攻读物理,1942年师从里纳斯鲍林(Linus Pauling)学习物理化学,1946年获理学博士。1946-1958年在明尼苏达大学任教,1959年任哈佛大学教授直至退休。   1976年,因在硼烷结构方面的研究贡献,利普斯科姆荣获诺贝尔化学奖。
  • 莱伯泰科MultiVap 54多通道平行浓缩仪让实验如此简单
    p    strong 仪器信息网讯 /strong 北京莱伯泰科仪器股份有限公司(简称“莱伯泰科”)成立于2002年,公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。 /p p   本着品质优先的原则,莱伯泰科在产品研发路上孜孜不倦。莱伯泰科MultiVap 54多通道平行浓缩仪,是一款高通量、高效率的快速浓缩仪,利用水浴加热、氮吹对样品进行快速浓缩 彩色触屏电脑控制 浓缩结束后,报警提示,同时可多位并联使用,最多可支持54通道同时使用,令繁琐的浓缩过程变得简单。 /p p   并且MultiVap 54多通道平行浓缩仪可搭配Sepline,Sepex,SepathsUp全自动固相萃取系统等多种仪器使用,收集管可直接放入浓缩仪进行浓缩而无需再次转移,减少样品的损失同时方便了操作。细氮吹针管的设计使得各路氮吹量平均,保证了浓缩的平行性。同时氮吹针可随液面自动升降的功能不仅大大提高了浓缩效率,而且最大限度地减少了仪器的耗气量,在提高浓缩效率和节省成本方面有着优秀的表现。 /p p   更多详情请查看视频: /p p script src=" https://p.bokecc.com/player?vid=E9623B7C1C6C5E939C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script /p
  • 重磅推出丨霍尔斯HPB Mini平行生物反应器
    一款智能高效的实验室平行生物反应器霍尔斯(HOLVES)于今年9月初推出的最新系列平行生物反应器,本周正式进入定制阶段,作为一家创新的生命科学公司,研发和生产出多款实验室科研设备,霍尔斯(HOLVES)团队表示此次新品,将为您的科研工作带来跨越式的进步。用于微生物发酵的平行高通量研究HPB Mini系列产品是一款科研型实验室平行生物反应器,是实验室实现高通量筛选的一款科研利器。非常适合条件摸索和工艺优化,提高了生物培养实验的准备效率,配置更灵活、操作更容易,运行成本低。可以广泛运用于实验室细菌发酵、细胞培养和酶生化反应。产品优势:模块化BBM搭建设计:得益于新总线技术层面的应用,产品可实现积木模块化BBM搭建设计,主控制器可控制搭建的所有BBM模块,无需更换控制器和硬件。目前可以实现BBM模块:补料泵模块、自动进气模块、尾气模块等专业模块搭建,系统可根据需求定制独家方案。 自由扩充反应堆数量: 以2组为一个单位,最多可以扩充至64组,搭配霍尔斯(HOLVES)先进的平行控制软件,可多平台同时监控数据、操控设备。 智能自动化管理: 设备融合霍尔斯(HOLVES)多项独家专利技术,实际应用在功能管理系统中,包括H-Mix®搅拌系统、Feed-Sup®补料系统、Smart-SC®智能顺控、Meta-Tri®审计追踪等在内,让设备真正实现智能自动化管理。 值得信赖的品质: 秉承霍尔斯(HOLVES)一贯的验收把关,精选国内外知名品牌部件,只为用户打造合适的系列方案。如果您对HPB Mini平行生物反应器感兴趣,可以点击此处查看咨询,也可直接联系我们!
  • 葫芦岛市消防局本级153.79万元采购细胞定量分析
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 细胞定量分析 开标时间: 2021-12-15 09:00 采购金额: 153.79万元 采购单位: 葫芦岛市消防局本级 采购联系人: 许忠磊 采购联系方式: 立即查看 招标代理机构: 葫芦岛市政务服务中心公共资源交易分中心 代理联系人: 高勇 代理联系方式: 立即查看 详细信息 葫芦岛市消防救援人员人身意外伤害险招标公告 辽宁省-葫芦岛市 状态:公告 更新时间:2021-11-17 公告信息 公告信息 公告标题: 葫芦岛市消防救援人员人身意外伤害险招标公告 有效期: 2021-11-18 至 2021-11-24 撰写单位: 葫芦岛市政务服务中心 (葫芦岛市消防救援人员人身意外伤害险)招标公告 项目概况 葫芦岛市消防救援人员人身意外伤害险招标项目的潜在供应商应在辽宁政府采购网获取招标文件,并于2021年12月15日 09时00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:JH21-211400-01754 项目名称:葫芦岛市消防救援人员人身意外伤害险 包组编号:001 预算金额(元):1,537,920.00 最高限价(元):1,537,920.00 采购需求: 类别 保险责任 等待期 保额 备注 身故责任 意外死亡 无 100万 意外事故或因公身故保额100万。 身故责任 疾病死亡 30天 65万 等待期30天,续保无等待期;既往症及其并发症免赔; 重大疾病 重大疾病 90天 10万 25种列明重疾; 1. 恶性肿瘤——重度 2. 较重急性心肌梗死 3. 严重脑中风后遗症 4. 重大器官移植术或造血干细胞移植术 5. 冠状动脉搭桥术(或称冠状动脉旁路移植术)6. 严重慢性肾衰竭 7. 多个肢体缺失 8. 急性重症肝炎或亚急性重症肝炎 9. 严重非恶性颅内脑瘤 10. 严重慢性肝衰竭 11. 严重脑炎后遗症或严重脑膜炎后遗症 12. 深度昏迷 13. 双耳失聪 14. 双目失明 15. 瘫痪 16. 心脏瓣膜手术 17. 严重阿尔茨海默病 18. 严重脑损伤 19. 严重原发性帕金森病 20. 严重III度烧伤 21. 严重特发性肺动脉高压 22. 严重运动神经元病 23. 语言能力丧失 24. 重型再生障碍性贫血 25. 主动脉手术 90天等待期,续保无等待期; 住院津贴责任 意外住院津贴 无 120元/天 最高给付180天 意外医疗 因意外发生的医疗费(含门诊) 无 3万 含门诊医疗,免赔100元,100元以上90%比例赔付。 残疾责任 意外致残 无 3万 特约注明:意外伤残或因公伤残保额3万。按《军人残疾等级评定标准》民发【2011】218号 文件标准,定级即赔付3万元 医疗责任 团体门急诊住院报销无 10万 列明121种疾病 1白化病、2半乳糖血症、3苯丙酮尿症、4丙酸血症、5卟啉病、6成骨不全症(脆骨病)、7纯合子家族性高胆固醇血症、8低碱性磷酸酶血症、9低磷性佝偻病、10多发性硬化、11多系统萎缩、12多灶性运动神经病、13多种酰基辅酶A脱氢酶缺乏症、14法布雷病、15范可尼贫血、16非典型溶血性尿毒症、17非综合征性耳聋、18腓骨肌萎缩症、19肺囊性纤维化、20肺泡蛋白沉积症、21枫糖尿症、22肝豆状核变性、23高苯丙氨酸血症、24戈谢病、25谷固醇血症、26瓜氨酸血症、27冠状动脉扩张病、28黑斑息肉综合征、29亨廷顿舞蹈病、30肌萎缩侧索硬化、31极长链酰基辅酶A脱氢酶缺乏症、32脊髓小脑性共济失调、33脊髓性肌萎缩症、34脊髓延髓肌萎缩症(肯尼迪病)、35家族性地中海热、36甲基丙二酸血症、37结节性硬化症、38进行性肌营养不良、39进行性家族性肝内胆汁淤积症、40精氨酸酶缺乏症、41卡尔曼综合征、42莱伦氏综合征、43赖氨酸尿蛋白不耐受症、44朗格汉斯组织细胞增生症、45镰刀型细胞贫血病、46淋巴管肌瘤病、47马凡综合征、48尼曼-匹克病、49黏多糖贮积症、50鸟氨酸氨甲酰基转移酶缺乏症、51帕金森病(青年型、早发型)、52强直性肌营养不良、53全身型重症肌无力、54全羧化酶合成酶缺乏症、55热纳综合征(窒息性胸腔失养症)、56溶酶体酸性脂肪酶缺乏症、57生物素酶缺乏症、58湿疹血小板减少伴免疫缺陷综合征、59视神经脊髓炎、60视网膜母细胞瘤、61视网膜色素变性、62四氢生物蝶呤缺乏症、63糖原累积病(I型、Ⅱ型)、64特发性低促性腺激素性性腺功能减退症、65特发性肺动脉高压、66特发性肺纤维化、67特发性心肌病、68同型半胱氨酸血症、69威廉姆斯综合征、70戊二酸血症I型、71系统性硬化症、72先天性纯红细胞再生障碍性贫血、73先天性胆汁酸合成障碍、74先天性高胰岛素性低血糖血症、75先天性肌强直(非营养不良性肌强直综合征)、76先天性肌无力综合征、77先天性脊柱侧弯、78先天性肾上腺发育不良、79线粒体脑肌病、80心脏离子通道病、81新生儿糖尿病、82血友病、83遗传性大疱性表皮松解症、84遗传性低镁血症、85遗传性多发脑梗死性痴呆、86遗传性痉挛性截瘫、87遗传性血管性水肿、88异戊酸血症、89婴儿严重肌阵挛性癫痫(Dravet综合征)、90原发性酪氨酸血症、91原发性联合免疫缺陷、92原发性轻链型淀粉样变、93原发性肉碱缺乏症、94原发性遗传性肌张力不全、95长链3-羟酰基辅酶A脱氢酶缺乏症、96阵发性睡眠性血红蛋白尿、97中链酰基辅酶A脱氢酶缺乏症、98重症先天性粒细胞缺乏症、99自身免疫性垂体炎、100自身免疫性脑炎、101自身免疫性胰岛素受体病、102号21-羟化酶缺乏症、103Alport综合征、104Angelman氏症候群(天使综合征)、105Castleman病、106Gitelman综合征、107HHH综合征、108IgG4相关性疾病、109Leber遗传性视神经病变、110McCune-Albrigh综合征、111Noonan综合征、112N-乙酰谷氨酸合成酶缺乏症、113POEMS综合征、114Prader-Willi综合征、115Silver-Russell综合征、116X-连锁淋巴增生症、117X-连锁肾上腺脑白质营养不良、118X-连锁无丙种球蛋白血症、119β-酮硫解酶缺乏症、120遗传性果糖不耐受症、121Erdheim-Chester病 医疗责任 附加医药用品费用报销 无 0.05万 药品费用 备注:投保640人,2403元/人*年,预算1537920元 合同履行期限:具体内容详见标书(公告与标书同时发布,标书见附件) 需落实的政府采购政策内容:具体内容详见标书(公告与标书同时发布,标书见附件) 本项目(是/否)接受联合体投标:否 二、供应商的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.落实政府采购政策需满足的资格要求:具体内容详见标书(公告与标书同时发布,标书见附件) 3.本项目的特定资格要求:无 三、政府采购供应商入库须知 参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。 四、获取招标文件 时间:2021年11月18日 08时00分至2021年11月24日 17时00分(北京时间,法定节假日除外) 地点:辽宁政府采购网 方式:线上 售价:免费 五、提交投标文件截止时间、开标时间和地点 2021年12月15日 09时00分(北京时间) 地点:葫芦岛市公共资源交易中心2楼开标三室、辽宁政府采购网(电子标网站)六、公告期限 自本公告发布之日起5个工作日。 七、质疑与投诉 供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,向采购代理机构或采购人提出质疑。 1、接收质疑函方式:书面纸质质疑函 2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见辽宁政府采购网。 质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。 八、其他补充事宜 (一)参加辽宁省政府采购活动的供应商,请详阅辽宁政府采购网“首页-办事指南”中公布的“辽宁政府采购网关于办理CA数字证书的操作手册”和“辽宁政府采购网新版系统供应商操作手册”,具体规定详见《关于启用政府采购数字认证和电子招投标业务有关事宜的通知》(辽财采〔2020〕298号)。请按照相关规定,及时办理相关手续,因未办理相关手续造成的所有后果,由投标人自行承担。 (二)供应商除在电子评审系统上传投标(响应)文件外,应在递交投标(响应)文件截止时间前提交按采购文件规定的以介质形式(U 盘或光盘)存储的可加密备份文件、备份文件与电子评审系统中上传的投标(响应)文件内容、格式一致承诺函,备系统突发故障使用。供应商仅提交备份文件的,投标(响应)无效。由于供应商自身原因未按规定上传投标(响应)文件的,后果自行承担。 (三)供应商自行准备响应解密所需可以登录辽宁政府采购网并成功进入账号的电脑以及CA数字认证等设备,解密时间:递交响应文件截止时间起至30分钟止。 (四)供应商应随时关注辽宁政府采购网公告信息,并及时获取相关信息,否则由此造成的一切后果,由供应商自行负责。 (五)采购文件领取登记网址:http://www.hldggzyjyzx.com.cn 获取采购文件后,投标供应商须登录“葫芦岛市公共资源交易中心网”,点击“主体交易登录”→“免费注册”→同意→填写信息并确认→进入系统完善信息→提交审核。 咨询电话: 0429-3023831、3023833 九、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称: 葫芦岛市消防局本级 地 址: 葫芦岛市龙湾新区海星路6号 联系方式: 许忠磊、15141987119 2.采购代理机构信息: 名 称: 葫芦岛市政务服务中心公共资源交易分中心 地 址: 葫芦岛市高新技术产业开发区高新5路47-1号 联系方式: 0429-3023831、3023833 邮箱地址: hldjyzx@126.com 开户行: 葫芦岛银行东城支行 账户名称: 葫芦岛市政务服务中心 账号: 20005675079000048949 3.项目联系方式 项目联系人: 高勇 电 话: 0429-3023831、3023833 评分办法:综合评分法 附件: 注:财政部门鼓励供应商采用保函的方式递交投标保证金,任何采购代理机构在政府采购活动中不得拒收供应商以保函方式递交的保证金。 申请电子保函 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:细胞定量分析开标时间:2021-12-15 09:00 预算金额:153.79万元 采购单位:葫芦岛市消防局本级 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:葫芦岛市政务服务中心公共资源交易分中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 葫芦岛市消防救援人员人身意外伤害险招标公告 辽宁省-葫芦岛市 状态:公告 更新时间: 2021-11-17 公告信息 公告信息 公告标题: 葫芦岛市消防救援人员人身意外伤害险招标公告 有效期: 2021-11-18 至 2021-11-24 撰写单位: 葫芦岛市政务服务中心 (葫芦岛市消防救援人员人身意外伤害险)招标公告 项目概况葫芦岛市消防救援人员人身意外伤害险招标项目的潜在供应商应在辽宁政府采购网获取招标文件,并于2021年12月15日 09时00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:JH21-211400-01754 项目名称:葫芦岛市消防救援人员人身意外伤害险 包组编号:001 预算金额(元):1,537,920.00 最高限价(元):1,537,920.00 采购需求: 类别 保险责任 等待期 保额 备注 身故责任 意外死亡 无 100万 意外事故或因公身故保额100万。 身故责任 疾病死亡 30天 65万 等待期30天,续保无等待期;既往症及其并发症免赔; 重大疾病重大疾病 90天 10万 25种列明重疾; 1. 恶性肿瘤——重度 2. 较重急性心肌梗死 3. 严重脑中风后遗症 4. 重大器官移植术或造血干细胞移植术 5. 冠状动脉搭桥术(或称冠状动脉旁路移植术) 6. 严重慢性肾衰竭 7. 多个肢体缺失 8. 急性重症肝炎或亚急性重症肝炎 9. 严重非恶性颅内脑瘤 10. 严重慢性肝衰竭 11. 严重脑炎后遗症或严重脑膜炎后遗症 12. 深度昏迷 13. 双耳失聪 14. 双目失明 15. 瘫痪 16. 心脏瓣膜手术 17. 严重阿尔茨海默病 18. 严重脑损伤 19. 严重原发性帕金森病 20. 严重III度烧伤 21. 严重特发性肺动脉高压 22. 严重运动神经元病 23. 语言能力丧失 24. 重型再生障碍性贫血 25. 主动脉手术 90天等待期,续保无等待期; 住院津贴责任 意外住院津贴 无 120元/天 最高给付180天 意外医疗 因意外发生的医疗费(含门诊) 无 3万 含门诊医疗,免赔100元,100元以上90%比例赔付。 残疾责任 意外致残 无 3万 特约注明:意外伤残或因公伤残保额3万。按《军人残疾等级评定标准》民发【2011】218号 文件标准,定级即赔付3万元 医疗责任 团体门急诊住院报销 无 10万 列明121种疾病 1白化病、2半乳糖血症、3苯丙酮尿症、4丙酸血症、5卟啉病、6成骨不全症(脆骨病)、7纯合子家族性高胆固醇血症、8低碱性磷酸酶血症、9低磷性佝偻病、10多发性硬化、11多系统萎缩、12多灶性运动神经病、13多种酰基辅酶A脱氢酶缺乏症、14法布雷病、15范可尼贫血、16非典型溶血性尿毒症、17非综合征性耳聋、18腓骨肌萎缩症、19肺囊性纤维化、20肺泡蛋白沉积症、21枫糖尿症、22肝豆状核变性、23高苯丙氨酸血症、24戈谢病、25谷固醇血症、26瓜氨酸血症、27冠状动脉扩张病、28黑斑息肉综合征、29亨廷顿舞蹈病、30肌萎缩侧索硬化、31极长链酰基辅酶A脱氢酶缺乏症、32脊髓小脑性共济失调、33脊髓性肌萎缩症、34脊髓延髓肌萎缩症(肯尼迪病)、35家族性地中海热、36甲基丙二酸血症、37结节性硬化症、38进行性肌营养不良、39进行性家族性肝内胆汁淤积症、40精氨酸酶缺乏症、41卡尔曼综合征、42莱伦氏综合征、43赖氨酸尿蛋白不耐受症、44朗格汉斯组织细胞增生症、45镰刀型细胞贫血病、46淋巴管肌瘤病、47马凡综合征、48尼曼-匹克病、49黏多糖贮积症、50鸟氨酸氨甲酰基转移酶缺乏症、51帕金森病(青年型、早发型)、52强直性肌营养不良、53全身型重症肌无力、54全羧化酶合成酶缺乏症、55热纳综合征(窒息性胸腔失养症)、56溶酶体酸性脂肪酶缺乏症、57生物素酶缺乏症、58湿疹血小板减少伴免疫缺陷综合征、59视神经脊髓炎、60视网膜母细胞瘤、61视网膜色素变性、62四氢生物蝶呤缺乏症、63糖原累积病(I型、Ⅱ型)、64特发性低促性腺激素性性腺功能减退症、65特发性肺动脉高压、66特发性肺纤维化、67特发性心肌病、68同型半胱氨酸血症、69威廉姆斯综合征、70戊二酸血症I型、71系统性硬化症、72先天性纯红细胞再生障碍性贫血、73先天性胆汁酸合成障碍、74先天性高胰岛素性低血糖血症、75先天性肌强直(非营养不良性肌强直综合征)、76先天性肌无力综合征、77先天性脊柱侧弯、78先天性肾上腺发育不良、79线粒体脑肌病、80心脏离子通道病、81新生儿糖尿病、82血友病、83遗传性大疱性表皮松解症、84遗传性低镁血症、85遗传性多发脑梗死性痴呆、86遗传性痉挛性截瘫、87遗传性血管性水肿、88异戊酸血症、89婴儿严重肌阵挛性癫痫(Dravet综合征)、90原发性酪氨酸血症、91原发性联合免疫缺陷、92原发性轻链型淀粉样变、93原发性肉碱缺乏症、94原发性遗传性肌张力不全、95长链3-羟酰基辅酶A脱氢酶缺乏症、96阵发性睡眠性血红蛋白尿、97中链酰基辅酶A脱氢酶缺乏症、98重症先天性粒细胞缺乏症、99自身免疫性垂体炎、100自身免疫性脑炎、101自身免疫性胰岛素受体病、102号21-羟化酶缺乏症、103Alport综合征、104Angelman氏症候群(天使综合征)、105Castleman病、106Gitelman综合征、107HHH综合征、108IgG4相关性疾病、109Leber遗传性视神经病变、110McCune-Albrigh综合征、111Noonan综合征、112N-乙酰谷氨酸合成酶缺乏症、113POEMS综合征、114Prader-Willi综合征、115Silver-Russell综合征、116X-连锁淋巴增生症、117X-连锁肾上腺脑白质营养不良、118X-连锁无丙种球蛋白血症、119β-酮硫解酶缺乏症、120遗传性果糖不耐受症、121Erdheim-Chester病 医疗责任 附加医药用品费用报销 无 0.05万 药品费用 备注:投保640人,2403元/人*年,预算1537920元合同履行期限:具体内容详见标书(公告与标书同时发布,标书见附件) 需落实的政府采购政策内容:具体内容详见标书(公告与标书同时发布,标书见附件) 本项目(是/否)接受联合体投标:否 二、供应商的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.落实政府采购政策需满足的资格要求:具体内容详见标书(公告与标书同时发布,标书见附件) 3.本项目的特定资格要求:无 三、政府采购供应商入库须知 参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。 四、获取招标文件 时间:2021年11月18日 08时00分至2021年11月24日 17时00分(北京时间,法定节假日除外) 地点:辽宁政府采购网 方式:线上 售价:免费 五、提交投标文件截止时间、开标时间和地点 2021年12月15日 09时00分(北京时间) 地点:葫芦岛市公共资源交易中心2楼开标三室、辽宁政府采购网(电子标网站) 六、公告期限 自本公告发布之日起5个工作日。
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双 1,2 ,曹晓 1,2 ,张嘉琪 1,2 ,韩迎春 1,2 ,赵欣悦 1,2 ,陈全 1,2 1.中国科学院机构长春应用化学研究所 高分子物理与化学国家重点实验室 长春 1300222.中国科学技术大学应用化学与工程学院 合肥 230026作者简介: 陈全,男,1981年生. 中国科学院长春应用化学研究所研究员. 本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造. 于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的Distinguished Young Rheologist Award (2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《Nihon Reoroji Gakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者: 陈全, E-mail: qchen@ciac.ac.cn摘要: 流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工. 本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词: 流变学 / 剪切流场 / 剪切流变测试 目录1. 流场分类2. 剪切旋转流变仪概述2.1 测试原理2.2 测试模式3. 旋转流变仪测试中的常见问题3.1 测试过程的基本假设和常见问题概述3.1.1 输入(输出)应变为施加在样品上的应变3.1.2 流场为简单的剪切流场3.1.3 输入(输出)应力为样品的黏弹响应3.2 测试中常见问题I:仪器和夹具柔量3.3 测试中常见问题II:仪器和夹具惯量的影响3.4 测试中常见问题III:样品自身惯量的影响3.5 测试中常见问题IV:二次流的影响3.5.1 同轴圆筒夹具二次流边界条件3.5.2 锥板和平板夹具二次流边界条件3.6 测试中常见问题V:样品表面张力3.6.1 样品的各向对称性3.6.2 样品本身表面张力大小3.6.3 大分子聚集3.7 测试中常见问题VI: 测试习惯3.7.1 样品的制备:干燥和挥发问题3.7.2 确定样品的热稳定性3.7.3 样品体系是否达到平衡态3.7.4 夹具热膨胀对测试的影响3.7.5 夹具不平行和不同轴对测试的影响4. 结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可. 流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况. 最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯. 笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1. 流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场. 更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”). 流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应. 虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如Sentmanat Extensional Rheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因. 图1中分别展示了剪切和拉伸2种形变[14]. 施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动. 剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直. 而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变. 同样,连续的拉伸形变称为拉伸流动. 拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行. 施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离. 在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场. 然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度. 在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场. 假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图 1Figure 1. Illustration of two representative modes of deformation: the simple shear for which the direction of velocity gradient is perpendicular to that of velocity, and the uniaxial elongation for which the direction of velocity gradient is parallel to that of velocity. (Reprinted with permission from Ref.[14] Copyright (2012) Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数. 为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的. 即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17]. 该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18]. 然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2. 剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧). 目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪. 本小节主要围绕旋转流变仪展开介绍. 旋转流变仪主要分为应力控制型和应变控制型2种. 应力控制型旋转流变仪一般使用组合式马达传感器(combined motor transducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separate motor transducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用. 之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别. 对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1 测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T (T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数. 因此, 可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图 2Figure 2. Geometry and parameters Kγ and Kσ of parallel-plate, cone-and-plate and Couette fixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试. 但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性. 例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20]. (2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择. 此外,需要注意的是, 为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度. (3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2 测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应. 在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应. 根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图 3Figure 3. The different responses of Newtonian fluid, Hookean solid, and viscoelastic materials to the imposed steady flow (stress growth, transient or steady mode that depends on the focus), step strain (stress relaxation, transient mode), step stress (creep and recovery, transient mode) and small amplitude oscillatory shear (SAOS, dynamic mode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应. 通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式. 通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力. 剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动. (2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等. 其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stress relaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creep and recovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stress growth). 这些测试的共性是关注样品在一个特定刺激下的转变过程. 以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间. (3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应. 以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间. 通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(small amplitude oscillatory shear,简称SAOS). 对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间. 当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(large amplitude oscillatory shear,简称LAOS). 需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心. 因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3. 旋转流变仪测试中的常见问题3.1 测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力. 然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题. 需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1) 应变作用在样品上;(2) 应力为样品自身的响应;(3) 流场为简单剪切流场. 这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠. 接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff). 对于平行板样品,由于应变参数K
  • 尊嘟假嘟,Detelogy居然做了一套四环素检测的解决方案!
    四环素类抗生素是由放线菌产生的一类广谱抗生素,包括金霉素、土霉素、四环素及多西环素、强力霉素等,是常见的兽药类型之一。主要用于治疗呼吸道病、衣原体、螺旋体、立克次氏体、附红细胞体(猪)感染,饲料中添加金霉素,使产蛋率,蛋壳相对重和蛋壳厚度分别提高了,料蛋比下降。但对采食量和其它蛋品质指标无明显效果。四环素类药物长期以来由于价格低廉、抗菌谱广等的原因,曾在兽医临床上广泛使用,甚至是滥用,更有甚者利用抗生素的促生长作用作为饲料添加剂用于生产实践中,这样就使敏感菌产生了广泛的耐药性,而由于本类药品的化学结构相似,存在交叉耐药性,使作为抗生素用途的作用大为减少,所以目前除作为极少数治疗的一线用药外,基本停止使用。下面Detelogy推出一套仪器组合应对各种基质中四环素类兽药检测的前处理要求Detelogy优选仪器MultiVortex多样品涡旋混合器⭐ 兼容性高,转速高,转速可调范围:200-3000rpm。⭐ 小巧极简机身,主机低重心设计,运行噪声低。⭐ 5寸高清彩色触屏,实时显示转速和运行时间,随时启停。⭐ 支持自动和手动双模式,中英文界面自由切换。iSPE-864全自动智能固相萃取仪⭐ 兼容性高,8通道,可同时完成8个样品的固相萃取全过程。⭐ 高性能十二通阀自动切换不同溶剂输送。⭐ 智能液面追随,上样针自动清洗,避免交叉污染。⭐ 智能溶剂管理系统,废液分类收集,省事环保。⭐ 智能控制终端和主机一体化设计,10.1寸高清彩色触屏。FV32Plus全自动高通量智能平行浓缩仪⭐ 32位氮吹高通量,各通道独立控制,兼容多规格样品管。⭐ 双氮吹模式自由切换,满足更多实验需求⭐ 三面水浴可视窗具备多色照明功能,智能快插排水口。⭐ 氮吹通道灵活组合,多路供气保障平行性。⭐ 13.3寸超大触屏控制,具备氮吹延时和延时压力功能。参考标准《GB 31658.6-2021》 食品安全国家标准 动物性食品中四环素类药物残留量的测定 高效液相色谱法《GB 31658.17-2021》 食品安全国家标准 动物性食品中四环素类、磺胺类和喹诺酮类药物残留量的测定 液相色谱-串联质谱法《GB 31656.11-2021》 食品安全国家标准 水产品中土霉素、四环素、金霉素和多西环素残留量的测定《GB/T 22990-2008》 牛奶和奶粉中土霉素、四环素、金霉素、强力霉素残留量的测定 液相色谱-紫外检测法农业农村部公告第282号-2-2020 饲料中土霉素、四环素、金霉素、多西环素的测定《GB/T 18932.23-2003》蜂蜜中土霉素、四环素、金霉素、强力霉素残留量的测定方法 液相色谱-串联质谱法《GB/T 21317-2007》 动物源性食品中四环素类兽药残留量检测方法 液相色谱-质谱/质谱法与高效液相色谱法
  • 两位诺奖得主回忆结构生物学发展史
    转载自Knowable Magazine "Structural biology: How proteins got their close-up"前言从细菌到人类,所有的生物都由细胞组成。细胞由四种大型生物分子构成:碳水化合物、脂肪、核酸(即DNA和RNA)和蛋白质。这些生命的重要组成部分小到肉眼无法观测,甚至用光学显微镜也难以成像。因此,尽管19世纪的科学家们知晓这些"隐形"分子的存在,也能够通过实验找出它们的化学成分,但科学家们却看不到它们:这些分子结构的任何细节始终是个谜题。这就是今天的主题:这些"隐形"分子是如何在20世纪被人们成功观测到的。 "许多基础的生物问题是非常容易解决的:只要能看到它们就行!" —理查德• 费曼这是一个漫长而艰辛的故事:关于开发能够解析生物分子结构的工具和技术,以及对这些分子结构的解析如何使我们能够理解它们的功能,并设计出阻止或加强其作用的药物。为了讲述这个故事,我们将重点放在蛋白质上:这些大分子参与了我们身体中几乎所有的化学过程:它们解读遗传密码、催化化学反应、并充当我们细胞的守门员。蛋白质由名为氨基酸的小分子链构成。了解这些链如何折叠成三维结构至关重要,因为正是蛋白质的三维形态决定了它们的功能。若要创建一个准确的蛋白质三维模型,我们需要知道组成该蛋白质的所有氨基酸中的所有原子在空间中的排列。 我们无法看到原子,因为它们比可见光的波长还要小。 为了探测这些原子,我们需要一种波长更短且穿透性极佳的波:这种波使我们能够同时对蛋白质内部和外部的原子进行观测。因此,今天的故事开始于德国的维尔茨堡大学城。在那里,伦琴发现了X射线。X射线的发现那是1895年,威廉• 伦琴正在实验室里工作。像他那一代的许多物理学家一样,他正在做阴极射线的实验:在一个叫做克鲁克司管的设备中产生的电子流。但与他同时代的人不同的是,伦琴注意到了一些意想不到的事情:离克鲁克司管相当远的一个屏幕在发光。伦琴认为,那个屏幕太远了,发光绝不可能是由阴极射线引起的。在接下来的几周里,他研究了这种发光的荧光,并意识到他发现了一种能够穿透固体物体的新型射线。 就在圣诞节前,他把他的妻子带到实验室,给她的手拍了一张照片。 在照片中,她的血肉消失了,但骨头和戒指都清晰可见。威廉• 伦琴因发现X射线于1901年获首届诺贝尔物理奖关于他的发现,伦琴写了一份的报告。1896年初,一份英文译本发表了在《自然》杂志上。"我们看到,一些剂能够穿透对紫外线、阳光或弧光不透明的黑色纸板。所以,研究其他物体能在多大程度上被同一个剂穿透是很有意义的。"该报告继续说道:"厚的木块仍然是透明的。两三厘米厚的松木板只吸收了很少的光线。一块15毫米厚的铝板仍然能够让X射线通过,但大大减少了发出的荧光。"伦琴的发现立即产生了影响。在几个月内,医生们就开始用X射线来拍摄骨折。人们为X射线写诗,奇妙的X射线也成为各大展览中的热点。1901年,伦琴因其发现被授予第一个诺贝尔物理学奖:这是本故事中授予科学家们的众多诺贝尔奖中的第一个。与此同时,在实验室里,物理学家们对X射线的性质感到困惑。它们究竟是波还是粒子?另一位德国物理学家马克斯• 冯• 劳厄推断,如果X射线是波,那么它们的波长可能与晶体中原子之间的规则空间相似,从而提供一种破译晶体结构的方法。马克斯• 冯• 劳厄因发现晶体中X射线的衍射现象获得1914年诺贝尔物理学奖这是一个非常重要的推断,它启蒙了X射线晶体学的发展,这种技术最终将使科学家们能够弄清蛋白质结晶的结构,但走到这一步却花了几十年。起初,X射线晶体学被应用于更小的分子。而在这之前,弄清楚该技术的原理也花费了很长的时间。X射线晶体学时代1912年夏天,数学家和物理学家威廉• 亨利• 布拉格和他的儿子,另一位物理学家劳伦斯• 布拉格在英国的海边度假时听闻了冯• 劳厄的一个讲座。 假期结束后,父子俩回到他们的大学,思考晶体对X射线的衍射问题。那年晚些时候,老布拉格给《自然》杂志写信。 他首先描述了通过发射X射线获得的显著效果。"...细小的X射线流在通过晶体后并被发射到照相板时,有了显著效果。在照相板上发现了一种奇怪的斑点排列,其中一些斑点与中心斑点相距甚远,以至于它们必须被解释为大角度的散射....."这些是被晶体中的原子散射的X射线,在胶片上形成了一个独特的斑点图案。"这些斑点的位置似乎取决于简单的数字关系,以及晶体对入射流的呈现方式。我发现,当晶体(锌闪石)被放置到入射光线平行于晶体中立方体的边缘时,斑点的位置可以通过以下简单规则预测。假设原子以矩形方式排列,相邻原子产生的斑点距离为NA,其中A是相邻原子之间的距离,而N是一个整数......"闪锌矿的X射线衍射照片布拉格父子找到的数学规则提供了一种解释X射线产生的衍射图案的方法,从而揭示了晶体中原子的排列。老布拉格设计了一种新的、更强大的方法来进行X射线衍射,发明了一种叫做X射线光谱仪的仪器。1914年,冯• 劳埃因其工作获得了诺贝尔奖。第二年,布拉格父子也得到了诺贝尔奖。当时只有25岁的小布拉格目前仍是最年轻的诺贝尔奖科学得主。布拉格父子的布拉格定律使科学家能够解析各种晶体的原子结构获1915年诺贝尔物理奖起初,布拉格的方法被应用于简单物质,如食盐、苯和糖分子,揭示了它们结构的秘密。许多科学家对像蛋白质结构这样复杂的东西能否用这种方法解析持怀疑态度。1936年,《生物化学年度评论》中讨论了X射线研究的进展。DOI: 10.1146/annurev.bi.05.070136.000431"对于像糖和氨基酸这样的晶体物质,晶体内分子和原子的排列是能被完全解析的;但对于像多糖和蛋白质这样的物质,其中原子的排列不太规则,同时缺乏共同的晶体外观,我们不能指望完全解析它们。"但几年后,即1939年,有人提出了一个更乐观的观点:作者指出,像X射线晶体学这样的技术,正在深刻地改变生物学。 当作者考虑到各种可能性时,他似乎相当兴奋。DOI: 10.1146/annurev.bi.08.070139.000553"生物学迅速成为了一门分子科学,站在物理学和化学的肩膀上,生物学的前景广阔,人们迫切地想知道生物学会将人类带向何方。生物分子的结构成为了学界的主流追求。这些分子中最重要的是蛋白质,而蛋白质的结构解析也是最激动人心的。"为了解决蛋白质问题,需要取得一些进展:寻找更好的蛋白质结晶方法,并用新的数学方法解析X射线的衍射图案;以及用计算机计算数据。 英国剑桥的科学家们正致力于应对所有这些挑战。1953年,X射线晶体学获得了巨大突破:它被用于解析一个极其重要的结构, 并不是蛋白质,而是DNA,詹姆斯• 沃森、弗朗西斯• 克里克和莫里斯• 威尔金斯为此获得了诺贝尔奖。因解析DNA分子结构,以及一些相关研究获1962年诺贝尔生理学或医学奖的三位得主约翰• 肯德鲁是沃森和克里克在剑桥的同事,作为一位非常积极的研究人员,他下决心解析肌红蛋白的结构。 肌红蛋白是在肌肉中储存氧的蛋白质。肯德鲁选择它的原因是尺寸:肌红蛋白并不大。 他的首要任务是培育适合被X射线解析的晶体。在尝试对马、鼠海豚、海豹、海豚、企鹅、乌龟和鲤鱼的肌红蛋白进行结晶后,他终于成功地培育出从抹香鲸肉中提取的肌红蛋白的美丽晶体。 鲸鱼肌肉细胞内部的含氧肌红蛋白(红色)以及肌动蛋白和肌球蛋白纤维(黄色和棕色)。大量的蛋白质结构现在已经被确定,这是一个曾经无法想象的成就--为生命的生物化学提供了关键的见解,也为新型药物设计和其他发明提供了素材。与此同时,肯德鲁的同事马克斯• 佩鲁兹开发了一种向蛋白质分子添加"重"原子的技术。这些重原子并不会改变蛋白质的结构,但它们为比较不同角度的X射线照片提供了一个参考框架。经过多年的工作,肯德鲁仍然不知道肌红蛋白中每一个原子的精确位置,但他拥有了足够的信息,使得他可以制作一个蛋白质的三维模型。 这个模型并不像DNA的双螺旋那样漂亮;它看起来更像一根扭曲的香肠。马克斯• 佩鲁兹(左)与约翰• 肯德鲁(右),因发现血红蛋白分子结构获1962年诺贝尔化学奖肯德鲁和他的肌红蛋白3D模型就在这个时候,理查德• 亨德森加入了这个小组。直到今天,亨德森仍然在剑桥从事蛋白质结构解析的工作,并以开拓新技术而闻名,我们稍后将听到这些技术。但那时他刚刚毕业,正在寻找一个博士生职位。他还记得从爱丁堡到剑桥参观实验室的情景:理查德• 亨德森(右)冷冻电镜三位开创者之一于2017年获诺贝尔化学奖理查德• 亨德森: "他们有一个开放日,也就是星期六上午,他们周末居然也在工作!而在我去过的其他实验室,科学家都回家了,积极性也不够高。所以我当时就想:“哦,这是个非常好的实验室”。亨德森加入了这个勤奋的剑桥团队。这项工作虽令人激动,但进展极慢。理查德• 亨德森: "在1959年,他们以非常高的分辨率得到了肌红蛋白的结构,1960年这项研究成果发表,之后的五年没有任何其他结构被发表,直到伦敦的皇家研究所发表了溶菌酶。然后在那之后,又过了三年才有了第三个结构。"难以相信科学家们花了这么久的时间,为什么进展如此缓慢?一开始,X射线晶体学家研究的小分子包含不到50个原子,例如苯和糖环。相比之下,肌红蛋白,一种相对较小的蛋白质,包含了超过1000个原子。为了弄清这么多原子的位置,科学家不得不拍摄数百张X光照片,测量每张照片中每个光点的强度,并进行繁琐的计算。这是一个对数据处理的巨大挑战。理查德• 亨德森:"在我的博士论文中,我拍摄了大约300张这样的照片,一开始我必须亲自测量它们:我得把胶片放在胶片扫描仪里,一束光沿着一排斑点移动,然后每隔三分钟,就能得到一张印有痕迹的纸,上面可能有40个斑点。这时我需要用尺子在纸上测量斑点被衍射的强度,然后再把这个数字打到电脑纸上。而这仅仅是一排斑点的工作量。"这是非常耗费时间的。研究人员逐渐渴望如何将这一过程的一部分自动化。他们发明了自动的X射线探测器和仪器,以加快斑点的测量。约翰• 肯德鲁意识到,解析一个结构所需的计算可以由计算机来完成。幸运的是,剑桥大学数学实验室刚刚建成了第一批具有存储程序的电子计算机。它们被称为EDSAC,肯德鲁便学习了如何为它们编程。随着更强大的计算机的出现,X射线晶体学家们开始使用借助计算进行结构解析。亨德森回忆说,在20世纪60年代,他们前往伦敦,使用帝国学院的IBM 7090。剑桥大学的团队每天可以使用这台计算机1个小时。最早的两台IBM7090之一理查德• 亨德森 :"于是,每天下午4点,一辆出租车就来了,带着一批研究人员和一箱箱打包好的电脑卡,送到剑桥的火车站。她们上了去伦敦的火车,上了地铁,在南肯辛顿站和帝国学院之间的隧道里带着所有这些沉重的盒子走上大约有一公里。然后从晚上7点到8点,剑桥大学的MRC程序在计算机上运行,操作程序的人大多数是被招募的年轻女性,在当时被我们称为 "计算机女孩",她们现在都是大师了。在当时,她们做的极其完美:数据会被打印好并带回来。第二天早上9点,每个研究员都会检视他们前一天的数据,并为下午4点的寄送工作做好准备"。罗莎琳• 富兰克林“DNA之母”世界公认的名誉诺奖得主难怪这是个缓慢的工作! 女士们不仅要携带着成箱的数据穿越伦敦,她们还要抽出时间去做X射线晶体学解析。在伦敦国王学院,罗莎琳• 富兰克林制作了DNA的X射线衍射图案。她的照片使沃森和克里克能够制作他们著名的模型。 在牛津,多萝西• 霍奇金解决了青霉素的结构,后来又研究了其他重要的医学分子,包括维生素B12和胰岛素。她于1964年获得了诺贝尔奖,该领域的另一个诺贝尔奖!多萝西• 霍奇金因解析青霉素、维生素B12等结构获1964年诺贝尔化学奖随着更多计算机的出现和计算能力的提高,更多的结构被解决了。计算机的持续进步是另一个主题,我们将回到这里。对结构生物学这一新领域的兴奋之情日渐高昂。一些科学家认为,最终他们甚至不需要X射线晶体学便能弄清蛋白质的结构。"人们甚至希望有一天可以完全从氨基酸序列中推断出构象。"那是在1965年在《生物化学年鉴》上被提出的。 当时的想法是,如果你知道展开的蛋白质链中的氨基酸序列,那么通过遵循原子和分子如何相互作用的简单规则,你可以算出蛋白质链将如何折叠起来。DOI: 10.1146/annurev.bi.34.070165.001335化学家克里斯蒂安• 安芬森在1972年的诺贝尔奖演讲中重复了这一主张。"我们对序列和三维结构之间相关性的大量数据积累,加上多肽链折叠的能量学理论的日益成熟,预测蛋白质构象的想法越来越现实了。"这是一个有吸引力的想法。 如果可以用蛋白质折叠的规则对计算机进行编程,并输入氨基酸序列,那么结构可能在几天而不是几年内得到解决,为昂贵和耗时的实验方法提供一个替代方案。克里斯蒂安• 安芬森因对核糖核酸酶的研究获1972年诺贝尔化学奖但现在还不行。为了实现这样的目标,生物学家首先必须通过使用和改进X射线晶体学来解决更多蛋白质的结构。并通过发明新的方法来观察蛋白质。而这项工作将产生更多的诺贝尔奖。在1999年的最后几周,生物化学家罗杰• 科恩伯格终于抵达了他十多年工作的顶点:他在斯坦福同步辐射实验室成功解析出他一直在研究的蛋白质的结构。罗杰• 科恩伯格因对真核转录的分子基础所作的研究获得2006年诺贝尔化学奖罗杰• 科恩伯格: "一开始的时候,我们远远不清楚是否可以做到。当然,这是让我们从也许永远不会成功的恐惧中解脱出来的原因,也是对最终结果感到振奋的原因。"科恩伯格和他的团队已经解决了RNA聚合酶的结构。 这是一个巨大的成就,并且得到了另一个诺贝尔奖的认可。罗杰• 科恩伯格: "在我们解析这个结构的时候还是20年前,但迄今为止,这依然是通过X射线衍射法研究的最大和最具挑战性的结构。"RNA聚合酶可以说是生物学中最重要的蛋白质。 这是一个挑战,因为它不是一个单一的蛋白质。该团队研究了来自酵母的RNA聚合酶,它实际上是由12种蛋白质组成的。更重要的是,它是一个有活动部件的分子机器。罗杰• 科恩伯格:"RNA聚合酶实际上是在读取遗传信息。因此,它负责决定哪些信息将被储存在基因组的DNA中,以指导每个生物的活动能力。简单如病毒,或复杂如人类,没有生物体不依赖RNA聚合酶而生存。"为了解决RNA聚合酶的结构,科恩伯格和他的团队花了数年时间,为他们的蛋白质寻找合适的晶体和 "重 "原子。但这还不够。他们还需要更强烈的X射线束。罗杰• 科恩伯格: "X射线衍射的方法依赖于结构中各个原子的X射线光子散射--原子数量越多,为此必须记录的散射光子数量就越大。 如果光束强度太低,光子的数量就太少了,获得的信息也会因此不足。使用强度较高的光束,可以检测和记录更多的原子"。这一难题的解决方案便是同步加速器。同步加速器是一种粒子加速器,它以极高的速度推动电子束,这些高速电子发出的X射线比传统的X射线要亮几百万倍。它本质上是伦琴发现X射线时使用的克鲁克司管的一个升级版本。来自同步加速器的高强度X射线和不断提高的计算机能力相结合,使得像科恩伯格这样的科学家能够解决更复杂的蛋白质结构。2007年至2019年,当我在《自然》杂志工作时,我们经常对结构生物学论文的数量开玩笑:似乎每周都有一个新的、重要的蛋白质结构发表。但这是有限制的。X射线晶体学仍然很耗时,尽管不像早期那样耗时。 而且一些类型的蛋白质被证明很难或不可能结晶。冷冻电镜时代在世纪之交,一种新的技术进入了人们的视野。或者说,一种新的技术让科学家们对蛋白质有了新的认识。 该技术不使用X射线,而使用电子束。 这就是所谓的冷冻电镜。称之为冷冻,是因为蛋白质样品会被冻结。理查德• 亨德森是最早使用该技术的人之一。ThermoFisher Krios G4 冷冻透射电镜理查德• 亨德森: "当你照射任何东西时,无论是用X射线还是电子,除了得到一个美丽的图像外,分子实际上在被破坏,在一定的曝光后,分子已经失去了它的结构,所以在不得不因照射次数太多而停止之前,能得到的信息量是有限的,因为样品已经失活了。而事实证明,对于同样数量的有用信息,电子所造成的损害要比X射线小一千倍。"对于冷冻电镜,蛋白质不需要是一个晶体。相反,它被从细胞中分离出来,然后冷冻到液氮温度或以下。 冷冻有助于保护蛋白质免受辐射损害。亨德森将该技术应用于嵌入细胞膜的蛋白质。事实证明,这些大型蛋白质复合物极难通过X射线晶体学进行研究。 冷冻电镜变得非常流行。 在2000年代,科学家们谈到了一场 "冷冻电镜革命",许多人从X射线晶体学转向了这种新的、更快的技术。2017年,理查德-亨德森被授予诺贝尔奖。与X射线晶体学一样,随着计算能力的提高,冷冻电镜成为一个更强大的工具,使更多的数据能够更快地被分析出来。罗杰• 科恩伯格:"我们不能低估计算能力的非凡进步所做出的贡献。从这个角度来看,就RNA聚合酶而言,当我们在1999年底记录RNA聚合酶的X射线衍射以解决其结构时,需要在制造商提供给我们的特制计算机上进行一个多月的计算。今天,同样的计算可以在几分钟内在一台笔记本电脑上完成"。计算机一直是X射线晶体学和冷冻电镜成功的关键。 现在我们是否可以完全摒弃这些实验技术,而仅仅使用计算能力来预测蛋白质的结构?还记得克里斯蒂安• 安芬森在其诺贝尔演讲中提出的挑战吗?"...使预测蛋白质构象的想法更加现实。"AlphaFold的盛大登场为了预测一串氨基酸将如何折叠起来,科学家们使用了一个叫做"自由能"的概念。自由能使蛋白质不稳定。我们的想法是,氨基酸将以这样一种方式折叠起来,以使自由能最小化。理查德• 亨德森: "你可以通过能量最小化来做结构,最多可达60或70个氨基酸。所以美国西雅图的大卫• 贝克小组在这方面做得特别好。但是一旦你想尝试1000个氨基酸左右的蛋白质,答案就会迅速变得遥不可及。"因此,这项技术对于弄清一个蛋白质的一小部分,也许是一个重要的侧链,是有效的。但是对于有数百或数千个氨基酸的整个蛋白质,科学家们采用了不同的方法。他们并不是要求计算机从第一原理中找出结构,而是利用已知的蛋白质结构数据库训练一种算法。 这就是谷歌的人工智能实验室最近所做的,他们的蛋白质预测算法AlphaFold在2020年的一次比赛中超过了所有其他的算法。罗杰• 科恩伯格:"AlphaFold的基础确实来自于蛋白质结晶学的悠久历史和它的巨大成功,以及已经解析并存入蛋白质数据库的巨量的结构。AlphaFold的不同之处可能在于,其公司背景下大量的人工智能专家,这远远超出了任何个人学术研究者所能做到的,他们所拥有的计算能力,来自于分布在全球各地的顶级计算中心。从某种程度上说,他们除了将他们所拥有的资源用于解决一个经过充分研究的、现在看来已经解决的问题之外,也没做太多贡献嘛。科恩伯格当然认识到像AlphaFold这样的蛋白质预测程序在预测非常多的蛋白质结构方面的潜力,包括那些以前没有被解决的蛋白质。罗杰• 科恩伯格: "而如果预测的数量足够多,那么AlphaFold对生命科学,尤其是生物学的影响是深远的。"
  • “节能王”-Electrothermal 的平行反应工作站助您节能90%
    英国BIBBY旗下子品牌 Electrothermal, 推出的平行反应工作站系列,在全球掀起了节能的旋风;它们可以为您节约能源成本高达90%,号称“节能王”。Electrothermal 的平行反应设备是全球市场领导者。Electrothermal 于2013年加入英国Bibby Scientific 集团,拥有70多年的加热、制冷和搅拌设备的制造经验,提供电加热套,平行反应设备, 凯氏定氮设备, 组织学和病理学设备,电子本生灯系列,是全球领先的科学仪器提供者。与普通加热磁力器或加热套比起来, Electrothermal 生产的STEM RS, STEM Omni 及STEM Intergrity 系列平行反应工作站,可以节能高达90%, 为用户每年节约上万英镑。 也就是说,传统的加热,制冷或搅拌系统如果消耗电950W; 而这些有平行合成装置的“盒式实验室”,仅需要耗电300W,非常经济和有效率。Electrothermal 的平行反应工作站系列,从-30°C to 300°C 都可实现对冷却/加热搅拌的精确控制。平行反应数量之多,从6件到50件容器都可同行进行反应;实验人员只需一人,解放了其它人员以从事其它实验工作。这样就大大增加了实验室的灵活性与高效性, 也就相当于节约了金钱与时间。 Electrothermal 的英国总经理Peter Day 先生说:“我们的反应工作站是极其节能的, 耗电300W,是普通磁力搅拌器的1/3。工作站的所有型号都性能优越,操作成本低,三年内可正常使用无故障。它不仅仅为您节约了宝贵的时间,同时也协助您提升了生产率,优化了流程管理;工作站的更高效节能,说明了我们提供的是更绿色的实现室环保设备。”Electrothermal 共有13种带平行反应装置的工作站;优化的实验流程条件,有利于更快发现新成份。另外STEM Integrity 可与机器人自动平台联合使用,被广泛用于生产控制工作室。Electrothermal' s Reaction Stations help cut energy costs by up to 90%Compared with the routine use of hotplate stirrers or heating mantles , Electrothermal' s STEM RS, STEM Omni and STEM Integrity Reaction Stations can reduce energy costs by as much as 90%, potentially saving thousands of pounds each year. Equipped for parallel synthesis, these "lab-in-a-box" alternatives to traditional heating, cooling and stirring systems consume as little as 300W, making them energy-efficient and inexpensive to run. In comparison, hotplate stirrers generally consume between 550W and 950W.The STEM RS, STEM Omni and STEM Integrity ranges increase laboratory throughput by providing precise control of heating, cooling and stirring, from minus 30°C to 300°C. They can accommodate between 6 and 50 vessels simultaneously and will run unsupervised, freeing laboratory personnel for other tasks, thereby supporting laboratory flexibility and efficiency, as well as saving time and money.Peter Day, General Manager for Electrothermal said, "Our reaction stations are extremely energy-efficient, consuming as little as 300W compared with hotplate stirrers which can use three times as much electricity to run just one reaction. All models offer excellent performance and the opportunity to reduce running costs means that they can pay for themselves within 1-3 years. Not only do they save valuable time, increase productivity and improve workflow management, their energy-efficiency credentials mean we are creating a greener laboratory environment by running equipment more effectively and saving energy".With a total of 13 reaction stations in the range, the STEM RS and STEM Omni products are equipped for the parallel synthesis that is used to speed up the discovery of new compounds and screen for optimal process conditions. Additionally, the STEM Integrity range can be incorporated into robotic platforms so is more widely used for process control studies. 关于语特 和 英国Bibby / 德国ART / 德国CAT ( http://bibbyyt.instrument.com.cn. 电话/传真: 020 2802 3589 电邮: GZ_YT8@163.com) 广州语特仪器科技有限公司专注于搅拌器/分散乳化机等实验室样品制备等通用仪器, 熔点仪/光度计等分析仪器,以及PCR等生命科学仪器。 作为英国比比(Bibby )在中国南方的首代,广东,广西,四川,重庆,云南,海南,贵州和西藏是我司的服务范围。语特公司也是德国ART, 德国CAT 在中国的首代。英国BIBBY 成立于上个世纪50年代,作为英国最大的实验室科学仪器仪器生产商,世界上拥有最广泛产品系列的实验室仪器制造商之一, 其向全球提供的品牌产品以高品质和高操作性能而著称. 旗下有4个子品牌:Stuart,Techne,Jenway,Electrothermal.l Stuart: 专注于样品前处理等通用实验室仪器,包括: 熔点仪, 菌落计数器, 搅拌器, 混匀器,摇床, 纯水蒸馏器系列;l Techne: 专注于分子生物学研究设备(基因扩增仪和杂交箱), 以及温度控制产品系列(包括水浴和干浴) ;l Jenway: 是紫外/分光光度计, 火焰光度计,色度计等分析仪器的专家;l Electrothermal: 作为有70多年历史的BIBBY的新成员,全球领先的科学仪器提供者,提供电加热套,平行反应设备, 凯氏定氮设备, 电子本生灯系列。其平行反应设备是全球市场领导者。 德国ART 成立于上个世纪,是德国乃至全球最专业的分散乳化专家。 其顶级分散乳化产品从实验室仪器,中试产品到工业设备, 分散头种类极多,可满足客户各类需求;应用领域覆盖了化工,化妆品,制药,食品,环保等各大领域。德国CAT 成立于上个世纪50年代,是德国样品制备仪器方面的专家之一。其搅拌器,从手持式,教学用,到科研通用型,高粘度型,应有尽有,是CAT的代表产品线; 而今又由普通电子马达走向无刷马达, 引领着搅拌器的研发潮流。
  • 47台实验室常用设备入围2020年第四季度科学仪器优秀新品
    仪器信息网讯“科学仪器优秀新产品”评选活动2020年度第四季度入围奖评审已经结束,经专业编辑团初审、网络评审团初评,现已确定2020年度第四季度的入围奖名单。“科学仪器优秀新产品” 评选活动2020年度第四季度入围名单中实验室常用设备共47台。入围名单如下(排名不分先后): Hamilton自动化移液工作站 Microlab PREPMicrolab PREP查看HAMILTON - 瑞士哈美顿博纳图斯股份公司上海代表处EDWARDS涡轮分子泵nEXT 730 & 930nEXT 730 & 930查看埃地沃兹贸易(上海)有限公司德国IKA 冷却循环水浴RC 2 green controlRC 2 green control查看艾卡(广州)仪器设备有限公司(IKA 中国)美国Amerlab 全自动真空赶酸仪 AE100AE100查看艾默莱科技有限公司美国Amerlab 酸蒸逆流微波超级清洗器AC400 全自动版AC400 full-automatic查看艾默莱科技有限公司奥豪斯Guardian7000加热磁力搅拌器Guardian7000查看奥豪斯国际贸易(上海)有限公司PLR-PTSRⅡ 光热催化反应仪PLR-PTSRⅡ查看北京泊菲莱科技有限公司美国Savillex 酸蒸汽清洗系统VC Ultra查看北京诚驿恒仪科技有限公司全自动平行研磨仪HM600Auto-HM600查看北京格瑞德曼仪器设备有限公司GPC 1000全自动凝胶净化系统GPC 1000查看北京莱伯泰科仪器股份有限公司莱伯泰科-REVO-微波消解萃取系统REVO查看北京莱伯泰科仪器股份有限公司WIGGENS WH200加热磁力搅拌器WH200查看北京桑翌实验仪器研究所SOCOREX 826可调微量移液器 826查看北京桑翌实验仪器研究所WIGGENS C410 防腐蚀隔膜真空泵C410查看北京桑翌实验仪器研究所XH-300PE型 Magicube 高压超声波微波协同组合工作站XH-300PE查看北京祥鹄科技发展有限公司真空干燥箱BINDER VDL 56VDL 56查看宾德环境试验设备(上海)有限公司NANA纳纳 微纳金属3D打印设备 NANA P010A NANA 纳纳 P010A查看橙河微系统科技(上海)有限公司DLAB 大龙 RE200-Pro 20L 数控旋转蒸发仪RE200-Pro查看大龙兴创实验仪器(北京)股份公司德国Retsch(莱驰)高能振荡撞击式球磨仪MM500 varioMM500 Vario查看弗尔德(上海)仪器设备有限公司Huber Chili“小辣椒”加热循环器1028.0021.01查看富博(广州)仪器设备有限公司(huber中国)水浴全自动氮吹浓缩仪JTDN-12SDN-12S查看杭州聚同电子有限公司 新一代真空离心浓缩系统ZLS-4ZLS-4查看湖南赫西仪器装备有限公司小型自动加液器(带罩)加拿大欧罗拉 VERSA 10VERSA 10查看加拿大欧罗拉生物科技有限公司德国KNF实验室抗化学腐蚀隔膜真空泵 N 840 GN 840 G查看凯恩孚科技(上海)有限公司梅特勒-托利多 EasyMax 102 LT/ULT 全自动合成反应器EasyMax 102 LT/ULT查看梅特勒-托利多中国SmartCheck移液器验证仪30564095查看梅特勒-托利多中国QuickFlow Lite 真空吸液系统30551512查看梅特勒-托利多中国美国标乐 Buehler | SimpliVac 真空镶嵌机SimpliVac查看美国标乐中科通仪TY-100-06多通道 核酸提取配套试剂分装工作站TY-100-06查看南京中科通仪科技有限公司LNI HG Pro 氢气发生器HG Pro查看普敦实验室设备(上海)有限公司(原镤镦)PURETON系列-PN151PPN151P查看普敦实验室设备(上海)有限公司(原镤镦)VACUUPURE 10C10C查看普兰德(上海)贸易有限公司BRAND新一代手动移液器Transferpette STransferpette S查看普兰德(上海)贸易有限公司睿科 Vitae ELISA全自动酶免体系构建系统Vitae ELISA查看睿科集团股份有限公司CIF紫外臭氧清洗机UVO9查看赛福国际集团有限公司上海百典旋涡振荡器HD-2500混匀仪HD-2500查看上海百典仪器设备有限公司上海达洛HJ911-8P多通道超声波萃取仪/超声波提取机HJ911-8P查看上海达洛科学仪器有限公司TELSTAR 泰事达 LYO QUEST 实验室冻干机 -85LYO QUEST -85查看上海昊扩科学器材有限公司中央纯水系统Super-GenieSuper-Genie查看上海乐枫生物科技有限公司上海全浦QPA-5LP空气发生器QPA-5LP查看上海全浦科学仪器有限公司鑫蓝海+1通道电动旋盖器+XG100XG100查看上海鑫蓝海自动化科技有限公司平行真空蒸发仪HPE-6KHPE-6K查看天津市恒奥科技发展有限公司泰斯特 电热鼓风干燥箱DGF 大型工业干燥箱DGF-5AB ....查看天津市泰斯特仪器有限公司Andrew AllianceAndrew Alliance查看沃特世科技(上海)有限公司(Waters)VELP 多点位MUTI-HS加热磁力搅拌器MUTI-HS 6/15查看意大利VELP公司Chemtron Strike 20 大型旋转蒸发仪Strike 20查看优莱博技术(北京)有限公司ChemTron N2 TOWER Plus 氮气发生器 N2 TOWER Plus查看优莱博技术(北京)有限公司  需要特别指出的是,本次入围评选仅限于2020年第四季度申报的仪器范围。有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,非独家代理的代理商提供的优秀国外新品也不能入选。由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。  该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2020年上市的仪器新品,请您于2021年2月24日前向“科学仪器优秀新品”评审委员会举报和反映情况,一经核实,将取消其入围资格。  “科学仪器优秀新品”评选活动对所有参与评选的仪器厂商全程免费。企业申报后,符合新品定义的仪器将历经四个阶段的评审:初审、“季度入围奖”评审、年度“提名奖”评审、年度“优秀新品奖”评审。“科学仪器优秀新品”评选活动建立了长期、稳定、高水平的四级评审体系:“专业编辑团”、“网络评审团”、“技术评审委员会”、“技术评审委员会主席团”。“技术评审委员会主席团”承担各个阶段评审工作的监督、检查工作,对“季度入围奖”名录、年度“提名奖”名录、年度“优秀新品奖”名录拥有最终裁决权。专业编辑之外的评审专家分别来自高校、研究所和企业,从事仪器研制、制造和应用相关工作,其中具有研究员、教授等高级职称的专家所占比例超过了90%。更多内容请点击详情查看。  “科学仪器优秀新品”评审委员会联系方式:  电话:010-51654077-8027 刘女士  传真:010-82051730  电子信箱:xinpin@instrument.com.cn
  • 葛瑛团队成果|通过平行代谢物提取和高分辨率质谱对人体心脏组织进行全面的代谢组学分析
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  心脏收缩需要持续的能量供应。作为一种“代谢杂食动物”,心脏利用多种代谢底物,如脂肪酸、碳水化合物、脂质和氨基酸等,来满足其高能量需求。然而,由于代谢物在极性尺度上具有广泛的覆盖范围,这使得它的提取和检测变得困难。因此,迫切需要对心脏的代谢产物进行全面的组学分析。本研究结合了平行代谢物提取和互补高分辨质谱检测的方法,对人类心脏进行了系统性代谢学分析。作者首先用六种提取方法获得了健康供体心脏组织的代谢物,包括三种单相提取,两次双相提取和一次三相提取,可以充分覆盖不同极性范围的代谢物。其中,单相的提取溶剂分别是100% 甲醇、80% MeOH 和乙腈/异丙醇/水(3:3:2),双相使用了Matyash和Bligh & Dyer法去萃取极性和非极性相,而三相则是进一步将非极性相分离成极性和中性脂质相,极性物质依然保留在水相中。紧接着,作者使用了两种互补的质谱平台进行代谢物检测:超高分辨傅里叶变换离子回旋共振质谱的直接进样(DI-FTICR)和高分辨率液相色谱四极杆飞行时间串联质谱(LC-Q-TOF-MS/MS)。总的实验流程如图1所示。这里总共鉴定到了1340种心脏代谢物,它们具有广泛的极性范围。本工作强调了平行提取和互补质谱检测技术在人类心脏代谢组研究中的重要性,其可作为帮助选择适当的提取和MS方法以研究特定类别代谢物的指南。    图1. 平行代谢物提取和高分辨率质谱检测的实验流程图。  为了捕获不同极性的代谢物,作者使用了六种提取方法获得了心脏组织的代谢物。单相法具有操作简便和通量较高的特点,但提取效率仍待提高。相对于单相法,多相提取可以覆盖更广泛极性范围的代谢物,但也需要注意一些代谢物可能在多相中分布,这会给检测和定量带来困难。比如,脂肪酰基链较短的酰基肉碱主要在极性相中存在,而较长链(C10)的酰基肉碱主要在非极性相中存在。DI-FTICR评估了六种提取方法的重现性,结果发现乙腈/异丙醇/水(3:3:2)在单相法中的重现性最好,两种双相法的重现性类似,但低相的Pearson相关性较低,说明了代谢物在跨相运动中有一定潜在困难。研究也发现不同提取方法均具有各自的提取特征,尤其在三相法中可以观察到更多的特征,它在极性相、极性脂质相和非极性脂质相中分别观察到了2275、541 和 443 个独特的SmartFormula注释。图2展示了六种方法通过DI-FTICR得到的代谢物SmartFormula注释,其中最大的三个交叉区域分别是六种方法共享、三相法特有和乙腈/异丙醇/水(3:3:2)特有的,分别有1287个、1010和703个,且发现多相提取的重叠度会更高。虽然在三相提取中可以获得更多的代谢特征,但该方法的重现性也最低。故对于发现代谢组学实验,Matyash提取法会更具优势,因为它可以鉴定到较多的已知代谢物,且重现性会更好。图2. 六种提取方法间代谢物SmartFormula注释的重叠情况(DI-FTICR)。  借助DI-FTICR平台,总共鉴定到9644个代谢特征,其中可以7156和1107个可以分配到SmartFormula注释和准确质量数。DI-FTICR在代谢物检测和鉴定方面具有强大优势,它可以给出准确的同位素分布,如图3B~3D所示。但需要注意的是,由于缺乏前端色谱分离,DI-FTICR对于异构体的分离检测能力有限,以及缺乏高通量的MS/MS分析。因此,作者利用LC-Q-TOF-MS/MS补齐了DI-FTICR检测平台的缺点。在LC-Q-TOF-MS/MS分析中,总共鉴定到21428个代谢特征,其中285个可通过比对二级谱图数据库来匹配确定。图4是鉴定到的代谢物和脂质。尽管与图3B~3C的酰基链组成相同,但在图4B~4C中可以通过观察酰基链的碎裂谱图得到脂质的酰基链信息。这说明LC-Q-TOF-MS/MS平台在获取更详细的酰基链信息方面的优势,但对于双键定位以及 sn1 和 sn2 定位等信息,还需要额外的实验去确定(如:衍生化和离子淌度)。此外,仪器参数设置也会影响到二级匹配评分。总的来说,相对单一的质谱检测平台,使用DI-FTICR MS和LC-Q-TOF-MS/MS平台可以增加心脏代谢组的覆盖范围。图3.使用LC-Q-TOF-MS/MS鉴定代谢物。(A)代表性的MS 谱图(100% MeOH),标注了SmartFormula注释和准确质量数,叠加实验质谱图(黑色)与理论质谱图(红色)以比较同位素分布 (C~D)FAHFA(40:5)、DG(32:0)和N-palmitoyl glutamic acid。图4.使用LC-Q-TOF-MS/MS鉴定代谢物,比较实验串联质谱图(黑色)与数据库质谱图(红色)。(A~D)N-acetyl-β-glucosaminylamine、DG(16:0_16:0)、FAHFA(18:1_22:4)和TG(18:1_18:1_18:2)。  使用多种提取和检测方法,本研究总共鉴定到了1340种心脏代谢物。每种提取方法都贡献了唯一检测到的代谢物。相较于提取效果最好的单一方法,平行提取可以检测到额外的350种代谢物。单相法可以鉴定到更多与二级谱图相匹配的代谢物,而多相法可以得到更多具有准确质量数的代谢物(图5A)。如图5B所示,三相法富集到的代谢物种类最多,包含甘油磷酸乙醇胺(PE)、脂肪酸和偶联物、三酰基甘油、脂肪酸酯和其他代谢物。此外,Matyash法可以鉴定到更多的氨基酸、甘油磷酸甘油和甘油磷酸丝氨酸,B&D法可以鉴定到更多的甘油磷酸胆碱(PC)、和磷磷脂,而100% MeOH鉴定最多的则是甘油磷酸盐。图5.已鉴定的人类心脏代谢物汇总。(A)各种提取方法中的准确质量注释、MS/MS注释和唯一检测到的代谢物 (B)各种提取方法中前10的代谢物种类。  最后,作者进一步表征了所有代谢物的化合物分类和通路富集,如图6所示。实验观察到很多代谢物归属于脂质和类脂分子,其中主要是PC、PE和脂肪酸,而非脂质化合物主要是有机酸及其衍生物(图6A)。通路分析也检测到了与心脏代谢过程相关的重要通路,包括嘌呤代谢和甘油磷脂代谢,如图6B所示。这里以嘌呤代谢(与多种心脏病变相关)为例,展示了平行提取在提高代谢物覆盖率方面的优势。在嘌呤代谢过程中,只有IDP仅在单一提取方法中观察到,而许多代谢物均在所有六种提取方法中都被检测到(图6C)。值得注意的是,B&D提取法在该过程中观察到了最多的代谢物,而100% MeOH富集的最少。上述结果为选择适当的用于分析人类心脏代谢物的提取方法提供了重要见解。图6.已鉴定的人类心脏代谢物的化合物分类和通路富集。(A)化合物分类 (B)所有已鉴定代谢物的通路分析汇总,每个圆圈的颜色和大小分别基于p值和通路影响值(红色表示影响大,黄色则相反) (C)嘌呤代谢过程,颜色表示鉴定代谢物的提取方法。  总的来说,本研究利用六种平行代谢物提取的方法和两种基于质谱检测平台,对人类心脏进行了全面的代谢组学分析,总共鉴定到1340种心脏代谢物,这代表了迄今为止对人类心脏代谢组学的最深度覆盖。研究发现三相法最适合脂质的提取,它获得的极性代谢物的数量与Matyash法相似,但其实验重现性也最低。因此,提取方法的选择应当取决于感兴趣的待分析物。但对于非靶向研究,作者建议使用Matyash提取法,以实现代谢组覆盖率和重现性的最佳平衡。尽管本研究目前还存在一定的局限性,比如,平行提取样品量较大和分析时间较长,但其为选择适当的提取和质谱检测平台去分析不同类型的心脏代谢物提供了宝贵经验,有助于人类心脏代谢组学的全面分析。  撰稿:陈昌明编辑:李惠琳文章引用:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry
  • 瑞士BUCHI平行蒸发仪半价促销
    瑞士BUCHI公司Syncore多样品平行蒸发仪半价促销,现价8万。 Syncore® 有三套不同模块,适用于多样品处理的所有方面。其设计理念可使一套系统同时实现平行蒸发 (Polyvap),平行定量浓缩(Analyst) 或平行反应(Reactor)的功能。因此,它的应用领域包括多样品的 快速平行蒸发、平稳的定量浓缩、及平行合成反应。 蒸发至干燥:Polyvap Polyvap是一个独特的平行蒸发器,它具有以下特点:快速、安全、环保、自动、单个样品体积范围为 0.5至500 ml 定量浓缩到残留体积:Analyst 化学分析经常需要将大体积的样品浓缩至较小的残留体积。Analyst 通过局部冷却的带尾管的试管来完 成此任务。温和平稳的浓缩过程能保证高样品回收率。 平行合成: Reactor Reactor 为平行反应和组合化学提供了高效率和极大的灵活性。使用可选附件可以优化合成及其后序处 理的工作流程,从而节省大量时间。 Büchi Syncore® Line –模块化的多样品蒸发系统 平台: 平台是Syncore® 配置的核心部件。它提供震荡、加热(150° C)和冷却(–20° C)(使用选配的冷却 板)等基本功能。平台最高转速可达 600 rpm,使得样品管内的样品做剧烈的的漩涡运动,因而可防止 在蒸发时发生暴沸。可按时间段设定温度曲线,或手动进行温度控制。 平行蒸发:Syncore® Polyvap ●平行蒸发 4、6、12、24、48 和 96 个样品,单个样品体积从 500ml 到 0.5ml。 ●每个样品架都带有PFA 涂层铝盖,并带有单独的真空连接。 平行浓缩:Syncore® Analyst ●平行定量浓缩4、6和 12 位样品。 ●回流模块(6 和 12 位样品模块)可显著提高回收率。 平行合成:Syncore® Reactor ●使用回流模块(24、48 和 96 位样品架)可进行高效回流。 ●通过惰性气体模块,可使反应在惰性环境下进行,24 和 48 位样品架模式还可实现手动添加试剂和取 样。与真空盖结合使用时,可在合成后迅速浓缩干燥反应产物。 ●使用过滤单元(24 样品架模块)可进行平行过滤、清洗、溶剂分配、及惰性条件下的液-液萃取。 常见附件 ■循环水冷却器:使用循环冷却系统B-740/14或Multi Stat 40,可使冷凝器、冷却板、冷却接收烧瓶、 回流模块等获得最佳冷却效果。 ■低温隔热附件:低温隔热附件可防止低温反应时平台发生积水或结冰现象。 ■高温隔热附件:通过合适的高温隔热套件来提高蒸发过程的效率。 ■冷凝器:通过冷凝水或干冰冷凝器冷凝回收溶剂。 ■节省大量时间:使用冷却接收瓶,最多可将蒸发时间缩短 30%。适合对混合溶剂进行蒸发,确保蒸发 过程不会中断。 ■应用:大量平行合成与样品制备中的应用文献 ■真空控制器:可编程真空控制器 V-855 可轻松处理复杂的混合溶剂,并可进行自动蒸馏。 ■真空泵:真空泵 V-700/V-710是为V-855和Syncore® 量身定制的真空系统。
  • 世界电镜九十年之荷兰电子显微镜早期发展历史(上)
    本文作者:Woutera van Iterson,荷兰阿姆斯特丹大学阿姆斯特丹生物中心、分子生物学研究所、分子细胞学部,摘译原文发布于1996年。一、荷兰电子显微镜的起源1939年,代尔夫特只是一个有着著名历史的小镇。1584年,被称作“荷兰国父”的沉默者威廉正是在这里被暗杀。而在代尔夫特的Nieuwe Kerk依旧可以找到奥兰治王室成员的墓穴。微生物学的创始人Antoni van Leeuwenhoek也在代尔夫特通过自制的玻璃透镜研究他的“小动物”。如果不是因为代尔夫特理工大学以及它的创新产业,代尔夫特在二战前留给人们的总体印象只是一座古老的城镇。在这本回忆录中,代尔夫特产业中一个特别的部分,即荷兰的精神象征法布里克(简称“酵母工厂”)扮演了一个重要的角色。首先,在代尔夫特理工大学的技术环境中,酵母工厂为国家最重要的微生物研究传统的发展做出了巨大贡献。1885年,酵母工厂的总经理J.C.van Marken邀请M.J.Beyerinck加入工厂。Beyerinck于1895年成为微生物学教授,并被称为微生物学之父。1921年,A.J.Kluyver(微生物学家之父)接替了Beyerinck的工作。Kluyver将他的教授任期与酵母厂的咨询工作结合了起来。这些是如何与电子显微镜联系起来的?答案就是酵母细胞。1939年夏天,代尔夫特理工大学有一名工科学生,名叫Jan B. Le Poole。Jan B. Le Poole(图1)向他的物理学教授H.B.Dorgelo提出了一个大胆的请求,即为他自己的工程专业制造一台电子显微镜。因缘际会之下,这时的时机恰好成熟。图1 J. B. Le Poole博士,荷兰电子显微镜的创始人,荷兰电子显微镜学会的首任会长彼时,Dorgelo、F.G.Waller(酵母工厂总经理)和A.J.Kluyver于1939年7月6日访问完柏林的西门子公司刚刚返回。而Kluyver很熟悉最近出版的微生物照片和电子显微镜提供的相对高放大倍数的照片。问题是,是否有可能用这样一种仪器来确定酵母细胞是否配备了一个带有染色体的真正的浓缩细胞核,或者它是否类似于细菌,是否可以在核物质和细胞质之间作出明确的区分?考虑到这个问题的实际意义,Waller、Kluyver与Dorgelo讨论后,此三人决定前往透射电子显微镜及其理论背景的圣地:战前的德国。早在1939年,西门子就根据von Borries和Ruska的设计,成功售出了第一台商业化的电子显微镜。它的放大倍数高达4万倍,分辨率比光学显微镜高得多,其价格约为80000荷兰盾(笔者注:按2022年5月汇率1荷兰盾约合3.37元人民币)。然而,该电镜与其提供的可能效果有一定出入。此外,在柏林,他们确实在电镜“高”放大率下观察到了酵母细胞,但那不过是一个“丑陋”的黑点,而在光学显微镜下,一个整齐的生物体,在细胞壁内具有原生质、液泡和各种其他结构,只有细胞核是暗黑的。一般说来,当时这种生物研究工具是否有用颇具争议。在整个细胞都聚焦的情况下,人们能否分辨出重要的细节?此外,电子一直被认为是粒子,直到1924年,人们通过德布罗意的工作才意识到,电子也会像波一样传播。然而,这并没有改变这样一个事实,即微粒肯定会轰击,继而破坏有机材料。最重要的是,生命的本质在于细胞中高百分比的水,而细胞在仪器的真空条件下会发生脱水。当电子显微镜的发明变得更广为人知时,在某些生物学圈内能听到这样的说法:“电子显微镜只是收集了一些人工制品。”毕竟,瑞士的Frey Wyssling和其他人已经用间接方法充分分析了细胞的总体结构。关于生物膜的结构性质,重要的论文也几乎达到了分子水平。电子显微镜真的能给20世纪30年代这一重要的知识宝库增添什么吗?这些反对意见促成了代尔夫特理工大学未来年轻科学家的冒险,也成就了他们的幸运。鉴于所有不确定性,年轻的Jan Le Poole渴望成为一名先锋,后来证明他很幸运。Jan Le Poole建立了一台两级电子显微镜,1941年可以拍摄第一张电子显微照片。然而,40k V的加速电压被证明是非常局限的。因此,Jan Le Poole决定与飞利浦物理实验室合作建造一台150k V电子显微镜。在埃因霍温的飞利浦,A.C.van Dorsten开发了一个非常稳定的150k V的部件,同时Le Poole在H.J.de Heer的协助下正在代尔夫特研究电子光学系统。在1944年春天的代尔夫特,全新的150k V电子显微镜被研制成功。二、荷兰电子显微镜的早期组织人们很快认识到,开发电子显微镜并研究其在生物学和其他学科中的应用需要成立一个组织和专项资金。1941年,TPD(Technisch Physische Dienst)由应用科学研究组织(TNO)和代尔夫特大学合作成立。1943年11月1日,一个专门的电子显微镜研究所作成立,隶属于TPD,不过其预算独立。该研究所得到了代尔夫特酵母工厂、飞利浦、Van Houten、Algemene Kunstzijde Unie(AKZO)、喜力啤酒厂和TPD等工业的资助。后来,荷兰联合利华和荷兰皇家壳牌公司也提供了每年不少于3000荷兰盾的资助。该研究所由一个咨询委员会监督,技术和日常管理由Le Poole负责,而Dorgelo和Kluyver负责科学监督。三、代尔夫特的电镜我们来自Le Poole的小组,在荷兰从战争的苦难中解放出来之前,我们只能孤立地工作,因此几乎没有意识到电镜的设计包含了许多令人兴奋的创新。其中一项创新是在40倍放大的物镜和160倍放大的投影镜头之间增加了两个镜头。其中一个额外的镜头有一个小孔,可以使放大倍数在6400倍到80,000倍间连续变化。放大到6400倍时,电流通过所谓的衍射透镜(另一个更大孔径)。使用该衍射透镜,可以从小至3μm的样品选定区域获得衍射图案。并可以在电子图像和电子衍射间来回切换,这在代尔夫特已被发现可以用于粘土矿物的测定。选区衍射的原理先前已被H.Boersch发现,但当时Le Poole还不知道。引入中间透镜的另一个优点是电镜镜筒的高度减小,从样品到最终图像的总距离达到60cm。此外,LePoole引入了一种特殊的对焦装置,尤其在高倍率下,当荧光屏上的强度较低时,可进行精确聚焦。入射电子束通过聚光镜和样品中两组平行板间的横向电场,以50Hz的频率振动。当物镜没有完全聚焦时,这种振动会使图像模糊。这有助于聚焦,并大大提高了代尔夫特研究所拍摄电镜照片的质量。从那以后,这种“摇摆”的磁型版本成为飞利浦所有透射电镜的特征。早期电镜中的图像场非常大(直径18cm),并投射到锥形烧瓶的底部,并转至荧光屏(图2)。通过在屏幕上方束流横截面足够小的位置引入35毫米胶片,可以在随后的照片放大中覆盖整个图像。发射电压在50-120kV之间变化,对于生物样品,电压越高,电子束的穿透力往往越强。图2. 150 kV电子显微镜,像场投射到沉积在锥形玻璃烧瓶底部的荧光材料上代尔夫特还研制了静电电子显微镜,该电镜于1951年由W.A.leRutte完成,在固定放大倍数下具有8nm的分辨率。1952年,Le Rutte发表了一篇关于他对静电电子光学贡献的论文,但由于当时电磁式电子显微镜的技术优势,这项工作被迫中断。另一个有趣的发展始于1943年中期。早在1942年,由于酵母细胞体积过大,Le Poole就提议建造一个发射电压1 MeV的电镜,以提高电子对样品的穿透力。建造这种电镜,必须克服种种问题,因此最终决定在飞利浦研究实验室建造400 kV的显微镜。Le Poole设计了这个电镜的电子透镜系统,而飞利浦的Van Dorsten负责设计高压设备,Oosterkamp负责发射枪,Verhoeff负责装配。1947年,这台电镜安装在代尔夫特研究所。四.代尔夫特电镜的早期工作不仅是电子显微镜的研究,代尔夫特对于电镜应用的开展也比较早。在准备研制基础型150 kV电子显微镜的这些年里,旧的两级型电镜在用于检验Le Poole的新想法的同时,还用于科学研究。在这项工作的成功,很大程度上归功于Harrie de Heer引进了出色的拍摄技术。生物学家A.Quispel于1942年10月开始在A.J.Kluyver教授的带领下担任研究助理。他做的第一件事是在单孔样本架上准备足够的“Geisselthallack”支撑膜。Quispel的任务是研究该电镜在生物学研究中的作用,尤其是研究酵母核中的染色体。为了做到这一点,Quispel开发了一种“染色”酵母核的方法,即与其他细胞相比提高对比度。这种选择性染色需要重金属,因此,他改变了Feulgen的方法,使用银及镧盐。然而,酵母没有揭示其染色体核的秘密,染色体核仍然处于漆黑一片的状态。Quispel接着尝试用蛋白水解酶使细胞质对电子束更透明。1943年9月,Quispel离开代尔夫特时,这项工作移交给了我,最初也得到了J. M. van Brakel的协助。然而,事实证明,对太大的酵母细胞进行研究还为时过早。当时我们深受战争的压迫,但我们年轻,对这项工作充满热情。我们急切地研究了酵母细胞、噬细胞菌、疗养院医生用的结核菌、各种其他细菌以及土壤样品中的粘土矿物、颜料、金属和在35mm胶片上拍摄的各种其他物品。五、战争快结束时的情况1944年,150 kV电子显微镜及其所有改进装置投入使用,但仅使用了几个星期。随着1944—1945年饥荒的来临,国家的形势变得非常危急。盟军已经解放了荷兰的南部,但是盟军在大河附近被拦截。在那个冬天,在河流以北的我们食物配给量减少到每周800卡路里。大家在解决温饱与绝望中挣扎。没有电,客运列车也没有运行,我们只有木制轮胎的自行车用于运输。为了保全电镜的透镜等核心部件,大家不得不做好随时拆除电镜的准备。值得一提的是,飞利浦电镜高压发电机中的冷却油无意间为大家解决了一些生存难题,这些冷却油被分配给研究所的工人作为燃料,大家在家里用它来照明等。我们也积极参与地下活动,试图抵抗危险的压迫环境。曾经,德军试图逮捕所有18至40岁的男性在德国从事强迫劳动,大家不得不躲起来试图逃避。六.解放以后在加拿大军队解放的动乱平息下来之后,代尔夫特电镜被重新组装起来。但此时,自己也开始怀疑,在与世隔绝的环境下使用代尔夫特电镜开展相关研究,是否对促进电子显微学的发展具有意义。来自盟军国家参观者的反应给我们的印象是, Le Poole电镜或将是一种意义重大的仪器设备,但我们不能依赖这种仅有的“大家的印象”,何况,在埃因霍温的飞利浦根本不准备开始在商业基础上生产电子显微镜,因为该公司主要对销售数千台以上的产品感兴趣。有没有办法提高同事们的希望?答案是有的。首先,我写了一篇关于美国在电子显微镜领域活动的综述。之所以能够做到这一点,是因为1944年9月荷兰南部解放后不久,荷兰国家矿业图书馆(DSM)就有了专门的美国科学期刊。虽然很明显,美国科学家的工作是广泛的和令人印象深刻的,但这篇综述让代尔夫特的物理学家相信,他们的成就并没有白费。此外,我还与我的父亲讨论了他们的担忧。父亲既是一名科学家,也是荷兰国家矿业公司董事会成员,能够理解新仪器的重要性以及飞利浦的工业观点。飞利浦的总裁Anton Philips博士刚刚从英国回来,他在那里度过了战争的岁月。我陪父亲去了埃因霍温,在那里我们在总裁家里吃了午饭。Philips先生仔细地听着,因为他还没有听说过代尔夫特电子显微镜的构造,以及他的公司已经如此密切地参与其中。1946年1月,Jan Le Poole有机会访问英国,并参加了英国电子显微镜集团的一次会议。在那里,他最后的一丝怀疑消失了:代尔夫特电镜确实是一种创新。他在英国遇到了Van Dorsten,他们讨论了对商用飞利浦电子显微镜的要求。1946年1月,飞利浦董事会似乎改变了观点,开始准备推动电子显微镜样机的开发,商业生产电镜有了基础。该电镜在某种程度上可以在X射线设备业务部开发,但样机是在飞利浦物理实验室(后称为飞利浦研究实验室)制造的。后来,一个特殊的电子显微镜部门成为科学和工业下医疗系统集团(一个主要的工业业务集团)的一部分。回想起来,这是早期所有努力的真正结果。1946年,飞利浦公司制造的电镜原样机在牛津的一次大会上展出,虽然当时这台“顽固”的电镜现场未能展示有用的电镜图片,但同样受到了人们的赞赏。(大会结束后,有人发现一个孔盘在运输过程中滑出了立柱,从而阻挡了电子束。)下一步,飞利浦决定建立一系列的四台电子显微镜原型机,其中一部分零件将在莱顿大学 Kamerlingh Onnes实验室的仪器制造商学院进行制造。飞利浦EM100的最终设计于1947年完成。一个独特的早期特征是荧光屏在透射中观察并倾斜到水平方向,如图3所示。在所有随后的飞利浦电镜中,这种结构被放弃,因为垂直柱比倾斜柱在机械上更稳定。图3 飞利浦EM100七、战后时期代尔夫特研究所的工作人员逐渐增加:有4名物理学家、1名生物学家、1名工程师、2名仪器制造师和4名技术人员。从1946年起, Le Poole得到了J. Kramer的协助,J. Kramer在过去的36年中一直是Le Poole的得力助手。1946年,物理学家的首要任务是校正电镜的像散,提高高电压稳定性,以及进一步发展一种更强的物镜,即在不需要进一步稳定透镜电流和高电压的情况下充分降低色差。包括其他工作在内,这项工作为飞利浦简化电子显微镜的设计提供了背景。除了电子显微镜的发展外,仪器的使用也变得越来越重要。后者包括微生物学方面的研究和为研究所以外的客户所做的工作。三台电子显微镜确实不是一件奢侈的事,但当时只有一台,并且为了仪器研制,有时不得不将这台电镜拆开。电子显微镜的质量体现在制备好试样的显微图片的质量上。当时,样品制备技术也正处于开创性的阶段。即使是主要用于生物标本的90kV,这些样品要么太脆弱,缺乏图像对比度,要么像酵母细胞一样太厚。在拍摄来自Lisse花球研究实验室的植物汁液样品时,缺乏对比度尤其令人不安,因为在这些样品中必须识别病毒棒。通常,我拍摄这些病毒时甚至都无法观察它们。在马里兰州贝塞斯达的国立卫生研究院的RalphW.G.Wyckoff博士来访后,我们对阴影投射技术有了很大的了解。这实际上为带有长鞭毛的细菌的电子显微照片(图4)和许多其他样本增加了一个新的维度。1947年,我有幸在贝塞斯达的国立卫生研究院获得奖学金并前往美国工作。那年12月,在费城的EMSA大会上,我提出了一篇题为《代尔夫特电子显微镜在生物学中的一些应用》的论文。在解释了代尔夫特显微镜的原理之后,投影了各种鞭毛细菌的显微照片,随后是为L.Algerica制作的叶绿体显微照片以及为Utrecht大学的L.H.Bretschneider制作的公牛精子显微照片。其中一张精子照片的特殊之处是用一种铁糖复合物喂养细胞,这是Bretschneider早期成功地尝试,目的是提高细胞代谢最活跃部位的对比度。由于我去了美国,A.L.Houwink博士于1947年接替了我在代尔夫特的工作,他继续进行细菌鞭毛和一些原生动物的研究。图4. 梅氏弧菌,视野7微米当时在制备技术方面遇到的问题很大。TNO金属研究所的 J. A. Nieuwenhuis在1944年发展了复制技术,该技术被Dalitz和Schuchmann(1952年)以及Beekhuis和Schuchmann(1952年)发表。1947年,高电压电镜从埃因霍温带到了代尔夫特,巨大的酵母细胞研究仍然令人失望。在高电压下,未经制备的酵母细胞以及真菌孢子,没有揭示重要的细节。此外,在这台高电压电镜样机准备就绪时,对这种仪器的需求已经消退。光束穿透的问题已经被一种新策略的发展所规避:薄片技术。因此,高电压电子显微镜的发展在1950年停止,但在1960年国际上对高电压电子显微镜的兴趣恢复后,以一种新颖的设计重新焕发生机。L.H.Bretschneider(1949年)在Utrecht大学为他在代尔夫特的电子显微镜工作进行了这种薄片技术的实验。他和他的同事P. F. Elbers穿着厚重的外套,在4°C的温度下,用剑桥1890年产的摇式切片机将切片嵌入石蜡和硬蜡混合物中。1954年,这项技术在对蛔虫肠道细胞的研究中得到了进一步发展,其中在剑桥1952年产的显微镜摇式切片机上进行了冷切片。在同一研究所,Elbers构建了一种单通道旋转切片机,配有用于甲基丙烯酸酯嵌入的热扩展装置,并专注于电子染色的使用。不久之后,H.B.Haanstra(1955年)在飞利浦研究实验室成功地制造了一台简单的切片机,并于1958年获得了专利。1949年7月,在代尔夫特举行的国际电子显微镜大会对荷兰所有电子显微镜学家来说都是一个巨大的鼓舞,在大会上,我们有机会展示我们的最佳成果,并与国外的同行结识。八、20世纪50年代初:荷兰涌现更多电镜当飞利浦公司开始商业化交付电子显微镜时,代尔夫特对电子显微镜研究的垄断宣告结束。1949年完成的第一个EM100,被送往哥本哈根的Statens血清研究所进行试验。在荷兰,每所州立大学都有自己的电镜,还有一些特殊的研究所也是如此,如利瑟的花球培养实验室、荷兰皇家贝壳实验室、Sikkens(一家油漆和清漆工厂),当然还有飞利浦研究实验室。当然,正是代尔夫特的工作引起了大学和研究所的兴趣。然而,也有各种各样的失望,由于大多数大学对于电镜进行有序研究的要求还没有准备好,严重低估了电镜使用的实际意义,因此出现了各种令人失望的情况。在格罗宁根大学(University of Groningen),E.H.Wiebenga教授为自己的研究做了充分准备,在美国Cecil Hall为其传授过蛋白质晶体(edestin and exalsin) 的制备;在英国,Wiebenga熟悉蛋白质的X射线衍射技术。1950年11月,他在学校拍摄出了第一张电子显微图片。然而,1951年10月,一名攻读博士学位的学生接手了Wiebenga关于种子球蛋白的工作,发现新安装的电镜无法使用。第一批电镜提供的分辨率约为5nm,不足以完成这类工作,他不得不使用X射线衍射技术。1952年前后,G.Boom对几种晶体材料表面结构的研究和E.F.J.van Bruggen对蛋白质变性的研究得到了新的物镜和更合适的制备技术(如负染法)的支持。这标志着格罗宁根大学在蛋白质结构化学方面卓有成效的研究工作的开始。由于朱莉安娜女王的到访,瓦赫宁根农业大学有幸成为1951年首批安装EM100的学校之一。趁着飞利浦技术人员还在的情况下,非常聪明的女王及时喊道:“我什么都没看到!” 在最初的挫折之后,Christina van der Scheer 的工作在 S. Henstra 的协助下,主要关注病毒颗粒的研究现在的工作人员很少意识到刚开始时遇到的困难。在阿姆斯特丹大学(University of Amsterdam),EM100于1951年1月交付,安装在一个地下室的自行车存放区,天花板低得足以磕头,没有通风。由于我们没有专项基金,电镜胶片必须用我的厨房用具来冲洗。尽管如此,在1953年,我还是在罗马举行的第十届微生物学大会上发表了一篇关于细菌鞭毛的特邀论文。1959年,我获得了科学博士学位,著有专著《不同视角下的Gallionella ferruginea》。早在1952年,在莱顿大学,之前提到的、和仪器制造学院合作制造的四台电子显微镜样机之一(不是Philips EM100)安装在医学院的解剖学大楼。九、回顾过去回想起来,一开始,生物学的主要困难之一似乎是光学显微镜所见与电子显微镜所见之间的差距。这需要很多年的时间来弥补这一差距,而这只有在光学显微镜专家开始使用电子显微镜专家开发的制备程序时才能实现。 此外,长期以来,电子显微镜学家对于他的物理学家朋友和传统生物学家来说,都是个陌生人。在电子显微镜照片上看到的东西在很长一段时间里都是纯描述性的形态学,那时分子解释过于投机。生物化学已经成为将超微结构研究引入分子生物学领域的主要支持之一。第一批商业生产的电镜可能不足以满足所有电子显微镜学家的所有期望,但这也是对以后生产越来越优秀电镜的一种鼓舞。拓展阅读:捷克斯洛伐克电镜发展史系列世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制