当前位置: 仪器信息网 > 行业主题 > >

五温区独立控制管式炉

仪器信息网五温区独立控制管式炉专题为您提供2024年最新五温区独立控制管式炉价格报价、厂家品牌的相关信息, 包括五温区独立控制管式炉参数、型号等,不管是国产,还是进口品牌的五温区独立控制管式炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合五温区独立控制管式炉相关的耗材配件、试剂标物,还有五温区独立控制管式炉相关的最新资讯、资料,以及五温区独立控制管式炉相关的解决方案。

五温区独立控制管式炉相关的论坛

  • CVD和PECVD管式炉真空控制系统的升级改造

    CVD和PECVD管式炉真空控制系统的升级改造

    [color=#ff0000]摘要:本文介绍了根据客户要求对CVD管式炉真空控制系统进行升级改造的过程,分析了客户用CVD管式炉真空控制系统中存在的问题,这些问题在目前国产CVD和PECVD管式炉中普遍存在。本文还详细介绍了改造后的真空压力控制系统的工作原理、结构和相关部件参数等详细内容,改造后的真空压力控制精度得到大幅度提高。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000]一、背景介绍[/color][/size]客户订购了一台CVD管式炉以进行小尺寸材料的制作,CVD管式炉及其结构如图1所示。在使用中客户发现这台管式炉在CVD工艺过程中无法保证材料的质量和重复性,材料性能波动性较大,分析原因是真空压力控制不准确且不稳定。为解决此问题,客户提出对此CVD管式炉的真空控制系统进行升级改造。[align=center][img=CVD和PECVD管式炉真空控制系统,690,370]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281659560038_5783_3384_3.png!w690x370.jpg[/img][/align][align=center]图1 用户购置的CVD管式炉及其结构内容[/align]我们通过分析图1所示CVD管式炉的整体结构,发现造成真空压力控制效果较差的原因,主要是此管式炉的真空控制系统存在以下几方面的严重问题,而这些问题在目前国产CVD和PECVD管式炉中普遍存在。(1)真空计选择不合理:对于绝大多数的CVD和PECVD管式炉,其真空度的控制范围一般都为1Pa~0.1MPa(绝对压力),并要求实现真空度精确控制。而在客户所购置的CVD管式炉(包括其他品牌产品)中,为了节省造价,管式炉厂家配备了皮拉尼计和皮拉尼+电容真空计,但这种组合式电容真空计在10kPa~95kPa范围内的精度只有±5%,0.1Pa~10kPa范围内的精度则变为±15%,比单纯的薄膜电容真空计的全量程±0.25%精度相差太大。合理的选择是使用单纯的薄膜电容真空计,而且须配置2只真空计才能覆盖整个真空度范围的测量和控制。(2)控制方法错误:对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,需要分别采用上游和下游控制模式进行控制才能达到很好的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。客户所采用的CVD管式炉则仅采用了调节进气流量的上游控制模式,势必会造成1kPa~0.1MPa范围内的真空度控制波动性很大,同时造成工作气体的极大浪费。(3)多种比例混合气体控制结构错误:在CVD工艺中,反应气体为按比例配置的多种工作气体混合物。尽管CVD管式炉中采用了4只气体质量流量计来配置工作气体,但质量流量计只能保证气体混合比的准确性而无法对真空度进行准确控制,除非是单一气体则可以通过一个质量流量计来调节进气流量来实现真空度控制。综上所述,客户所购置的CVD管式炉存在一些严重影响真空度控制精度的问题,文本将详细介绍解决这些问题的具体方法和升级改造详细内容。改造后的真空度控制系统可在全量程范围内控制精度优于±1%。[size=18px][color=#ff0000]二、升级改造技术指标[/color][/size]对客户的CVD管式炉的真空控制系统进行升级改造,需要达到的技术指标如下:(1)真空度控制范围:1Pa~0.1MPa(绝对压力)。(2)真空度控制精度:±1%(全量程范围)。(3)控制形式:定点控制和曲线控制。(4)输入形式:编程或手动。(5)PID参数:自整定。[size=18px][color=#ff0000]三、升级改造技术方案[/color][/size]针对客户的4通道进气CVD管式炉,为实现真空控制系统的上述技术指标,所采用的技术方案如图2所示。[align=center][img=CVD和PECVD管式炉真空控制系统,690,360]https://ng1.17img.cn/bbsfiles/images/2022/06/202206281700285160_4408_3384_3.png!w690x360.jpg[/img][/align][align=center]图2 CVD管式炉真空度控制系统结构示意图[/align]如图2所示,升级改造的技术方案主要在以下几方面进行了改动:(1)还保留了皮拉尼真空计以对真空度进行粗略的测量,更主要的是采用皮拉尼计可以覆盖0.001Pa~1Pa的超高真空监控。但在1Pa~0.1MPa真空度范围内,增加了两只薄膜电容真空计分别覆盖1Pa~1kPa和10kPa~0.1MPa,以提高CVD工艺过程中的真空度测量精度。(2)对于1Pa~0.1MPa(绝对压力)范围内的真空度控制,分别采用上游和下游控制模式进行控制以实现更高的控制精度。例如,在1Pa~1kPa范围内采用上游控制模式,即固定真空泵抽速而只调节上游进气流量;在1kPa~0.1MPa范围内采用下游控制模式,即固定上游进气流量而只调节下游的排气流量。(3)对于多种比例混合工作气体的CVD工艺,继续保留4路气体质量流量控制器以实现比例准确的工作气体混合,但精密混合后的气体进入一个缓冲罐。缓冲罐内气体进入CVD管式炉的流量通过一个电动针阀进行调节,由此既能保证工作气体的准确混合比,又能实现上游进气流量的精密调节。(4)为实现下游控制模式,在CVD管式炉的排气口处增加一个电动针阀,此电动针阀的作用是调节排气流量。下游控制模式在CVD工艺中非常重要,这种模式可以保证1kPa~0.1MPa范围内真空度的精确控制。如果在1kPa~0.1MPa范围内采用上游控制模式,一方面是真空度控制波动太大,另一方面是会无效损耗大量工作气体。(5)真空度的控制精度,除了受到真空计测量精度和电动针阀调节精度的影响之外,还会受到PID控制精度的严重制约。为此,技术方案中选用了24位AD和16位DA的高精度PID控制器,且具有定点和可编程控制功能,同时PID参数可进行自整定以便于准确确定控制参数。(6)由于采用了两只高精度的电容真空计测量整个量程范围的真空度,在实际真空度控制过程中,就需要根据不同量程选择对应的电容真空计并进行真空度控制。由此,这就要求PID控制器需要具备两只真空计之间的自动切换功能。(7)在CVD和PECVD管式炉真空度控制系统升级改造方案中,使用了上下游两种控制模式,这就要求PID控制器同时具备正向和反向操作功能,也可以采用2通道可同时工作的PID控制器,一个通道对应一个电动针阀。[size=18px][color=#ff0000]四、总结[/color][/size]针对客户的4通道进气CVD管式炉存在的CVD工艺中真空度控制严重不稳定的问题,分析了造成真空度控制不稳定的主要原因是真空计测量精度不够、控制方法不正确、多种工作气体混合结构不正确。为解决上述问题,本文提出了相应的升级改造技术方案,更换了精度更高的薄膜电容真空计,采用了控制精度更高的上下游控制方法,在多种气体混合管路上增加了缓存罐,并使用了调节和控制精度较高的电动针阀和2通道PID控制器。升级改造后的真空控制系统,可在全量程的真空度范围(1Pa~0.1MPa)内实现±1%的控制精度和稳定性。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电阻管式炉真空控制系统技术升级改造解决方案

    电阻管式炉真空控制系统技术升级改造解决方案

    [align=center][img=高温石英管式炉及其真空控制系统,600,391]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281102414320_6035_3221506_3.jpg!w690x450.jpg[/img][/align][size=16px][color=#990000][b]摘要:针对用户提出的高温石英管加热炉真空度控制系统的升级改造,以及10~100Torr的真空度控制范围,本文在分析现有真空控制系统造成无法准确控制所存在问题的前提下,提出了切实可行的解决方案。解决方案对原有的无PID控制功能的压强自动控制仪和慢速大口径电动蝶阀进行了更换,采用了高精度可编程PID真空压力控制器,采用了口径较小响应速度更快的电动球阀。此解决方案已在多个真空领域得到应用,并可以达到±1%的高精度控制。[/b][/color][/size][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 高温石英管式炉广泛用于陶瓷、冶金、电子、玻璃、化工、机械、耐火材料、新材料开发、特种材料和材等领域。石英管式炉的加热元件一般为NiCrAl电阻丝,并采用双层壳体结构,并带有风冷,使得壳体表面的温度小于70℃。保温材料采用高纯氧化铝纤维,环保节能,可以最大程度的减少热量的损失。为了进行各种气氛环境下的高温反应和研究,并避免高温产出物对加热丝的腐蚀影响,石英管式炉中普遍安装了一根高纯石英管用来作为炉膛,且石英管两端可固定金属密封法兰,从而可在石英管内形成密闭真空环境。[/size][size=16px] 最近有用户提出了对在用的石英管式炉进行技术改造,此卧式高温石英管式炉如图1所示。[/size][align=center][size=16px][color=#990000][b][img=需进行升级改造的高温石英管式炉及其真空控制系统,690,286]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105026257_5413_3221506_3.jpg!w690x286.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 需进行改造的真空石英管式炉及其真空控制系统[/b][/color][/size][/align][size=16px] 用户对现有石英管式炉进行技术改造的内容是要实现管式炉真空度的精密控制,如图1所示,现有的真空度控制系统采用了电容薄膜真空规作为真空度传感器,传感器配套有真空显示仪进行真空度测试值显示并输出信号,压强自动控制仪接收传感器信号,然后驱动电动蝶阀进行开度变化,以实现真空度的自动控制。但此真空度控制系统在调试过程中,完全无法实现真空度的自动控制,这主要是现有真空度控制系统存在以下几方面的问题:[/size][size=16px] (1)现有真空控制系统所采用的压强自动控制仪并不具备PID控制功能,所以有时候会出现某些真空度区间无法准确控制的现象。[/size][size=16px] (2)所采用的电动蝶阀响应速度太慢,而且口径太大,很难对压强自动控制仪输出的控制信号做出快速响应,对如此小内径的石英管腔体很难进行真空度的准确控制。[/size][size=16px] 为了彻底解决现有真空度控制系统存在的上述问题,本文提出了如下技术升级改造方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 首先,按照用户要求,解决方案拟达到的技术指标如下:[/size][size=16px] (1)真空度控制范围:10~100Torr(绝对压力)。[/size][size=16px] (2)真空度控制精度:读数的±%。[/size][size=16px] (3)控制功能:PID自动控制,多个设定点可编程自动控制。[/size][size=16px] 为了实现上述技改指标,本解决方案所设计的高精度真空度控制系统如图2所示。[/size][align=center][size=16px][color=#990000][b][img=改造升级后的真空控制系统结构示意图,690,292]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105266047_8320_3221506_3.jpg!w690x292.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 改造升级后的真空控制系统结构示意图[/b][/color][/size][/align][size=16px] 改造升级后的真空控制系统还是沿用下游控制模式,即对排气流量进行调节,同时还继续使用原有的电容真空计,但在以下几方面做出了改进:[/size][size=16px] (1)真空度测量和控制仪表的改进:解决方案中采用了超高精度VPC2021-1型真空压力控制器,其具有24位AD、16位DA和0.01%最小输出百分比,可直接用来接收电容真空计输出的真空度电压信号并按照真空度单位进行显示,无需再使用原有的真空显示仪。此真空压力控制器是一款超高精度的PID控制器,充分发挥了PID自动控制的强大功能,且PID参数可进行自整定,是实现真空度高精度控制的重要保证。另外,此真空压力控制器具有多个设定点编程控制功能,可按照设定折线和真空度变化速率对石英管内的真空度进行自动程序控制。[/size][size=16px] (2)排气阀门的改进:解决方案中将原有的慢速和大口径电动蝶阀更换为响应速度更快和口径更小的电动球阀,在减小排气调节口径提高阀门开度调节效率的同时,能更快的响应真空压力控制器给出的控制信号,极大减小了控制的滞后性,保证了控制的准确性。[/size][size=16px] 图3给出解决方案中真空度控制系统的接线图。[/size][align=center][size=16px][color=#990000][b][img=真空控制系统接线图,600,191]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281105446783_3371_3221506_3.jpg!w690x220.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 真空度控制系统接线图[/b][/color][/size][/align][size=16px] 解决方案中所配置的VPC2021-1真空压力控制器具有标准MODBUS通讯协议的RS485接口,并配置了计算机软件,可通过在计算机上运行软件完成控制器的参数设置、远程控制操作、控制过程参数和曲线的显示和存储。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 本解决方案将彻底解决了管式炉真空度的高精度控制问题,并具有以下特点:[/size][size=16px] (1)解决方案的下游真空度控制不受上游进气流量大小的影响,在调节的恒定进气流量下,石英管内的真空度可以自动控制在设定值上。[/size][size=16px] (2)本解决方案具有很强的灵活性,目前本解决方案所控制的是10~100Torr真空度范围,如果要进行0.1~10Torr范围的真空度控制,则通过在进气端口增加一个电动针阀,通过恒定排气流量的同时调节针阀开度,则可实现高真空度精密控制。同样,更换更大量程的真空计,还可以在石英管内实现微正压控制。[/size][size=16px] (3)本解决方案具有很强的适用性,在排气端增加真空进样装置,可将石英管加热炉内高温下产生的气体导入到质谱仪或与其他仪器联用进行产物分析。[/size][size=16px] (4)本解决方案中的真空压力控制器是一款通用性PID控制器,除了具有高精度真空压力控制功能之外,更换温度传感器和流量计后也可以用于温度和流量控制。[/size][size=16px][/size][align=center][size=16px][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 面对灰霾,将对重点控制区实施大气污染物特别排放限值

    面对严重的大气污染问题,2月19日环境保护部召开的常务会议上提出了必须采取严格的大气环境管理措施,在重点控制区实施大气污染物特别排放限值,严格控制大气污染物新增量,倒逼产业结构的升级和企业的技术进步,从而推动大气环境质量不断改善。这次纳入特别排放限值的重点控制区涉及19个省(区、市)47个地级及以上城市的火电、钢铁、石化、水泥、有色、化工等六大重污染行业以及燃煤工业锅炉的新建项目,火电、钢铁、石化工业以及燃煤工业锅炉的现有项目。这些地区从2013年3月1日起,新受理的火电、钢铁环评项目将执行大气污染物特别排放限值;石化、化工、有色、水泥行业,以及燃煤工业锅炉等项目待相应的排放标准修订完善并明确特别限值后执行。47个城市的主城区范围内现有项目中的火电行业燃煤机组从2014年7月1日起执行烟尘特别排放限值;钢铁行业烧结(球团)设备机头从2015年1月1日起执行颗粒物特别排放限值;石化行业、燃煤工业锅炉项目待相应的排放标准修订完善并明确特别排放限值后,按照标准设定的现有项目过渡期满后分别执行挥发性有机物、烟尘特别排放限值。

  • 《电子信息产品污染控制管理办法》十问十答

    为了帮助广大电子信息企业和关注电子信息产品污染防治工作的人士学习、理解《电子信息产品污染控制管理办法》,我们尝试就一些大家提出的主要问题进行了解答,仅供参考。 一、问:信息产业部等七部门为什么要制定《管理办法》,制定这样一部部门规章的目的和意义是什么? 答:制定《管理办法》的目的和意义有五个方面:(一)将电子信息产品污染防治作为废旧电子信息产品回收处理再利用工作的基础性工作,体现“污染防治,预防在先”环境保护原则,落实“从源头抓起”的工作思路;(二)将电子信息产品污染防治纳入行业管理,法制化;(三)实现有毒有害物质在电子信息产品中的替代或减量化,保护环境,节约资源;(四)实现电子信息产业结构调整,产品升级换代,确保电子信息产业可持续发展(五)积极应对欧盟两指令。 二、问:《管理办法》的出台对我国电子信息产业将会带来哪些影响? 答:出台《管理办法》意义重大,《管理办法》将会给我国的电子信息产业的发展带来巨大的影响。首先,出台《管理办法》将会促使我们认真思考和调整产业的发展思路,从一个全新的角度去认识、制定产业的发展目标,怎样努力贯彻中央提出的坚持科学发展观、建立节约型社会、以人为本、发展循环经济型的电子信息产业。其次,将会促使我国的电子信息产业能够紧跟当前世界范围内的一场基于资源节约和环境保护的技术革命,促进产业结构的调整、产品升级换代、提升(保持)我国电子信息产业的国际竞争力。第三,过去,我们对于电子信息产业在国民经济与社会信息化中的重要作用看得比较多,我们更多的是看到了电子信息技术在改造传统产业、提供国民经济和社会信息化的过程中的“倍增性”、“渗透性”。现在,电子信息产品中有毒有害物质的控制问题开始提到议事日程了,我们要跟上这个步伐,一定要努力将我们的电子信息产业转变为最环保的、最节约资源的绿色产业。第四,《管理办法》的出台的确会给进入我国市场的所有电子信息企业一个压力,在《管理办法》正式施行后,所有进入中国市场的电子信息产品必须按照《管理办法》的规定,在给予你的过渡期内做到有毒有害物质的替代或减量化。在短期内,《管理办法》的规定将会给企业带来成本增加的压力,但“水涨船高”,由于所有企业的压力是一样的,因此,不会影响企业间的竞争力。从长远看,《管理办法》将使得企业在新一轮的技术革命中得到提高。 三、问:欧盟在2003年2月发布了两个指令,其中之一是RoHS指令,中国的《管理办法》和欧盟RoHS指令有何异同? 答:中国的《管理办法》和欧盟的RoHS指令相同之处有四个方面:(一)都是法律规范性文件;(二)主要目的是为实现电子电器类产品中有毒有害物质的控制(禁止使用和减量化);(三)都涉及贸易活动(货物贸易);(四)限制和禁止使用的有毒有害物质时一样的,都是六种:铅、汞、镉、六价铬、多溴联苯(PBB)、多溴二苯醚(PBDE)。 中国的《管理办法》和欧盟的RoHS指令有六个方面的不同:(一)中国的《管理办法》无需转换低一级的法律规范性文件就可以直接实施;但欧盟的RoHS指令无直接约束力,需要转换成欧盟成员国法律(法规)才可以实施。(二)中国的《管理办法》调整对象为电子信息产品,欧盟的RoHS指令调整对象为交流电不超过1000伏特、直流电不超过1500伏特的电子电器设备;欧盟RoHS指令的调整范围和对象比中国的《管理办法》要更宽、多。(三)中国的《管理办法》对有毒有害物质控制的监督管理采用目录管理模式;目录以“穷举法”方式形成;欧盟的RoHS指令将WEEE指令中的八大类产品全部放入,然后再对其中有毒有害物质控制技术尚不够成熟、经济上不可行产品采用“排除法”予以“豁免”。(四)中国的《管理办法》于2006年2月28日颁布,2007年3月1日开始实施,有毒有害物质限制和禁止时间尚未确定;欧盟的RoHS指令的时间表是:2003年2月13日《指令》颁布,2004年8月13日转为欧盟成员国法律(法规),2006年7月1日开始实施。所以,欧盟的RoHS指令实施时间要比中国的《管理办法》早,欧盟限制与禁止使用有毒有害物质的时间也比中国造一些。(五)中国的《管理办法》贯彻实施需要制定“标准”和“目录”,制定“目录”需要“标准”支撑;欧盟的RoHS指令《指令》的贯彻只需要标准的支撑。(六)中国的《管理办法》中对有毒有害物质的控制采取了“两步走”方式,第一步,在《管理办法》生效之日起,仅仅要求进入市场的电子信息产品以自我声明的方式披露相关的环保信息;第二步,对进入电子信息产品污染控制重点管理目录的产品实施严格监管,需要实现有毒有害物质的替代或达到限量标准的要求,然后要经过强制认证(3C认证)才可以进入市场;而欧盟的RoHS指令对有毒有害物质的控制采取的是“自我声明”的方式,但欧盟的要求是“一步到位”,“自我声明”的前提是要你做到有毒有害物质的达标。 四、问:《管理办法》第一章《总则》第3条“电子信息产品”的定义不是很具体,一个企业如何根据这个定义去判断自己的产品是否是“电子信息产品”? 答:我们在《管理办法》颁布后将公布一个电子信息产品细目及其释义,这个细目是依照经国家统计局确认的《电子信息产业行业分类目录》、并依照《管理办法》的调整范围要求做出的。有了这个细目和释义后,业内的每一个生产者就可以方便地“对号入座”,可以确认自己生产的产品是否属于“电子信息产品”范畴了。 五、问:《管理办法》中没有类似于欧盟RoHS指令一样的任何关于豁免的条款,以及要求豁免的方法,这是为什么? 答:欧盟RoHS指令首先将所有直流电1500伏特以下、交流电1000伏特以下的电子电气产品全部放入约束的范围,然后就其中所谓“技术尚不成熟、经济上不可行”的产品进行“豁免”,欧盟的“豁免”不是无限期的;但《管理办法》对有毒有害物质的控制采用了“目录管理”的模式,与欧盟RoHS指令采用的方法不同,《管理办法》设置了一个“电子信息产品污染控制重点管理目录”,这个目录一开始是空的,随着时间的推移,那些“技术上已经成熟、经济上尚可行”的实现了有毒有害物质替代的或者符合了限量标准的产品将被放入目录,不放入目录就意味着暂时被“豁免”。因此,《管理办法》不需要、也没有必要设置关于豁免内容的条款。

  • 试验室的温、湿度控制

    温度和湿度对一些材料的性能有一定的影响,故在标准中对材料测试时的环境条件有明确规定,必须遵守。如热采水泥堵窜室内试验《水泥胶砂强度检验方法(ISO)法》规定,试体成型时试验室温度应稳定保持在20℃±2℃,相对湿度不低于50% 试体带模养护箱温度保持在20℃±1℃,相对湿度不低于90% 试体养护池水温度应在20℃±1℃范围内。为加强试验室的温、湿度控制,试验室可根据自身条件建立一套温湿度控制系统和控制措施,有条件的单位尽可能采用自动温、湿度控制系统。试验速度的控制,在材料力学性能检测试验中,加荷速度的快慢对检测结果有一定的影响。一般加荷速度较快,试件的变形滞后于加在其上的荷载,测出的强度值高于材料固有的强度。如井下工具缸体检测中加荷速度较快,屈服强度和极限强度会有所提高。但在实际试验工作中,有的检测人员忽视了加荷速度,在不了解加荷速度大小时随意加荷检测,或者不严格按照标准规定的加荷速度进行检测,致使检测结果失去可比性、真实性。  检测工作中,检测人员掌握加荷速度是通过每秒荷载增加多少牛顿(N/S)来控制的,而有的标准给出的是每秒应力的增加(MPa/S),这就需要根据试件的实际尺寸加以换算,以便控制试验加荷速度。在实际工作中,检测人员应熟练操作万能试验机,确保试验的速度符合标准的要求,同时加荷应保持连续均匀,直至测出所需荷载值。

  • 如何理解恒温恒湿试验箱的控制特点

    控制系统是恒温恒湿试验箱比较重要的一部分,这部分的内容也是我们必须要了解的,小编下面的介绍是从几部分向大家分享他控制方面的特点,希望小编的介绍能够对大家的了解有帮助。试验箱的控制系统可说是整个设备的心脏,掌管着制冷、制热、控湿、循环、控制等大权。在制冷方面,压缩机是采用德国进口的压缩机。制冷系统由高温部分和低温部分组成,每一部分是一个相对独立的制冷系统。高温部分中制冷剂的蒸发吸收来自低温部分的制冷剂的热量而汽化;低温部分制冷剂的蒸发则从被冷却的对象(试验机内的空气)吸热以获取冷量。高温部分和低温部分之间是用一个蒸发冷凝器联系起来,它既是高温部分的冷凝器,也是低温部分的冷凝器。加热系统采用完全独立的镍铬合金电加热式,电阻率大、电阻温度系数小,在高温下变形小且不易脆化,自身加热温度可达1000~1500℃,使用寿命长。加湿是恒温恒湿试验箱不同于高低温试验箱的最主要一部分,恒温恒湿试验箱采用外置隔离式,全不锈钢锅炉式浅表面蒸发式加湿器。除湿方式采用机械制冷除湿,将空气冷却到露点温度以下,使大于饱和含湿量的水汽凝结析出,这样就降低了湿度。送风循环系统:空气循环系统由耐温低噪音空调型电机,多叶式离心风轮构成。它提供了试验机内空气的循环。控制系统是综合试验箱的核心,它决定了试验机的升温速率,精度等重要指标。试验机的控制器大都采用PID控制,也有少部分采用PID与模糊控制相组合的控制方式。由于控制系统基本上属于软件的范畴,而且此部分在使用过程中,一般不会出现问题。

  • 国产恒温恒湿试验箱的控制特点

    国产恒温恒湿试验箱的控制特点

    原文来源:国产恒温恒湿试验箱的控制特点   国产[b]恒温恒湿试验箱[/b]至今发展为止已经是名声远扬的一款设备,它主要有着控制系统的作用来维持试验过程的精准,在控制系统中它可小分为加热系统以及制冷系统。而且在设备中也是因为其控制系统有着一些控制特点才让试验箱达到当今社会中用户的要求,都说在制冷系统中压缩机为系统内脏,那么说将控制系统视为整个设备的内脏也是不为过的。[align=center][img=,348,348]http://ng1.17img.cn/bbsfiles/images/2018/01/201801030848_3887_1037_3.jpg!w348x348.jpg[/img][/align]  国产恒温恒湿试验箱控制系统中的特点:  1)控制系统中的加热系统选用完全独立的镍铬合金电加热式,电阻率大、电阻温度系数小,在高温下进行变形并且不易脆化,自身加热温度可达1000~1500℃来增加使用寿命。  2)送风循环系统也为空气循环系统,它是由耐温低噪音空调型电机,多叶式离心风轮构成,主要它提供了试验箱内空气的循环。  3)加湿过程不同于其他试验箱的最主要一部分,在温湿度试验箱中它采用外置隔离式以及全不锈钢锅炉式浅表面蒸发式的加湿器。并且它的除湿方式选用机械制冷除湿,能够将空气冷却到露点温度以下,从而超过的饱和含湿量中的水汽凝结析出,达到湿度降低目的。  4)制冷系统由高温和低温两部分组成,每一部分都是一个相对独立的制冷系统。高温部分中制冷剂的蒸发吸收是来自低温部分中的制冷剂热量进行汽化作用所得的 低温部分制冷剂的蒸发是从被冷却的对象(温湿度试验箱内的空气)进行吸热而获取冷量。高温部分与低温部分两者之间是用一个蒸发冷凝器联系起来,它不仅是高温部分的冷凝器,也是低温部分的冷凝器部件。

  • 药品稳定性试验箱的主要特点和控制特点不同

    主要特点以及控制特点可以说是药品稳定性试验箱的两个比较重要的部分,有些时候用户并不能很好地区分这两种特点,小编今天就为大家简单的介绍一下,希望下面的介绍大家能够掌握。  药品稳定性试验箱主要特点:  1、采用微电脑控制温度,湿度,控制稳定,准确,可靠。  2、独特风道循环系统,确保工作室内部风力分布均匀。  3、温湿度控制器,压缩机,循环风机等零部件均采用进口产品,具有稳定,安全可靠的特点。  4、独立超温,低温声光跟随踪报警系统,保证试验安全运行不发生意外。  5、升温,降温,加湿系统完全独立可提高效率。  6、采用进口不锈钢内胆,四角半圆弧易清洁。  药品稳定性试验箱控制特点:  药品综合稳定性试验箱温湿度采用进口液晶触摸屏控制器,相对温湿度性能精确的设定显示,分辨率达到0.1℃/0.1%rh。温湿度控制器、压缩机、循环风机等关键零部件尚测均采用进口产品,具备长时间运行稳定、安全、可靠等特点。  独立限温报警系统,能声光报警提示操作者,保证实验室安全运行不发生意外。温度偏低或 偏离及超温报警。选用能在高温状态运行的湿度传感器,避免干湿球湿带频繁更换带来的烦恼。  紫外杀菌灯置于箱内后壁,可定期对箱体内部进行消毒,可有效杀灭箱体内循环空气和增湿盘水蒸气的浮菌,从而有效防止药品试验期间的污染。  突破现有国产稳定试验箱光照度无法监测和控制的缺陷,采用光传感器进行监测并无级可调,减少由于灯管的老化造成光照度衰减和试验误差。  当试验箱发生故障,动态显示屏会出现故障信息,试验箱运行故障一目了然。可连接打印机或485通讯接口,用电脑和打印机记录温度和时间曲线,为试验过程数据储存与回放提供有力保证。

  • 【原创】中真空控制系统

    一、操作便捷性:1、抽气口及气路连接口采用KF式快速连接结构。简化安装过程,只需一支卡箍便可完成连接,方便操作。2、配置两种电源连接线,即可直接与我公司的产品直接连接组合使用,也可单独连接独立使用。二、控制智能化:1、采用数显真空计,配合热偶规管采集数据。测量精度高、稳定性好、抗干扰能力强。真空度显示采用科学计数法,数字显示,使用方便直观。2、自动控制与手动控制切换功能。自动控制模式能通过设定值自动开启/关闭真空泵,时容器内保持在一定的真空压力范围内。手动控制模式使用户通过真空泵开启/关闭按钮直接操作真空泵。以满足不同实验的需要。3、电磁阀缓启动技术,使电磁阀在真空泵开启10秒钟后打开,使炉管内压力保持准确,也保证了废气不会返回到容器内影响实验效果。三、结构实用性:1、内置双极旋片式机械真空泵,有效的提高了抽气效率。2、内置压差式防返油机构,使真空泵中的油不会返出。结合气镇阀在使用时更加安全可靠。3、本身作为真空控制系统的同时,也可作为活动平台使用,方便放置电炉及其它设备。

  • 超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代

    [align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]

  • ICPOES气路控制维护

    Agilent等离子体光谱仪对气体控制系统的维护保养ICP的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。第二,由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。

  • 锅炉水位检测与控制系统

    锅炉水位检测与控制系统主要包括水位的检测、显示、排污阀门和报警控制等环节。锅炉水位测控过程主要有:锅炉水位进入磁翻板接液内层、磁浮子的检测和进水阀门控制。系统通过磁翻板或翻柱主体检测锅炉内液位。当锅炉内水位下降至设定的下限水位值时,启动翻板显示报警系统;反之,水位上升超过上限水位设定值时,则启动上限报警,该磁浮子液位计可设置多个报警点,满足系统上多方面控制要求。该水位系统采用磁敏液位传感器测量锅炉内水位。磁敏液位传感器(UHZ-10C00液位计)的输出端可外接PC+PCL机自动化控制设备,驱动LED显示器,并可向远传装置发出4~20mA电信号或无线通讯输出信号。经过处理后,反馈给报警系统通过继电器动作控制电磁阀并报警。 燃气锅炉是一个大惯性、大滞后系统,为验证确保锅炉水位控制效果,在系统完成后通过数据进行验证,控制过程中响应初始阶段的超调大约12%,响应速度快,在300s内达总测量峰值,随后420s后达稳态。水位期望值与实际值最大误差为0.15cm,最大相对误差在0.5%以内,满足精度要求。通过试验证明,该磁浮子液位传感器具有良好稳态性能和动态性能。 测试次数 期望数位/cm 实测水位/cm 误差/cm 1 20 20.12 +0.12 2 25 25.07 +0.07 3 30 29.98 -0.02 4 35 35.09 +0.09 5 40 40.15 +0.15 表中 水位期望值和实测值及其误差本文提出一种用于锅炉水位智能控制系统,可达到水位控制的预期要求,能够实现锅炉水位实时显示、控制及报警,且该装置测量量程宽泛、准确度高、性能稳定、重复性好、操作简单、界面直观,完全可满足液位量值化传递需要。

  • Icpoes气路控制系统维护

    安捷伦ICP-OES的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。

  • 【转帖】什么是酸雨控制区?

    1972年,在联合国人类环境会议上,瑞典政府在《穿越国界的大气污染:大气和降水中硫对环境的影响》报告中,提出了环境酸化问题。1982年,环境酸化国际会议在瑞典召开,更多国家开展了酸雨的调查研究,酸雨和环境酸化成为一个全球性的重大环境污染问题。中国在上世纪70年代末开始监测研究酸雨,酸雨主要发生在南方,重酸雨区森林有受害迹象。  什么是酸雨?它有哪些危害?   酸雨中的酸,大部分是硫酸,其次是硝酸。硫酸和硝酸是人类活动燃烧煤炭和石油排入大气的二氧化硫(SO2)和氮氧化物(NOX),通过[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或液相氧化反应而形成的。大气中还有一些碱性物质,如气态氮(NH3)和悬浮颗粒物,它们对降水中的酸起中和作用,能够降低酸度。如果此类物质相对过多,酸雨就不会形成。  酸沉降的主要危害是造成环境酸化。生态系统本身具有一定的抗酸化能力,这个能力表现为能安全承受的最大酸沉降,称为临界负荷。临界负荷因地而异,当实际酸沉降超过临界负荷时,土壤和地表水体原来正常的化学状态就被破坏。酸化是渐进积累的过程,初期不易察觉,而一旦形成,则很难逆转。土壤酸化后,有机质分解和氮固定受到抑制,营养元素钾、钙、镁流失,土壤贫瘠化;水体酸化后,水生生物的组成结构发生变化,食物供给和成分受影响,浮游动植物和水生昆虫种类数目减少,鱼类繁殖发育受阻。  此外,酸沉降还会妨碍植物叶片固定氮,伤害新生芽叶,危及植被。酸雨也会破坏建筑物、文化古迹,更直接威胁到人类健康。  我国的酸雨控制区及其控制目标是什么?   根据《中华人民共和国大气污染防治法》,为控制酸雨污染,改善大气环境质量,国务院环境保护行政主管部门会同国务院有关部门,根据气象、地形、土壤等自然条件,对酸雨污染严重的地区,经国务院批准后划定为酸雨控制区。划为酸雨控制区的基本条件是:现场监测降水pH≤4.5,硫沉降超过临界负荷,二氧化硫排放量较大。国家级贫困县暂不划入酸雨控制区。  国务院于1998年1月批准的酸雨控制区覆盖14个省、直辖市、自治区的148个市(包括地区)、县、区,面积为80万平方公里。控制目标是:到2000年,排放二氧化硫的工业污染源达标排放,并实行二氧化硫排放总量控制,有关直辖市、省会城市、经济特区城市、沿海开放城市及重点旅游城市的环境空气二氧化硫浓度达到国家环境质量标准,酸雨恶化的趋势得到缓解;到2010年,二氧化硫排放总量控制在2000年排放水平以内,城市环境空气的二氧化硫浓度达到国家环境质量标准,降水pH≤4.5地区的面积明显减少。  同时,根据气象、地形、土壤等自然条件,可以将已经产生、可能产生酸雨的地区或者其他二氧化硫污染严重的地区,划定为酸雨控制区或者二氧化硫污染控制区,即“两控区”。一般来说,降雨pH值≤4.5的,可以划定为酸雨控制区;近3年来环境空气二氧化硫年平均浓度超过国家二级标准的,可以划定为二氧化硫污染控制区。  按照《大气污染防治法》的规定,在酸雨控制区内排放二氧化硫的火电厂和其它大中型企业,属于新建项目不能用低硫煤的,必须建设配套脱硫、除尘装置,或者采取其它控制二氧化硫排放、除尘的措施。属于已建企业不用低硫煤的应当采取控制二氧化硫排放、除尘的措施。  环保部门近年来也逐步强化对新建项目的监督管理。按照公正、公平、公开的原则核定重点企业的二氧化硫排放总量,做到重点企业必须持证排污;加强发放排污许可证的证后监督管理工作,要求企业必须安装在线监控装置,对超证或无证排污的企业应给予严肃查处。  在2002年《国务院关于两控区酸雨和二氧化硫污染防治“十五”计划的批复中》中要求:限产或关停高硫煤矿,加快发展动力煤洗选加工,降低城市燃料含硫量;淘汰高能耗、重污染的锅炉、窑炉及各类生产工艺和设备;控制火电厂二氧化硫排放,加快建设一批火电厂脱硫设施,新建、扩建和改建火电机组必须同步安装脱硫装置或采取其它脱硫措施。

  • 超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    [size=16px][color=#339999][b]摘要:当前各种测试仪器中的低温温度控制过程中,普遍采用电增压液氮泵进行制冷和辅助电加热形式的控温方式。由于液氮温度和传输压力的不稳定,这种方式的控温精度仅能达到0.5K,很难实现小于0.1K的高精度控温。为此本文基于饱和蒸气压原理提出了液氮温区高精度温度控制解决方案,通过对液氮罐内的正压压力进行恒定控制,使液氮温度处于准确稳定状态并提供恒定的液氮输送流量,为后续试验台的电加热控温提供了稳定的制冷量。[/b][/color][/size][align=center][size=16px][color=#339999][b]---------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 液氮作为一种廉价且易于获得的低温介质,在科学仪器领域的低温环境实现中应用十分广泛,如各种各种探测器、热分析仪(TGA,STA,TMA,DMA,DMTA)、激光器、电子显微镜和各种低温试验平台等,都在采用液氮进行低温控制。在这些液氮温度范围内的低温控制系统中,普遍采用加压泵送方式将液氮传输到指定容器或试验平台中,如果进行低温宽温区的温度控制则还需在低温管路和试验平台上增加辅助加热器进行温度调节和控制。[/size][size=16px] 现有的加压输送液氮的手段主要是基于增大液氮罐内压力,从而将液氮压出,具体增加罐内压力的方式是通气法和电加热法。这两种方式利用了液氮自身物理变化而获得液氮蒸汽压力,没有借助其他介质的加压,不会影响液氮的纯度,关键是可以采用不同压力输送出低温氮气和气液混合液氮,以满足不同低温温度的需要。[/size][size=16px] 由于电加热方式结构简单,加热功率大且易于控制,液氮输送速度速度快,目前绝大多数低温温度控制多采用这种电加热方式的液氮泵,结合试验台上配备辅助电加热器,可对试验台或样品温度进行一定精度的低温温度控制。这种液氮试验平台的温度控制系统典型结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=常用液氮冷却低温温度控制系统结构示意图,500,444]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271408453472_5868_3221506_3.jpg!w690x614.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 常用液氮冷却低温温度控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示的常用低温控制系统,通过液氮冷却并配合加电热器的正反向PID调控可实现低温温度控制,但这种方式只适用于远离液氮沸点区域(≥110K)的低温控制,不能在接近液氮沸点附近(77~110K)达到优于±0.1K以内的高精度控温,因为在接近液氮沸点附近存在气液两相共存状态,这两种状态在接近液氮沸点的温度区域非常不稳定,特别是在杜瓦瓶内压力波动较大时极易出现两相互转现象,从而导致冷却温度出现比较大的无规律波动。[/size][size=16px] 另一个影响低温温度产生无法控制波动的因素是室温环境对输送管路和阀门内液氮的加热作用,这对高精度的低温控制影响十分明显且不稳定。[/size][size=16px] 由于冷却温度波动较大,尽管在试验台上采用了高导热材料进行快速均温,以及辅助电加热器进行补偿调节,但这种常用的流动液氮形式低温控制方法也只能勉强达到±0.5K的控温精度,基本无法提高低温温度的高精度控制。由此可见,在必须采用流动液氮进行低温冷却的情况下,实现高精度的低温控制是个需要解决的技术问题,为此本文提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 根据影响高精度低温控制的压力因素和室温环境加热因素,基于饱和蒸汽压时气液处于两相平衡的物理现象,本文提出的解决方案所设计的流动液氮高精度低温温度控制系统如图2所示,实现高精度低温控制的具体方法主要包括以下两方面的内容:[/size][align=center][size=16px][color=#339999][b][img=高精度液氮冷却低温温度控制系统结构示意图,500,468]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271409104704_2148_3221506_3.jpg!w690x647.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 高精度液氮冷却低温控制系统结构示意图[/b][/color][/size][/align][size=16px] (1)对液氮罐内气体压力进行高精度恒定控制,使杜瓦瓶中的液氮始终处于已知可控的温度下,由此获得温度和流量稳定的液氮输出源。[/size][size=16px] (2)液氮输出管路中,避免使用很难进行绝热处理的各种阀门,而是采用了真空输送管,最大限度减小室温环境对管路内液氮的影响。[/size][size=16px] 此解决方案的核心是将液氮温度控制和试验台温度控制分开构成两个独立控制回路,通过双通道PID控制器同时进行控制,具体如下:[/size][size=16px] (1)压力控制通道是由压力传感器、电加热器和PID控制器第一通道构成的闭环回路,通过调节电加热器功率使杜瓦瓶内气体的正压压力保持恒定,使得整个杜瓦瓶内的气液两相液氮温度相同,此压力同时将液氮压出进行输送。[/size][size=16px] (2)加热控制通道是由温度传感器、电加热器和PID控制器第二通道构成的闭环回路,在加载到均热试验台上的制冷量恒定的条件下,通过调节电加热器功率使样品控制在不同的设定温度上,由此最终实现样品不同低温温度的精密控制。[/size][size=16px] 对于液氮输送管的热防护,尽管采用了液氮真空输送管,但要做好输送管两端的隔热防护,尽可能减少室温环境的加热影响。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决液氮温度精密控制问题,关键是采用控压方式可使得杜瓦瓶内的液氮温度保持恒定,压力稳定的同时也使得所液氮介质的压出流量也同样稳定,这使得液氮介质的整个输送过程处于可控稳定状态,为高精度低温控制提供了最为重要的温度稳定的冷媒。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 【分享】《电子信息产品污染控制管理办法》十问十答

    一、问:信息产业部等七部门为什么要制定《管理办法》,制定这样一部部门规章的目的和意义是什么? 答:制定《管理办法》的目的和意义有五个方面:(一)将电子信息产品污染防治作为废旧电子信息产品回收处理再利用工作的基础性工作,体现“污染防治,预防在先”环境保护原则,落实“从源头抓起”的工作思路;(二)将电子信息产品污染防治纳入行业管理,法制化;(三)实现有毒有害物质在电子信息产品中的替代或减量化,保护环境,节约资源;(四)实现电子信息产业结构调整,产品升级换代,确保电子信息产业可持续发展(五)积极应对欧盟两指令。 二、问:《管理办法》的出台对我国电子信息产业将会带来哪些影响? 答:出台《管理办法》意义重大,《管理办法》将会给我国的电子信息产业的发展带来巨大的影响。首先,出台《管理办法》将会促使我们认真思考和调整产业的发展思路,从一个全新的角度去认识、制定产业的发展目标,怎样努力贯彻中央提出的坚持科学发展观、建立节约型社会、以人为本、发展循环经济型的电子信息产业。其次,将会促使我国的电子信息产业能够紧跟当前世界范围内的一场基于资源节约和环境保护的技术革命,促进产业结构的调整、产品升级换代、提升(保持)我国电子信息产业的国际竞争力。第三,过去,我们对于电子信息产业在国民经济与社会信息化中的重要作用看得比较多,我们更多的是看到了电子信息技术在改造传统产业、提供国民经济和社会信息化的过程中的“倍增性”、“渗透性”。现在,电子信息产品中有毒有害物质的控制问题开始提到议事日程了,我们要跟上这个步伐,一定要努力将我们的电子信息产业转变为最环保的、最节约资源的绿色产业。第四,《管理办法》的出台的确会给进入我国市场的所有电子信息企业一个压力,在《管理办法》正式施行后,所有进入中国市场的电子信息产品必须按照《管理办法》的规定,在给予你的过渡期内做到有毒有害物质的替代或减量化。在短期内,《管理办法》的规定将会给企业带来成本增加的压力,但“水涨船高”,由于所有企业的压力是一样的,因此,不会影响企业间的竞争力。从长远看,《管理办法》将使得企业在新一轮的技术革命中得到提高。 三、问:欧盟在2003年2月发布了两个指令,其中之一是RoHS指令,中国的《管理办法》和欧盟RoHS指令有何异同? 答:中国的《管理办法》和欧盟的RoHS指令相同之处有四个方面:(一)都是法律规范性文件;(二)主要目的是为实现电子电器类产品中有毒有害物质的控制(禁止使用和减量化);(三)都涉及贸易活动(货物贸易);(四)限制和禁止使用的有毒有害物质时一样的,都是六种:铅、汞、镉、六价铬、多溴联苯(PBB)、多溴二苯醚(PBDE)。 中国的《管理办法》和欧盟的RoHS指令有六个方面的不同:(一)中国的《管理办法》无需转换低一级的法律规范性文件就可以直接实施;但欧盟的RoHS指令无直接约束力,需要转换成欧盟成员国法律(法规)才可以实施。(二)中国的《管理办法》调整对象为电子信息产品,欧盟的RoHS指令调整对象为交流电不超过1000伏特、直流电不超过1500伏特的电子电器设备;欧盟RoHS指令的调整范围和对象比中国的《管理办法》要更宽、多。(三)中国的《管理办法》对有毒有害物质控制的监督管理采用目录管理模式;目录以“穷举法”方式形成;欧盟的RoHS指令将WEEE指令中的八大类产品全部放入,然后再对其中有毒有害物质控制技术尚不够成熟、经济上不可行产品采用“排除法”予以“豁免”。(四)中国的《管理办法》于2006年2月28日颁布,2007年3月1日开始实施,有毒有害物质限制和禁止时间尚未确定;欧盟的RoHS指令的时间表是:2003年2月13日《指令》颁布,2004年8月13日转为欧盟成员国法律(法规),2006年7月1日开始实施。所以,欧盟的RoHS指令实施时间要比中国的《管理办法》早,欧盟限制与禁止使用有毒有害物质的时间也比中国造一些。(五)中国的《管理办法》贯彻实施需要制定“标准”和“目录”,制定“目录”需要“标准”支撑;欧盟的RoHS指令《指令》的贯彻只需要标准的支撑。(六)中国的《管理办法》中对有毒有害物质的控制采取了“两步走”方式,第一步,在《管理办法》生效之日起,仅仅要求进入市场的电子信息产品以自我声明的方式披露相关的环保信息;第二步,对进入电子信息产品污染控制重点管理目录的产品实施严格监管,需要实现有毒有害物质的替代或达到限量标准的要求,然后要经过强制认证(3C认证)才可以进入市场;而欧盟的RoHS指令对有毒有害物质的控制采取的是“自我声明”的方式,但欧盟的要求是“一步到位”,“自我声明”的前提是要你做到有毒有害物质的达标。 四、问:《管理办法》第一章《总则》第3条“电子信息产品”的定义不是很具体,一个企业如何根据这个定义去判断自己的产品是否是“电子信息产品”? 答:我们在《管理办法》颁布后将公布一个电子信息产品细目及其释义,这个细目是依照经国家统计局确认的《电子信息产业行业分类目录》、并依照《管理办法》的调整范围要求做出的。有了这个细目和释义后,业内的每一个生产者就可以方便地“对号入座”,可以确认自己生产的产品是否属于“电子信息产品”范畴了。

  • 推荐一台控制型前处理一体机

    推荐一台控制型前处理一体机

    http://ng1.17img.cn/bbsfiles/images/2013/09/201309281533_468120_1626592_3.jpg一、功能要求:1. 粉碎功能:适用固液混合、液液混合;可轻松满足肌肉组织、果蔬、坚果类、液体样品的破碎、分散、混合的实验;采用强扭矩电机,适合较高粘度;容易清洗维护,搅拌底座可更换;适用于实验室小样产品的分散、搅拌,集轻巧和方便于一身。2. 自动加液功能:全封闭式液路,完全与操作人员隔绝,要求安全系数高;液管可更换;数字化精确控制提取液自动加入。3. 均质提取:数字化控制,间歇式操作;采用一级传动方式,动力损失小;运转稳定,噪音低。4. 过滤功能:采用齿轮组传动和步进电机相结合,机械臂自动翻转。采用封闭式气压驱动迫使样液被压出,压力可调。降低了操作人员接触危险物质的风险,降低环境污染;结构紧凑,节约空间;过滤结束后自动收集样液;5. 净化、浓缩功能:通过在固相萃取小柱的上方施加一定气压,加快过柱速度。通过不同气压大小的选择,控制柱子流速,使溶液易于进入固定相孔隙,有利于样液与固定相更紧密接触,从而提高萃取效果。克服常规的手动固相萃取操作费时、不能确保稳定的流速、不同人员操作结果偏差较大的问题,通过简单的控制消除人为操作的误差。整个过程用时短,并具有良好的重现性。各通道之间与各样液收集容器相互分离,防交叉污染。各个通道独立控制,可批量处理样品也可处理单个样品。数字化控制,操作简单快速。6. 数字化,一体化控制功能:前处理一体机将以上5个功能通过微电子技术整合,数字化控制整个前处理过程。与软件包结合建立数据库,使用者只需选择所处理样品种类,一键便可得到理想样液。5种前处理过程一体化无缝链接,更快捷,更高效。人性化软件设计,初学者经过简单培训,即可完成复杂的前处理过程。

  • 填充柱进样口的气路控制模式

    1 填充柱进样口的基本结构填充柱进样口的结构相对简单,对于填充柱进样口而言,载气一般从进样器的侧面进入内部,在适配器与壳体之间进行预热;然后载气从适配器的顶部进入适配器内部,将样品带入填充柱。[img]https://img.antpedia.com/cache/wxarticle/dcb153df128bf46d502eb97e0e5c387c.jpeg[/img]2 填充柱的基本控制模式由上图,多数的填充柱进样口只有一路载气进入,然后载气通过色谱柱,最终从检测器流出。常见的填充柱进样口多采用稳压阀+稳流阀的模式进行气体流量控制。简单的示意图如下:[img]https://img.antpedia.com/cache/wxarticle/12bd606e9e7952c6c783a919d0b4a9af.png[/img]稳压阀用于稳定和调节输入仪器之后的气体压力;稳压阀后的压力表则显示输入压力的大小,输入压力的大小可以通过稳压阀来调节。一些仪器中稳压阀在出厂前调好,其后不再安装压力表。稳流阀则用于调节通过色谱柱的载气流量;稳流阀后的压力表则显示色谱柱的柱前压,柱前压的大小可以通过稳流阀来调节。在恒温条件下,柱前压和色谱柱流量是正相关对应;在程序升温条件下,随着色谱柱温度的升高,色谱柱的柱前压升高,但是流量保持不变。3 简化版的填充柱控制模式以上连接方式为多数厂家使用的填充柱进样口的流量/压力控制方式。也有一些厂家出于各种各样的原因采用其他模式来进行流量/压力控制,常见的有两种:3.1 只使用稳压阀的模式一部分厂家设计的填充柱气路,秉承填充柱只能使用恒温分析的思路,只使用稳压阀来控制流量/压力,这种情况下,在恒温分析时可以保持色谱柱流量不变,在柱箱升温时,柱前压保持不变,色谱柱流量降低。[img]https://img.antpedia.com/cache/wxarticle/968c8431251ea8c3f2634b3c8441bd09.png[/img]该种模式下通过调节稳压阀来控制色谱柱柱前压;需要注意的是,如果仪器中还有其他载气气路(如尾吹气),则需要连接在图示中的稳压阀之前,并且应当在连接处之前具有额外的稳压装置(稳压阀)。3.2 只使用稳流阀的模式部分厂家的填充柱进样口的仪器内部气路中只有稳流阀,见下图:[img]https://img.antpedia.com/cache/wxarticle/b4c0f7f5a6a3c8fd87a58678dbf33bf4.png[/img]稳流阀在工作时候,为了保证其流量稳定,需要在其前安装稳压阀。部分厂家采用上图模式的原因在于要求钢瓶采用双级减压阀,用钢瓶的双级减压阀代替仪器本身的稳压阀——本质上还是稳压阀+稳流阀模式。该种模式可以参见下图气路图:[img]https://img.antpedia.com/cache/wxarticle/4af6fdfcf7450ff73c83a12b9ac865f1.png[/img]4 带隔垫吹扫的填充柱进样口目前市面上存在带隔垫吹扫的填充柱进样口,其流路仍然是采用稳压阀+稳流阀的模式,主要改变是增加了针型阀来控制隔垫吹扫的流量。4.1 带隔垫吹扫的填充柱进样口的基本结构带隔垫吹扫的填充柱进样口的基本结构见下图:[img]https://img.antpedia.com/cache/wxarticle/8ceb758361d1a79e554df8cc4dde2c27.jpeg[/img]4.2 带隔垫吹扫的填充柱进样口的气路控制如下图,在隔垫吹扫出口安装针型阀控制隔垫吹扫流量。[img]https://img.antpedia.com/cache/wxarticle/171ed6b57e534b03f97228f2ec583d51.png[/img]该种控制模式下:在恒温条件,柱前压保持稳定,柱流量和隔垫吹扫流量不会发生变化;在升温条件,柱前压升高,总流量(经过稳流阀的流量)不变,隔垫吹扫流量会增大,柱流量会有些许的变化。当然,如果填充柱进样口采用了本文中3.1的模式——柱前压采用稳压阀控制的话,如果在隔垫吹扫出口安装针型阀控制隔垫吹扫流量,那么:在恒温条件,柱前压保持稳定,柱流量和隔垫吹扫流量不会发生变化;在升温条件,柱前压不变,总流量(经过稳压阀的流量)变小,隔垫吹扫流量不变,柱流量会变小。以上是填充柱进样口的气路控制模式的全部内容。填充柱进样口气路简单,常见的控制模式采用稳压阀+稳流阀的方式,了解控制模式中各个部件的作用,可以熟练地的对填充柱的色谱条件进行调节和设定

  • 低压缓冲罐的真空度精密控制解决方案

    低压缓冲罐的真空度精密控制解决方案

    [align=center][color=#ff0000][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130915093546_2463_3384_3.png!w690x368.jpg[/img][/color][/align][color=#ff0000]摘要:低压缓冲罐广泛应用于各种真空工艺和设备中,本文主要针对缓冲罐在全量程内的真空度精密控制,并根据不同真空度范围和缓冲罐体积大小,提出了相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、背景介绍[/color][/size]低压缓冲罐是真空系统中常用的一种真空容器,主要通过提供真空“储存”来防止真空泵的过度循环,其基本原理是利用滞留量(体积)来提供更平稳的真空度操作。在真空工艺过程中,低压缓冲罐主要有以下两种结构形式:(1)真空度波动衰减:缓冲罐安装在真空单元之间,避免连续过程中真空度的波动传播。(2)独立操作:缓冲罐安装在单元之间以允许独立操作,例如在临时关闭期间以及连续和批处理单元之间。低压缓冲罐在独立操作形式中,一般需要具备以下功能:(1)对于小尺寸空间的工艺容器,很难实现真空度的高精度恒定或程序控制,真空度的波动和不准确很难达到工艺要求。为此在工艺容器上串接一个容积较大的低压缓冲罐,通过对缓冲罐真空度的精密控制,则可以完美解决此问题。(2)提供气液分离功能,防止工作液体直接倒灌入真空泵。(3)提供冷凝功能,避免反应容器内的部分溶剂转化为气态直接进入真空泵,由此降低真空泵的故障率和提高真空泵的使用寿命。本文主要针对缓冲罐在全量程内的真空度精密控制,提出相应的解决方案,以满足不同低压过程对缓冲罐真空压力精密控制的不同要求。[size=18px][color=#ff0000]二、解决方案[/color][/size]在低压缓冲罐真空度精密控制过程中,基本控制方法是调节缓冲罐的进气和出气流量,并通过进出气流量的动态平衡来实现缓冲罐内部气压的准确控制,即所谓的动态平衡法。但在不同真空工艺和设备中,对低压缓冲罐的真空度范围会有不同的要求,相应的动态控制模式也不尽相同。而且,不同体积大小的低压缓冲罐,为实现缓冲罐内真空度的快速准确控制,则需要不同的调节装置。以下将针对这些不同要求,提出相应的具体解决方案和相关装置细节。[color=#ff0000]2.1 低真空(高压)和高真空(低压)控制方式[/color]一般我们将低于一个大气压下(760Torr)的绝对压力称之为真空(或低压),而整个真空范围又分为低真空(10-760Torr)、高真空(0.01~10Torr)和超高真空(0.01Torr)三部分。本文将只涉及低真空和高真空这两个范围内的真空度精密控制,对于超高真空,目前还没有很好的技术手段进行精密控制,基本还都是仅靠真空泵的抽气能力来实现数量级级别的控制。低真空和高真空缓冲罐真空度的动态平衡法控制中,为达到快速和准确的控制效果,必须分别采用上游和下游两种控制模式,通过上下游这两种模式及其两种模式之间的切换,可以实现真空度全量程内的精确控制。低压缓冲罐动态平衡法真空度控制系统的整体结构如图1所示。整个缓冲罐真空度控制系统主要由进气阀、抽气阀、真空泵、真空传感器和PID控制器组成,它们各自的功能如下:[align=center][color=#ff0000][img=低压缓冲罐真空度控制,500,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206130911289636_8164_3384_3.png!w690x553.jpg[/img][/color][/align][align=center][color=#ff0000]图1 低压缓冲罐真空度控制系统结构示意图[/color][/align](1)进气阀的作用是调节进气流量。在缓冲罐真空度控制过程中,进气流量一般在较小的范围内进行调节,因此进气阀一般为电动针阀。(2)抽气阀的作用是调节出气流量。在缓冲罐真空度控制过程中,进气流量一般在较大的范围内进行调节,因此进气阀的口径大小一般需根据需要进行配置,后面还会进行详细介绍。(3)真空泵的作用是提供真空源。在缓冲罐真空度控制过程中,真空泵要根据真空度要求和缓冲罐体积大小来进行选配。(4)真空传感器的作用是实时测量缓冲罐的真空度并将测量信号反馈给PID控制。在缓冲罐真空度控制过程中,要根据缓冲罐真空度量程和精度要求选配传感器,一般是低真空和高真空范围内各配一个真空计。为保证测量精度,一般会选择电容式真空计。也可以根据需要只选择一个精度较差的皮拉尼计来实现整个高低真空范围内的测量。(5)PID控制器的作用是通过接受到的真空度信号来分别调节进气阀和出气阀,使得缓冲罐内的真空度达到设定值或按照设定程序进行变化。在全量程范围内的真空度控制时,如果需要采用两只不同量程真空计进行全量程覆盖,就需要具有传感器自动切换功能的双通道PID控制器,以便在不同量程范围内的控制过程中进行自动切换。如果采用电容式真空计来实现高精度的真空度控制,相应的PID控制器则需要具有24位A/D和16位D/A的高精度。在缓冲罐的不同真空度范围内,需要采用以下不同的控制模式才能达到满意的控制精度。(1)上游控制模式:上游控制模式也叫进气调节模式,主要适用于高真空范围内的精密控制。在上游控制模式中,抽气阀门基本是全开方式全速抽气,通过调节进气流量来实现缓冲罐内高真空的精密控制。(2)下游控制模式:下游控制模式也叫出气调节模式,主要适用于低真空范围内的精密控制。在下游控制模式中,进气阀门基本是某一固定开度,即固定进气流量,通过调节抽气流量来实现缓冲罐内低真空的精密控制。另外需要特别注意的是,不论采取上述哪一种控制模式,控制精度还受到真空度传感器和PID控制精度的限制。因此,除了选择合理的上下游控制模式之外,还需要根据不同精度要求选择合理的传感器和控制器。[color=#ff0000]2.2 不同缓冲罐体积的真空度控制[/color]缓冲罐真空度精密控制中,除了涉及上述的控制模式选择之外,还涉及控制速度问题,即根据缓冲罐的容积大小和真空度控制范围来确定合理的真空度准确控制速度。这方面主要涉及以下两方面的内容和基本原则:(1)对于小容积的缓冲罐,可以选择具有小流量调节能力的进气阀、排气阀和真空泵。(2)对于较大容积的缓冲罐,可能就需要配备较大流量调节能力的进气阀、排气阀和真空泵。其中进气阀和排气阀需要配备电动球阀等大口径阀门,具体情况还需根据所控真空度范围来进行进一步的合理选择。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创】原子吸收石墨炉分析中光温控制技术原理介绍

    【原创】原子吸收石墨炉分析中光温控制技术原理介绍

    [color=#DC143C]近期、版面有版友问及关于石墨炉使用光温控制器的问题,故此写下小记,以满足有兴趣的版友需求。[/color]一、概 述:众所周之,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计在分析某些高温元素或低含量元素时,使用石墨炉原子化器比火焰原子化器的灵敏度要高的多,故应用较为普遍。 目前仍有一部分商品仪器对于石墨炉升温还是采用单纯电流控制方式。即通过专用的石墨炉电源按照不同的升温阶段提供相应的恒定电流并流经石墨管后产生焦耳热,从而使石墨管中的样品里的待测元素被原子化后进行吸收测定。 但是上述的供电方式给石墨炉原子化器带来一些不可避免的问题。其中最主要的是:在原子化阶段,石墨管从灰化阶段的低温状态突然上升到原子化的高温状态需要一个平衡的时间过程,这是由石墨管的物理特性所决定的,由此便产生出一个“升温速率”的概念。 当石墨管温度很低时,升温速率V与电流强度I的平方成正比(V/I² )。升温速率的快慢不仅影响测试的灵敏度而且还影响石墨管的热性能。升温速率越快,石墨管到达热平衡状态就越早,则可保障待测元素绝大部分均被原子化,故灵敏度可得以提高。当升温速率减缓后,石墨管到达原子化的温度时间就被延长,从而致使一部分待测元素在还未被充分原子化之前就损失掉了(一般是被载气吹跑了,所以有的仪器在原子化阶段停止载气供给就是出于此原因),造成了测试灵敏度的下降。图-1就是石墨炉在采用恒流供电及光温控制技术的两种方式下,用同一浓度的铅样品各重复三次的测试结果比较;由此不难看出,使用光温控制技术的结果优于恒流控制。[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809181542_109307_1602290_3.jpg[/img] [B] [size=4] 图-1[/size][/B]由于一般石墨管采用的是恒电流供电方式,所以升温速率势必受到限制。如果采用光温控制技术则可以使升温速率得到很大的提高。[color=#DC143C]结 论:光温控制技术的实质就是提高升温速率的手段。[/color]二、光温控制技术的简单原理:(1)石墨管随着温度的改变其发出的光辐射的强度也随着改变;(2)让石墨管在仪器允许的范围从最低温度开始做连续加热升温直至最高允许温度,其发出的光辐射强度势必是连续递增的,即加热电流与光辐射强度(或温度)形成了一定的逻辑关系曲线。(3)用光导器件(一般是光导纤维和光敏二极管组成)将上述石墨管连续递增变化的光辐射信号实施连续跟踪采集并转化为电信号后传送到电脑中存储,也就是使电脑产生了一个加热电流与温度的比例关系的连续控制信号,并加以记忆,以实施对石墨炉的升温控制;这就组成了:石墨炉电源——石墨炉——光温控制器——石墨炉电源 这样一个闭环控制系统;如图-2所示:[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809181542_109308_1602290_3.jpg[/img] [B] [size=4][size=3]图-2[/size][/size][/B](4)在原子化阶段升温的开始瞬间,石墨炉电源不是按照常规的参数设定的恒流电流供电(如果是那样石墨管的升温速率仍是缓慢,即温度曲线上升沿仍然不陡直),而是提供了一个大大超越了预设的升温电流(基本处于饱和状态,参阅图-3右图); 根据前面所介绍的, “升温速率V与电流强度I的平方成正比 (V/I² )”这样一个理论为依据,石墨管的升温速率很快就提高了;当石墨管到达了预设的温度后,此时的光辐射被光温控制器立即检测到,并迅速反馈给电脑以达到控制石墨炉电源恢复到预先设计的恒流电流来维持升温的目的;这样一举两得、即提高了升温速率又保障了石墨炉的设置温度。图-3是石墨炉原子化升温时恒流控制与光温控制的比较示意图:[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809181543_109309_1602290_3.jpg[/img] [size=4][B] 图-3[/B][/size]三、使用光温控制技术的优点:(1)提高了检测的灵敏度(前面已经谈到);(2)提高了测试的重现性(因为原子化较为彻底);(3)减少了背景和基体的干扰(背景物质同样被彻底烧出);(4)延长了石墨管寿命(从图-3可以看出,由于使用了光温控制技术,使石墨炉升温速率得以提高,这样石墨炉有效原子化的时间比电流控制的有效时间要长;于是可以适当地减少原子化的时间,从而到达延长石墨管的寿命效果);四、使用光温控制技术的注意事项:(1)每次更换新石墨管后均要重新做光温曲线的校正,即第二段中的第(3)项。(2)更换不同类型的石墨管后,尤其要重新做光温校正。(3)平时注意光导器件的清洁,尤其是接收光束的传导窗口免于遭到污染,否则会影响到升温的误差,甚至不能执行光温控制之功能。(4)光温控制器调整分为手动和自动两种。旧式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]一般是手动设置,其供电电流的翻转点的调整就很重要了,这个翻转点称为“阈值”,它的位置准确以否直接影响光控的效果;例如日立的老式[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url] 180-80、Z-8000等型号,均属于此类。目前市面上出售的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]仪器基本已经趋于自动化了。五、后 记:此文是参照日立[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]来写的,故只是侧重了光控原理,而没有过多涉及电路原理,其原因是可能与其他厂家的光路、电路设计方面有出入;但目前上市的商品[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url](进口仪器居多)基本都设计了光温控制系统,其原理大同小异。值得一提的是:目前许多[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]操作者对其原理不甚清楚,甚至舍弃此项功能而不用,甚为憾事。故、今做小记,以飨网友。

  • LMR2000-智能气路控制器(压力气路专用)

    LMR2000-智能气路控制器(压力气路专用)

    [align=center][b][font=宋体] [/font][/b][/align][b][font=宋体]关键词:[/font][/b][font=宋体]气路控制、高压、程控、独立、分离、切换、差压气路、远程通讯、自动化、密封快速、操作简单。[/font][b][font=宋体]概述:[/font][/b][font=宋体] [/font][font=宋体]智能气路控制器主要针对压力设备生产厂家、计量院、校验量身定制实现对气路的自动切换。不同量程,不同设备之间的气路自动切换,可选择手动控制版本或自动控制版本,便于系统集成,实现系统高度智能化,通过RS232接口与智能气路控制器进行通讯,实现多路进气及多路输出的压力切换。全自动实现、解决目前通过拆装管路进行气路切换难题,便于集成化设计。[/font][b][font=宋体]技术参数:[/font][/b][font=宋体]1) [/font][font=宋体]型号:LMR2000(可按客户需求定制)[/font][font=宋体]2) [/font][font=宋体]进气控制:实现多路进气控制[/font][font=宋体]3) [/font][font=宋体]出气控制:实现多路出气控制[/font][font=宋体]4) [/font][font=宋体]密封:0泄露[/font][font=宋体]5) [/font][font=宋体]支持压力:可达到 40MPa[/font][font=宋体]6) [/font][font=宋体]切换方式:可自动、手动气路切换[/font][font=宋体]7) [/font][font=宋体]工作环境:15~55℃,5…95%RH [/font][font=宋体]8) [/font][font=宋体]系统供电:220VAC,2A [/font][font=宋体]9) [/font][font=宋体]压力接口:7/16-20 SAE[/font][font=宋体]10) [/font][font=宋体]通讯接口:RS232 [/font][font=宋体]11) [/font][font=宋体]安装:支持19寸标准机架[/font][font=宋体]12) [/font][font=宋体]重量:约10kG[/font][b][font=宋体]功能:[/font][/b][font=宋体](1)智能气路控制器内置高压力控制阀,气路自动切换与显示一体,自动完成压力管路自动切换并显示在液晶屏上,便于用户读取数据。[/font][font=宋体](2)触摸屏操作[/font][font=宋体](3)多通道模式,可按用户需求选择装配。[/font][font=宋体](4)通用的RS232通信模式,与上位机通信。[/font][font=宋体](5)操作界面简洁大方,便于用户操作。[/font][font=宋体]北京莱森泰克科技有限公司[/font][img=,520,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206081422153697_1326_5627570_3.jpg!w520x516.jpg[/img][img=,520,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206081422153697_1326_5627570_3.jpg!w520x516.jpg[/img][font=宋体]地址:北京市通州区东燕郊留山大街10号13B[/font]

  • 干式运输型液氮罐的智能控制系统

    干式运输型液氮罐的智能控制系统

    干式运输型液氮罐在现代物流中扮演着重要的角色。这种特殊的液氮罐能够安全、高效地储存和运输液体氮气,被广泛应用于医疗、化工、半导体等领域。  然而,在使用过程中,液氮罐的温度和压力控制是至关重要的,这直接关系到液氮罐内液氮的稳定性和可靠性。为了提高效率和保障安全,智能控制系统成为必不可少的一部分。本文将探讨干式运输型液氮罐智能控制系统的设计与优化。  首先,我们需要了解液氮罐的基本工作原理。干式运输型液氮罐主要由罐体、内胆、真空绝热层和控制系统组成。当液体氮气进入储罐后,通过真空绝热层的保护,减少了热量的传输,从而保持液态状态。而控制系统则对液氮罐的温度和压力进行监测和控制,以确保液氮罐内的环境始终稳定。[img=液氮罐,400,372]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301123439518_1703_3312634_3.jpg!w400x372.jpg[/img]  传统的液氮罐控制系统通常采用传感器和人工操作的方式来实现温度和压力的监测与调节。然而,这种方式存在着人工操作不准确、反应迟缓等问题,同时也增加了人工成本。因此,智能控制系统应运而生。  智能控制系统通过集成传感器、执行器、控制算法和通信技术,能够实时监测和控制液氮罐的温度和压力。首先,通过温度传感器和压力传感器采集罐内环境的数据,并将其传输给控制器。控制器根据预设的参数和算法进行数据处理,判断罐内环境的状态,并根据需要发送控制信号给执行器。  在控制信号的作用下,执行器可以自动调节液氮罐的温度和压力。例如,当温度过高时,控制系统可以启动冷却装置将温度降低 当压力过大时,控制系统可以通过排气阀门释放部分气体来降低压力。通过智能控制系统的优化和升级,液氮罐的温度和压力控制将更加准确和高效。  此外,智能控制系统还具有远程监控和故障诊断的功能。通过通信技术,控制系统可以与上位机或云平台进行数据交换和传输,实现远程监控。操作人员可以随时查看液氮罐的运行状态和数据,并根据需要进行调整和控制。同时,智能控制系统可以对液氮罐进行故障诊断,及时发现并报警故障,提高维护效率和减少停机时间。  总之,干式运输型液氮罐(www.cnpetjy.com)的智能控制系统在提高效率和保障安全方面具有重要作用。通过集成传感器、执行器、控制算法和通信技术,智能控制系统能够实时监测和控制液氮罐的温度和压力,实现自动化调节 同时,还能够实现远程监控和故障诊断,提高了运行效率和可靠性。未来,随着技术的不断进步,液氮罐智能控制系统的功能和性能还将进一步提升,为物流行业带来更多的便利和效益。

  • 《控制污染物排放许可制实施方案》 30问

    《控制污染物排放许可制实施方案》 30问 2017-01-05  【编者按】  为落实《控制污染物排放许可制实施方案》(国办发〔2016〕81号),近日,环保部印发了《排污许可证管理暂行规定》(环水体〔2016〕186号)和《关于开展火电、造纸行业和京津冀试点城市高架源排污许可管理工作的通知》(环水体〔2016〕189号)。为便于各地深刻理解上述文件精神,环保部排污许可专项小组研究制定了《控制污染物排放许可制实施方案30问》,现予以播发。  1.目前排污许可制度的法律依据有哪些?  《水污染防治法》第二十条规定:国家实行排污许可制度。直接或者间接向水体排放工业废水和医疗污水以及其他按照规定应当取得排污许可证方可排放的废水、污水的企业事业单位,应当取得排污许可证;城镇污水集中处理设施的运营单位,也应当取得排污许可证。禁止企业事业单位无排污许可证或者违反排污许可证的规定向水体排放前款规定的废水、污水。《大气污染防治法》第十九条规定:排放工业废气或者本法第七十八条规定名录中所列有毒有害大气污染物的企业事业单位、集中供热设施的燃煤热源生产运营单位以及其他依法实行排污许可管理的单位,应当取得排污许可证。《环境保护法》第四十五条规定:国家依照法律规定实行排污许可管理制度。实行排污许可管理的企业事业单位和其他生产经营者应当按照排污许可证的要求排放污染物;未取得排污许可证的,不得排放污染物。《水污染防治法》和《大气污染防治法》均规定排污许可的具体办法和实施步骤由国务院规定。  《控制污染物排放许可制实施方案》(以下简称《方案》)的发布,是落实党中央国务院的决策部署,是依法明确排污许可的具体办法和实施步骤的指导性文件。  2.为什么我国排污许可要实施综合许可、一证式管理?  实施综合许可,是指将一个企业或者排污单位的污染物排放许可在一个排污许可证集中规定,现阶段主要包括大气和水污染物。这一方面是为了更好地减轻企业负担,减少行政审批数量;另一方面是避免为了单纯降低某一类污染物排放而导致污染转移。环保部门应当加大综合协调,充分运用信息化手段,做好不同环境要素的综合许可。  一证式管理既指大气和水等要素的环境管理在一个许可证中综合体现,也指大气和水等污染物的达标排放、总量控制等各项环境管理要求;新增污染源环境影响评价各项要求以及其他企事业单位应当承担的污染物排放的责任和义务均应当在许可证中规定,企业守法、部门执法和社会公众监督也都应当以此为主要或者基本依据。  3.通过实施排污许可制如何改善环境质量?  当前我国环境管理的核心是改善环境质量。减少污染物排放是实现环境质量改善的根本手段。固定污染源是我国污染物排放主要来源,且达标排放情况不容乐观。排污许可证抓住固定污染源实质就是抓住了工业污染防治的重点和关键。对于现有企业,减排的方式主要是生产工艺革新、技术改造或增加污染治理设施、强化环境管理,排污许可证重点对污染治理设施、污染物排放浓度、排放量以及管理要求进行许可,通过排污许可证强化环境保护精细化管理,促进企业达标排放,并有效控制区域流域污染物排放量。  《方案》提出了多项以排污许可证为载体,不断降低污染物排放,从而促进改善环境质量的制度安排。一是对于环境质量不达标或有改善任务的地区,省级人民政府可以通过提高排放标准,加严排污单位的许可排放浓度和排放量,从而达到改善环境质量目的;二是环境质量不达标地区,对环境质量负责的县级以上地方人民政府可通过依法制定环境质量限期达标规划,对排污单位提出更加严格的要求;三是各地方人民政府依法制定的重污染天气应对措施,以及地方限期达标规划或有关水污染防治应急预案中枯水期环境管理要求等,针对特殊时段排污行为提出更加严格的要求,在许可证中载明,使得企业对污染物排放精细化管理的预期明确,有效支撑环境质量改善。  4.排污许可制度如何实现污染物总量控制相关要求?  排污许可制度是落实企事业单位总量控制要求的重要手段,通过排污许可制改革,改变从上往下分解总量指标的行政区域总量控制制度,建立由下向上的企事业单位总量控制制度,将总量控制的责任回归到企事业单位,从而落实企业对其排放行为负责、政府对其辖区环境质量负责的法律责任。  排污许可证载明的许可排放量即为企业污染物排放的天花板,是企业污染物排放的总量指标,通过在许可证中载明,使企业知晓自身责任,政府明确核查重点,公众掌握监督依据。一个区域内所有排污单位许可排放量之和就是该区域固定源总量控制指标,总量削减计划即是对许可排放量的削减;排污单位年实际排放量与上一年度的差值,即为年度实际排放变化量。  改革现有的总量核算与考核办法,总量考核服从质量考核。把总量控制污染物逐步扩大到影响环境质量的重点污染物,总量控制的范围逐步统一到固定污染源,对环境质量不达标地区,通过提高排放标准等,依法确定企业更加严格的许可排放量,从而服务改善环境质量的目标。  5.排污许可制如何与环评制度衔接?  环境影响评价制度与排污许可制度都是我国污染源管理的重要制度。如何实现环评制度和排污许可制度的有效衔接是排污许可制改革的重点。《实施方案》中提出,通过改革实现对固定污染源从污染预防到污染管控的全过程监管,环评管准入,许可管运营。  环评制度重点关注新建项目选址布局、项目可能产生的环境影响和拟采取的污染防治措施。排污许可与环评在污染物排放上进行衔接。在时间节点上,新建污染源必须在产生实际排污行为之前申领排污许可证;在内容要求上,环境影响评价审批文件中与污染物排放相关内容要纳入排污许可证;在环境监管上,对需要开展环境影响后评价的,排污单位排污许可证执行情况应作为环境影响后评价的主要依据。  6.哪些企业将纳入排污许可管理?  在《水污染防治法》《大气污染防治法》的法律框架下,实施方案要求环保部制定固定污染源排污许可分类管理名录(以下简称名录),在名录范围内的企业将纳入排污许可管理。名录主要包括实施许可证的行业、实施时间。排污许可分类管理名录是一个动态更新名录,它将根据法律法规的最新要求和环境管理的需要进行动态更新。  名录是以《国民经济行业分类》为基础,按照污染物产生量、排放量以及环境危害程度的大小,明确哪些行业实施排污许可,以及这些行业中的哪些类型企业可实施简化管理。名录还将规定国家按行业推动排污许可证核发的时间安排;对于国家暂不统一推动的行业,地方可依据改善环境质量的要求,优先纳入排污许可管理的行业。名录的制定将向社会公开征求意见。  对于移动污染源、农业面源,不按固定污染源排污许可制进行管理。  7.排污许可证的核发权限是如何规定的?  排污许可证核发权限确定的基本原则是“属地监管”以及“谁核发、谁监管”。根据《方案》,核发权限在县级以上地方环保部门。具体来看,随着省以下环保机构监测监察执法垂直管理制度改革试点工作的开展,地市级环保部门将承担更多的核发工作。对于地方性法规有具体要求的,按其规定执行。如宁夏回族自治区已通过《宁夏回族自治区污染物排放管理条例》,该条例明确“对于总装机容量超过30万千瓦以上的燃煤电厂及石油化工”等重点排污单位,其排污许可证的核发权限为自治区环境保护主管部门。环保部将尽快制定相关文件,进一步明确排污许可证的核发权限。  此外,《方案》中还明确上级环保部门可依法撤销下级环保部门核发的排污许可证。《行政许可法》中可以撤销不当行政许可的各种情形,也同样适用于排污许可证的核发。  8.企业申请排污许可证应提交什么材料?  企业提交的排污许可申请材料和守法承诺书是环保部门核发排污许可证的主要依据。企业应对申请材料的真实性、合法性、完整性负法律责任。《方案》提出,申报材料要明确申请的污染物排放种类、浓度和排放量。环保部正在制定排污许可管理的相关配套文件,以及申请时需要提交的守法承诺书和排污许可证申请表样本,并依据《方案》的规定,进一步细化排污许可证申请表中企业需要填报和申请的各项内容。  9.环保部门核发许可证需要审核什么内容?  环保部门在核发许可证之前应结合管理要求和政府部门掌握的情况,对申请材料进行认真审核。审核主要包括以下几个方面:一是申请排污许可证的企事业单位的生产工艺和产品不属于国家或地方政府明确规定予以淘汰或取缔的;二是申请的企业不应位于饮用水水源保护区等法律法规明确规定禁止建设区域内;三是有符合国家或地方要求的污染防治设施或污染物处理能力;四是申请的排放浓度符合国家或地方规定的相关标准和要求,排放量符合相关要求,对新改扩建项目的排污单位,还应满足环境影响评价文件及其批复的相关要求;五是排污口设置符合国家或地方的要求等。  企业提交的排污许可申请材料和守法承诺书是环保部门核发排污许可证的主要依据,《实施方案》明确提出企业应对申请材料的真实性、合法性、完整性负法律责任。环保部门对于申请材料完整、符合要求的企业,直接依法核发许可证。此外,核发的排污许可证是是企业排放污染物的“天花板”,是企业守法的最基本要求,满足这些要求是企业基本的法定义务,这也是排污许可证作为企业守法、政府执法、公众监督依据的由来。换言之,对于应当承担的环保责任完全相同的两个企业,不论实际排放情况如何,排污许可证核定的排放量和管理要求将会是一致的。《方案》同时还规定了,对于申请材料存在疑问、企业环境

  • 恒温恒湿控制

    恒温恒湿控制

    当时,实验室设计时特别设计要有一间恒温恒湿房间,用于一些机械性能方面的测试。结果项目做下来,那个房间的温湿度根本控制不住。问项目组咋回事,说要么不控,要控整栋楼都要控------真是瞎扯蛋; 几经周折,后来项目组终于承认是他们失误,决定在现有的基础上加装控温控湿的设备。买了两台埃默森的精密空调,加装通风管路等等。根据饱和蒸气压曲线,理论上来说是可以解决问题的,通过降温把水凝结排出去,再用加热盘管把温度升上来。 结果空调选型太大,说我们房间里面热负荷不够,空调自带的加热盘管满负荷运转都不能把温度升上来。造成如果控制湿度的话,房间温度会很低;------无语最后,又弄了5台加热器在房间里面,增加热负荷------严重浪费资源;不过温湿度倒还真能控制的住,黄梅天湿度也能控制在50±10%。http://ng1.17img.cn/bbsfiles/images/2012/10/201210261412_399443_2589561_3.jpg

  • 新疆维吾尔自治区疾病预防控制中心试剂耗材采购项目Ⅱ

    [font=inherit][size=18px]项目概况[/size][/font][font=inherit][size=18px]新疆维吾尔自治区疾病预防控制中心试剂耗材采购项目Ⅱ[/size][/font][font=inherit][size=18px]招标项目的潜在投标人应在[/size][/font][font=inherit][size=18px]政采云平台线上获取[/size][/font][font=inherit][size=18px]获取招标文件,并于2023年06月27日 11:00[/size][/font][font=inherit][size=18px](北京时间)前递交投标文件。[/size][/font][font=inherit]一、项目基本情况[/font][font=inherit][size=18px]项目编号:0634-234XZ1ZH0130[/size][/font][font=inherit][size=18px]项目名称:新疆维吾尔自治区疾病预防控制中心试剂耗材采购项目Ⅱ[/size][/font][size=18px]采购方式:公开招标[/size][font=inherit][size=18px]预算金额(元):5431593[/size][/font][font=inherit][size=18px]最高限价(元):799863,715555,161347,397894,295500,179120,308286,176350,221400,1092925,413652,669701[/size][/font][font=inherit][size=18px]采购需求:[/size][/font]标项一 标项名称:新疆维吾尔自治区疾病预防控制中心卫检一包 数量:不限 预算金额(元):799863 简要规格描述或项目基本概况介绍、用途:第一包卫检一包 备注:标项二 标项名称:新疆维吾尔自治区疾病预防控制中心卫检二包 数量:不限 预算金额(元):715555 简要规格描述或项目基本概况介绍、用途:第二包卫检二包 备注:标项三 标项名称:新疆维吾尔自治区疾病预防控制中心防护用品 数量:不限 预算金额(元):161347 简要规格描述或项目基本概况介绍、用途:第三包防护用品 备注:标项四 标项名称:新疆维吾尔自治区疾病预防控制中心环地所 数量:不限 预算金额(元):397894 简要规格描述或项目基本概况介绍、用途:第四包环地所 备注:标项五 标项名称:新疆维吾尔自治区疾病预防控制中心寄布所 数量:不限 预算金额(元):295500 简要规格描述或项目基本概况介绍、用途:第五包寄布所 备注:标项六 标项名称:新疆维吾尔自治区疾病预防控制中心实管部 数量:不限 预算金额(元):179120 简要规格描述或项目基本概况介绍、用途:第六包实管部 备注:标项七 标项名称:新疆维吾尔自治区疾病预防控制中心消感中心 数量:不限 预算金额(元):308286 简要规格描述或项目基本概况介绍、用途:第七包消感中心 备注:标项八 标项名称:新疆维吾尔自治区疾病预防控制中心应急鼠防所 数量:不限 预算金额(元):176350 简要规格描述或项目基本概况介绍、用途:第八包应急鼠防所 备注:标项九 标项名称:新疆维吾尔自治区疾病预防控制中心结麻中心 数量:不限 预算金额(元):221400 简要规格描述或项目基本概况介绍、用途:第九包结麻中心 备注:标项十 标项名称:新疆维吾尔自治区疾病预防控制中心传防+性艾一包 数量:不限 预算金额(元):1092925 简要规格描述或项目基本概况介绍、用途:第十包传防+性艾一包 备注:标项十一 标项名称:新疆维吾尔自治区疾病预防控制中心传防+性艾二包 数量:不限 预算金额(元):413652 简要规格描述或项目基本概况介绍、用途:第十一包传防+性艾二包 备注:标项十二 标项名称:新疆维吾尔自治区疾病预防控制中心传防三包 数量:不限 预算金额(元):669701 简要规格描述或项目基本概况介绍、用途:第十二包传防三包 备注:[font=inherit][size=18px]合同履约期限:标项 1、2、3、4、5、6、7、8、9、10、11、12,1年[/size][/font][font=inherit][size=18px]本项目(否)接受联合体投标。[/size][/font][font=SimHei, sans-serif][size=18px]二、申请人的资格要求:[/size][/font][font=inherit][size=18px]1.满足《中华人民共和国政府采购法》第二十二条规定;[/size][/font][font=inherit][size=18px]2.落实政府采购政策需满足的资格[/size][/font][font=inherit][size=18px]要求:标项1、2、3、4、5、6、7、8、9、10、11、12:本项目每个标包金额均需预留份额(中小企业预留份额:40.00%、其中小微企业预留份额为中小企业预留份额40.00%中的60.00%)[/size][/font][font=inherit][size=18px][font=宋体][/font][/size][/font][font=inherit][size=18px]3.本项目的特定资格要求:【标项3】3.1第三包具有医疗器械经营资格;[/size][/font][font=inherit]三、获取招标文件[/font][font=inherit][size=18px][/size][/font][font=inherit][size=18px]时间:2023年06月06日至2023年06月13日,每天上午10:00至14:00,下午14:00至18:00(北京时间,法定节假日除外)[/size][/font][font=inherit][size=18px]地点:政采云平台线上获取[/size][/font][font=inherit][size=18px]方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件)[/size][/font][font=inherit][size=18px]售价(元):0[/size][/font][font=inherit][font=inherit]四、提交投标文件截止时间、开标时间和地点[/font][/font][font=inherit][size=18px][/size][/font][font=inherit][size=18px]提交投标文件截止时间:2023年06月27日 11:00(北京时间)[/size][/font][font=inherit][size=18px][/size][/font][font=inherit][size=18px]投标地点:请登录政采云投标客户端投标[/size][/font][font=inherit][size=18px]开标时间:2023年06月27日 11:00(北京时间)[/size][/font][font=inherit][size=18px]开标地点:政采云平台线上[/size][/font][font=inherit][size=18px][font=inherit]五、公告期限[/font][/size][/font][font=FangSong][size=18px]自本公告发布之日起5个工作日。[/size][/font][font=inherit]六、其他补充事宜[/font][font=FangSong][size=18px]无[/size][/font][font=FangSong][size=18px][/size][/font][font=FangSong][size=18px][/size][/font]特别提示:1、采购限额标准以上,200万元以下的货物和服务采购项目、400万元以下的工程采购项目,适宜由中小企业提供的,采购人应当专门面向中小企业采购。2、超过200万元的货物和服务采购项目、超过400万元的工程采购项目中适宜由中小企业提供的,预留该部分采购项目预算总额的30%以上专门面向中小企业采购,其中预留给小微企业的比例不低于60%。3、对于未预留份额专门面向中小企业的采购项目,以及预留份额项目中的非预留部分采购包,采购人、采购代理机构应当对符合规定的小微企业报价给予10%~20%(工程项目为3%~5%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的3%~5%作为其价格分。4、接受大中型企业与小微企业组成联合体或者允许大中型企业向一家或者多家小微企业分包的采购项目,对于联合协议或者分包意向协议约定小微企业的合同份额占到合同总金额30%以上的,采购人、采购代理机构应当对联合体或者大中型企业的报价给予4%~6%(工程项目为1%~2%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的1%~2%作为其价格分。[font=inherit][size=18px][font=inherit]七、对本次采购提出询问,请按以下方式联系[/font][/size][/font][font=inherit][size=18px]1.采购人信息[/size][/font][font=inherit][size=18px]名 称:新疆维吾尔自治区疾病预防控制中心[/size][/font][font=inherit][size=18px]地 址:碱泉一街380号[/size][/font][font=inherit][size=18px]联系方式:0991-2623010[/size][/font][font=inherit][size=18px]2.采购代理机构信息[/size][/font][font=inherit][size=18px]名 称:新疆招标有限公司[/size][/font][font=inherit][size=18px]地 址:乌鲁木齐市水磨沟区昆仑东街789号金融大厦11楼招标一部[/size][/font][font=inherit][size=18px]联系方式:18199318986[/size][/font][font=inherit][size=18px]3.项目联系方式[/size][/font][font=inherit][size=18px]项目联系人:叶哲[/size][/font][font=inherit][size=18px]电 话:18199318986[/size][/font]

  • 液氮罐压力控制调试要点

    调试液氮罐压力控制的关键步骤与要点在液氮罐压力控制调试过程中,确保系统稳定性和安全性是至关重要的。正确的调试能够保证罐体内部压力在安全范围内波动,从而有效控制液氮的气化速率和供应稳定性。 1. 系统初始化与基础设置首先,确保液氮罐已正确安装并连接至压力控制系统。启动控制系统,进行初始化设置,包括设定操作界面语言和初始设备校准。根据罐体的设计压力和容量设定初始参数,并校准传感器以确保精确度和准确性。 2. 压力传感器校准与调整接下来,进行压力传感器的校准。使用标准气体压力表对系统进行初步校准,并通过系统界面调整传感器灵敏度和范围。确保传感器能够准确捕捉液氮罐内部压力的微小变化,以便及时反馈给控制系统。[img=,400,300]https://ng1.17img.cn/bbsfiles/images/2024/07/202407291018390931_1042_6088378_3.jpg!w400x300.jpg[/img] 3. 控制阀门调试与响应速度优化调试控制阀门以确保其响应速度和精确度。根据液氮罐的使用需求和供应压力范围,设置阀门的开度和关闭速度。通过系统监控,调整阀门反馈信号的延迟时间,最大程度上避免系统压力突变和波动。 4. 系统稳定性测试与调整进行系统稳定性测试,模拟不同负载条件下的压力变化。监测罐体压力的波动情况,并根据实时数据调整控制系统的PID参数。优化控制算法,使系统能够快速响应压力变化,并维持在设定的安全压力范围内。 5. 安全保护措施与紧急应对策略设定安全保护措施,包括超压报警、阀门自动关闭等紧急应对策略。确保系统在异常情况下能够自动切换至安全模式,并及时通知操作人员。定期进行安全性能测试和设备维护,以确保液氮罐压力控制系统的长期稳定运行。通过以上关键步骤和详细解答,液氮罐压力控制系统可以达到最佳性能和安全保障。正确的调试过程不仅确保了系统的稳定性,还提高了液氮供应的可靠性和效率。我们也可以采用定制一套全[url=http://www.cryoworkes.com/]自动液氮泵[/url]设备自动补充液氮,达到一个供液平衡的作用。

  • 实验室如何控制含尘量?

    要想解决实验室灰尘问题,首先必须保证[url=http://www.huaketiancheng.com/][b]ICP光谱仪[/b][/url]室的外墙和天花板不要用一般的水泥和涂料粉刷,应采用不易产生粉尘的防火防潮板材来装修,地面应该磨成水墨地面,以减少室外灰尘的侵入,方便室内灰尘的清扫 在门窗外面增加一层孔径比较小的纱窗(门)可以吸附室外灰尘,也可以在室内悬挂窗帘,同时也是仪器避光的需要,也可以安装双层门窗 排风系统应该独立设计、独立使用 禁止其他分析仪器进入ICP光谱仪室,尤其是容易产生灰尘的仪器应该远离ICP光谱仪室。  如果含尘量室内太高也可以用空气过滤器或其他除尘装置解决。对于仪器外部除尘比如感应线圈、稳压电源外部接头、计算机、显示器、打印机、磁盘驱动器等应该定期拆卸或打开,用小毛刷清扫,并使用吸尘器将各个部分的积灰吸除或者用氩气吹扫 对于电源线及其接头还可以用纱布或脱脂棉球粘上少许无水乙醇小心地抹除积炭和灰尘,清扫完毕后对仪器机械部分滴加少许仪表油,比如蠕动泵轴承、滚珠。仪器内部除尘,比如电子控制电路高频发生器,功率管和高压变压器等,应该请生产厂家或本单位专业人员处理。  操作者如不动电子知识,不了解仪器结构禁止操作,除尘时必须停机并光掉所有电源,以防出现人身伤亡事故 如果仪器长期不用或者在放假期间应用防尘罩(防止静电)遮住避免灰尘进入仪器内外   另外,为了避免外来人员进入[b][url=http://www.huaketiancheng.com/skill/]ICP光谱仪[/url][/b]室将灰尘带入室内,还需要指定严格的管理制度,比如进出光室人员必须穿工作服换拖鞋入内,禁止在ICP光谱仪室内吸烟和吃食物(特别是带壳的食物) 操作者还可以通过勤拖底板,勤搞卫生,进房间拖鞋等措施来减少空气中的含尘量。一旦仪器设备上沾有灰尘时,要立即根据元件特点采取不同的方式除尘。

  • 采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    [color=#990000]摘要:针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文介绍了相应的解决方案,解决方案的核心技术是采用串级PID控制方法。方案一是基于现有精度较差的高压电气比例阀,通过外置高精度的压力传感器和压力调节器来提高压力控制稳定性;方案二是采用高精度的低压电气比例阀驱动背压阀来实现高压压力精密控制;方案三是在方案二基础上增加外置高精度的压力传感器和压力调节器来进一步提高压力控制稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~[/color][/align][size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]作为一种先进的注塑成型方法,气体压力控制技术被逐步应用于塑料制品的成型,以解决常规注塑产品存在的尺寸精度差、表面凹痕及翘曲变形等缺陷,从而提高产品质量。在以往注塑成型工艺的气体压力控制中,普遍采用高压电气比例阀,但存在压力恒定控制稳定性较差的问题。最近有客户针对细管注塑成型提出了高精度气体压力控制要求,具体如下:(1)气体压力控制范围:1~3MPa。(2)控制方式:在任意设定压力点处进行长时间恒压控制。(3)长期压力稳定性:优于±1%。针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文将详细介绍相应的解决方案。[size=18px][color=#990000][b]二、高压压力精密控制解决方案[/b][/color][/size][size=18px][color=#990000]2.1 外置压力传感器和调节器的串级控制法[/color][/size]目前注塑工艺中所采用的高压电气比例阀为SMC ITVX2030,压力控制范围为0.01~3MPa,能够满足指标要求,但控制精度较差,为±3%FC。为了提高压力控制精度,方案之一是采用串级控制法,即通过外置高精度的压力传感器和压力控制器构成主控回路,由高压比例阀构成辅助回路。由此,通过这种两个串级PID控制回路,充分利用串级控制法具有高精度的特点,来实现高压压力的高精度稳定控制。此方案的结构布局如图1所示。[align=center][img=外置压力传感器和调节器的串级控制法示意图,500,308]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282250456396_1585_3221506_3.png!w690x426.jpg[/img][/align][align=center]图1 外置压力传感器和调节器的串级控制法示意图[/align][size=18px][color=#990000]2.2 低压电气比例阀驱动高压背压阀[/color][/size]高压压力控制常用的另外一种控制方式是压力放大技术,即采用工作压力较低但精度较高的电气比例阀作为先导阀,驱动一个可工作在高压条件下的背压阀(或气动减压阀),其整体结构如图2所示。[align=center][img=低压电气比例阀驱动高压背压阀示意图,550,202]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282248571168_9189_3221506_3.png!w690x254.jpg[/img][/align][align=center]图2 低压电气比例阀驱动高压背压阀示意图[/align]这里的背压阀相当于一个线性压力放大器,其放大倍数则是实际工艺压力除以比例阀工作压力。由此,可通过调节电气比例阀的驱动压力来控制背压阀的压力输出。如图2所示,这种背压阀高压压力控制方法是一种典型的开环控制,尽管背压阀是对比例阀的输出压力进行线性放大,但其线性度一般较差,这主要是受电气比例阀和背压阀的自身线性度影响。因此,为了实现高精度的压力控制,还需对此方案进行改进以形成闭环控制回路。[size=18px][color=#990000]2.3 高压背压阀串级控制法[/color][/size]为了解决上述比例阀作为先导阀驱动背压阀进行高压压力控制过程中存在的线性度和控制精度较差的问题,可以引入串级控制法,即在图2所示的控制系统中接入一个较高精度的压力传感器和PID控制器,如图3所示,由此对高压管件的压力控制形成一个闭环控制。[align=center][img=高压背压阀串级控制系统结构示意图,600,306]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282249303319_6557_3221506_3.png!w690x353.jpg[/img][/align][align=center]图3 高压背压阀串级控制系统结构示意图[/align]在图3所示的串级控制法高压压力控制装置中,安装了一个外接压力传感器用于直接监测背压阀的输出压力,压力传感器检测到的压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序采用PID算法进行计算后将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节先导压力输出,从而使得背压阀的输出压力快速接近压力设定值并始终保持一致。[size=18px][color=#990000][b]三、总结[/b][/color][/size]从上述的高压压力控制方案中可以看出,所采用的串级控制是一个双控制回路,具有两个独立的PID控制回路。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:主控回路的压力传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比辅助回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。因此,为了实现±1%以上精度的高压压力控制,我们推荐的配套方案是采用0.1%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制