当前位置: 仪器信息网 > 行业主题 > >

细胞趋化追踪轨迹分析

仪器信息网细胞趋化追踪轨迹分析专题为您提供2024年最新细胞趋化追踪轨迹分析价格报价、厂家品牌的相关信息, 包括细胞趋化追踪轨迹分析参数、型号等,不管是国产,还是进口品牌的细胞趋化追踪轨迹分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞趋化追踪轨迹分析相关的耗材配件、试剂标物,还有细胞趋化追踪轨迹分析相关的最新资讯、资料,以及细胞趋化追踪轨迹分析相关的解决方案。

细胞趋化追踪轨迹分析相关的资讯

  • 城市环境所在单细胞拉曼追踪细菌抗性进化轨迹研究中取得进展
    抗生素抗性的频繁出现对现代医学提出挑战。探讨抗性的进化过程对遏制其全球传播至关重要。抗性进化过程涉及高度复杂的表型异质性响应。在抗生素处理下,基因完全相同的微生物菌群中会出现小部分可耐受抗生素的细胞亚群。该存活的亚群在抗生素存在时不能生长,但在去除抗生素后可恢复生长,造成长期复发性感染,也是后续发生抗性基因突变的关键储库。然而,由于耐受亚群的复杂异质性响应且生长停滞,从大量细菌群体中识别耐受亚群并追踪其生理进化轨迹仍是挑战。 近日,中国科学院城市环境研究所朱永官院士团队与崔丽研究组在《德国应用化学》上,发表了题为An Isotope-Labeled Single-Cell Raman Spectroscopy Approach for Tracking the Physiological Evolution Trajectory of Bacteria toward Antibiotic Resistance的研究论文。该研究通过发展单细胞拉曼-氘标同位素-多元统计分析等多种技术联用的方法,在单细胞的高精度水平原位解析了细菌响应的异质性,并从大量细菌群体中灵敏识别出表型亚群的分化及动态变化,实现了抗性突变前细菌表型生理轨迹的快速原位追踪,为遏制抗性进化提供重要指导。 该研究将细菌多次循环暴露于临床治疗剂量的抗生素,进化出抗生素抗性。研究利用重水标记的单细胞拉曼光谱以不依赖培养的方式,检测进化过程中细菌的原位活性。结果发现,在未发生抗性突变的情况下,细菌在抗生素压力下的活性随处理循环逐渐增加,说明其表型耐受性逐渐提高。进一步,研究利用UMAP多元统计算法对所有进化阶段的上千个细菌的单细胞拉曼指纹区间进行分析。根据拉曼指纹指示的细菌表型生理响应,从初始基因型完全相同的细菌群体中,研究识别出随抗性进化发生分化的四个表型亚群,即敏感菌群、原生耐受菌、进化耐受菌和进化抗性菌,并灵敏捕捉到四个亚群随进化过程的动态变化。至此,基于单细胞拉曼所揭示的细菌原位表型异质性响应,科研人员绘制出抗性进化的生理轨迹图。细菌全基因组测序对所揭示的表型进行交互验证,并解析了表型产生的遗传基础。表型分化对维持整个菌群的生存和进化至关重要。由于表型分化远早于抗性突变,识别表型分化对指导临床用药以及减少抗生素耐受性和抗性突变的发生具有重要意义。研究利用明显区分的四个亚群的拉曼图谱,挖掘出耐受性和抗性突变的拉曼标记峰,促进了抗性进化不同阶段尤其是表型耐受性的快速精准识别。 该单细胞分析平台可以拓展到更广泛的抗生素或非抗生素化学品诱导的抗性进化研究。未来可以将该单细胞拉曼与靶向单细胞分选和多组学技术联用,实现耐受性和抗性表型与基因型的精确关联,促进进一步阐释进化机制。研究工作得到中科院“从0到1”原始创新项目、国家自然科学基金创新研究群体项目、福建省自然科学基金等的支持。 单细胞拉曼-同位素标记-多元统计分析追踪细菌抗生素抗性进化的轨迹
  • 《自然》杂志分析中国科研轨迹 近三年中国论文发表数全球第二
    英国《自然》杂志23日推出中国特辑,用大量的数字、图表、评论和分析文章为读者描绘了中国科研的现状和近年来迅速发展的轨迹。  中国国家自然科学基金委员会主任杨卫在该特辑题为《加强中国基础研究》的评论中表示,中国必须提高基础研究质量,正确看待科研诚信问题。  杨卫称,中国科学进步巨大,但是影响力依然不高。相比法国24%,美国18%,日本12%的在基础研究上的投入,中国的投入仅占研发总预算的5%。他表示,除加大投入外,还需提升基础研究的质量标准,采用更适当的指标追踪进度,评估成果。除论文发表数量外,还要注重引用量,推动重大科学问题上的突破。  杨卫坦言,中国依然存在不少科研不端行为。对此,必须在态度上做出改变,要从掩盖转变为揭露。同时,还要推动科研机构改革,将行政权力和学术权力分离开来,避免产生腐败。  在另一篇评论文章中,日本理化研究所发育生物学研究中心干细胞政策研究员道格拉斯赛普和中国科学院广州生物医药与健康研究院院长裴端卿表示,与普遍的看法不同,中国在伦理敏感的生命科学领域的管理经验值得世界借鉴。  随着中国逐渐在全球创新中获得领先地位,许多国家开始看重中国的科研力量。《自然》杂志数据显示,2012年至2015年间,中国的科研论文发表数量增加了一倍,排名世界第二,仅次于美国。中国科学院在世界优秀科研机构排行榜中排名第一,超过了哈佛大学和法国国家科研中心。上月英国广播公司在进入多个中国顶尖实验室和科研场所,采访大批一线科研人员后,推出了一篇名为《中国的科学革命》的文章,详细介绍了中国在天文观测、生命科学、中微子探测、深海科考和航天五大领域的最新进展。文章末尾写道:“世界拭目以待,中国的科学革命下一步将走向何方 中国是否能够完成向世界科学强国的转型。”
  • 追踪单个活细胞 细胞条码完胜荧光标记
    p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 404px" title=" 2015812530441140.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201508/uepic/28a495d3-f847-4968-980e-a818f89bc0ae.jpg" width=" 500" height=" 404" / /p p style=" TEXT-ALIGN: center" strong 活细胞中的塑料球能发出激光。图片来源:M. SCHUBERT /strong /p p   两组研究人员分别将微小激光器放置在了活细胞内。这听上去可能有点像蚂蚁侠的下一代武器,但这个“小玩意”将极大提高生物学家追踪单个细胞活动的能力——这可能惠及从发育生物学到癌症研究的诸多领域。 /p p   “这有可能做一些你利用其他技术做不到的事。”英国敦提大学生物物理学家David McGloin说。例如,该激光器能追踪的细胞比荧光标记能追踪的更多,并且比高频ID等萌芽技术更简单易用。剑桥大学神经生物学家Kristian Franze也赞同这一观点。“如果他们能开发出适用于活细胞的此类技术,那对许多人而言将非常有趣。”他说。 /p p   要制作一个激光器,你需要两件东西:一种能被激发产生光的材料或“媒介”以及一个回荡着特定波长的光的“共振腔”,就像管风琴会同特有频率的声波共鸣一样。与谐振腔共振的光会刺激该材料发出更多光,极大地放大其效果来创造激光,结果将产生一个能放大光量的反馈回路。 /p p   之前,科学家也曾“摆弄”过以细胞为基础的激光器。例如,2011年,美国哈佛大学医学院生物医学家Seok Hyun Yun和现供职于英国圣· 安德鲁大学的物理学家Malte Gather,利用工程改造后包含绿色荧光蛋白的单个细胞作为发光媒介,并将其置于一个共振腔内,从而制造了一个激光器。但没有人制出放置在单个细胞内的激光器。 /p p   研究小组多年来一直在探索以单细胞为基础的激光,希望在活组织内造出会发荧光的细胞,以便在这些细胞工作时跟踪它们,深入揭示身体内部机制,比如癌症是如何开始的。目前,Gather和Yun正在利用类似技术分别进行研究。 /p p   一个困难环节是将腔囊放置在细胞内。Gather和同事将细胞与直径约为5~10微米的塑料球混合,这些小球被掺杂了荧光染料。小珠子充当了空腔,而染料则充当了媒介。细胞经由内吞作用将小球吸入“体内”,这一过程就像免疫细胞吞噬病原体。由于这些球体用荧光染料浸过,所以用一种颜色的光撞击后,它们会发出另一种颜色的光。这种光接着在球体内共振,引发激光作用,并放大自己。重要的是,每一束激光会根据球体的精确尺寸发出12种不同波长的光。相关论文发表在近日出版的《纳米快报》上。这一技术能作用于4类细胞,包括人类巨噬细胞和一种白血细胞。 /p p   研究人员指出,这一技术在细胞传感、医疗成像等领域有着广泛应用。“改写传统激光研究领域的知识并在这个平台上展开研究以便将激光性能最优化,将是一件有趣或者说非常激动人心的事情。”Yun表示。 /p p   之后,研究人员设计出一种5纳秒的光脉冲激活这些染料。它发射的光能沿球体的中间线运行——通过一种名为全内反射的过程进行约束。特定波长的共振和增加会更强烈,直到珠子发出足够的激光。 /p p   Yun和同事Matjaz Humar还设法诱导细胞“吞下”塑料珠子,并且他们制造了两类共振球,相关成果日前在线发表于《自然—光子学》期刊。研究人员利用一个细胞内的脂肪滴或油滴反射和放大光,从而产生激光。Yun和Humar报告说,他们能改变波长,并且利用不同直径的荧光聚苯乙烯微球而不是被注射进去的油滴或脂肪滴标记单个细胞。理论上,利用不同组合的微球和具有不同光谱特性的染料,应当可以使为人体中存在的几乎所有细胞进行单独标记成为可能。 /p p   Yun和Gather表示,这些激光器最显著的应用可能将是追踪单个细胞的行动。每个塑料珠子的直径和光学特性都略有不同,因此它们能有效区分波长,充当细胞条形码。Gather和同事用19小时在细胞培养皿中追踪了少量巨噬细胞,而Yun和Humar也进行了类似验证。 /p p   由于激光器能在明确的波长上照亮细胞,这让它们比荧光蛋白质标记等其他细胞追踪技术更有优势。包含荧光染料和蛋白的传统荧光探针拥有相对较宽的发射光谱——约30~100纳米。这限制了能被同时使用的探针数量,因为通常很难从组织中天然分子广泛的背景发射中区分出这些发光源。但这种激光器的光谱特性使其能同时追踪数千个微小指向标。研究人员通过为每个细胞装载数个小球将这一数字扩展到数百万或数十亿。然后,每个细胞将以不同的波长组合发射激光。 /p p   但这一技术还有很长的路要走。首先,研究人员需要确定不同的细胞类型都能“吞下”小球,尤其是活组织中的细胞。Gather预测,这将不是问题。“我相信该技术是可归纳的。”他说。另外,研发人员必须缩小塑料球的尺寸。Yun承认,现在的小球会将细胞填满。但Yun和Gather已经证实,他们可以用更小的玻璃球代替塑料球。 /p p   由于细胞发光可以持续一个较长的周期,可以在较长时间里识别和跟踪活组织内的细胞,有望为研究人员提供一种很有潜力的手段,执行细胞内传感、自适应成像,还可能真正看到肿瘤细胞的生长过程。但科学家指出,目前这一技术还只用在实验室培养的活细胞中,但他们希望进一步研究能带来用于动物实验的细胞跟踪系统,并最终用于人类。“不管怎样,它非常酷!”McGloin说。 /p
  • 《Cell》活的、整只哺乳动物单细胞谱系追踪
    对单独的有机个体来说,如果每个细胞都有属于自己的传记信息和所在的位置,那么,研究人员就能从中学到许多关于发育、衰老和疾病的知识。坏消息是,侵入性的细胞评估技术会令追踪组织或有机体发育的家谱仅限于一小群细胞,或者结果扭曲的让人不敢确信。好消息是,一项新技术已经开发出来了,它承诺可以将细胞的详细分子读数(例如转录指纹)与细胞的祖先信息结合起来。这项技术被称为CRISPR列阵修复血统追踪(CRISPR Array Repair Lineage tracing,CARLIN),由波士顿儿童医院干细胞研究项目和Dana Farber癌症研究所/哈佛医学院的科学家开发,可追踪体内每一个细胞,从胚胎期到成年期。有关这项技术的详细信息发表在《Cell》杂志,题目为“An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells”,结合“条形码”和CRISPR基因编辑技术,CARLIN可识别不同的细胞类型,以及每种类型的基因是什么。文章的作者写道:“利用CRISPR技术,在发育期或成年期的任何时候以可诱导的方式生成多达44000个转录条形码,与顺序排列的条形码兼容,并且完全由基因决定。我们利用CARLIN确定了胎儿肝造血干细胞(HSC)克隆的内在活性偏差,并揭示了HSCs在损伤反应中一个以前未被重视的克隆瓶颈。”几十年来,发育生物学家做梦都想创造一种重建每一个细胞谱系的方法,“一个细胞一个细胞地,随着胚胎的发育,或者组织的建立,”Fernando Camargo博士说。他是干细胞研究项目的高级研究员,与哈佛医学院系统生物学助理教授Sahand Hormoz博士是本文的共同通讯作者。“我们可以用这个小鼠模型来跟踪它的整个开发过程。”Camargo、Hormoz和他们各自实验室的共同第一作者Sarah Bowling博士和Duluxan Sritharan使用CARLIN方法创建了一个小鼠模型。该模型可以揭示细胞谱系,即父细胞创建不同类型子细胞的“家族树”,以及随着时间的推移,每个细胞中的哪些基因被打开或被关闭。此前,科学家们只能用染料或荧光标记在小鼠身上追踪一小群细胞。也有使用标记或条形码的方法,但以前的方法需要已知标记以分离不同的细胞类型,或者需要耗时的细胞提取和操作,这可能会影响细胞的特性。CRISPR的出现使研究人员能够在不干扰细胞的情况下对细胞进行条码识别,同时跟踪数千个细胞的血统。使用一种可诱导的CRISPR,研究人员能够在小鼠一生中的任何时间点创建多达44000个不同的识别条码。然后,使用另一种名为单细胞RNA测序的技术读取条形码,从而收集每个条形码细胞中开启的数千个基因的信息。这反过来又提供了有关细胞身份和功能的信息。作为一个测试案例,研究人员利用这个新方法揭示了胚胎发育过程中血液发育的未知细节,并观察了成年小鼠化疗后的血液补充动态。研究人员相信,CARLIN也可以用来了解疾病和衰老期间细胞谱系树的变化。此外,该系统还可用于记录对环境刺激的反应,如病原体暴露和营养素摄入。Camargo说:“绘制哺乳动物组织的单细胞谱系图是一项前所未有的壮举!除了在研究发育生物学方面的许多应用外,我们的模型还将提供有关生物对损伤和疾病作出反应时所受影响的细胞类型和层次结构的重要见解。”
  • 追踪细胞体积变化的先进技术-----DPP技术
    [color=#DC143C][size=4][font=楷体_GB2312]细胞状态实时追踪分析系统[/font][/size][/color] 生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。 由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。 Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。 DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。 Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。 细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。 在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。 任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。 当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。 使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 单细胞蛋白质分析技术Milo追踪定量不同iPSC-CM分化亚型
    iPSC简介2006年Takahashi和Yamanaka突破性发现使终末分化、谱系受限的成体细胞:如皮肤活检来源的成纤维细胞、外周血来源的T淋巴细胞、毛囊细胞等,通过转录因子OCT4、SOX2、KLF、c-MYC、NANOG和LIN28的强制异位表达直接将其重编程为多能状态的细胞,这些细胞被称为诱导多能干细胞(induced pluripotent stem cells, iPSC)。iPSC与胚胎干细胞(Embryonic Stem Cells, ESC)有相似的基因表达、表观遗传谱和分化潜能,可产生任何类型的体细胞。并且避免了ESC基于使用胚胎来源细胞和可能导致异常发育的体外受精胚胎的伦理问题,因此iPSC在医疗领域里具有更好的应用和产业化发展前景。iPSC应用和挑战描述任何人类疾病和药物发现的病因学和病理生理学的主要关键组成部分是需要一个生理相关的疾病实验模型,无论是体外还是体内或两者,需要忠实地概括各自的病理生理学和临床表现。因此基于人类iPSC的疾病模型可以无限供应临床相关的表型细胞、以及它们具有的衍生潜力,可以加速阐明生物医学研究中疾病的病因机制,应用于新药发现、药物效价测试、预测药物安全性药理学/毒理学研究,以及基于iPSC的再生细胞疗法,有望治疗心脏病、帕金森、视网膜和角膜疾病、肝脏衰竭、糖尿病、脊髓损伤等疾病。然而将iPSC治疗方法真正有效转化为临床环境,保证患者安全,还需解决:临床级iPSC的衍生和通用细胞系的生物库建立;需要定义iPSC及其差异化治疗细胞产品可接受质量属性;致瘤性问题;免疫排斥反应;选择同种异体或自体 iPSC 以获得更有效的细胞治疗的难题;iPSC 谱系表型细胞和细胞系变异的异质性;基于iPSC的多基因、散发性和迟发性疾病的患病模型的挑战;需要大量的患者iPSC以实现更有效的病因学和临床转化;iPSC衍生的表型细胞缺乏成熟度;遗传的不稳定性等挑战。iPSC-CM研究和面临的问题心血管疾病(cardiovascular disease,CVD)作为全球主要的死因之一,每年会导致约1790万人死亡,所以迫切需要可以延缓疾病进展并且可以改善心脏功能和预防衰竭的治疗方法。而目前的药物、介入或手术方法可能会改善临床结果,但由于无法促进心脏组织修复和再生,因此使这种治疗方法的成功率得不到提升。人类诱导多能干细胞(hiPSC)技术的出现以及随后在培养物中分化和建立心肌细胞(cardiomyocytes,CMs)的能力,为实现人类心脏再生疗法创造了可能性。作为分化CMs的连续和生物学相关来源,hiPSC-CM是心血管研究界的宝贵工具,不仅可用于治疗CVD,还可用于模拟人类心脏发育和疾病、研究潜在机制以及筛选具有疗效和心脏毒性的新药。由于hiPSC-CM由不同的细胞亚群组成,这些细胞亚群是异质的、未成熟的、表达胎儿基因表达谱,并且与成人心肌细胞相比收缩力减少,因此hiPSC-CM疾病模型的准确性和实用性仍然有限。此外,随着hiPSC-CMs的成熟和蛋白质表达动态的波动,大量样品分析的分辨率变得不足。由于其异质性导致心室样、心房样和节点样亚群,需要严格表征hiPSC-CM,并应对其成熟度、身份和功能进行筛选。为此,需要进行单细胞分析模式以了解这种异质性。细胞异质性研究方法虽然单细胞测序技术在分析单细胞转录组学和基因组信息的通量和规模方面取得了进步,但由于任何一个细胞中存在的蛋白质含量非常低,因此难以满足对定量、单细胞蛋白质组学技术的需求。此外,蛋白质组的复杂性和广泛的浓度范围(fM到高nM)带来了额外的挑战。为了在单细胞水平上进行生化蛋白质表征分析,高灵敏度工具是必不可少的。来自ProteinSimple的单细胞蛋白质分子技术:Milo是一种基于微流体的芯片电泳技术。可以克服单细胞蛋白质组学方法面临的障碍。Milo操作流程将细胞悬浮液加载到Milo芯片上,这样单个细胞就可以安放在芯片上的各个微孔中。然后Milo裂解细胞,产生单细胞裂解物,通过分子量电泳分离每个单细胞裂解物中的蛋白质,然后使用紫外线在Milo芯片中捕获蛋白质。然后,对目标蛋白进行一级抗体和荧光二级抗体进行免疫荧光捕获。通过使用开放格式的微阵列扫描仪对芯片进行成像,并使用Scout™ 软件对图像进行分析,以进行定量的自动数据分析。Milo追踪定量不同iPSC-CM亚型与免疫荧光和流式细胞术等其他单细胞分析系统不同,单细胞Western Blot技术Milo可以提供分子量大小信息,以及在单细胞水平测量蛋白质表达时的免疫结合信息,赋予额外的特异性。这种分子量分级步骤可以分辨不同物种的不同蛋白质亚型或区分脱靶抗体结合。为了表征CMs亚型标志物,通过Milo检测了肌球蛋白调节轻链2心房亚型(MLC2A或MYL7)及其心室亚型(MLC2V或MYL2)的蛋白质表达。可以观察到Milo鉴定了三个亚群,这些亚群由MLC2A或MLC2V的单一表达或共表达组成。Milo检测到hiPSC-CM亚型特异性心室和心房标记物MLC2V和MLC2A,在45秒的电泳运行时间内,迁移到总泳道长度的60%(图A)。使用Milo-Scout™ 软件通过找到典型峰形与源自原始荧光图像的一维强度图的卷积的局部最大值来识别峰中心。检测到的MLC2A、MLC2V和GAPDH峰的峰中心位置也由泳道指数显示(图B),显示出单个Milo芯片上所有孔的峰迁移的均匀性。为了评估芯片位置(图C)是否影响峰面积量化,比较了空间不同块之间计算的峰面积方差:每个块区域之间的差异小于2.5%(图D)。应用优化的Milo的检测方法研究hiPSC-CM随时间的异质性,观察整个分化时间线中蛋白质表达的变化。在第17、23和30天从培养物中提取hiPSC-CM细胞,检测MLC2A和MLC2V蛋白质表达。结果显示,共表达MLC2A和MLC2V阳性细胞的比例在整个分化过程中增加,而仅表达MLC2A(MYL7+)的细胞比例随时间减少。且三个亚群中每个亚群中的细胞百分比在所有芯片中一致重现。为了了解在整个分化过程中每个标记物的表达水平在hiPSC-CM亚群中的变化,在hiPSC-CM分化的第17、23和30天对MLC2V和MLC2A的表达进行了量化。随着分化的进行,MLC2A的总水平略有增加。然而,MLC2V表达在第23天和第30天之间增加了近三倍(图C)。为了了解驱动MLC2V表达增加的细胞亚群,三个亚群(MLC2A+、MLC2V+和共表达MLC2A+和MLC2V+)被进一步分层(图D)。MLC2V的水平在共表达MLC2A+和MLC2V+亚群中显着增加,以及在单独的MLC2V+亚群中增加。为了进一步了解导致hiPSC-CM分化过程中MLC2V表达显着增加的机制,对先前从三个iPSC系产生的hiPSC-CM进行了Milo分析,其中转录因子NR2F2 (NR2F2GE)、TBX5 (TBX5GE) 的外显子)和HEY2 (HEY2GE) 被CRISPR/Cas9编辑删除。利用这些品系来验证NR2F2、HEY2或TBX5缺陷在单细胞蛋白质水平上对MLC2V表达的影响。结果显示,TBX5GE和HEY2GE hiPSC-CM中MLC2V的单细胞表达显着降低(图E)。此外,MLC2V表达的显着下降归因于共表达MLC2A和MLC2V亚群(图F)。鉴于共表达MLC2A和MLC2V的亚群增加了MLC2V的表达,推测单独表达MLC2A的未成熟hiPSC-CM会随着时间的推移共同表达MLC2V,从而变得更像心室。同时使用预测调节MLC2V(HEY2或TBX5)的转录因子缺陷的两种细胞系时,我们仅观察到MLC2V在共表达MLC2A和MLC2V亚群中表达降低。这可能表明单独表达的MLC2V群体代表了一个独特的细胞亚群,并且该亚群中MLC2V的表达受替代转录因子的调节。结论:随着在基础和转化心脏研究中的应用,hiPSC-CM正被用于心血管疾病和心脏发育研究。然而,由于hiPSC-CM由不同的细胞亚群组成,并且hiPSC-CM蛋白表达动力学随着成熟而波动,一些蛋白分析方法可能因为分辨率不足而无法检测单细胞蛋白异质性,因此hiPSC-CM的单细胞蛋白质组学可能受到依赖抗体结合检测而无法评估脱靶结合技术的限制。单细胞蛋白质分析技术Milo,通过靶点分子量差异和抗体识别特异性蛋白标记物,避免了抗体脱靶结合的现象,同时能够跟踪单细胞亚群蛋白表达随时间的变化,从而能够识别并量化hiPSC-CM中不同的异质性亚群,应用于疾病建模和再生医学治疗研究。参考文献:1 Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications.2 Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes.3 Single-cell protein expression of hiPSC-derived cardiomyocytes using Single-Cell Westerns.
  • 活细胞及血液中纳米管追踪新技术问世
    美国普渡大学的研究人员发明了一种追踪活体细胞和血液中碳纳米管的成像新技术,使得纳米管在生物医学研究和临床医学的应用趋于完美。相关研究论文在线发表于11月4日的《自然—纳米技术》杂志上。   纳米管目前有两种,它们在药物输送和癌症研究成像中具有潜在应用价值;然而至今没有一种技术可以在活体细胞和血液中观察到它们。此次发明的技术叫做“瞬间吸收成像系统”,利用脉冲近红外激光将能量送入纳米管,之后再由第二束激光探测。该技术不需要用染料来标记纳米管,使得其在科研和医药应用上具潜在的实用价值。此外,科学家们通过使信号由不同的“通道”经过红细胞和纳米管,从而消除勒红细胞的背景干扰。   该研究领导者、华人科学家Ji-Xin Cheng表示,该技术可以实时观测纳米管在血液中的循环,可以为研究者提供相关信息,从而了解如何完美地在研究和临床上应用纳米管。(科学网 任春晓/编译)   相关仪器及方法:瞬间吸收成像系统   完成人:Ji-Xin Cheng课题组   实验室:美国普渡大学化学系/韦尔登生物医学工程学院/医学化学与分子药物学系/物理系/伯奇纳米中心   更多阅读   《自然—纳米技术》发表论文摘要(英文)
  • 单分子追踪技术助力一篇Nature子刊!实现整合素相互作用蛋白的功能与作用机制研究
    研究背景:  FERM结构域的蛋白家族中,黏着斑蛋白(kindlin)和踝蛋白(talin) 是进化上高度保守并且在FERM结构域中表现出高度同源性。kindlin家族在整合素(integrin)活化中发挥重要作用,参与integrin的双向信号传导,对整合素受体介导的细胞与细胞外基质的黏附、细胞-细胞外基质的黏附、细胞迁移、胚胎发育、损伤修复等过程中发挥关键作用。此外kindlin的异常还可以导致多种遗传性疾病的发生,同时kindlin家族作为重要的信号分子还参与了肿瘤的发生发展过程。  近日,《Nature Communications》刊登了Grégory Giannone等学者的最新研究成果,该团队使用Abbelight 3D单分子超分辨成像系统SAFe 360的超分辨-单分子追踪技术(SPT-PALM)研究了kindlin和talin等蛋白在细胞质膜中的扩散机制。  研究内容:  焦点黏着斑蛋白(FAs)家族广泛参与整合素依赖型细胞粘附、极性和迁移等过程,通过直接或间接的方式结合在细胞外基质(ECM)和肌动蛋白细胞骨架之间,并与具有不同结构、信号或支架功能的蛋白建立物理联系。然而FAs蛋白如何被引导到特定的纳米层以促进与特定靶点的相互机制目前尚不清楚。为探究其机制,Grégory Giannone等将kindlin的蛋白分子行为和3D纳米级定位与其在FAs内integrin激活中的功能联系起来,通过单蛋白追踪、超分辨成像以及功能分析kindlin在上膜的定位和扩散对integrin激活、细胞扩散和FAs形成过程,并通过研究发现kindlin通过与talin不同的途径来达到和激活integrin,为integrin激活期间的互补性提供了可能的分子基础。  首先,作者通过追踪integrin在细胞中不同区域的单分子运动轨迹,计算单个β1-integrin或者β3-integrin分子的扩散系数,并比较integrin在FA内和FA外的扩散系数,发现integrin在FA中有自由扩散(绿色轨迹),被束缚的区域扩散(黄色轨迹)和固定不动三种不同模式。不同的细胞中,integrin在FA外普遍表现出更快的扩散速度,更多倾向于纯自由扩散。同时Mn2+的处理会让更多的integrin分子倾向于固定不动,也即参与同kindlin和或talin相互作用。经过计算kindlin突变体和talin突变体中β1-integrin或者β3-integrin的扩散系数并比较,发现对于这两个突变体,Mn2+处理结果略有不同,kindlin突变体中integrin分子倾向于固定不动的比例相对于talin突变体较低一些。integrin,kindlin和talin在细胞中的扩散的轨迹分布于扩散系数分布  为了进一步分析kindlin和talin与integrin相互作用的机制,观测比较kindlin和talin单分子扩散轨迹可发现integrin和kindlin通过细胞膜自由扩散独立进入焦点黏着斑(FAs),而talin和paxillin通过胞浆自由扩散到达FAs。在FAs中integrin展现自由扩散和被束缚的扩散两种扩散模式,两种模式都是通过kindlin和talin的结合触发。自由扩散时integrin,kindlin和talin同时以正确的取向结合的概率非常低,Grégory Giannone等学者研究显示三者更倾向于如上图所示的模型,也即在质膜上自由扩散的integrin和kindlin会先形成不可移动的integrin-kindlin复合物(i);这种复合物可以限制整合素β端的方向,并有利于talin与近端NPxY基序的结合,从而形成短暂integrin-kindlin-talin的三元复合物(ii);kindlin可以间歇性地解离(iii)并再次(ii)与寿命更长的integrin-talin复合物重新结合。这种瞬态的integrin-kindlin-talin三元复合物的相互作用会大大延长integrin和talin的相互作用的持续时间。talin和kindlin脱附后integrin会继续恢复自由扩散的模式,直至再次和kindlin结合。kindlin和talin激活整合素的示意图模型  实验设备简介:  本实验中实用的单分子示踪系统是abbelight公司研发的3D单分子定位显微系统—SAFe 360,利用其特有的DAISY技术将xyz方向的定位精度提高至15 nm,可以精确观测蛋白颗粒的定位分布及其运动轨迹。除此之外,该设备还具备大视场和一键式操作,能够大幅度降低单分子定位操作技术的门槛,帮助研究者从事分子机制的研究。  典型采集实例:神经元超分辨成像大肠杆菌线粒体三维结构外泌体成像  参考文献:  [1] Orré, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." Nature communications12.1 (2021): 1-17.
  • 单分子追踪技术助力一篇Nature子刊!实现整合素相互作用蛋白的功能与作用机制研究
    研究背景:FERM结构域的蛋白家族中,黏着斑蛋白(kindlin)和踝蛋白(talin) 是进化上高度保守并且在FERM结构域中表现出高度同源性。kindlin家族在整合素(integrin)活化中发挥重要作用,参与integrin的双向信号传导,对整合素受体介导的细胞与细胞外基质的黏附、细胞-细胞外基质的黏附、细胞迁移、胚胎发育、损伤修复等过程中发挥关键作用。此外kindlin的异常还可以导致多种遗传性疾病的发生,同时kindlin家族作为重要的信号分子还参与了肿瘤的发生发展过程。近日,《Nature Communications》刊登了Grégory Giannone等学者的新研究成果,该团队使用Abbelight 3D单分子超分辨成像系统SAFe 360的超分辨-单分子追踪技术(SPT-PALM)研究了kindlin和talin等蛋白在细胞质膜中的扩散机制。 研究内容:焦点黏着斑蛋白(FAs)家族广泛参与整合素依赖型细胞粘附、性和迁移等过程,通过直接或间接的方式结合在细胞外基质(ECM)和肌动蛋白细胞骨架之间,并与具有不同结构、信号或支架功能的蛋白建立物理联系。然而FAs蛋白如何被引导到特定的纳米层以促进与特定靶点的相互机制目前尚不清楚。为探究其机制,Grégory Giannone等将kindlin的蛋白分子行为和3D纳米定位与其在FAs内integrin激活中的功能联系起来,通过单蛋白追踪、超分辨成像以及功能分析kindlin在上膜的定位和扩散对integrin激活、细胞扩散和FAs形成过程,并通过研究发现kindlin通过与talin不同的途径来达到和激活integrin,为integrin激活期间的互补性提供了可能的分子基础。先,作者通过追踪integrin在细胞中不同区域的单分子运动轨迹,计算单个β1-integrin或者β3-integrin分子的扩散系数,并比较integrin在FA内和FA外的扩散系数,发现integrin在FA中有自由扩散(绿色轨迹),被束缚的区域扩散(黄色轨迹)和固定不动三种不同模式。不同的细胞中,integrin在FA外普遍表现出更快的扩散速度,更多倾向于纯自由扩散。同时Mn2+的处理会让更多的integrin分子倾向于固定不动,也即参与同kindlin和或talin相互作用。经过计算kindlin突变体和talin突变体中β1-integrin或者β3-integrin的扩散系数并比较,发现对于这两个突变体,Mn2+处理结果略有不同,kindlin突变体中integrin分子倾向于固定不动的比例相对于talin突变体较低一些。integrin,kindlin和talin在细胞中的扩散的轨迹分布于扩散系数分布为了进一步分析kindlin和talin与integrin相互作用的机制,观测比较kindlin和talin单分子扩散轨迹可发现integrin和kindlin通过细胞膜自由扩散立进入焦点黏着斑(FAs),而talin和paxillin通过胞浆自由扩散到达FAs。在FAs中integrin展现自由扩散和被束缚的扩散两种扩散模式,两种模式都是通过kindlin和talin的结合触发。自由扩散时integrin,kindlin和talin同时以正确的取向结合的概率非常低,Grégory Giannone等学者研究显示三者更倾向于如上图所示的模型,也即在质膜上自由扩散的integrin和kindlin会先形成不可移动的integrin-kindlin复合物(i);这种复合物可以限制整合素β端的方向,并有利于talin与近端NPxY基序的结合,从而形成短暂integrin-kindlin-talin的三元复合物(ii);kindlin可以间歇性地解离(iii)并再次(ii)与寿命更长的integrin-talin复合物重新结合。这种瞬态的integrin-kindlin-talin三元复合物的相互作用会大大延长integrin和talin的相互作用的持续时间。talin和kindlin脱附后integrin会继续恢复自由扩散的模式,直至再次和kindlin结合。kindlin和talin激活整合素的示意图模型 实验设备简介:本实验中实用的单分子示踪系统是abbelight公司研发的3D单分子定位显微系统—SAFe 360,利用其特有的DAISY技术将xyz方向的定位精度提高至15 nm,可以观测蛋白颗粒的定位分布及其运动轨迹。除此之外,该设备还具备大视场和一键式操作,能够大幅度降低单分子定位操作技术的门槛,帮助研究者从事分子机制的研究。 典型采集实例:神经元超分辨成像大肠杆菌线粒体三维结构外泌体成像 参考文献:[1] Orré, Thomas, et al. "Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions." Nature communications 12.1 (2021): 1-17.
  • 癌细胞追踪设备研制成功
    巴西圣保罗大学卡洛斯物理研究所光学院近日研制出了一套新的癌细胞追踪设备。研发人员称,这项创新将帮助外科医生更准确地定位癌变细胞位置,优化治疗手段和效果。  据介绍,这一设备的工作原理主要是基于一些物质受到特定波长的光照射,吸收能量后会发出荧光。因此新设备将荧光粉输送到患癌部位的淋巴结中,然后用特定颜色的光照射这一部位,荧光粉发出不同颜色的光被设备摄像机捕获,手术人员可在显示屏上实时确定癌细胞转移必经的第一个淋巴结,即前哨淋巴结的位置。设备主要部件包括两个摄像头,一个捕捉黑白图像,另一个用于查看彩色图像 另有一组用来检测荧光和捕获图像的红外线装置以及一个显示屏。
  • 昆虫追踪定位系统:昆虫行为学研究新解决方案
    昆虫行为的研究在昆虫研究领域中一直是一个重要的方向。无论是昆虫的气味选择实验、产卵偏好实验、寄主偏好实验、食物偏好实验、昆虫取食行为观测实验等相关实验,实验数据都是研究人员通过肉眼观察记录或者判断。这种方法有多个弊端:非常消耗人工,从而会增加时间和预算,同时也会使追踪评估的结果不够客观且不能量化分析。在这个背景下,昆虫追踪定位系统的出现为昆虫行为研究带来了巨大的帮助。一、显示运动轨迹,提高效率昆虫追踪定位系统是一款全新的科研工具,它集高清高帧频工业相机与昆虫行为分析软件于一身。该系统的多种运动参数自动记录功能,软件自动追踪目标昆虫的运动轨迹。昆虫追踪定位系统还拥有目标选择功能,实时观测时支持对实验昆虫进行选择性显示,重点观测分析目标昆虫,并生成随时间变化的X坐标和Y坐标,轻松获得目标昆虫的行为模式。大多数昆虫行为研究都集中在一般的运动行为上。使用昆虫追踪定位系统进行视频跟踪,可以轻松地分析出昆虫的爬行参数,如爬行距离、爬行时长、爬行速度、停留总时长、停留次数、穿越边界次数等,并将运动数据可视化。在研究蝶类求偶飞行、犀金龟为争取配偶而斗争、榄叶提取物对初龄菜青虫乌的拒食和引诱取食作用、花果发育过程中气味挥发物对传粉者行为的调节、光肩星天牛对沙枣和新疆杨的偏好性等昆虫课题时,我们需要观测昆虫的运动,并进一步分析其目的和行为模式。观测昆虫的行为实验时,基于高清高帧频工业相机的记录系统能够捕捉并分析昆虫行动轨迹的详细数据,包括爬行距离、爬行时长、爬行速度等参数。此外,昆虫行为分析软件将捕获的运动数据转化为直观的数据,使得数据可视化,帮助研究人员更轻松地分析数据,发现隐藏在大量数据中的运动规律和行为模式。通过精确捕捉昆虫行为的每一个细节,并清晰地展示目标昆虫的运动轨迹,昆虫追踪定位系统不仅显著提高了研究效率和精度,而且提供了前所未有的观察体验。其客观且可视化的数据,让科学家能够更直观地理解和分析昆虫行为,进一步推动了相关领域的发展。 二、产出量化数据,便于分析更进一步寻找昆虫运动的规律,往往需要工具辅助。研究昆虫行为需要昆虫追踪定位系统自动追踪和记录昆虫的行为,生成量化数据,从而避免了人工观察的弊端,提高了效率和准确性。由于系统能够自动记录数据,避免了人为干扰和主观判断的误差,使得研究结果更加可靠和可信,因此昆虫追踪定位系统还可以提高研究的客观性和可重复性。同时,由于系统可以生成大量的量化数据,研究人员可以进行更深入的数据分析和模型构建,进一步推动昆虫行为研究的发展。将为科研工作提供丰富的数据支持。这无疑将使昆虫行为的研究更加深入和精确。总的来说,昆虫追踪定位系统是昆虫研究领域不可或缺的研究工具。它将开启你的昆虫研究新篇章,让你对昆虫行为的理解更加深入。
  • 中科院分子细胞卓越中心陈铭、赵宏伟:高内涵成像分析系统应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由中国科学院分子细胞科学卓越创新中心化学生物学技术平台陈铭研究员和高级工程师赵宏伟联合供稿,以下为供稿内容:高内涵成像分析系统,通俗来讲就是自动化成像平台和图像定量分析平台的集成,于20世纪90年代中后期推出第一代产品。高内涵成像分析系统的出现得益于自动化技术的进步,也依赖于计算机辅助的图像自动采集和信息提取能力的提升,其鲜明特点就是图像采集速度快、样品检测通量高、数据分析功能强。高内涵主要应用于高通量药物筛选和功能基因组筛选的细胞表型类实验检测,也适用于中低通量的细胞学研究中实验条件的摸索和优化。本文主要从图像高通量采集和图像批量分析两个方面介绍一下应用心得,并简要介绍一下我们在高内涵使用中遇到的一些思考。1. 自动化成像:图像采集要兼顾成像速度和成像质量的平衡作为高通量检测设备,高内涵的成像速度非常快,现在的技术能在5分钟之内完成一整块384孔板的单通道单视野的高质量图像采集。高内涵的成像对象通常是板底透明的微量多孔板,包括1-1536孔板,其中以96孔板和384孔板的使用最为常见。当然,借助于适配器的使用,也可以实现对培养皿和玻片的观察。根据板底材质的不同,分为PS材质多孔板和玻璃底多孔板,其中板底透明的黑色PS材质微孔板使用较广泛。根据板底厚度的不同,板底厚度大于200 μm的属于厚底板,小于等于200 μm的属于薄底板。薄底板多用于高数值孔径物镜的成像,厚底板适配于长工作距离物镜。同时,由于高数值孔径物镜比较宽,容易与多孔板边缘的裙边相撞,导致多孔板最外面的一圈的孔无法成像,现在也有低裙边的多孔板来兼容高数值孔径物镜的整板成像。此外,出于特定的实验目的,还有一些特殊的板型,也可以在高内涵上进行图像采集,比如适用于3D 类器官培养的U型底多孔板,用于研究细胞迁移能力的Transwell孔板等。区别于一般的荧光显微镜,高内涵属于自动化的倒置荧光显微镜,通常搭配自动化的载物台来驱动多孔板的移动。目前通用的载物台是机械载物台和高精度磁悬浮载物台,可以实现连续时间点成像后稳定的视频输出。由于所有的微孔板的板底都无法保证厚度是绝对一样的,因此高质量图像采集的自动化还依赖于精确自动聚焦技术的发展。常用的聚焦方式包括基于激光的硬件聚焦和基于图像的软件聚焦。基于激光的硬件聚焦是通过光源的反射或折射实现的,利用近红外激光探测微孔板的底部界面作为自动聚焦的参照,特点是速度快、重复性高、光毒性低。我们平台目前使用的高内涵设备的聚焦方式为硬件聚焦,包括双峰探测和单峰探测两种板底探测方式。双峰探测的原理是利用激光探测微孔板板底下表面和空气之间的界面得到第一个探测峰,物镜继续向上移动,激光会探测到微孔板板底上表面和溶液之间的界面得到第二个探测峰,对于样品的聚焦就是在第二个探测界面上加上聚焦高度实现的。这种双峰探测方式可以保证同一个荧光通道的图像都是在样品的同一高度上采集得到,聚焦精确,但同时也相对容易受到一些因素的干扰造成聚焦困难,包括微孔板板底的厚度及均一度,以及溶液的性质和体积等。当使用低倍物镜或检测玻片样品时,双峰探测模式不再适用,只能使用单峰探测方式,即在自动聚焦时只能探测到多孔板板底的下表面和空气之间的界面或者玻片和空气之间的界面。单峰探测模式下,自动聚焦的实现是把单峰界面作为聚焦参照,加上板底厚度或玻片厚度作为理论上的第二个界面从而实现样品的自动聚焦。这种单峰探测方式下聚焦更容易些,但共聚焦成像的精确度会降低。需要特别注意的是硬件聚焦对于板底的洁净程度要求较高,多孔板在进行成像前最好用喷过消毒酒精的无尘纸擦拭,而且要保证物镜镜头洁净无尘,避免因为板底和物镜上的灰尘造成聚焦失败。另外有些自动化微孔板成像设备,还配置了软件聚焦模式。软件聚焦是指机器自动在z轴上拍摄一系列图像,根据算法挑选最大对比度的图像作为样品图像,这种软件聚焦模式速度通常较慢,而且容易因细胞碎片或死细胞等原因导致聚焦不精确。作为显微镜,高内涵的成像模式也包括宽场成像和共聚焦成像。高内涵仪器上宽场成像用途比较广泛,但对于一些信噪比很低的实验或者需要观察亚细胞结构的筛选则必须使用共聚焦成像。为了适配检测通量和检测速度,因此高内涵上的共聚焦只能是转盘共聚焦,有效提高了成像速度的同时但也会导致图像分辨率受一定损失。目前主流的高内涵品牌推出的共聚焦,有较低端的LED光源的单转盘共聚焦,也有激光光源的双转盘共聚焦。由于共聚焦排除了非焦平面的杂散光,到达样品的激发光的光子数量的急剧锐减,微透镜双转盘共聚焦能极大地提高到达样品的光子数量,从而达到比较好的成像效果。高内涵的共聚焦通常搭配水镜使用,与空气镜相比,水镜的透光量是空气镜的4倍以上。另外,目前虽然有的高内涵搭配了油镜,但是油镜并不适用于高通量筛选,进行稳定的大规模自动化实验时还是空气镜和水镜更为适用。作为高通量自动化仪器,高内涵通常会搭配机械臂和多孔板堆栈来提高检测通量。考虑到荧光成像样品最好避光保存,降低荧光淬灭或衰减风险,在使用多孔板堆栈时,条件允许的情况下最好能做适当的避光措施以更好地保护样品的荧光信号。在实际科研应用中,有的实验细胞密度较低,有的实验因为药物处理或siRNA处理导致的细胞毒性问题使部分样品孔内细胞比较稀疏,有的类器官成像实验中样品只存在于孔内的部分区域,对于上述这些情况可以考虑使用低倍物镜进行预扫描,对扫描结果进行简单的图像分析确认精确的检测区域,再对目标区域进行高倍物镜下的正常图像采集。这不仅可以节省大量的检测时间,同时也避免了大量冗余数据的产生。2. 细胞图像分析:标准化、多参数、高通量、无偏差高内涵图像采集速度快和检测通量高的直接结果是会产生海量的图像数据,因此,标准的、无偏差的批量图像分析是必不可少的。同一批次的筛选样品,设置一个通用的图像分析方法,可以稳定的用于所有筛选数据的批量分析。高内涵分析软件能够根据细胞图像提取数百到数千个特征参数,用于定义或区分不同细胞表型,也可以输出所有的特征参数用于实验数据的评价。高内涵的图像分析软件可包含三个难度的分析模式:简单的预设方法模式,灵活的模块化组合模式,以及难度最大的个性化分析方法开发模式。预设方法模式对操作新手比较友好,按照实验类型简单修改后套用即可,比如细胞计数、荧光强度分析、细胞增殖分析、细胞凋亡分析、蛋白核质转位分析、蛋白受体内化分析、Spot分析等等。由于面临的实验需求多种多样,在我们平台的实际科研应用中高内涵图像分析通常采用灵活的模块化组合模式,优化调整不同的模块参数使其更加贴合具体的实验需求。基于这种分析模式,细胞的亚群分析、基于图像的纹理分析、细胞周期分析、Spot分析、神经细胞分化分析、单细胞迁移轨迹追踪分析、微核分析、类器官分析、免疫细胞杀伤分析等实验类型,都已获得很好的分析效果。图像分析主要包括以下步骤:图像的处理、图像分割、特征参数的定量和提取、细胞亚群分类和结果输出。图像分析环节特别具有挑战性的步骤就是图像分割,尤其是对于样品质量比较差或者是没有荧光标记的明场图像而言。对于细胞分布不均匀,细胞核拥挤成团的样品的分割,往往要尝试很多分割方法,包括对图像进行锐化或模糊化处理、通道叠加、调整细胞识别方法的荧光阈值或对比度、优化不同切割方法的参数等,从而获得最好的分割效果。对于分割不理想的图像,可以将细胞区域和背景区域分割,对细胞区域进行整体定量。现在随着机器深度学习技术在高内涵图像分析软件中的应用拓展,软件图像分割能力已得到很大提升。当微孔板上孔内细胞表型的异质性比较大的时候,采用整孔平均值这样的参数定义不同处理之间的差异时,往往信号的窗口比较小。为了增大信号窗口,可以考虑采用将细胞群体划分为不同的亚群,针对不同的亚群进行数据分析,或者是计算某个亚群在群体细胞中的占比。对于荧光图像的分析,多数情况下平均荧光强度(即mean-mean值,每个孔内所有像素点的平均荧光强度)可以反映不同孔之间的差异,但当不同处理导致细胞形态发生变化时,总荧光强度的平均值(即sum-mean,每个孔内所有细胞的总荧光强度的平均值)更能反映真实的孔间差异。对于一些荧光强度比较低的样品,阴性样品和阳性样品的信号窗口不够大的时候, 通过扣除背景信号,也可以提高阴性阳性之间的信号窗口。我们常用的背景信号的计算方法有四种:① 通过平均荧光强度和对比度,反推背景荧光强度;②通过纹理分析,找出没有细胞的区域定义为背景区域,定量该背景区域的荧光值为背景荧光强度;③圈选细胞之外的一圈无细胞区域为背景区域,定量该区域的荧光强度;④制备没有荧光标记的细胞孔,该孔的荧光值作为背景荧光。高内涵分析软件虽然能够对细胞图像提取成百上千个生物学参数,但大多数情况下,简单表型只需要其中一个或几个参数就可以进行数据评价,判断药物处理效果和反映趋势。常用的参数包括:荧光强度、荧光总强度、细胞数量、细胞面积、阳性细胞比例、荧光强度比值等。但是有一些复杂的细胞表型,无法用单个或几个参数进行简单区分,这时候结合软件的机器自学习功能/深度学习功能,利用多参数体系对细胞群体进行分类,可能更容易实现不同表型的区分。3. 高内涵系统使用过程中需注意完善的地方总的来说,高内涵细胞成像和图像分析功能都很强大,但是在实际的使用中也面临着一些问题和挑战。首先,高内涵实验产生的数据量非常庞大,高效安全的数据存储管理非常重要。如果由于配套电脑的硬盘容量跟不上实际实验规模的需求,仪器管理员往往会处于频繁的数据备份和硬盘清理工作中。同时也需要有高速稳定的数据信息传输途径,确保采集好的图像能及时传输到分析软件系统,避免发生数据丢失的情况。其次,图像分析对电脑的运算性能要求比较高,特别是有些类型的图像分析方法步骤复杂,定量参数繁多。比如单细胞实时追踪实验,需要对单个细胞的多个连续时间点进行多参数定量统计,最后的结果输出阶段也需要对单个细胞数据进行呈现,因此对电脑的运算能力很有挑战。如果配置的数据分析电脑性能与这类图像分析的需求不太匹配,往往会导致分析速度过慢甚至容易发生宕机现象。最后,对于实心的类器官样品,目前常见的高内涵系统的激光穿透效率和成像分辨率还不足够理想,重构获得的三维图像可以用于获取体积面积等参数,但还不太能对球体深处内部细胞进行高质量分割,也较难获取准确的蛋白定位信息。相信这也是高内涵成像系统在未来发展提升中会逐渐优化解决的一些要点。本文作者:赵宏伟,化学生物学技术平台,高级工程师陈铭,化学生物学技术平台,平台主任,研究员
  • 首次大规模高分辨率揭示从一个携带致癌突变的单细胞演变为侵袭性肿瘤的全过程
    癌症是由渐进的基因和表观遗传变化驱动,在整个过程中,癌细胞可以获得复杂的异质性,进而更具侵袭性和转移性,并扩散到身体其他部位形成新的肿瘤,加速疾病的进程。因此,深入了解肿瘤亚克隆选择和转移的分子基础、转录状态的起源和转变以及肿瘤进化路径的遗传决定因素,不仅有助于阐明肿瘤进化的基本原则,还具有临床意义。基因工程小鼠模型(Genetically engineered mouse models, GEMMs)是研究肿瘤进展的一个关键工具,研究人员能够通过GEMMs研究肿瘤在原生微环境和实验定义的条件下的演化过程。其中,KrasLSL-G12D/+ Trp53fl/fl(KP)模型通过病毒传递Cre重组酶到少量肺上皮细胞引发肿瘤,导致致癌基因Kras的激活、P53肿瘤抑制基因的纯合缺失和肿瘤的克隆生长等,真实模拟了新生细胞转化成侵袭性转移肿瘤的主要步骤,从分子和组织病理学上再现了人肺腺癌的进展。因此,我们可以通过KP模型来探究肿瘤演变过程中尚未解决但非常关键的问题。 近日,美国加州大学Jonathan S. Weissman研究团队及合作者在Cell上发表了题为“Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution”的文章。研究团队将基于单细胞RNA-seq的进化谱系示踪系统引入KP小鼠模型中,连续并全面监测了一个携带致癌突变的单细胞演变为侵袭性肿瘤的全过程,揭示罕见的亚克隆可以通过独特的转录程序驱动肿瘤扩张。此外,研究团队还发现肿瘤通过典型、独特的进化轨迹发展,干扰额外的肿瘤抑制因子可以加速肿瘤的进展。该研究以前所未有的规模和分辨率重建了从单一转化细胞到复杂、侵袭性肿瘤群体的肿瘤演化全过程。 文章发表在Cell主要研究内容KP-Tracer小鼠可以连续和高分辨率追踪肿瘤的起始和进展为生成高分辨率的肿瘤演化系统,研究团队开发了一种具有谱系追踪能力的肺腺癌小鼠模型KP-Tracer,能够连续数月进行细胞谱系追踪。后续实验证实,在5-6个月后,该模型成功追踪了肿瘤发生,并且示踪剂能够在相应部位表达。此外,在对癌细胞进行单细胞转录组测序分析后,发现细胞状态、谱系、样本身份和肿瘤克隆性在肿瘤中的表达与预期一致。 图1. KP-Tracer小鼠模型的构建。来源:Cell罕见的亚克隆在肿瘤发展过程中显著扩增肿瘤进化中的一个关键问题是,基于肿瘤生长促进基因或表观遗传变化的亚克隆选择以及由此产生的亚群动态变化如何导致侵略性亚克隆对同一肿瘤的其他部分的扩展。为研究KP肿瘤的亚克隆动力学,研究团队采用了一种统计检验方法,即将每个亚克隆的相对大小与没有亚克隆被选择的“中性”进化模型中的大小进行比较分析。结果显示,有些肿瘤似乎是中性进化的,即没有证据表明阳性选择;有些亚克隆则显示出明显的阳性选择迹象。此外,研究团队发现肿瘤主要由一个(有时两个)正在扩增的亚克隆驱动。在肿瘤中,扩增细胞的比例分布广泛, 表明了亚克隆扩展的侵袭性;扩增细胞以增加的DNA拷贝数变异、细胞周期评分和适应度评分为标志。 图2. 罕见亚克隆的显著扩增及其特性。来源:Cell绘制细胞状态之间的系统发育关系揭示肿瘤进化的共同路径原则上,KP模型中观察到的细胞可塑性、转录异质性可能来自于通过转录状态的随机或结构化进化路径。为了研究肿瘤进化路径的一致性,研究团队开发了一个称为“进化耦合”的统计数据,扩展了克隆耦合统计数据来量化成对细胞状态之间的系统发育距离。基于不同转录状态的占比和进化耦合的全套肿瘤的数据驱动分层聚类显示,肿瘤可以分为三个不同的组(Fate Cluster1、Fate Cluster2及Fate Cluster3)。Fate Cluster1、2之间共享一些转录状态,Fate Cluster1主要通过包括胃样和内胚层样状态进化;Fate Cluster2通过肺混合状态进化,Fate Cluster3以高适应度状态为主,如前上皮间质转化(Pre-EMT)和间质状态。进一步,研究团队开发了“Phylotime”对Fate Cluster 1、2背后的转录变化进行分析。分析结果证实,Fate Cluster1、Fate Cluster2是两条独立的进化途径,并且每条途径显示出与Phylotime相关的不同转录变化。上述结果表明,KP肿瘤可能主要通过两种途径进化,一条是胃样和内胚层样状态,另一条是肺混合状态,且每种进化轨迹都显示出明显的转录变化。 图3. 细胞状态之间系统发育关系的构建。来源:Cell肿瘤抑制因子的缺失会改变肿瘤的转录组、可塑性和进化轨迹肿瘤抑制基因可以调节多种细胞活动,其丧失与肿瘤侵袭性的增加有关,但这些基因对体内肿瘤进化动力学的影响目前尚不清楚。因此,研究团队结合基因干预和定量系统动力学方法探索了额外的致癌突变如何改变KP肿瘤的进化轨迹,重点研究了人类肺腺癌中两种频繁突变的肿瘤抑制因子LKB1和APC,以及经CRISPR sgRNA敲除LKB1和APC后产生两种动物模型(KPL和KPA)。结果显示,靶向LKB1或APC会增加肿瘤负担,但亚克隆扩增的数量和相对大小没有改变;与肿瘤适应性相关的基因在遗传背景中差异较大。 图4. 遗传扰动会改变肿瘤的转录适应性和可塑性。来源:Cell 为检测LKB1和APC的异常是否改变了KP肿瘤的转录图谱,研究团队整合了KPL、KPA肿瘤和之前的KP肿瘤的单细胞转录组数据集。结果显示,经额外的LKB1和APC干扰后产生了四个新的转录状态。此外,针对LKB1/APC的干预也导致主导转录组状态的改变:KPL肿瘤主要富集在上皮细胞-间充质转化前状态(Pre-EMT),KPA肿瘤富集在APC特异性早期、间质和转移状态。 为研究肿瘤抑制因子的缺失如何改变进化轨迹,研究团队对单个肿瘤的转录状态占比和进化耦合进行了主成分分析。结果显示,靶向性肿瘤抑制因子LKB1或APC均可促进肿瘤生长,但其对细胞状态、可塑性和进化路径的影响差异较大 。具体而言,KPL肿瘤能够迅速发展到Pre-EMT状态下并稳定下来;KPA肿瘤则通过新的APC特异性状态开辟了一条独特的进化路径。图5. 肿瘤抑制因子的缺失对肿瘤进展及细胞状态的影响。来源:Cell结 语综上所述,该研究首次在基因工程肺腺癌小鼠模型中使用基于CRISPR的谱系示踪剂追踪肿瘤从单一转化细胞到侵袭性肿瘤的演化过程,以连续、高分辨率的肿瘤谱系追踪为肿瘤进化建模提供了一个重要参考,绘制了从激活单个细胞的致癌突变发展成为具有侵袭性的转移肿瘤的路径图,揭示了细胞转录图谱、细胞可塑性、进化路径以及肿瘤抑制因子在肿瘤发展中的作用。研究团队表示,随着谱系示踪工具的发展和其他新兴数据的集成,也期望该研究提出的实验和计算框架为未来构建肿瘤演化的高维、定量和预测模型奠定良好的基础,从而为新的治疗策略提供新思路。 图6. 研究总结概图,来源:Cell
  • 从仪器研制与改造看生命科学行进轨迹
    阅读生命:从单项尖端技术走向系统集成 科学时报:从仪器研制与改造看生命科学行进轨迹   基因技术的突破使生命科学发展进入了知识爆炸时代,许多新概念和新技术让人眼花缭乱。几年前人们听到的是“基因组”、“蛋白质组”、“生物工程”等名词,现在科学家在谈论“生命模块”、“人工电路基因”、“纳米粒子智能导弹”……生命科学究竟沿着怎样的路线在前进?带着这个问题,记者最近走进了中科院生物物理所几个实验室。   “联通”产效率   2009年最后一个月的最后几天里,一个类似齿轮的灰色金属圆形物,摆放在中科院生物物理所研究员杨福全办公室的茶几上。这是他自己设计、委托企业加工完成的一件最新“作品”,工厂送来刚拆封,等着他验收。   “这是我新研制的逆流色谱仪的核心部分—— 一种新型逆流色谱柱。我准备把它用于膜蛋白质的富集和亚细胞器的分离,进而用于膜蛋白质组学研究。”巧遇《科学时报》请他谈生物技术目前的发展态势,他顺便告诉记者。   “国际上目前有这样的仪器吗?”记者问。   “还没有,不过这个现在还需要保密。我还是给你看看另外一样东西。”   说话间,杨福全从柜子里拿出一个已经组装好的“作品”。“这是毛细管液相色谱—电喷雾质谱接口平台,是我们在中科院仪器研制和改造项目支持下,通过学习、消化和吸收,在国内设计加工的,使仪器能够适合于各种复杂程度的蛋白质样品分析。这个准备安装在新进的一套二维液相色谱—高分辨质谱系统上。”   据杨福全介绍,蛋白质组学是目前生命科学研究的热点之一。蛋白质组学技术发展很快,蛋白质组学研究竞争也异常激烈。有了基本硬件设备而又能让设备高效地工作,才能做出高水平工作。其中,现代色谱分离技术和生物质谱技术构成了蛋白质组学技术的主体。色谱—质谱系统连接的好坏直接影响整个系统的灵敏度和效率。这个接口平台就是针对商用仪器的不足而设计加工的,它与自制的毛细管液相色谱柱联合使用,不仅降低了整体设备的运行成本,更重要的是大大提高仪器系统的通量、灵敏度和效率。   2004年从美国国家卫生研究院(NIH)国立心、肺和血液研究所回国的杨福全博士,目前担任中科院生物物理研究所质谱首席技术专家,主要从事蛋白质组学新技术新方法的研究与应用。对现有仪器进行改造、研制生命科学研究领域中的新仪器设备是他目前重要的任务之一。   杨福全介绍,生物质谱技术和双向电泳、高效液相色谱(HPLC)、毛细管电泳等现代分离技术的结合,实现了多肽、蛋白质和核酸等生物大分子的高通量分析和鉴定 这些技术通过与荧光标记技术、稳定同位素标记等技术的结合,又实现了生物大分子高通量的定量分析,从而推动了蛋白质组学技术的发展,促进蛋白质组学技术在生命科学中的应用。   “实验室的仪器装备改造后,技术水平是否取得较大的提高?”记者追问。   杨福全并未直接回答记者的问题,而是打开不久前新当选的中科院院士、北京大学教授尚永丰给他写的一封电子邮件,上面写道:“过去两年我实验室的学生和工作人员在你实验室做了很多的质谱分析。这些分析对我们的研究起到了很大的作用,2009年我们发表的文章,包括在Cell、PNAS和The Embo Journal杂志上的文章,都用了你实验室的质谱分析结果。所以,在此我想向你和你实验室的相关人员表示真挚的感谢。我几次在不同的场合说过:国内好多单位都有质谱仪,但真正能用到科研上的不多。很高兴北京有你这一家,为我和其他实验室的研究工作提供了很好的技术支持。我们实验室主要从事基因表达调控的表观遗传机制研究,今后肯定还需要你的支持和帮助。希望我们找个时间聊聊,探讨一下合作研究的可能性。”   杨福全介绍,蛋白质组学技术目前的发展趋势主要包括3个方面:高分辨、高质量精度和快速的质谱仪器的开发 高效、高选择性的样品富集技术的开发 由生物质谱技术、现代分离技术和稳定同位素标记技术等技术集成的高通量的定量蛋白质组学技术开发。因为随着蛋白质组学技术在生命科学和蛋白质科学研究中的不断深入应用,全面系统分析细胞、组织或生物体中蛋白质量的动态变化规律或绝对量的分析,已成为蛋白质组学研究的必然趋势。   “衔接”出速度   中科院生物物理所研究员刘志杰从另一个角度解说了生命科学发展对新设备的需求。这位曾参与美国东南结构基因组研究中心工作的研究员2006年回国,一直致力于改进中国生命科学的研究设备。   他说,10年前,研究人员解析一个蛋白质三维结构大约需要1~2年时间,随着新技术、新方法的发展,截至2009年12月底,全世界已解析了7万多个蛋白质分子的三维结构。这些高效率的自动化方法,主要包括高通量克隆、高速度表达纯化、蛋白质自动化结晶、自动化衍射数据收集和结构解析等。如果研究人员继续采用原有的老方式,美国于2000年启动的“结构基因组计划”根本不可能按时完成,甚至做不出其中的1/10。   目前,刘志杰在中科院生物物理研究所的蛋白质科学研究平台构建了一套高通量的从基因克隆到蛋白质结构解析的流水线。这一流水线由几个模块组成,每个模块都力争实现自动化。如第一个模块即是自动化克隆和小规模可溶性表达筛选,使用该模块可自动筛选出可溶性表达的蛋白质。   “如果使用传统方法,只能一个个地进行手工试验,不但费时费力还容易出错。现在可以一次筛选96个目标基因,很快了解哪些蛋白质在哪种条件下是可溶的。也就是说,过去需要几个月或几年完成的工作,如今一个人几天就能完成。”他说。   他介绍,现代分子生物学等相关学科的发展为蛋白质晶体学提供了许多先进的技术和方法,极大地提高了蛋白质晶体学的研究效率。由于蛋白质晶体学的研究对象在很大程度上是一个自然的选择过程,构象稳定和容易结晶的蛋白质成为研究人员进行结构分析的首选目标。这就意味着遗留下的蛋白质分子的结构解析难度将越来越大。同时,随着人类对生命现象认识的深入,对健康、环境和能源方面的关注,蛋白质晶体学的研究对象越来越多地定位于与人类疾病以及工农业密切相关的重要目标蛋白上。其中,很多目标蛋白来自真核生物的蛋白质复合体和膜蛋白,而真核生物的可溶蛋白质和膜蛋白的获得,是目前各国晶体学家面临的共同难题。   此外,生物大分子的结晶也是晶体学家们亟待解决的问题。虽然人们投入了大量精力研究蛋白质结晶的理论和实验方法,但由于蛋白质结晶过程的多参数、随机性过大,未知因素过多,目前蛋白质结晶在理论上没有取得任何突破性进展。人们所期待的根据蛋白质一级序列预测其结晶条件的情景还只是梦想。研究人员不得不继续采取“盲人摸象”的大规模筛选方法寻找蛋白质分子的结晶条件。因此,高纯度、高均一性和高稳定性的蛋白质样品的获得,以及蛋白质分子的结晶,成为目前限制蛋白质晶体学发展的主要瓶颈。   为筛选最佳的结晶条件,研制出自动化、高速度、高精确度制备出纳米级蛋白质和结晶溶液混合液滴的机器人,成为迫切需要解决的技术问题。因为结晶机器人用很少量的蛋白质样品就能筛选大量的结晶条件。目前,发达国家已开发出多款结晶机器人,能够一次筛选几百到上千个蛋白质的结晶条件 另一种结晶观测机器人甚至能根据时间拍摄结晶过程的照片,并自动放在网上,研究人员不论在家还是在其他地方都可以了解到实验的情况。如果没有这样的自动化设备,学生们就不得不呆在冷室里一个一个地观测了。   刘志杰告诉记者,他新构建的从基因到结构的流水线,各种零件都是现有的,但如何将它们整合在一起工作,大部分是他按照实验的需求自己设计而成的,其中一部分是他与美国的合作者共同探讨研究而成的。如果与美国同行的设备比,生物物理所这套设备的自动化程度更高。如,小规模细胞培养,美国合作者依然使用手工,而他的这套设备已实现了自动化。   全新的自动化装备给刘志杰研究小组带来了预期的喜悦。他的课题组使用这条流水线所开展的癌症研究取得突破性进展。其论文《通过N10取代的叶酸类似物抑制人源5,10-次甲基四氢叶酸合成酶的结构基础》于2009年9月被《癌症研究》以封面文章的形式给予报道,受到同行高度关注。   在此流水线基础上,刘志杰打算在2010年实施新的改进,对膜蛋白处理进行自动化改造。即在保持设备原有功能基础上,找出使膜蛋白可溶的条件。这种设备的改进,只要进入研究阶段,成果在国际上必定领先。因为,目前世界上尚未有这类设备。   据悉,中科院将建基于同步辐射线站的高通量衍射数据收集和解析模块。中科院生物物理所引进的“千人计划”研究员张荣光,将在上海光源上建造新设施。刘志杰说:“我们将是他最大的用户。”   各领域不期而遇   中科院生物物理所杨福全和刘志杰课题组开展的设备研制,使人们不难看出,生命科学研究技术目前正从发展单项尖端技术转向系统集成研究,而且这种趋势不仅体现在结构生物学领域,在脑认知研究中也有相似表现。   在生物物理所脑认知国家重点实验室,薛蓉研究员先让记者参观了实验室最新制造的“头盔”。这个特殊的“头盔”内插满了线路,接受实验的人戴在头上,推进脑成像装置便可给大脑拍照,并探测到脑部神经系统的一些活动情况。   薛蓉曾在美国纽约大学医学院放射系生物医学成像中心任工程师职位。她介绍,这个“头盔”是她正在研制的一种新的并行成像设备与技术,以改进人体超高场磁共振成像系统的性能,提高成像速度和质量。   薛蓉解释说:“核磁共振中,质子共振频率接近300MHz,在人体内其波长仅约11厘米,RF射频场将与人体产生‘介电共振效应’,导致净磁化矢量在发射和接收上产生严重的不均匀性。除此之外,共振频率的提高还会引起人体组织对电磁能量的吸收率(SAR)的增加,带来类似微波炉加热式的安全隐患。解决这些高频信号问题的最有效方法,就是研制多通道的发射/接收射频线圈,结合并行成像技术,以期获得超高场成像系统中高分辨率的灰度均匀的人脑结构和功能图像。”   薛蓉介绍,随着交叉学科的不断发展,磁共振技术在诸多领域中都得到了重要应用,无论是生物学、临床医学、分子影像学,还是脑与认知科学等国家重要学科领域的研究,对磁共振技术的发展都有着越来越高的要求。国际上在这方面的投入相当可观,目前,国际上7特拉斯(T)人体磁共振成像系统已装机30余台。国外磁共振领域著名的生产厂家Siemens、GE和Philips等公司,以及美国哈佛医学院、纽约大学医学院,德国Freiburg大学等已装备了7T磁共振超高场成像系统。在亚洲区域,韩国也早于我国购买了相关设备。为了不滞后于国际前沿的科学研究,生物物理所脑成像中心2009年底引进了国内第一台7T超高场磁共振系统。这是基于这一团队已具备了自主开展磁共振成像系统软硬件研发能力而着手的工作。该系统目前正在紧张装机。   国际上的主要研究机构正积极在7T及以上超高场系统上研制与此项目类似的高场发射与接收系统及相关线圈。由于研发进度以及技术保密等原因,各家都不披露完整的技术资料。竞争点大多在于这个“头盔”上。同时,这个“头盔”如何与脑成像进行连接,也是核心技术之一。   薛蓉说:“实验室脑成像中心2010年的一个重点研究目标,即是在西门子7T超高场全身磁共振扫描仪上研制多通道发射与接收头线圈,及其与7T成像系统的射频接口,实现多通道的并行发射与数据的并行采集,克服超高场成像系统中射频场发射的不均匀性,有效提高功能磁共振成像的速度和质量,特别是大脑特定区域,如前颞叶和海马区磁共振图像的信噪比和对比度,减小磁敏感性伪影,帮助检测认知科学实验中功能磁共振信号的变化。”   对新进口的设备进行创造性“联通”、“衔接”和“整合”,是生物物理所几个实验室都在进行的工作,一旦成功便能获得很好的研究结果。特别值得注意的是,这类工作也是国际上许多实验室都在进行的研究。虽然中国生命科学曾一度落后于发达国家,但在这里,人们可看到中国有可能迎头赶上甚至超越的希望。
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止.今日话题古生物的发现与研究是一件辛苦却也颇具趣味的事情,其实很多科研工作也都是如此。如果您正在从事的研究跟古生物有关,可以留言分享您科研中有趣的地方;又或者您有对古生物研究感兴趣,有推荐的书籍电影,欢迎留言分享~我们会在今日话题发布后的三个工作日内,为点赞数高的读者送出星巴克咖啡券一份~ 点击查看更多往期精彩文章 生物传感器,让人工智能真正活过来|国际用户简讯牛津大学开创单细胞水平微生物代谢研究新方法|海外用户简讯解一颗石榴石,梦回千年“海上丝路”|光机所考古中心前沿用户报道瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。点击下方“阅读原文”,咨询相关技术服务。
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 捕捉生命轨迹 探索科学奥秘—奥林巴斯显微镜新品FV3000首发
    8月18日,在近百名来宾的共同见证下,奥林巴斯在上海震旦博物馆发布了新一代激光扫描共聚焦显微镜新品——FV3000,这是FV系列时隔12年之后的又一力作。FV3000凭借其无可匹敌的高灵敏度、高速、高分辨率成像能力,不仅可以提供从活细胞成像到图像处理分析的全套解决方案,还可以在活细胞及组织的宏观和微观层级的观测模式上,也同样保持极佳的成像效果,无愧为生命科学领域的里程碑。发布会上,来自京都大学生命研究科的松田道行教授发表了“活组织细胞通讯的可视化”主题演讲,深入浅出的讲解方式令在场观众受益匪浅。奥林巴斯新一代激光扫描共聚焦显微镜新品FV3000发布(从右至左:奥林巴斯(中国)有限公司科学事业统括本部总经理 清水嘉毅先生、市场营业本部 生命科学部部长 波多野仁先生、技术服务部部长 张超美先生)京都大学生命研究科松田道行教授发表“活组织细胞通讯的可视化”主题演讲  刷新业界新记录——超高速成像、超高灵敏度  传统激光扫描共聚焦显微镜已经很好地满足固定状态下的细胞和切片的成像,但是生命科学的研究目的,是要追踪活细胞、活组织甚至活动物状态下生物学状态和变化。如果把传统显微镜比作固定物体摆拍的话,那么对活细胞和组织标本进行高灵敏度、高速成像,就犹如对赛场上的运动健儿进行高速连拍。FV3000产品图  根据发布会的介绍,FV3000引入了两套扫描振镜,其中一套是高分辨率扫描振镜,具有先进显微镜特有的高分辨率成像能力 另一套是共振式扫描振镜,在保持大视野成像基础上兼顾了高速成像的表现。在全视野成像标准下,FV3000能够实现一秒钟内在屏幕上连续投射出 438张静止画面的采集速度,创下了业内扫描速度的新记录,可实时观察测钙、血流、心肌收缩等活细胞反应。  此外,FV3000还应用了奥林巴斯新进研发的独家专利——“TruSpectral全真光谱超高灵敏检测”技术。与传统激光共聚焦显微镜相比,FV3000对标本的激光照射强度更低,荧光检测灵敏度更高,能有效保护珍贵的荧光标本。  从宏观到微观的跨越——高精准物镜、高分辨率  如果把图像扫描和处理系统比作FV3000的大脑,那么高精准物镜就是它的眼睛。FV3000采用最高精度的激光器和光路元件,提供多种独有物镜为不同应用和科研实验提供最优化的方案,如硅油物镜能够进行深层活细胞的高分辨率观察,超级色差校准物镜提高了共定位分析的可靠性,NA1.7超高分辨率物镜也是超高分辨率计划诺贝尔获奖者的科研首选。   现场来宾在工作人员讲解下深入了解FV3000产品  另外,FV3000还可配置专利超高分辨技术FV-OSR,其应用非常广泛,可提供多达4通道同步超高分辨率技术成像,适用于大部分样本。FV-OSR对荧光染料无特殊要求,轻松突破光学分辨极限,实现高达120nm的超高分辨图像。在聚焦超高分辨细节的同时,FV3000还可根据需要,从1.25X物镜的低倍全局成像切换到150X物镜的高倍细节观察,实现大视野成像,完成从宏观到微观不同层级的图像采集。  承光之力点亮生命 光学科技谱写世纪篇章  凭借近一个世纪的光学研究努力,奥林巴斯始终秉承“Social IN”的经营理念,致力于以光学科技守护美丽生命。作为全球领先的显微镜产品和服务供应商,奥林巴斯自1920年自主研发了日本第一台商用显微镜“旭号”开始,就一直在显微镜领域不断攻克科技难关、坚持光学技术的不断创新,始终站在显微镜领域发展的前沿。此次FV3000的发布也必将成为显微镜历史发展中的重要时刻,它的诞生将使细胞生物学、肿瘤研究、干细胞研究、神经科学研究等领域的研究再上一个新的台阶。  奥林巴斯生命科学领域负责人表示:“FV3000的研发离不开奥林巴斯卓越的光学科技创新和积累,未来,奥林巴斯会不断开拓进取,用不断进步的显微技术和产品,帮助人们去发现和探索更多的未知世界,发现更多未知之美。秉承‘承光之力,点亮生命’的品牌理念,奥林巴斯会持续守护美丽生命,为实现人类幸福的生活不断努力”。
  • 高通量自动化成像及分析设备使用心得——中科院分子细胞科学卓越创新中心高级工程师韩帅
    为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息网特别组织策划“高内涵成像技术”主题约稿活动(点击查看)。本期,特别邀请到中国科学院分子细胞科学卓越创新中心化学生物学平台技术主管韩帅博士谈一谈高通量自动化成像及分析设备方面的使用心得。中国科学院分子细胞科学卓越创新中心 韩帅 高级工程师韩帅,博士,高级工程师,中国科学院分子细胞科学卓越创新中心化学生物学平台技术主管,负责功能基因组筛选、高内涵筛选及单细胞转录组测序文库构建等技术体系搭建,为药物新靶标发现等高通量筛选项目提供技术咨询和服务。建立了多种基于高内涵的高通量筛选体系,作为主编组织编写了《高通量筛选技术实验手册》及《高内涵成像与分析实验手册》;利用自动化设备建立了基于384孔板模式的单细胞转录组自动化建库体系。所建立的技术体系帮助用户在Nature、Cell、Cancer Cell、Nature Genetics等知名期刊发表多篇研究论文。俗话说:“眼见为实”,显微成像技术是生命科学研究领域中至关重要的检测手段之一。随着自动化技术与显微成像技术的融合,以及图像分析技术的提升,涌现出了一大类高通量自动化成像及分析仪器。这类仪器不仅可以帮助我们在短时间内迅速获取大量图片,而且能够从中提取出多种参数的定量信息。这些特点使其能够最大程度上避免传统高通量筛选检测方式因检测指标相对单一而带来的假阳性和假阴性结果。目前,高通量自动化成像及分析设备在高通量药物筛选、功能基因组筛选及其他多样品检测项目中有了越来越广泛的应用,涉及的领域也涵盖了细胞信号通路、肿瘤、神经生物学、免疫学、传染病学、干细胞等多种生物学研究领域。中国科学院分子细胞科学卓越创新中心化学生物学技术平台是一个以高通量实验技术为手段,为功能基因组筛选及药物筛选等通量化实验提供服务的技术平台。显微成像是我们开展高通量筛选项目的重要检测手段之一。为了最大程度满足中心乃至全国用户在高通量成像及定量分析方面多元化的实验需求,平台目前配备了5台侧重点不同、各有优势的高通量自动化成像及分析设备。为了帮助用户获得最佳数据,我们对成像实验主要从以下三个方面进行综合考虑:实验标记体系选择、成像设备选择及图像分析方法设置。其中实验标记体系及图像分析方法设置在《高内涵成像及分析实验手册》中有详细描述,本文将结合我们在技术服务过程中的体会,重点就如何选择合适的高通量自动化成像及分析仪器进行讨论。我们参考平台现有的设备,将自动化成像分析仪按照性能特点大致分为三个类别,下文将分类探讨其特点及应用。1. 高内涵成像分析仪高内涵成像分析系统通常具备高分辨率、多通道成像、大样本容量和高通量的能力,配合强大的图像定量分析软件,适用于高度复杂的细胞和生物分子研究,如细胞表型分析、药物筛选等。具体来说,高分辨率的成像能力使研究者能够在微观水平上观察细胞和亚细胞结构的微观细节;其次,多通道成像使得研究者可以同时获得多个生物标记物的信息,为复杂生物学研究提供更全面的数据;高通量性能使得在相对短的时间内处理大量样本成为可能,支持高效的大规模实验和筛选。高内涵成像分析仪配备非常强大的图像分析软件,这是它区分于其他类别高通量成像分析仪的最主要方面。其软件可以自动识别、分割细胞及细胞亚结构,并在此基础上对数目、形态、强度、定位、运动轨迹、纹理等多种参数进行定量化分析。大多分析软件的界面呈现为可自由组合的多种分析模块,用户可以像使用命令语句编写程序一样,根据实际需求非常灵活地将模块按照特定逻辑进行个性化组装,最终获得所需参数。分析软件还可以提供单个细胞的数据,并可根据单细胞数据对整体细胞进行亚群分类,非常适合异质性培养体系的分析。对于动力学实验,分析过程中配合细胞追踪模块(cell tracking)可以拿到每个单细胞的动力学变化数据。很多高内涵的分析软件中还加入了机器自学习或人工智能,对于复杂的表型或高通量筛选过程中会出现的不可预测的多样化表型进行智能化分析。这种智能化的图像分析有助于从庞大的图像数据中提取有意义的信息,加速实验结果的分析和解释。根据光路设计的不同,高内涵又分为共聚焦高内涵及宽场高内涵两大类。共聚焦成像模式最大的优势在于去除了来自非焦面的信号,从而极大地提高图像的信噪比,使图像更清晰。但这并不意味着宽场成像在所有应用中都劣于共聚焦成像。在我们的实际运行过程中,宽场成像可以满足大部分日常需求,例如荧光强度、细胞形态、细胞迁移、周期、类器官大小和数目检测等等。在某些对信噪比要求较高的实验中,共聚焦表现出更大的优势。例如,对比较厚的样品(如类器官或多层生长的细胞)进行成像并需要对单个细胞进行精确定量时,共聚焦成像会去除大量来自非焦面的信号,从而给出更准确的数据;当关注的细胞亚结构尺寸较小(例如自噬小体、蛋白聚集体等呈现为点状的结构)时,共聚焦成像会获得信噪比更高的图像,使计数或荧光强度的分析更加准确;另外,对于信号较弱的样品,由于共聚焦成像一般使用能量强波长单一的激光作为激发光源,且通过pinhole过滤掉大部分来自培养基及板底的背景信号,图像信噪比会较宽场成像有非常显著地提升。高内涵成像分析仪在生命科学研究中的应用非常广泛。在细胞生物学中,它们被用于研究细胞形态学、细胞内信号传导、亚细胞结构等方面。在药物筛选和药物发现中,高内涵成像分析仪可以用于评估化合物对细胞的影响,加速新药物的发现和开发过程。此外,这些设备还在生物标记物研究、基因表达分析、蛋白质相互作用研究等方面发挥着关键作用。2. 分析功能相对简单而明确的自动化显微镜相比于分析功能丰富而灵活但操作门槛较高的高内涵成像分析仪,另外一类仪器应用场景明确且操作简单更易上手。这类仪器在成像方面具有高度自动化的功能,成像速度快,能够拍摄高质量的明场及荧光图像;用户友好的操作界面使得操作者能够轻松设置实验参数、调整显微镜设置,并进行图像采集;但物镜配置往往以低倍镜为主,这些特点决定了这类成像仪器的应用场景基本以细胞整体水平的观测和分析为主,不适用于对分辨率要求更高的细胞亚结构水平的检测;分析软件提供的分析功能相对简单而明确,界面大多以已开发好的分析流程呈现给用户,用户只需优化部分参数的设置即可。结合我们平台的实际运行情况,这类仪器较多的应用是细胞计数、细胞活死分析、病毒感染/质粒转染效率分析、细胞融合度分析/生长曲线绘制、基因表达/细胞整体荧光强度分析、克隆个数分析等。概括来讲,如果实验的定量需求基于细胞计数,或是整体荧光强度,或孔内特定区域的分析(如细胞克隆或细胞融合度),都可以考虑这类自动化显微成像仪器。由于这类仪器低倍镜成像速度快,在以酶标仪读值作为主要检测指标的高通量筛选体系中,我们会根据具体情况建议用户在实验结束之前利用自动化显微镜收集全孔图像,便于后续酶标数据分析过程中对阳性孔或数据异常的孔回溯图像,从而帮助筛选者有效减少传统高通量筛选体系中的假阳性和假阴性。例如,实验结束前,在不影响酶标检测体系的前提下,利用核染色或明场成像统计孔内细胞数,可辅助校正由孔间细胞数差异导致的酶标读值变化。总之,这类仪器虽然功能相对简单,但它们提供了快速而有效的图像获取及简便的定量分析解决方案。3. 自动化活细胞长时程监测设备若要对活细胞样品进行较长时间的跟踪拍摄,通常需要在拍摄过程中提供二氧化碳、温度及湿度控制。虽然大多数自动化成像仪器能够实现二氧化碳和温度的控制,然而对于需要长时间跟踪拍摄的实验,如细胞生长曲线监测和细胞迁移监测往往需要持续数天,湿度控制对于确保在观察期间细胞处于最适宜状态变得尤为关键。这种情况下,就需要使用自动化活细胞长时程监测设备。自动化活细胞监测设备的湿度控制有多种实现方式。一种是体积较小可直接放入细胞培养箱内使用的活细胞工作站,细胞培养箱为成像设备内的样品提供所有环境控制。这类仪器通常具备多个板位,能够实现对中等通量样本的同时监测。另一种方式是成像设备自身搭载自动湿度控制模块。另外,对于开放式的自动化显微镜,可通过在载物台上加装具有活细胞环境控制模块的腔室(chamber),来实现在拍摄过程中对活细胞环境的控制。然而,这类设备一次只能实现一块板的连续拍摄,更适用于低通量样本监测。此外,我们平台还采用了将高内涵成像设备通过机械臂与自动化培养箱整合的方式,实现活细胞长时程监测。当一块样品板完成拍摄后,机械臂将其送回自动化培养箱,继续下一块样品板的拍摄。这种运行方式也可实现中等通量的样品监测,但只适合拍照时间点间隔较长的实验。在某些研究项目中,还会出现对氧气浓度有要求的实验(例如研究低氧或高氧环境对细胞的影响)。这种情况对环境控制提出了更高的要求,需要成像设备或培养箱搭载氧气浓度控制模块。自动化活细胞长时程监测设备通过连续、实时的图像采集,使研究人员能够观察和记录细胞的实时变化。对于研究细胞的实时响应、细胞迁移、细胞周期、细胞增殖等过程至关重要,确保我们不会错过微观层面上的关键事件。综上所述,高通量自动化成像分析设备的不同类别在生命科学研究中各具特色,为科学家提供了多样化的工具,促进了研究的深入发展。高内涵成像分析仪通过高分辨率成像及丰富多样化的定量分析指标为生物学研究提供了深刻的洞察;分析功能相对简单而明确的自动化显微镜为分辨率要求不高的通量化检测提供了快速有效的图像获取及简便的定量分析解决方案;而活细胞长时程监测设备则使得细胞动态过程的观察更为全面和细致。这三类设备相互补充,共同推动了生命科学领域的进步,为科学家提供了更广阔的研究空间。在未来,随着这些设备技术的不断创新和进步,会更好地服务于生命科学研究。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎投稿,投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • PMX公司2019 ISEV大会首发——四激光荧光纳米颗粒追踪分析仪 ZetaView QUATT
    德国Particle Metrix(简称PMX) 在2019 ISEV大会上推出F-NTA四激光荧光纳米颗粒追踪分析仪ZetaView QUATT, 一台仪器具有405nm,488nm,520nm 和640nm激光器,为外泌体的荧光标记研究带来了更多的选择. 这也使得 Particle Metrix 公司在生物标志物检测领域展开了新纪元。同时感谢Klinik Essen大学和HansaBioMed的技术合作伙伴QUATT NTA于生命科学领域测试中提供的支持。所见即所测应用:应用:外泌体囊泡病毒纳米颗粒纳米气泡量子点̷.. 重要提示:用户在选择ZetaView系列产品时可选择单激光、双激光和四激光 。以下二维码马上报名,即可获得两个样品免费测样名额!德国Particle Metrix德国Particle Metrix(简称PMX)是一家专业从事生命科学研究的仪器公司. 在生命科学研究领域,PMX公司的ZetaView产品采用了激光光源照射纳米颗粒悬浮液,利用全黑背景可以观察到单个纳米颗粒的布朗运动和电泳现象,实现单个纳米颗粒的跟踪,粒度测量,浓度测量, Zeta电位测量及荧光测量等。自动校准和自动聚焦功能,让用户眼见为实,更加直观人性化。通过对11个不同位置的扫描,来自于数以千计的颗粒的zeta电位和粒径柱状图的结果就可以计算出来。此外,颗粒浓度也可以通过视频计数分析得到。大昌华嘉科学仪器部大昌华嘉科学仪器部作为德国PMX公司在中国的合作伙伴,我们将会为用户提供纳米颗粒跟踪分析技术支持及售后服务。大昌华嘉是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。大昌华嘉于1865年成立,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉仪器部(大昌洋行(上海)有限公司)专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。
  • 韩春雨发表基因编辑新论文,发明基于CRISPR的RNA追踪成像系统
    p style=" text-align: center text-indent: 0em " br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 539px height: 129px " src=" https://img1.17img.cn/17img/images/201907/uepic/5a25c1ea-763d-4ca1-892d-bdc8759308d6.jpg" title=" 001.jpg" alt=" 001.jpg" width=" 539" height=" 129" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 近日, /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " strong 韩春雨 /strong /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 在预印本网站BioRxiv发表了一篇关于基因编辑的新论文: /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " Background free tracking of single RNA in living cells using catalytically inactive CasE. /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 该研究开发了一种 span style=" color: rgb(192, 0, 0) " strong 新型的活细胞RNA追踪成像工具 /strong /span ——VN-dCasE-VC,效果和可用性更强。 /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " 该论文署名单位为 /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai color: rgb(192, 0, 0) " strong 河北科技大学基因编辑研究中心 /strong /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " ,通讯作者为 /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " strong 韩春雨 /strong /span span style=" text-align: justify text-indent: 2em font-family: 楷体, 楷体_GB2312, SimKai " ,第一作者为高峰。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 18px " strong span style=" background-color: rgb(255, 192, 0) " 前情回顾 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 2016年5月2日, strong span style=" color: rgb(0, 112, 192) " 韩春雨 /span /strong (河北科技大学)作为通讯作者在国际顶级学术期刊& nbsp i strong span style=" color: rgb(192, 0, 0) " Nature Biotechnology& nbsp /span /strong /i 杂志发表了题为: span style=" color: rgb(0, 112, 192) " DNA-guided genome editing using the& nbsp Natronobacterium gregoryi& nbsp Argonaute /span (使用NgAgo进行DNA引导的基因组编辑)的研究论文。 /p p style=" text-align: justify text-indent: 2em " 该研究称NgAgo对真核生物(包括人)具有基因编辑能力。该研究成功很快在世界范围内爆火,韩春雨老师此前籍籍无名,几乎一夜之间成为 span style=" color: rgb(192, 0, 0) " strong 学术界网红 /strong /span , strong 被赞誉为“在三流学校取得世界一流原创成果,打破国际基因编辑技术垄断” /strong 。 /p p style=" text-align: justify text-indent: 2em " 该论文通讯作者为 strong 韩春雨 /strong ,第一作者为 strong 高峰 /strong ,浙江大学教授 strong 沈啸 /strong 为共同通讯作者,但在后续修改版本中,沈啸从作者名单中去除了。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/1d7198cb-15f6-4265-a96d-c3c0ceef7256.jpg" title=" 003.jpg" alt=" 003.jpg" / /p p style=" text-align: justify text-indent: 2em " 2016年8月,河北科技大学成立基因编辑研究中心,计划投入资金逾2亿元。但NgAgo的研究成果引发广泛质疑,2017年8月3日,韩春雨撤回该论文。2018年8月31日,河北科技大学取消了韩春雨所获得的荣誉称号,终止了韩春雨团队承担的科研项目并收回了科研经费,收回了韩春雨团队所获校科研绩效奖励。 /p p style=" text-align: justify text-indent: 2em " 2019年4月4日, strong 预印本网站BioRxiv /strong 刊登了一篇来自美国普渡大学研究人员的研究论文,表明NgAgo通过核酸内切酶活性介导增强大肠杆菌的同源重组。BioWorld第一时间解读并报道了该论文,该研究表明NgAgo可以编辑原核生物, strong 但不能编辑真核生物基因组 /strong 。 /p p style=" text-align: center text-indent: 0em " span style=" background-color: rgb(255, 192, 0) font-size: 18px " strong 韩春雨最新论文的解读 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong CasE /strong /span 是Ⅰ-E型 CRISPR复合物的核心成分,它通过结合特定的茎环区域单独处理pre-crRNA,称之为& nbsp CasE& nbsp Binding& nbsp S,简称为CBS。CasE保守His20参与催化活性,ΔHis26-TtCse3突变的CasE(dCasE)则失去了催化活性,但仍然与其靶标紧密结合。 /p p style=" text-align: justify text-indent: 2em " 在该研究中,通过将 split 荧光与dCasE的N端和C-末端(ΔHis20)融合,构建了活体RNA跟踪工具 strong VN-dCasE-VC /strong 。该系统 strong 仅在存在靶RNA时才发出荧光 /strong ,从而增强信噪比。 /p p style=" text-align: justify text-indent: 2em " 在活细胞中进行可视化的RNA追踪,不需要特定的亚细胞分布。CasE-GFP和dCasE-GFP在HEK293T细胞中的高水平表达和均匀分布表明CasE和dCasE适合于活细胞中的RNA操作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/5a32b8b8-cb7f-4f68-b545-ac6c0e7ffefc.jpg" title=" 004.jpg" alt=" 004.jpg" / /p p style=" text-align: justify text-indent: 2em " 为了测试CasE在哺乳动物细胞中表达时是否具有强活性,作者构建了“关闭”报告基因质粒CBS-GFP-N1。它由5& #39 -UTR中的GFP mRNA和CasE结合位点(CBS)组成。当CasE被引入系统时,GFP表达水平急剧下降。 /p p style=" text-align: justify text-indent: 2em " 为了进一步测试CasE活性,作者还构建了“开启”报告基因质粒RED-16× CBS-Lin28-C1,其中CBS插入RED单体基因的3& #39 -UTR区和Lin28的上游。Lin28是RNA核保留信号,在其3& #39 -UTR中具有lin28信号的RED单体mRNA几乎不能翻译成蛋白质。 /p p style=" text-align: justify text-indent: 2em " CBS-CasE依赖限制性切断lin28信号并从核释放靶mRNA用于翻译(图1E和图1F)。这些表明 span style=" color: rgb(192, 0, 0) " strong CasE可以结合并切割哺乳动物细胞中的CBS /strong /span 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/65dbbb00-6838-4c46-88b7-0c08579f6560.jpg" title=" 005.jpg" alt=" 005.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/66dae72a-22e0-4fc7-bb38-3d961ac5fa54.jpg" title=" 006.jpg" alt=" 006.jpg" / /p p style=" text-align: justify text-indent: 2em " 为了将dCasE-CBS相互作用设计到RNA追踪系统中,作者通过将split-FP5-7与dCasE蛋白结合。发现一个版本,即 strong VN-dCasE-VC很难发出荧光 /strong ,这可能是由于不正确的折叠或不稳定的状态,但是当与靶RNA(CBS)结合时,可以在荧光显微镜下 strong 清楚地捕获荧光信号 /strong ,即使VN-dCasE-VC表达质粒的转染剂量非常低。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/33ab0f91-a006-4117-aef5-1910e1e73918.jpg" title=" 007.jpg" alt=" 007.jpg" / /p p style=" text-align: justify text-indent: 2em " 接下来作者使用VN-dCasE-VC系统追踪哺乳动物细胞中过表达的β-肌动蛋白(β-Actin)的mRNA,VN-dCasE-VC系统在细胞质中显示出强荧光。此外还观察到,向靶mRNA添加更多CBS可改善信号,荧光追踪更清晰,因此,可以通过增加CBS的数量来检测低丰度的mRNA。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/b961c813-1b79-4db1-b1af-dadd33479a47.jpg" title=" 008.jpg" alt=" 008.jpg" / /p p style=" text-align: justify text-indent: 2em " 总的来说, span style=" color: rgb(192, 0, 0) " strong 韩春雨团队发明了一种新的RNA追踪工具 /strong /span ,将其命名为VN-dCasE-VC。该系统能够追踪活细胞中没有背景的特定RNA,通过荧光将其可视化。 /p p style=" text-align: justify text-indent: 2em " 目前已有两种活细胞RNA追踪成像工具,一种是MS2,一种是Cas13a,韩春雨团队开发的dCasE系统,成像效果由于MS2,而且, strong dCasE蛋白的分子量为22kDa,远小于Cas13a的130kDa,dCasE的小分子量更容易递送至细胞内 /strong ,因此更适合用于活细胞的RNA追踪。 /p p style=" text-align: justify text-indent: 2em " 需要 span style=" color: rgb(192, 0, 0) " strong 特别说明 /strong /span 的是,该研究目前发表于预印本网站,尚未经过同行评议。 /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/d53fe940-6d1c-417b-a3f7-1390d202d333.jpg" title=" 009.jpg" alt=" 009.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " 通讯作者:韩春雨 /span br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/561d4533-8ca4-4bb2-9f4d-cdab0f6120d7.jpg" title=" 010.jpg" alt=" 010.jpg" / /p p style=" text-align: center text-indent: 0em " 第一作者:高峰 /p
  • 中科院遗传发育所税光厚团队发表单细胞脂质组学综述文章
    2023年2月,中科院遗传发育所、中科脂典的相关研究人员在《Trends in Analytical Chemistry》(IF: 14.9)上发表了题为“Embracing Lipidomics at Single-cell Resolution: Promises and Pitfalls”的综述文章,总结了单细胞脂质组学当前的技术进展和瓶颈,讨论了在单细胞水平分析脂质的独特技术挑战(特别是准确的脂质鉴定和定量的重要性),并例举了单细胞脂质组学在生物学和临床医学中的潜在应用。(中科院遗传发育所王泽华博士和曹明君博士为本文的第一作者,中科院遗传发育所税光厚研究员和中科脂典技术总监Sin Man Lam博士为本文的共同通讯作者。)  1、引言  脂质作为细胞膜和细胞内细胞器(如脂滴)的主要组成部分,发挥着一系列复杂的生物物理、能量储存和信号传导功能,这些功能是细胞机制正常运转的基础。脂质代谢失调涉及多种主要疾病,包括糖尿病、心血管疾病、代谢相关性脂肪肝(MAFLD)、癌症、神经退行性疾病、传染病等。近几十年来,随着脂质组学的蓬勃发展以及分析工具/技术的改进,脂质的结构和生物学复杂性才开始被解开。  质谱(MS)是广泛用于脂质组学领域的主要分析技术,相对于其它方法,它具有更高的灵敏度、更大的选择性、更强的稳定性和更高的特异性。质谱仪的快速发展,伴随着软件和数据库的进步,使得来自不同生物样本的各种生物液体(血浆、血清、尿液、唾液、泪液、痰等)、组织和亚细胞器中的脂质能够以前所未有的分辨率进行表征。脂质组覆盖范围的扩大极大地促进了疾病生物标志物的识别、表型验证以及假设的产生,并在脂质数据分析中提出了可能的系统方法,包括功能脂质模块的构建和脂质通路分析。  脂质组学的典型工作流程和应用  经典的脂质组学给出了构成生物样本的不同细胞群的“平均”图谱,这通常需要一个器官的代表性组织样本,使得最终构建的图谱能够反映一般的生物状态。然而,取一个有代表性的组织切片,忽略了脂质的空间分布,而脂质的空间分布往往具有重要的生物学意义。例如,该研究团队先前对金线鲃属洞穴鱼和地表鱼全脑切片的定量脂质组学研究发现,洞穴鱼中的硫苷脂(髓鞘的主要脂质成分)普遍减少。基质辅助激光解吸电离(MALDI)质谱成像(MSI)进一步揭示了洞穴鱼硫苷脂缺失的区域与中缝5-羟色胺能神经元的位置相对应。因此,金线鲃个体大脑脂质的空间分布图谱有助于证明5-羟色胺能神经元的脱髓鞘是洞穴鱼攻击性行为丧失的基础。  随着光学成像和细胞内电生理学的技术创新,人们得以在单细胞分辨率下深入研究组织的生物结构,细胞异质性的普遍性变得明显起来。单个细胞与邻近细胞以及它们的原生微环境动态地相互作用和交流,最终影响由不同的单细胞脂质组(和代谢组)所反映的细胞内生物化学状态。事实上,早期组学的单细胞革命揭示了细胞异质性在无数生物环境中的普遍性。例如,单细胞蛋白质组学揭示了循环系统中肿瘤细胞表面蛋白在单细胞水平的异质表达,这些蛋白预测了对药物治疗的不同细胞反应,而随着疾病的进展,患者体内这些相同蛋白的平均表达并不能确定真正的治疗效果。在这篇综述中,作者讨论了单细胞水平的脂质组学革命如何从早期的组学开始,揭示细胞内以脂质为中心的见解,以及其潜在的应用和独特的技术挑战。  2、单细胞脂质组学的新兴技术  与单细胞基因组学和单细胞转录组学相比,单细胞脂质组学(和代谢组学)提供了最接近实际表型的数据信息。脂质组学与代谢组学的区别主要在于其关注非极性疏水代谢物,这些代谢物需要不同的提取和分析方案(例如需要不同的溶剂系统)。与信号可以扩增数百万倍的单细胞转录组学不同,高灵敏度对于单细胞脂质组学至关重要。此外,脂质在细胞内和细胞外的不同作用使细胞脂质组具有动态性和多功能性,这需要在采样时极度谨慎和快速,以便收集的细胞能够反映其原始状态。  2.1 单细胞的取样  经典脂质组学侧重于批量分析,以最小化组内的异质性,而单细胞脂质组学则侧重细胞间的差异。因此,收集技术应努力保持细胞异质性,并尽量减少来自邻近细胞和细胞外基质的污染。许多现有的样品处理或细胞分离策略可以扩展到单细胞脂质组学的采样中,包括膜片钳、微量移液、流式细胞荧光分选(FACS)和微流控单细胞阵列等。这些采样技术有其独特的优势和技术瓶颈,应根据组织或细胞类型的性质以及要解决的生物学问题逐案考虑选择。例如,倾向于成团粘附和/或对操纵敏感的细胞在采样过程中可能表现出较高的细胞死亡率,这会混淆数据并导致生物学错误解读。通常,非粘附细胞,如循环中的各种类型的血细胞,更易于进行高通量单细胞处理。组织的细胞外基质(ECM)的组成以及细胞分布各不相同,因此需要获得单分散细胞的优化方案,例如机械切割、酶解或这些方法的组合。特别是,与正常组织相比,病变组织(例如纤维化组织)可能具有明显不同的解离动力学,因此,优化分离方法以确保收集单分散、完整和有活力的细胞用于单细胞脂质组分析是非常重要的。  膜片钳通常用于研究神经元、肌肉纤维和心肌细胞等易兴奋细胞,其优势是在相对原生状态下对细胞进行采样,通常来自新鲜的组织切片。然而,在膜片钳辅助的单细胞脂质组学分析中,在不破坏细胞膜的情况下分离完整的细胞是特别具有挑战性的。例如,使用膜片钳从灌注的小鼠大脑切片中捕获单个神经元细胞体不能完全保存轴突和相关终端的完整性,这可能会影响所得到的单个神经元脂质组数据。考虑到质膜是单细胞脂质组的重要组成部分,在单细胞分离过程中对质膜的损伤对单细胞脂质组分析尤为不利。此外,细胞损伤可能触发膜修复过程,这改变了原生细胞脂质组的特征,并混淆了下游分析。  如果谨慎操作,精密微量移液管可以获得完整的细胞,但它的低通量低且相对耗时,因此更适合于感兴趣的稀有细胞类型的取样。  FACS可将具有不同表型的单个细胞(由特定蛋白质(抗体)的荧光强度定义)排序到用户预定义的特定血管和缓冲液中,以实现相对高通量的单细胞分离,该方法错误率较低(低于1/100),且细胞质膜通常保持完整。FACS的一个主要缺点是需要大量的细胞(超过10,000个),因此不适合分离数量少的稀有细胞类型。悬浮细胞的要求也意味着细胞在采集样品之前不处于其原始状态,单个细胞的空间位置丢失。如果使用非质膜荧光标记物来标记细胞,则需要验证瞬时孔形成对特定质膜脂质和细胞内代谢产物的影响。  微流控装置包括使用阀门、油滴或纳米管对单个细胞进行微型分隔。基于液滴的策略可能不适合单细胞脂质组学,如果单个细胞的包封是在油滴中完成的,这干扰了下游的脂质分析。油包裹的水滴为下游单细胞脂质组学提供了更好的选择,但是在去除油相期间需要谨慎,以获得相对清洁的液滴内细胞提取物用于下游分析。虽然微流控芯片的处理量高,对原料数量的要求较低,但其后的样本处理通常是在现场进行,这限制了 MS 在选择脂质提取方案进行下游分析时的灵活性。此外,有效的脂质提取需要使用有机溶剂,例如氯仿和甲基叔丁基醚(MTBE) ,这些溶剂与大部分用于制造纳米芯片的塑料材料不太相容。  基于探针的电喷雾电离(ESI)也经常用于单细胞采样,这涉及使用直径足够小的探针尖端以插入单细胞(~3-9μm)。提取溶剂连续输送以进行原位代谢物提取,随后将提取物引导到质谱仪中进行直接分析。然而,这种取样策略不能确保每个细胞的完整质膜被输送到下游分析。质膜包括全细胞中一半的磷脂和90%的总胆固醇和鞘磷脂含量,基于探针的采样可能会导致单细胞脂质组学的大量信号损失。  与限制脂质提取程序选择的微流控芯片和基于探针的取样相比,激光捕获显微切割在为下游分析选择样品处理方案方面有更高的灵活性。微解剖的单细胞的空间信息被保留。然而,该方法事先必需用福尔马林或乙醇固定细胞,以确保在显微切割过程中划定单细胞边界时的形态清晰度,而在此过程中脂质和小分子代谢物会大量丢失。此外,即使事先固定,整个细胞的完整性也往往得不到保留,这也使得这种技术不太适合收集单细胞用于下游的脂质组学研究。  无论采用何种细胞采集策略,采集后都应立即对分离的单个细胞进行淬灭和灭活,以停止酶活性并尽量减少细胞脂质的人为改变。    单细胞脂质组学技术  2.2 单细胞脂质的获取  拉曼光谱具有非破坏性和非侵入性的优点,允许进行原位分析,在捕获单个细胞在其自然状态下的脂质方面具有优势,但其无法在分子水平上破译精确的脂质结构,这大大限制了其脂质覆盖范围。而MS由于在区分脂质异构体方面的卓越灵敏度和特异性,已成为单细胞脂质组学中的主要分析技术。除了结构解析,基于MS的方法还允许检查单个细胞内的空间和亚细胞脂质定位,如通过C60二次离子质谱(SIMS)分析海蜗牛Aplysia单个神经元上脂质的异质性分布。尽管与 MALDI-MS 相比,SIMS 的灵敏度较低,但其能够获得亚微米的横向分辨率,由于探针尺寸的限制,其横向分辨率限制在10μm。利用簇离子源的SIMS技术还具有更柔和的电离动力学,有助于检测完整形态的脂质,空间分辨率通常在100nm至1µm之间。  在各种基于MS的技术中,MSI方法在取样细胞的原生微环境方面具有选择性优势,并能保留对生物推断有用的空间信息。目前已经开发了图像引导的单细胞器MALDI-MSI,用以比较来自Aplysia的致密核心囊泡和透明囊泡中脂质含量差异。尽管 MALDI-MSI 具有诸多优点,但是它存在共采样的缺点,即从相邻的细胞产生混淆信号。一些脂质对 MS 扫描过程中可能出现的环境干扰很敏感,通常需要至少一个小时或更长时间才能完成组织切片的检查。此外,MALDI-MSI 单细胞分析也容易因离子抑制而降低灵敏度。最后,精确的脂质定量仍然是 MSI 方法中的一个主要技术挑战,因为同位素内标与内源性脂质均匀混合以进行标准化在技术上是具有挑战性的。  荧光成像在灵敏度以及空间/时间分辨率方面优于基于MS的方法,使其在单细胞成像中具有潜在的用途。然而,基于荧光的技术在单细胞脂质组学中的应用受到其脂质组覆盖范围的限制。在自然界中很少有脂质和小分子代谢物表现出自身荧光,这就需要使用荧光探针。与基于MS的方法不同,亲脂性染料通常可以标记特定的某一类脂质,但无法区分同一类脂质中具有不同酰基链组成的单个脂质种类,或不同的脂质异构体。另一方面,脂质的荧光标记极大地改变了脂质的生化性质,如有些脂质被优先分配到不同的膜微区中,而与荧光基团是在头基还是酰基链上引入无关。因此,目前的脂质荧光染料缺乏特异性,这限制了荧光光学成像在单细胞脂质组学中的更广泛应用。  虽然单细胞取样和基于质谱的技术革新已经实现了单细胞脂质组学分析的可能性,但仍存在一些技术瓶颈,包括:脂质覆盖面相对较窄(通常只有不到一百个具有高置信度的脂质) 缺乏准确的结构鉴定 缺乏可靠的定量数据 以及对单细胞水平的分析可重复性验证不足。为了解决这些技术瓶颈并推动该领域的发展,必须采用新技术来更好地描述细胞的异质性,并以更高的精度和更大的定量准确性来阐明其生物学意义。  3、单细胞脂质组学的技术瓶颈  3.1 迫切需要高覆盖率、准确的识别和定量测量  单细胞脂质组学的一个最终目标是构建单个细胞的精确脂质组图谱,以揭示细胞间的差异。即使在对大量的生物样本进行研究的经典的脂质组学中,与转录组水平的变化相比,具有生物学意义的脂质水平的定量变化通常较小。这使得准确的定量对于解读单细胞水平上微妙但有意义的脂质变化尤为重要。单细胞脂质组学的定量也具有相当大的挑战性,因为脂质的内源丰度会有很大的变化。一个细胞中内源性脂质的高动态范围意味着,在一个特定的样品浓度下,不是所有的脂质都能落入质谱检测器的线性范围。虽然这在大部分脂质组学中通常通过在另一个样品浓度下的额外进样检测来解决,但这又为单细胞脂质组学增加了另一个难度,因为来自单细胞的样品材料数量往往是有限的。内源性脂质丰度的巨大差异也需要色谱系统从其内源性丰富的对应物中有效分离微量脂质,以尽量减少离子抑制,提高次要脂质物种的敏感性,并扩大分析物的覆盖范围。重要的是,为了在单细胞脂质组学中进行准确的脂质定量,应加入稳定的同位素内标。如果没有适当的内标来归一化内源性信号,校正来自不同类别的脂质或携带不同酰基链的同一类别脂质的离子响应变化,产生的单细胞脂质组数据很容易出现错误。  基因组几乎整个区域都可以测序和注释,而仅基于MS/MS数据却很难最大限度地确定高置信度的脂质结构。这一瓶颈部分是由于自然界中脂质结构异构体的广泛存在,其中一些异构体在缺乏专门的预处理(如化学衍生)的情况下很难分离。例如,单个TAG的甘油主链被酯化为三个脂肪酰基链,从而为每个分子式产生无数脂肪酰基链组合。此外,不同脂质类别的结构异构物可能会使脂质鉴定过程更加复杂,例如双(单酰基甘油)磷酸酯(BMP)和磷脂酰甘油(PG),以及半乳糖神经酰胺(GalCer)和葡萄糖神经酰胺(GluCer)等。幸运的是,这些结构异构体中的一些物质在色谱上是可区分的。因此,适当的前期色谱分离的应用极大地促进了某些脂质结构异构体的准确识别和定量,从而实现了更大的脂质覆盖。  虽然脂质组学是组学家族中一个较年轻的分支,但在过去二十年中,它的发展速度很快。基于常规高效或超高效液相色谱(流速为100-1000μL/min)并结合质谱(HPLC/UPLC-MS)的各种经典脂质组学方法已被开发用于多种生物样品。近年来,基于微流量(流速为10-100μL/min)的LC-MS方法获得了更高的灵敏度,并能够以更少的起始材料(例如≈20-1000个细胞)实现全面的脂质代谢。可以想象,通过减小柱直径和流速进一步缩小色谱分离的规模可以提高分析物浓度,从而提高检测灵敏度。因此,基于纳米流(即流速1μL/min)的超灵敏脂质组学方法有望在单个细胞内实现亚微米级的脂质检测和定量。然而,迄今为止报道的纳米流方法的脂质覆盖率仍然相对较低,通常只覆盖一到两个主要类别的脂质,如PCs、PEs和/或TAGs,或者没有适当的结构标识。仅基于一级质谱分析的分子式水平的结构鉴定会导致不准确和低灵敏度,这极大地影响了单细胞脂质组学的分析范围和质量。因此,在单细胞脂质组学能够在基础生物学和转化医学中发挥更大作用之前,通过精确的结构鉴定和精确的定量分析来扩大脂质的有效分析范围是必不可少的。离子迁移率-质谱仪在脂质鉴定中的应用将碰撞截面(CCS)引入到脂类鉴定中,增加了m/z、保留时间和MS/MS谱图上的另一个维度的信息,有望增强单细胞脂质结构鉴定的可信度。  目前,单细胞脂质组学方法大多是低通量的,因此,与早期的单细胞组学研究相比,通常分析的细胞种类要少得多。鉴于与基因组/转录组相比,细胞脂质组的生物学动态范围要大得多,因此,在单细胞脂质组学实现更大速度和更高容量分析之前,建立健全可重复的方法、设定正确的技术基准和构建可靠的单细胞参考脂质组数据库至关重要。    基于LC-MS的单细胞脂质组学的不同模式  3.2 数据分析  正确分析大型数据集是从各种组学技术中收集有用的生物学见解的先决条件。由于单细胞脂质组学仅处于发展的早期阶段,尚未建立系统的数据分析体系。针对海量数据定制的方法通常不直接适用于单细胞数据。这是因为大量数据分析中的分布假设经常不成立,原因是单细胞数据集拥有更高的噪声和稀疏度,存在固有的额外异质性。目前,单细胞脂质组学的出现在某种程度上加剧了在分析和解释脂质组学数据方面的瓶颈。鉴于目前在单细胞脂质组学中脂质覆盖方面的局限性,在单细胞脂组学分析中收集生物学相关的途径改变之前,需要在单细胞脂肪组学的采集和数据分析方面进行长期努力。  4、单细胞脂质组学的生物学和转化前景  在过去的十年里,由于分析化学的技术创新和各种组学技术的出现,生物化学从传统的系综测量转向单分子测量。传统的集合分析可能导致静态异质性,当分子集合包含在观察期内保持稳定或变化不够快的亚群体时,就会出现这种异质性,从而导致“没有明显变化”的误导性结论。生物事件的平均分析数据不会捕捉到与整体行为不同的分子。同样,在任何细胞群体中,细胞间的差异总是不同程度的存在,基于整个群体的批量测量不能完全描述单个细胞的完整表型。通过在种群和单细胞水平上同时进行表型分析,可以破译潜在的有意义的生物学偏差,从而为很多生物学问题提供新的研究方向。  4.1 发育与细胞谱系追踪  多细胞生物体从一个受精卵发育成一个由不同细胞类型和器官系统组成的复杂组织,整个过程被记录在细胞谱系树中,它概述了在发展成多细胞生物体的过程中,从单个母细胞到其不同分支后代的细胞转换。目前已经开发了各种工具来构建单个生物体的细胞谱系树,但大多局限于绘制有限数量的克隆种群。细胞谱系树对于科学家解开生命的错综复杂的工程,以及加深我们对生物体发育、器官生成以及疾病进展和发病的理解非常重要。通过拼凑生物体内单个细胞的发育轨迹,单细胞谱系追踪以前所未有的细节捕捉到整个发育过程中不同的细胞命运,这扩展了我们对细胞分化机制、细胞异质性以及细胞间发育潜力差异的理解。  考虑到生物体的单个细胞携带着由DNA编码的相同的遗传物质,人们通常认为不同的细胞命运是由单个细胞中基因在空间和时间上的差异表达决定的。虽然乍一看,与单细胞转录组学相比,单细胞脂质组学与单细胞谱系追踪的相关性可能不那么直观,但许多科学证据阐明了脂质代谢在决定细胞命运中的作用。例如,脂肪酸氧化产生的乙酰COA是组蛋白乙酰化的前体,组蛋白乙酰化改变染色质结构,从而调节DNA对转录机制的可及性。在不对称细胞分裂过程中,脂筏(富含胆固醇的膜微域)的不对称遗传也被认为是胶质母细胞瘤子细胞不同治疗耐药的基础。真皮成纤维细胞中存在由不同种类的鞘磷脂组成的不同的脂类构型,这触发了不同的转录程序,进而驱动细胞间异质性的不同细胞状态的建立(例如,纤维形成或增殖)。因此,单细胞脂质组学可以增加另一个维度的有用信息,以识别不同细胞命运的分子控制。  4.2 了解肿瘤异质性  构成肿瘤块的细胞是异质性的,在基因表达、细胞代谢、运动性、增殖率以及转移潜能方面具有不同的形态和表型特征。这种现象被称为肿瘤内异质性,它延伸到不同的肿瘤(即肿瘤间异质性),可由遗传和非遗传因素共同引起。肿瘤的异质性可能在一定程度上解释了为什么癌症在临床上仍然难以攻克。研究肿瘤的异质性,特别是增殖能力和转移的来源,将有助于确定新的治疗靶点,以及指导免疫治疗和药物筛选。细胞间脂质代谢的差异对各种癌症的生长和预后有重要影响,如单个胰腺导管肾上腺癌细胞的脂质组学分析观察到胰腺癌特异性脂质代谢失调,这可能是由于介导脂质合成的关键酶ATP柠檬酸裂解酶表达减少所致。单细胞脂组学在加深我们对肿瘤异质性的理解方面有很大的希望。  4.3 剖析对疾病的免疫反应  除癌症外,传染病和新陈代谢疾病也是对公众健康的主要威胁。哺乳动物的免疫系统保护宿主免受各种病原体的入侵。构成宿主免疫系统的免疫细胞表现出巨大的细胞多样性,可以根据各种刺激进行动态调整。例如,对不同严重程度的新冠肺炎患者的单个外周血单核细胞进行scRNA-seq检测,发现存在一种具有增殖和代谢活性的自然杀伤细胞亚群,其代谢活动与疾病的严重程度呈正相关。有趣的是,这一亚群的自然杀伤细胞显示出神经鞘脂代谢的增强,这突显了单细胞脂质组学从以脂质为中心的角度阐明单个免疫细胞对新冠肺炎感染的差异反应的潜力。除感染性疾病外,对从人胰岛分离的单个细胞的scRNA-seq分析表明,在1型糖尿病患者中存在免疫耐受的胰腺导管细胞亚群。这一导管细胞亚群的转录特征类似于耐受性树突状细胞(即缺乏CD80和CD86),导致免疫耐受和抗原呈递时的T细胞抑制。值得注意的是,单细胞分析显示胰腺β-细胞的基因特征与抗谷氨酸脱羧酶(GAD)滴度相关。与GAD水平相关的基因通路富集丰富分析包括许多脂代谢途径,如鞘磷脂代谢和磷脂酰肌醇信号系统。虽然在这些研究中没有进行单细胞脂质组学,但上述结果强调了单细胞中的脂代谢对于破译不同疾病背景下宿主免疫反应的代谢基础的重要性。    单细胞脂质组学的应用  结束语  单细胞脂质组学的发展仍处于起步阶段,我们相信随着该领域的发展,将会有更多的生物学和临床应用。技术突破彻底改变了我们研究生物学的方式,其标志是从整体分析过渡到专注于单分子和单细胞。随着我们以更高的分辨率检查生物结构,细微的差异被揭示出来,这可能会为新的研究方向铺平道路,从而为生物学和临床医学中长期存在的问题提供独特的见解。
  • 山西强暴雨追踪:专家表示极端天气未来将趋于常态化
    山西近日遭遇持续降雨,多地接连发生崩塌、滑坡等地质灾害,城市内涝严重。根据气象部门的数据,10月2日-7日,山西有近2/3地区降雨量超过了100毫米,最大降雨量达285.2毫米。而对于山西大部分地区而言,此轮降雨雨量是常年同期5倍以上。中国环境报记者联系中国气象局国家气候中心高级工程师冯爱青,专家表示,“2021年,整体极端天气气候事件偏多,雨带北移且高强度,这正是极端气候的表现。”(来源:新华网)由此可见,气候变化就在我们身边。“由于气候变化对整个气候系统的反馈作用,极端事件日益增多。气候变化离我们并不遥远,以后我们也会越来越多的遭遇这种极端天气。不仅强度日益增大,发生频率上也有显著增加。”冯爱青说。气候变化将对我国带来哪些影响“根据IPCC AR6第一工作组的最新研究结果:人类活动以及温室气体的排放使得全球变暖趋势日趋显著,自2001起至2020年的20年间,全球地表温度与工业革命时期相比已经上升了0.99摄氏度。”冯爱青介绍说。当全球平均温度较工业化前水平上升达4摄氏度或更高,全球气候变化风险为高至非常高水平,气候变化将对全球自然系统、生态系统以及人类管理系统产生重大影响。生命之源面临风险,气候变化将导致西北、华北水资源风险突出。冯爱青表示,在未来30年中,中国北方地表水资源含量将减少12%-13%,南方地区水资源含量将减少7%-10%,北方水资源的减少幅度明显高于南方。干旱、半干旱地区水资源对气候变化的响应较湿润、半湿润地区更敏感,华北地区和西北地区水资源的风险水平很高。食为人天,农为正本,气候变化给水资源带来威胁同时,同样会给农业带来显著影响。比如,气候变暖使得一年两熟、一年三熟的种植边界北移,作物的布局也随之发生改变,适宜种植区面积将逐步扩大。1981-2010中国一年两熟和三熟种植北界北移(Yang et al., 2015)“生长期的变暖已经造成了中国主要粮食作物的生育期缩短和关键生育期的前移,沿海城市面临的风险同样不容小觑。”冯爱青补充道。气候变化将加剧河口和海岸的侵蚀程度,造成土壤盐渍化;海平面上升叠加台风-风暴潮,加剧滨海城市洪涝灾害风险;未来海平面将继续上升,沿海多地当前百年一遇极值水位的重现期将显著缩短。其中,长三角、京津冀、珠三角地区洪水淹没风险突出。气候变化在给中国各类资源、行业、城市带来风险的同时,由气候变化带来的极端天气将会越来越频繁地出现在我们的日常生活中。极端天气常态化已有迹象“在不同的增暖阈值下,中国极端高温将增多增强、极端低温将减少减弱;区域平均强降水量和频率都将增加,干旱日数将减少,且各指数的变幅增多。极端降水未来变化的年代际变率较大,且存在较大的不确定性。”冯爱青表示。实际上,极端天气的常态化在日常生活中早有显现,自今年1月起,极端天气如洪水猛兽般步步紧逼。与以往冰天雪地的一月不同,北方的人们大概感知到今年1月中旬后,增温现象明显,呈现出“暖冬”现象。从全国范围来看,不少地区也出现了“反常”现象。比如,5月,湖北武汉出现13-14级雷暴大风,强对流天气给湖北带来了重大的气象灾害与经济损失;5月中旬,苏州、武汉两地遭遇龙卷风;7月以来,河南普降暴雨、大暴雨,局部地区遭遇特大暴雨… … “在未来的几年,多年一遇的极端天气将会渐渐变成常态。因此,城市都要做好应对气候变化的准备。”冯爱青表示。国家气候中心气候服务首席专家周兵同样表示,“在适应气候变化的过程中,我们要进一步提高预防极端事件的能力。气象灾害和极端事件频繁发生,将来在某种程度上,应急这种现象会成为常态化。”提升城市适应气候变化能力迫在眉睫针对上述顾虑与担忧,中国科学界早有研究。“应将气候风险管理纳入城市规划设计,将气候可行性论证纳入重大工程建设审批,并且建设防雷系统、海绵城市、通风廊道、地下综合管廊等工程,在灾难发生时减少损失。”湖南省气象科学研究所所长廖玉芳此前接受媒体采访时表示。为积极推进城市适应气候变化行动,切实提高城市适应气候变化能力和水平,国家发展改革委和住建部早在2016年联合发布了《城市适应气候变化行动方案》(以下简称《方案》)。《方案》中提出“要建设气候适应型城市,需增强城市应对内涝、干旱缺水、高温热浪、强风、冰冻灾害等问题的能力、全面提升城市适应气候的变化能力”。一些城市在应对气候变化上先行先试湖南省岳阳市气象局此前推出纪录片《水墨丹青入画来——岳阳气候适应型城市建设纪实》,讲述了岳阳作为28个气候适应型城市试点之一,将气候变化因素融入城市建设,全市建成6个国家气象站、232处区域气象站、闪电定位仪、大气电场仪、卫星接收系统等,组成立体监测站网。岳阳市采用突发事件预警信息发布和城市内涝、城区空气质量预报预警系统,提前监测预警。结合岳阳海绵城市建设成果,提升城市应对极端天气气候事件导致的衍生、次生灾害能力。此外,岳阳市还建成了水上安全气象保障平台以及洞庭湖区湿地洪水调蓄。同样作为试点城市之一的安徽省合肥市,将适应气候的理念落实到城市规划中、建设与管理各个环节。持续增强城市供水能力,利用科技干预开发利用“空中云水”,加快推进淠史杭区引水工程,新建调蓄设施48座。完善海绵城市建设,加强气象监测体系建设,打造林带穿境、纵横交错、层次多样的“城市绿廊”。“气候适应型城市建设的重点在于:找准定位,规划先行,综合应对,协同推进。同时要完善多中心、多主体参与的城市适应治理机制,制定本地化、个性化适应措施。”国家应对气候变化战略研究和国际合作中心战略规划部刘长松在《城市安全、气候风险与气候适应型城市建设》提到。2021世界城市日推广活动启动仪式日前在上海世博会博物馆举行,其年度主题确定为“应对气候变化,建设韧性城市”。越来越多的城市已经注意到城市应对气候变化的急迫性和重要性,也切实开始行动起来。要看到的是,城市在应对气候变化上依然存在资源能源利用效率、提升建筑和社区的适应性和韧性、增强城市治理能力,以及促进城市规划、建设和治理整体转型等多方面的挑战。未来,我们还有很长的路要走。
  • 单细胞技术之肿瘤免疫微环境研究应用|含肿瘤微环境会议预告
    肿瘤异质性对癌症预后和治疗反应有显著影响。传统的基因组和转录组分析被广泛用于研究不同的癌症类型,在预测预后和对不同治疗的反应以及为癌症治疗提供靶点方面具有潜在作用。不同癌症类型的单细胞分析表明,肿瘤免疫微环境的详细信息在多种癌症类型之间共享。目前,自从发现检查点抑制剂以来,免疫治疗彻底改变了癌症治疗并引起了越来越多的关注。肿瘤免疫微环境由非细胞成分(血管、细胞外基质、信号分子等)和细胞成分(T细胞、髓细胞、成纤维细胞等)组成。尽管传统的基因组和转录组学分析,也强调免疫相关途径和计算方法,并已应用于预测免疫细胞成分,但技术限制阻碍了时间的精确表征。传统的批量基因组和转录组分析获得的信号均来自不同细胞,掩盖了特定细胞类型和状态的识别。原位杂交和免疫组织化学已被用于探索单个细胞的基因组、转录组和蛋白质组学特征,但其产量相对较低。流式细胞术能够分析数千或数百万个单细胞蛋白质组学图谱;然而,这些方法需要事先选择感兴趣的抗体。随着细胞分离和测序技术的突破,单细胞转录组测序已经能够在单次运行中在单细胞水平上对许多细胞进行无偏好的全基因组分析。单细胞转录组测序已被用于分析单个细胞的转录组学,用于解析细胞间的异质性。肿瘤免疫微环境在诊断、治疗和预测不同类型癌症的预后方面显示出了潜力。与传统方法相比,scRNA-seq可用于识别新的细胞类型和相应的细胞状态,加深了我们对肿瘤免疫微环境的理解。1.介绍了scRNA-seq的原理,并比较了不同的测序方法。2.根据肿瘤免疫微环境中新的细胞类型、持续的过渡状态以及肿瘤免疫微环境成分之间的相互通讯网络找到了癌症的预后预测和治疗的潜在靶点。3.总结出在肿瘤免疫微环境中应用scRNA-seq后发现的由癌症相关成纤维细胞、T细胞、肿瘤相关巨噬细胞和树突状细胞组成的新型细胞簇。4.提出了肿瘤相关巨噬细胞和耗尽的T细胞的发生机制,以及中断这一过程的可能靶点。5.对肿瘤免疫微环境中细胞相互作用的干预治疗进行了总结。几十年来,肿瘤免疫微环境中的细胞成分定量分析已被应用于临床实践,预测患者生存率和治疗反应,并有望在癌症的精确治疗中发挥重要作用。总结目前的研究结果,我们认为单细胞技术的进步和单细胞分析的广泛应用可以导致发现癌症治疗的新观点,并应用于临床。最后,作者提出了肿瘤免疫微环境研究领域的一些未来方向,并认为通过scRNA-seq对这些方向进行辅助。相关会议预告:8.30召开,点击报名scRNA-seq在刻画肿瘤免疫微环境中的应用scRNA-seq技术进展scRNA-seq程序主要包括单细胞的分离和提取、cDNA合成、核酸扩增、测序和数据分析。与传统的批量测序相比,scRNA-seq单个细胞中的RNA量相对较少。因此,需要更有效的扩增方法。研究人员已经成功建立了稳定的单细胞文库构建过程,以产生足够的cDNA用于测序。单细胞分离和捕获是scRNA-seq在不同方法中的基本程序。目前单细胞分离和捕获的常用方法。这些程序分为四大类:激光捕获微切割、油滴包裹技术、流式细胞荧光分选技术和微流控微孔技术。scRNA-seq技术的未来发展可能会降低成本并增加细胞产量,使scRNA-seq成为研究单个细胞转录组的标准工具。肿瘤免疫微环境的细胞成分肿瘤免疫微环境的细胞成分包括淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)、成纤维细胞和其他免疫细胞。成纤维细胞传统上被归类为基质细胞,因为它们在构建细胞外基质中发挥着重要作用。在这里,作者将肿瘤免疫微环境的癌相关成纤维细胞包括在内,因为它们分泌丰富的促炎和抗炎因子来重塑免疫微环境。细胞毒性CD8+T细胞识别肿瘤细胞上的特异性抗原并随后消除它们,是免疫微环境最常见和最有效的免疫细胞。CD8+T细胞的细胞毒性功能依赖于CD4+T Th1细胞。其他CD4+T细胞,包括Th2细胞和Th17细胞,也促进肿瘤微环境中的免疫反应。调节性T细胞抑制肿瘤免疫微环境并加剧肿瘤进展。自然杀伤T细胞和自然杀伤细胞也参与其中。它们的受体识别肿瘤细胞,从而激活其他免疫细胞。作为先天免疫的重要组成部分,骨髓细胞,包括肿瘤相关巨噬细胞和树突状细胞,在肿瘤免疫微环境中发挥着重要作用。巨噬细胞通常分为促炎M1和抗炎M2表型。肿瘤相关巨噬细胞主要由M2巨噬细胞组成,通过产生生长因子和细胞因子促进肿瘤生长、肿瘤存活和血管生成。DC对于T细胞的抗原呈递至关重要,连接先天免疫和适应性免疫。癌症相关成纤维细胞在肿瘤免疫微环境中维持增殖和分泌调节因子,可分为炎症性CAF和肌纤维母细胞CAF。炎症性CAF具有较高的细胞因子和趋化因子分泌,而肌纤维母细胞CAF高度表达收缩蛋白,成纤维细胞对免疫微环境起相互抑制作用。研究表明,成纤维细胞募集M2巨噬细胞和调节性T细胞,抑制肿瘤微环境中的免疫反应。肿瘤相关成纤维细胞也被发现在某些情况下会支持抗肿瘤免疫。除了分泌抗体,B细胞还通过产生与T细胞相互作用的细胞因子参与细胞免疫。研究表明,B细胞抑制细胞毒性T细胞并诱导CD4+T细胞分化为调节性T细胞。B细胞也是最近引入的三级淋巴结构的重要组成部分,富含B细胞的三级淋巴结构与各种肿瘤的生存和免疫治疗反应有关。先前的研究强调了细胞成分在时间中的重要作用。然而,免疫细胞的鉴定常基于有限的细胞标记,并借助免疫组织化学。个体免疫细胞的转录组图谱是探索不同免疫细胞及其相应功能所必需的。为了理解细胞进化过程及其决定因素,有必要应用scRNA-seq观察每个细胞的转录动态。利用scRNA-seq探索免疫微环境的新发现聚类和注释对于解释scRNA-seq数据探索至关重要。根据细胞相似性对数据进行划分,挑战在于在不提供先验知识的情况下估计固有的簇数或密度。可能的解决方案是采用分层聚类方法来揭示细胞的分层结构,这也与细胞本体相一致。给定聚类方法产生的数据划分结果,需要细胞类型注释来提供生物学意义。注释的主要挑战是确定每个聚类中存在多少细胞类型,以及是否存在当前未发现的细胞类型。在实践中,研究人员通常首先识别每个聚类的标记基因,然后根据专业知识和文献对其进行注释。scRNA-seq使研究人员能够以更高的分辨率将免疫细胞分类为具有不同功能的亚群,描述了免疫细胞的常规亚型。利用scRNA-seq发现的淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)和成纤维细胞的组成(图2)。人和小鼠样本的scRNA-seq表明,成纤维细胞可分为抗原呈递CAFs、癌症相关成纤维细胞或肌成纤维细胞。抗原提呈CAFs独特地表达主要组织相容性复合体(MHC)II类基因,包括激活CD4+T细胞的CD74。在结直肠癌中也观察到类似的抗原提呈CAFs亚群。乳腺癌症基因工程小鼠模型中成纤维细胞的scRNA-seq进一步鉴定了血管CAF、基质CAF、发育CAF和循环CAF。血管CAF、基质CAF和发育CAF似乎起源于固有成纤维细胞和恶性细胞发生上皮-间充质转化时的血管周围位置。循环CAF是血管CAF群体中增殖的部分。在其他小鼠模型中也发现了血管CAF和基质CAF,它们在患者乳腺肿瘤样本中是保守的,并且发现它们会增加乳腺癌症细胞的转移。提高CAF的分辨率为开发精确靶向CAF的药物提供了生物标志物。另一项关于乳腺癌症的scRNA-seq研究将调节性T细胞分为五类:共表达细胞毒性T淋巴细胞相关抗原-4的调节性T细胞、具有Ig和ITIM结构域的T细胞免疫受体,以及相互或仅表达相同基因的GITR和其他调节性T细胞,它们具有不同的功能。不同预后的患者具有不同比例的调节性T细胞簇,为个性化治疗提供了靶点。免疫微环境对T细胞和髓细胞进行了更详细的泛癌研究,发现存在颗粒酶K+T细胞、干扰素刺激基因+T细胞、杀伤细胞免疫球蛋白样受体在记忆性T细胞和NK细胞上表达、转录因子7+CD8+T细胞,ficolin 1+常规DC2、分泌性磷酸蛋白1+TAM,以及肿瘤微环境中的叶酸受体β+TAMs。基于scRNA-seq数据,免疫微环境还发现了新的免疫细胞亚群。葡萄膜黑色素瘤的scRNA-seq鉴定了以前未识别的细胞类型,包括主要表达检查点标记LAG3而不是程序性死亡-1或CTLA-4的CD8+T细胞。同时,在肝细胞癌中发现浸润耗尽的CD8+T细胞和具有高表达layilin的记忆T细胞的克隆富集,这些研究为癌症免疫治疗提供了新的靶点。因为CD8+T细胞是参与消除恶性细胞的主要成分。大肠癌CXC基序趋化因子的scRNA-seq鉴定配体BHLHE40+Th1样细胞与干扰素-γ调节转录因子BHLHE40。在不稳定肿瘤中,这些细胞对免疫检查点阻断有良好的反应,可能会提高免疫疗法的疗效。树突状细胞对于呈递抗原以激活肿瘤免疫微环境中的T细胞是必不可少的。胃癌的scRNA-seq揭示了一个新的树突状细胞簇,表达吲哚胺2,3-双加氧酶1和趋化因子C–C基序趋化因子配体(CCL)22、CCL17、CCL19和白细胞介素-32,它们参与T细胞的募集。胰腺导管腺癌的scRNA-seq还鉴定了除了常规细胞标记物之外还高表达吲哚胺2,3-双加氧酶1的树突状细胞簇。吲哚胺2,3-双加氧酶1对于催化色氨酸消耗和犬尿氨酸产生、抑制T细胞增殖和细胞毒性至关重要,这揭示了树突状细胞和T细胞之间的密切相互作用。此外,通过scRNA-seq鉴定了溶酶体相关膜蛋白3+树突状细胞,并且似乎是经典树突状细胞族的成熟形式。溶酶体相关膜蛋白3+DC可以迁移到淋巴结,并高度表达与T细胞相互作用的配体。这些表达特异性标记物的新型树突状细胞簇的发现为癌症免疫治疗提供了一个新的视角。使用scRNA-seq在肺腺癌中发现了肿瘤相关巨噬细胞的新特征基因,包括髓系细胞触发受体2、CD81、具有胶原结构的巨噬细胞受体和载脂蛋白E。此外,乳腺癌症的scRNA-seq表明,除了M2型基因如CD163、跨膜4域A6A和转化生长因子β1外,血管生成因子纤溶酶原激活剂、尿激酶受体和IL-8也在肿瘤相关巨噬细胞中表达。肿瘤相关巨噬细胞中这些新的基因特征图谱与患者生存相关,并为癌症治疗提供了新的潜在靶点。肿瘤样本scRNA-seq显示,一个肿瘤相关巨噬细胞亚群呈现出SPP1、巨噬细胞清除剂受体MARCO和MHC II类基因的高表达。MARCO和SPP1是巨噬细胞激活中的抗炎和免疫抑制信号,而MHC II类基因与促炎功能有关。其他scRNA-seq研究表明,肿瘤相关巨噬细胞经常同时具有促炎和抗炎特征。这一现象表明,肿瘤微环境中的巨噬细胞活化与传统的M1/M2极化不一致。图2:利用scRNA-seq揭示免疫微环境中的新的免疫亚群单细胞数据揭示免疫细胞进化大多数免疫细胞都处于细胞发育过程中。大量的免疫细胞处于发育轨迹的瞬态状态,而不是分化良好的细胞的离散状态。借助scRNA-seq和深入分析,研究人员可以探索分化细胞的特征、特定细胞类型的转变及其可能的机制。最常用的计算方法是拟时序分析。轨迹描述了细胞的发育过程,其特征是基因表达的级联变化。分支点代表细胞分化的显著差异。各种机器学习计算方法已被用于构建轨迹,包括Monocle3、DTFLOW、DPT、SCORPIUS和TSCAN,这些方法已在单独的综述中进行了评估和比较。由于肿瘤相关巨噬细胞和T细胞代表了免疫微环境中最丰富的免疫细胞类型,这里主要关注这两种细胞类型。scRNA-seq显示,TAMs经常共表达M1基因,包括TNF-α和M2基因,如IL-10,并且肿瘤相关巨噬细胞的分化和状态与其抗肿瘤作用直接相关。拟时序轨迹分析证实,肿瘤相关巨噬细胞在M1和M2表型之间连续转换。转录因子IRF2、IRF7、IRF9、STAT2和IRF8似乎在决定TAMs分化中很重要,并可作为表观遗传学靶点诱导肿瘤相关巨噬细胞的M1极化,从而产生促炎和抗肿瘤的微环境。使用环境刺激和抗原T细胞受体(TCR)刺激测定T细胞表型。不同状态的细胞之间TCR库的重叠,即TCR共享,也可用于研究T细胞的进化。结合scRNA-seq和TCR追踪在结直肠癌中发现20个具有不同功能的T细胞亚群。在黑色素瘤肿瘤的耗竭T细胞中发现了28个基因的耗竭特征,包括TIGIT、TNFRSF9/4-1BB和CD27,并且在大多数肿瘤的高耗竭细胞中也被发现上调。另一项关于T细胞的研究进一步鉴定了CD8+T细胞中的其他耗竭标记物,如LAYN、普列可底物蛋白同源物样结构域家族A成员1和突触体相关蛋白47。拟时序轨迹分析表明,T细胞在时间上处于连续激活和终末分化(衰竭)状态(图3)。已经进行了额外的研究来研究耗尽的T细胞的进化和逆转T细胞耗尽的潜在靶点。scRNA-seq与TCR分析相结合表明,功能失调的衰竭T细胞和细胞毒性T细胞可能在时间上与发育有关。因此,研究集中在CD8+T细胞从效应细胞到衰竭T细胞的过渡过程。scRNA-seq鉴定出两个CD8+T细胞簇为非小细胞肺癌中预先耗尽的T细胞。在肺腺癌中,预先耗尽与耗尽的T细胞比率与更好的预后相关。因此,在耗尽前中断预先耗尽的T细胞可能对癌症免疫治疗至关重要。由于免疫细胞和恶性细胞之间的密切相互作用,恶性细胞的进化在免疫细胞进化中也起着至关重要的作用。拟时序轨迹分析表明,转移性肺腺癌的轨迹分支不同于向纤毛细胞和肺泡型细胞的正常分化。受恶性细胞进化的影响,正常的骨髓细胞群体被单核细胞衍生的巨噬细胞和新型树突状细胞取代。T细胞也被发现会衰竭,从而构建免疫抑制的肿瘤微环境。同样,另一项研究表明甲状腺癌症细胞来源于乳头状甲状腺癌症细胞亚簇,其中构建了不同的肿瘤免疫微环境,导致预后显著恶化。图3:肿瘤相关T细胞和巨噬细胞的进化过程免疫微环境中不同细胞间的通讯网络免疫微环境上的细胞通讯与肿瘤进展有关。配体-受体相互作用是一种重要的细胞通讯类型,对于构建免疫微环境和识别潜在的治疗靶点至关重要。scRNA-seq是在细胞基础上进行的,这使得研究未发现的细胞相互作用变得可行。已经开发了许多基于scRNA-seq数据研究配体-受体相互作用的分析工具,包括iTALK、CellTalker和CellPhoneDB。这些工具利用了已知配体-受体对相互作用的数据库。其中,CellTalker利用差异表达的基因,而CellPhoneDB包括配体和受体的亚基结构。其他工具,如NicheNet,也考虑了受体细胞下游通路的变化。在肿瘤进展过程中,恶性细胞导致免疫细胞的募集和功能障碍,从而相互影响肿瘤的发生和恶性细胞的进化,形成恶性循环(图4)。发现TAMs通过表皮生长因子受体-双调节蛋白配体受体对与恶性细胞相互作用。在基底样乳腺癌细胞系中AREG的调节导致抗炎TAMs的招募。同时,基于scRNA-seq,发现了一种EGFR相关的反馈回路可促进胰腺腺鳞癌的进展。来源于TAMs的抑瘤素M也与其在恶性细胞上的受体相互作用,以激活信号转导子和转录激活子3。研究人员通过整合素受体与胶原蛋白、纤维连接蛋白、血小板反应蛋白1配体和富含亮氨酸重复序列的G蛋白偶联受体4-R-反应蛋白3的相互作用,发现CAF与胃癌细胞之间的通信,这些配体调节干细胞。此外,胰腺导管腺癌的scRNA-seq揭示了TIGIT与T细胞和NK细胞中的甲型肝炎病毒细胞受体2之间的相互作用,以及它们在恶性细胞中的相应配体PVR和LGALS9,导致免疫细胞功能障碍和胰腺癌症进展。因此,基于单细胞数据探索免疫细胞和恶性细胞之间的细胞相互作用提供了可能治疗靶点,以打破肿瘤进展的恶性循环。除了恶性细胞外,scRNA-seq和随后的分析还预测了免疫细胞之间在时间上的相互作用,这表现出相反的功能(图3)。例如,研究发现TAM降低了CXCL12-C-X-C基序趋化因子受体3和CXCL12-CXCR4的相互作用,增强了鼻咽癌细胞毒性T细胞和Tregs之间的CD86-CTLA-4相互作用,导致肿瘤免疫微环境加重癌症进展。此外,CAFs通过分泌CXCL12募集Tregs,并通过periostin与M2巨噬细胞相关。图4:免疫微环境中的细胞通讯网络基于scRNA-seq的肿瘤免疫微环境的临床应用和潜在靶点几十年来,临床实践中一直采用时间的量化来预测患者的生存率和对治疗的反应。利用免疫组化分析的免疫评分,量化肿瘤中的原位免疫细胞浸润。与传统的免疫评分相比,scRNA-seq在免疫微环境上提供了前所未有的渗透免疫细胞分辨率。已经鉴定出与预后相关的新的免疫细胞簇。例如,在早期复发的肝细胞癌中发现了一种独特的低细胞毒性先天性样CD8+T细胞表型。这些T细胞过表达KLRB1,同时下调共刺激和耗竭相关分子,包括肿瘤坏死因子受体超家族、成员9、CD28、诱导型T细胞共刺激因子、TIGIT、CTLA-4和HAVCR2。这种T细胞簇的浸润与癌症的不良预后相关。此外,基于scRNA-seq的细胞相互作用也被计算在预测模型中。基于细胞间通讯相关基因构建了机器学习模型,以预测肺腺癌的复发。将八个细胞间通讯相关基因和患者的临床信息相结合,获得了0.841的受试者-操作者特征曲线下面积。除了预后预测外,肿瘤免疫微环境中独特的细胞相互作用也与免疫疗法的反应有关。scRNA-seq分析发现,抗PD-1治疗的应答者和非应答者之间存在不同的细胞-细胞通信网络,有可能预测患者对抗PD-1疗法的反应。因此,在scRNA-seq的帮助下,可以更准确地预测患者的预后和对免疫疗法的反应。利用scRNA-seq在精准医学中具有启发性,例如帮助靶向治疗克服耐药性。例如,医生在使用替比法尼治疗的非CR肌肉浸润性膀胱癌症患者治疗前后应用患者衍生异种移植物的scRNA-seq。在治疗后的PDX中发现PD-L1的上调,并降低了免疫细胞的抗肿瘤作用。因此,选择了用PD-L1抑制剂进行额外治疗。随后,患者获得了良好的反应。此外,在单药耐药性肿瘤中,通过scRNA-seq鉴定了新的免疫亚型。用抗集落刺激因子1受体阻断TAMs不能减少胆管癌的肿瘤进展。scRNAs-eq鉴定了表达APOE的粒细胞髓系衍生抑制细胞的补偿富集,其介导T细胞抑制。TAMs和粒细胞性骨髓源性抑制细胞的双重抑制与抗CSF1R和抗淋巴细胞抗原6复合物、基因座G治疗联合增强了小鼠的免疫检查点阻断效果小鼠模型,这在临床实践中很有前景。除了治疗耐药肿瘤外,scRNA-seq在免疫微环境上的应用也突出了需要进一步研究的潜在新靶点。T细胞是免疫微环境中去除恶性细胞最重要的免疫细胞。然而,在不同的肿瘤中,耗尽的CD8+T细胞会导致不利的预后。除了众所周知的免疫抑制检查点外,scRNA-seq还鉴定了高表达内皮前体蛋白、酪氨酸酶相关蛋白1和内皮素受体B型的耗尽CD8+T细胞,这些细胞可以作为新的潜在靶点。髓细胞是免疫微环境招募免疫细胞所必需的。通过scRNA-seq鉴定TREM2/APOE/补体组分1,q亚组分阳性巨噬细胞浸润为透明细胞肾癌复发的预后生物标志物。另一项研究证实,小鼠中靶向TREM2的抗体与缺乏MRC1+和CX3CR1+巨噬细胞以及表达免疫刺激分子的髓系簇的扩增有关,这促进了T细胞反应并导致更好的预后。细胞相互作用也可以用作治疗靶点。肝内胆管癌的scRNA-seq揭示了血管CAFs与肝内胆管细胞之间的串扰。血管CAFs分泌的IL-6诱导Cajal间质细胞细胞的表观遗传学改变,从而增强恶性肿瘤。因此,IL-6信号在Cajal间质细胞的中断变得非常有趣。表1总结了scRNA-seq显示的癌症治疗的潜在靶点。表1:scRNA-seq显示的癌症治疗的潜在靶点总结scRNA-seq可以绘制全面的肿瘤免疫微环境细胞图谱,为各种肿瘤的临床应用提供了新的视角。此外,免疫微环境的细胞成分和通讯为癌症治疗提供了潜在靶点,并有助于精确医学的发展。技术的进步和单细胞分析的广泛应用可以发现癌症治疗的新观点,助力临床研究。作为突破性的新技术,单细胞分析技术有望逐渐取代传统的整体样本二代测序。单细胞分析技术在临床和药物开发方面的应用前景更为广阔,可以代替或补充分子、细胞和组织病理检测的现有技术,也可以用于新兴的细胞治疗。
  • 贝克曼库尔特生命科学 CytoFLEX LX 流式细胞仪实现高度复杂的细胞分析
    美国印第安纳波利斯 2017 年 3 月 20 日讯——贝克曼库尔特生命科学事业部勇往直前,不断拓展其专利设备 —— CytoFLEX 流式细胞仪技术的多参数性能。最新型 CytoFLEX LX 设备配备多达 6 根激光和 21 个荧光通道,它能够传输更多的参数,同时,还具备优异的荧光灵敏度,以及高端研究人员所需的纳米颗粒检测功能。两年前,贝克曼库尔特推出了 CytoFLEX 流式细胞仪,短短两年时间里,我们就通过以下三个系统提供了 47 项配置:CytoFLEX、CytoFLEX S,以及如今的 CytoFLEX LX。拥有 CytoFLEX LX 系列后,平台的创新激发光和检测功能的优势进一步凸显,最高可对细胞 23 项参数的分析,满足了研究人员对于高内涵需求。在 CytoFLEX LX 诞生之前,超高端研究人员只能借助体积庞大、操作复杂且昂贵的仪器进行研究工作,以研发和分析高内涵、多参数数据,这令他们苦不堪言:很多实验室都需要招聘经过高度专业培训的专职设备操作人员,不仅如此,他们发现这些系统在使用方面还存在诸多难题。而如今,CytoFLEX LX 成为了这些高端研究人员的福音,它具备易用、易维护的特点,确保更多的研究人员能够轻松使用该系统,帮助他们在研究方面更上一层楼。此外,对于那些曾经共用实验室资源进行这些复杂实验的实验室来说,如今,他们终于可以如释重负,腾出精力去考虑如何利用自身的台式系统加速工作进度。由于 CytoFLEX 能够最大程度降低光损失,这就为荧光灵敏度建立了新标准,因此,弱阳性细胞群都能够被轻松检测到。它能够测量低至十个分子的荧光,以及粒径小至 0.2 微米的颗粒。拥有了 CytoFLEX LX 之后,研究人员可以测量两个散射参数,以及利用 5 根荧光检测多达 19 个荧光标记物,亦可在 6 根激光激活的条件下,检测多达 21 个荧光标记物。该系统的光学设计正处于专利申请中,这项设计能够优化激发光以及针对 6 根激光的光收集效率,这 6 根激光的波长分别为:375、405、488、561、638 和 808 nm。波分复用 (WDM) 检测模块(亦处于专利申请中)拥有纯带通设计,可提供从 4 色至 21 色的各种配置,并包含完整的可插拔光学滤波片。CytExpert 2.0 版本软件现已上市贝克曼库尔特目前已推出 CytoFLEX 数据获取软件的最新版本 —— CytExpert 2.0 版本,而全新 CytoFLEX LX 仪器上就搭载了该最新版软件。该软件的工作流和创新型工具能够简化复杂流式应用设置工作。通过创新型补偿库,无论用户身处实验室还是远程作业,均可轻松设置多色应用。运用 CytExpert 2.0 版软件,研究人员可以在不同时间、多个系统中对比和再现实验数据,,而 CytExpert 2.0 软件也会令他们满怀信心地获取针对特定应用领域的精准、标准化的检测结果。此外,针对高通量实验室的需求,该系统还包括微孔板分析功能,以及与前端自动化系统对接的功能,例如,贝克曼库尔特的全新 Biomek i 系列移液平台。该软件还提供确保符合法规 21CFR11 条款规定的工具,例如,用户管理、审计追踪以及电子签名等。“我们在拓展 CytoFLEX 技术方面取得的辉煌成就,预示着贝克曼库尔特流式细胞术将开辟新纪元,”贝克曼库尔特流式细胞设备全球营销总监 Sharlene Wright 说道。“随着CytoFLEX LX 的发布,贝克曼库尔特如今扩展了这款革命性技术的检测性能,从而进军高度复杂的研究市场。这款 LX 仪器结构精巧、紧凑,并具备高度精密的系统,能够传输高品质、高内涵多参数数据,为研究流式细胞开辟了新的篇章。”—— 仅用于科研用途。不可用于临床诊断。贝克曼库尔特、个性化标识和贝克曼库尔特产品以及服务标记均系贝克曼库尔特公司在美国和其他国家的商标或注册商标。贝克曼库尔特商贸(中国)有限公司 生命科学部总部地址:上海市长宁区福泉北路518号2座5楼产品咨询热线:400 821 8899售后服务热线:400 885 5355 / 800 820 5355联系邮箱:apls@beckman.com
  • HORIBA发布新品纳米颗粒追踪粒径分析仪
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong & nbsp 近日仪器信息网从HORIBA处获悉,HORIBA新品纳米粒度仪ViewSizer& nbsp 3000已于2020年正式在中国上市。该产品是一款全新的多光源纳米颗粒追踪粒径分析仪,能同时给出颗粒的粒径分布和数量浓度信息,不仅能测量单分散样品的粒径,也能准确测量多分散性样品和多峰样品技术。该新品研发的技术来源于HORIBA刚刚于2019年收购的美国MANTA仪器公司。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/b3456bab-739e-4784-ac6e-f9ee64da138a.jpg" title=" HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg" alt=" HORIBA发布新品纳米颗粒追踪粒径分析仪.jpg" / /p p style=" text-align: center text-indent: 0em " strong ViewSizer& nbsp 3000 多光源纳米颗粒追踪粒径分析仪 /strong /p p style=" text-align: justify text-indent: 2em " 据了解,目前市面上可以进行单颗粒追踪的主要有两种技术,一种是ICP-MS,另外一种就是纳米颗粒跟踪分析技术(NTA),ViewSizer& nbsp 3000正是一款采用了NTA技术的纳米颗粒追踪粒径分析仪。 /p p style=" text-align: justify text-indent: 2em " 据HORIBA粒度表征应用工程师肖婷介绍,与普通的动态光散射纳米粒度仪相比,ViewSizer& nbsp 3000具备如下三大优点: /p p style=" text-align: justify text-indent: 2em " 第一,仪器同时配备三种不同波长的激光光源,因而能够准确测量多分散性样品和多峰样品的粒径。 /p p style=" text-align: justify text-indent: 2em " 第二,测量样品粒径分布的同时,能给出样品的数量浓度信息,并提供颗粒运动的视频,满足用户的可视化需求。 /p p style=" text-align: justify text-indent: 2em " 第三,仪器可配置荧光功能模块,利用此功能可以扣除样品荧光的干扰,也可进行荧光标记,进一步测试各组分颗粒的粒径和数量浓度。 /p p style=" text-align: justify text-indent: 2em " ViewSizer& nbsp 3000当前主要目标用户群为高校、研究所用户,肖婷表示,该仪器特别适合做生命科学和纳米材料方向的应用研究。在生命科学方向,ViewSizer& nbsp 3000的荧光功能模块将发挥很大作用,通过荧光标记能得到各组分的粒径和数量浓度。而在纳米材料领域,该仪器能带来宽粒径分布的样品和多峰样品测量。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/cb5743d2-5345-4ce6-9a26-eab372832a55.jpg" title=" 640_300.jpg" alt=" 640_300.jpg" / /a /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 75px height: 110px " src=" https://img1.17img.cn/17img/images/202004/uepic/c823118b-54b9-4f5f-b995-34a69862bcfd.jpg" title=" 微信图片_20200330103948.png" alt=" 微信图片_20200330103948.png" width=" 75" height=" 110" border=" 0" vspace=" 0" / 想了解ViewSizer 3000更多信息?4月9日-10日,仪器信息网将联合中国颗粒学会举办首届“颗粒研究应用与检测分析”主题网络大会。HORIBA粒度表征应用工程师肖婷也将在4月10日10:00-10:30带来《纳米颗粒追踪粒径分析技术的特点及应用》的精彩报告,重点讲解ViewSizer 3000的更多性能特点和应用方案。欢迎大家报名参会。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 免费报名渠道: span style=" color: rgb(0, 0, 0) " /span /strong span style=" color: rgb(0, 0, 0) " 点击进入 /span /span strong style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " a href=" https://www.instrument.com.cn/webinar/meetings/KLDHFIRST/" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " 首届“颗粒研究应用与检测分析”主题网络大会 /a 官网 /span /strong ,点击“我要参会”,报名即可。 /p
  • Nature重磅!科学家开发出活细胞转录组测序技术
    一个受精卵发育为一个复杂个体,正常体细胞变成肿瘤细胞,细胞作为生命的基本单位,其状态的动态变化既是健康发育的基础也是疾病产生的原因。从光学显微镜对细胞形态变化的观察,到绿色荧光蛋白对细胞基因、表达定位等变化的追踪,再到分子记录器在基因组中稳定写入曾经发生的分子事件,以及单细胞转录组测序的发展,允许细胞全转录组的变化拟时序推测,每一次细胞动态变化记录的技术变革均推动了细胞生物学的发展。既有方法或受限于对细胞形态或少数基因的动态表征,或依赖于拟时序分析中多种在实际细胞体系中可能无法满足的假设,目前尚不能直接测量细胞全转录组状态变化。 8月17日,中国科学院深圳先进技术研究院、瑞士洛桑联邦理工学院Bart Deplancke课题组、苏黎世联邦理工学院Julia Vorholt课题组合作,在《自然》(Nature)上以article长文形式,发表了题为Live-seq enables temporal transcriptomic recording of single cells的研究论文。 该研究开发了活细胞转录组测序技术(Live-seq),首次实现了单细胞进行转录组测序后依然能够保持细胞存活。该技术兼具全基因表达分辨率和动态解析能力,是当前对单细胞转录组直接动态测量、偶联细胞现有状态及其后续表型的唯一解决方案。 基因表达程序的变化是细胞对外源和内源刺激反应的重要表现。对单个细胞的连续观测是细胞对刺激反应、变化的重要研究手段,活细胞成像是最早的方法之一。随着显微成像技术和荧光标记手段的发展,显微成像可实现从体外细胞培养到体内环境下对基因表达的动态观测。基因编辑技术的发展促进分子记录器的出现。该技术通过细胞原生的或人工合成的基因线路,对刺激的感应并将信息写入基因组,记录历史分子事件。技术的发展和应用促进细胞生物学的发展,例如活细胞成像已成为现代细胞生物学实验室的常用手段;分子记录器虽出现不久,但在体内多场景的适用性和稳定性上颇具潜力。而它们在记录基因表达上存在共同的限制——在一个细胞中只能同时记录一个或几个基因的表达。 2009年汤富酬首创单细胞mRNA测序以来,不再只依靠少数几个基因的表达来分析细胞类型,而可用整个转录组的状态来更系统全面的定义细胞类型和状态。单细胞转录组变革了对细胞状态异质性的解析能力,推动了发育生物学、肿瘤细胞学、免疫学和干细胞生物学等的发展。然而,研究只可测量细胞的静态状态,无法像前述的活细胞成像那样连续观测细胞的动态或检查细胞后续的表型。为了克服这一限制,多种基于计算或标记的方法被开发出来。这些方法基于共同的假设,即群体的静态分布可以模拟个体的动态运动。运用不同的数学模型和/或新旧RNA的标记等手段,研究将转录组相似的细胞连接,产生一条轨迹来代表一个细胞的变化路径。这些方法提供了有意义的生物学认知,但由于这些前提假设在复杂细胞系统不一定能被满足,其提供的变化路径应被解读为一种统计学上的预期,而非细胞真正变化的轨迹。而这些限制的根本原因在于单细胞测序时裂解杀死了细胞,因而无法连续测量。 本研究中,科研人员开发出活细胞转录组测序技术(Live-seq),在进行单细胞转录组测序后,依旧保持细胞的存活和功能。该技术的核心是对部分细胞质进行微创地提取,并对微量的细胞质RNA进行扩增。具体地,该技术整合改造了多种跨学科技术(图1):具备纳米级移动分辨率和皮牛顿力学灵敏度的原子力显微镜,实现超精密显微操作;亚皮升级别的微/纳流控通道和液压调节系统,实现微量(约1皮升)样品提取和转移;纳米级的、中空可定量的、可和细胞膜无缝密封的特殊探针,可实现微创的细胞质提取;相偶联的实时跟踪成像和细胞培养系统,可以长时间锁定同一个细胞;高灵敏度的RNA扩增测序;对前述步骤的无缝整合。 Live-seq只对少量的细胞质进行测序,其结果能否代表细胞的状态?研究对多种类型和状态的细胞进行活细胞测序,并平行地和单细胞测序结果进行比较。结果显示活细胞测序结果和单细胞测序结果高度吻合,证明了Live-seq能够较好的体现细胞的全转录组状态。这一过程是否改变细胞状态甚至杀死细胞?研究对包括干细胞在内的多种细胞类型进行评估,发现大部分细胞在Live-seq后仍然存活。同时,细胞分裂依然能够正常进行(图2)。研究通过对巨噬细胞对细菌脂多糖LPS刺激的反应和脂肪干细胞分化过程的观测发现,细胞的反应未因Live-seq而有明显变化。研究对接受和未接受细胞质提取的细胞全转录组进行比较,也未发现大量的基因表达变化。结果显示,Live-seq未对细胞的活性和功能产生较大影响。 由于细胞测试后仍旧存活,Live-seq首次实现对同一个细胞全基因表达的连续测量。作为概念验证,Live-seq直接测定了同一个巨噬细胞和脂肪干细胞在刺激前后的变化路径(图3)。Live-seq可以回答细胞怎样的过去决定它的现在。即使是单克隆来源的巨噬细胞对细菌脂多糖的反应依旧有很大的异质性。利用这一模型,研究表明起始状态的少数基因的表达差异和噪音(如Nfkbia、Gsn等)是决定细胞后续反应差异的重要原因,处于细S期的细胞对刺激反应也更弱。对应地,普通的单细胞转录组无法找到这些规律。 Live-seq仍有不足:与高通量的单细胞转录组相比,Live-seq是低通量的手段;Live-seq尚不能在体内应用;在高度极化而mRNA分布不均的细胞(如神经细胞)中,Live-seq或无法体现全细胞转录组;多次采样对细胞的干扰需要更多研究。未来持续的发展如自动化提高通量、通过和双光子显微镜联用运用于体内样品等,有望使上述不足得到改善。Live-seq第一次使得对活细胞的连续观测成为可能,希望可以催生更多新可能。 研究工作得到国家重点研发计划、深圳合成生物创新研究院的支持。   论文链接 图1.Live-seq基本原理 图2.Live-seq对细胞的影响,黄色的细胞被提取出细胞质,蓝色和紫色的细胞未被处理 图3.活细胞测序新可能:(左图)对同一个细胞转录组的连续分析;(右图)偶联细胞起始的转录组状态(因)和后续细胞对刺激的反应(果)
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。(作者系清华大学科学史系助理教授、“双校记:透过显微镜看哈佛与清华”展览策展人)
  • 从世界名校收藏的显微镜,看科技发展的轨迹
    日前,“双校记:透过显微镜看哈佛与清华”线上展览正式开幕,该展览由清华大学科学史系、清华大学科学博物馆与哈佛大学科学史系、哈佛历史科学仪器收藏馆联合举办,是清华大学科学博物馆与国外著名大学博物馆合作举办的线上系列展览之一。显微镜是近代科学的标志仪器。1665年,伦敦大瘟疫暴发,胡克出版了《显微图谱》一书,他使用的显微镜可以把标本放大30多倍,此后,荷兰的列文虎克研制了独具风格的、可放大200多倍的单式显微镜。18世纪之后,显微镜逐渐流通到世界各地,满足了人们的好奇心,揭开了自然界隐藏的奥秘,极大地促进了现代科学的进步。显微镜也进入了大学的课堂、实验室和博物馆。该线上展览展示了哈佛大学与清华大学所使用、制造和收藏的众多类型的显微镜,从一个侧面折射了这两所世界著名大学在科学教育、科学研究以及历史收藏等方面的发展轨迹。两代哈佛人的显微镜本次展览展出了一套生产于1720年前后的威尔逊螺旋筒型和圆规型单式显微镜,开发这类仪器的初衷是为了满足人们对小型便携式仪器日益增长的需求。这套显微镜原属于哈佛大学第9任校长爱德华霍利奥克。他在任期间,加强了哈佛大学(当时还是哈佛学院)在数学和科学方面的学术课程,并进行了一系列的学术改革,将学术成就作为哈佛大学的录取标准。此外,他还建立了北美第一个物理学实验室。哈佛大学在他长达32年的任期内得到了蓬勃发展。1730年前后,英国科学仪器制造商、工匠埃德蒙卡尔佩珀设计和制造了一种安装在三角支架上的显微镜,此款显微镜很快成为18世纪上半叶最流行的复式显微镜,并且持续生产了大约一百年。此外,展览还展出了一台卡尔佩珀型显微镜,生产于18世纪50年代, 其所有者和使用者是爱德华奥古斯都霍利奥克。他是爱德华霍利奥克的儿子,1746年毕业于哈佛大学,后来投身医疗事业,成为美国治疗天花的先驱,为成百上千的人接种了天花疫苗。霍利奥克活了100岁,在他漫长而辉煌的职业生涯中,为人看病达25万次。他也是马萨诸塞州医学会和美国艺术与科学院的创始成员,并担任过美国艺术与科学院的主席。马克吐温与留美幼童展览还展出了美国著名作家马克吐温的一台单目复式显微镜。马克吐温1835年出生于美国密苏里州佛罗里达,他的原名是塞缪尔兰霍恩克莱门斯。马克吐温字面意思是指十二英尺水深,是当时密西西比河安全水上航行的最低深度。马克吐温因旅行叙事小说享誉国际,尤其是《傻子出国记》《苦行记》《密西西比河上的生活》,以及他关于童年的冒险故事,如《汤姆索亚历险记》和《哈克贝利费恩历险记》。1868年,马克吐温从巴法罗迁到康涅狄格州哈特福德。当时耶鲁大学毕业生、投身洋务运动的容闳也在四处奔走,倡议清廷实行留学计划,最终清政府在1872—1876年派遣4批共120名幼童赴美留学,他们主要住在哈特福德,所以马克吐温与这些幼童成为了邻居,有的幼童还与马克吐温的女儿成为同学,并一起跳过舞。马克吐温住在哈特福德时,把显微镜交给了他的秘书富兰克林惠特莫尔保管。惠特莫尔在马克吐温去世后,又将显微镜交给了他的孙子约翰富兰克林恩德斯。恩德斯于1922年获得哈佛大学博士学位,1939年,恩德斯把这台显微镜捐赠给哈佛大学。1954年,在波士顿儿童医院工作的恩德斯因“发现了脊髓灰质炎病毒在多种类型组织中培育生长的能力”,获得了当年的诺贝尔生理学或医学奖。这台显微镜在近80年的时间里,从与中国留美幼童交往过的一代文豪传至著名的科学家,最后回到哈佛大学,完成了一段传奇之旅。“新”“老”显微镜的接力20世纪50年代购自其他国家的显微镜工具,如苏联产的МИМ-7型显微镜和民主德国产的耶拿蔡司牌大型工具显微镜,也是展览展出的一部分。这些显微镜在清华大学“服役”超过50年,为机械、材料和精密仪器学科的科研教学发挥了重要作用。展览以新型冠状病毒SARS-CoV-2的三维结构高分辨率渲染图结尾,这是清华大学和浙江大学的研究人员在2020年利用高分辨冷冻电镜断层成像方法首次解析出的。遥想1665年伦敦暴发鼠疫时,列文虎克还未开始对显微镜的研究;而到2020年,新型冠状病毒感染疫情防控形势严峻,科学家则利用电子显微镜等现代科学仪器,迅速查明了病毒的真面目。从哈佛大学和清华大学所使用、制造和收藏的显微镜中,我们可以一瞥几百年来科技的迅猛发展,并且通过展览我们也能感受到,不同文明之间的交流互鉴、不同国家的沟通合作,会带来更大的希望与福祉。
  • 7位学术牛人亲授追踪最新文献的闯关秘籍
    7位学术牛人亲授追踪最新文献的闯关秘籍瑞士乌普萨拉大学细胞与分子生物学副教授Lynn Kamerlin:通过最新的文献,我才能对研究领域中背景知识及前沿热点有一个深入的了解,同时也能解决研究工作中遇到困难。然而基金申请、教学任务、行政管理等繁琐事务使我对查阅最新文献时常感到有心无力的。 澳大利亚联邦科学与工业研究组织的转化生物信息团队负责人Denis Bauer:如果不能通过最新文献来了解当前的科研热点,那么研究内容就有可能是科研中已经过时的东西。阅读文献是一个缓慢的学习过程,需要花时间去理解消化。有时读文献会让人感到沮丧,尤其是当你发现已有文献中抢先发表了你的创新性想法的时候。 西班牙萨拉戈萨大学计算机科学副教授Belen Masia:为了推动科学向前发展,了解科研最新前沿进展是十分必要的。然而作为一名副教授,除了科研研究,教学任务、基金申请、同行评议、发表演讲、参加学术会议等多重任务都让我很难挤出时间来查阅最新文献。 奥克兰加利福利亚数字图书馆前馆员和博士后研究员John Borghi:在浩如烟海的科学文献中找到你真正需要的文献是非常重要的,尤其是对年轻科学家而言,在努力掌握最新文献的同时还需在自己的研究领域中建立起相应的知识体系是一个不小的挑战。 西班牙塞维利亚Donana生物站的进化生态学与保护生物学的资深科学家Juan Jose Negro:毫无疑问,时刻追踪最新文献是非常必要的。为了能提供创新性的研究成果,你必须要知道其他人已经做了哪些研究。同时,你也可通过最新文献而有所启发。 加拿大哥伦比亚大学精神医学遗传学副教授Jehannine C.Austin:科学家的任务就是揭开科学的谜团,创造新的知识和理论,因而需要实时更新所在研究领域中的科学知识。但是追踪最新文献的确是一个工程浩大且无终止日期的任务,所以我很难确定该任务的优先级。 阿默斯特的马萨诸塞大学的经济学副教授Ina Ganguli:为了对科研做出相应的贡献并有效得教导我的学生,我需要非常熟悉当下的前沿研究及其使用的最新理论和实验方法,然而我对科研者的时间到底应该放在做科研研究上,还是在追踪最新文献上的问题上仍然有犹豫。
  • Picarro G2401——利用后向轨迹模型估计北极大气温室气体的空间分布
    Picarro G2401——利用后向轨迹模型估计北极大气温室气体的空间分布江苏海兰达尔 2023-04-03 10:58 发表于江苏收录于合集#温室气体3个#大气2个原文链接:https://onlinelibrary.wiley.com/doi/10.1002/mma.6046摘要在这项研究中,我们使用了一种被称为FLA的被动风传感(遥感)数值技术来模拟大气组分浓度的平均有效场,并展示了方法和研究结果。用数值方法求解了假设扩散波峰数无限大的温室气体空间分布的拟二维重构问题。这项研究是基于2016年7月至2017年8月在喀拉海别雷岛对大气中甲烷和二氧化碳的现场测量。我们分析了北极地区甲烷和二氧化碳空间分布的差异和共同特征,甲烷的浓度随着从大陆移动到偏远海域而趋于下降,相反,对于二氧化碳,在整个大陆上都观测到了较低的值,但随着远离海岸线而增加。对于这两种温室气体,2017年的平均大气浓度相对于2016年也有所增加。01观测介绍观测地点(别雷岛)位于俄罗斯亚马尔半岛以北5至10公里的喀拉海,于2016年至2017年夏季进行,测量站点建设在西北海岸(73.32°N, 70.05°E)。大气二氧化碳和甲烷的浓度测量使用Picarro G2401温室气体分析仪,该系统能够在连续无人值守的条件下进行高精度监测。根据工厂报告来看,Picarro G2401对二氧化碳和甲烷的测量精度分别为50ppb和1ppb(1σ,5秒测量平均)。在不使用参考气体的1个月内,最大漂移量为二氧化碳不超过500ppb,甲烷不超过3ppb。基于其低漂移和低校准频率的需求,该系统非常适应远程连续测量。02后向轨迹使用HYSPLIT4软件计算了不同月份下测量的4天后向轨迹(图1)。可以看出,气流的模式在每年和每月都有显著的变化。在2016年7月和2017年8月,都观测到了西西伯利亚中纬度地区的气团入侵。除2017年7月外,在其它月份,来自北极地区的气团都到达了别雷岛。图1 别雷岛监测站4个不同月份下的4天后向轨迹03研究结果图2为2016年和2017年二氧化碳和甲烷浓度的平均有效场的模拟结果。二氧化碳浓度(图2A、B)和甲烷浓度(图2C、D)的空间分布的一般特征有根本上的区别。对于二氧化碳,在整个大陆上都观测到较低的值,并且它们随着远离海岸线而增加。相反,在大陆及其邻近地区的甲烷浓度要高于偏远海域。这种空间分布上的差异是可以被解释的,因为甲烷的来源主要是大陆,包括各种自然和人为排放。例如,湿地和淡水系统被证明对北极地区的大气甲烷有重大贡献。主要的人为来源则是化石燃料燃烧和石油天然气工业。与此同时,在测量期间,陆地植被明显处于活跃的物候状态,这提供了强大的二氧化碳汇,因此其在陆地上的大气浓度较低。图2 不同年度月份二氧化碳和甲烷浓度的平均有效场在模拟的不同区域,有许多高甲烷浓度的“点”是意料之外的,这种镶嵌分布的形成可能与长距离的气体传输和海面可能的排放有关。因为来自海洋的甲烷的一个强大来源是海底永久冻土层和大陆架水合物,它们在该地区的分布也不均匀。此外,2016年夏季在俄罗斯北极地区观测到的温度异常可能是2016年海面以上温室气体空间分布差异更大的原因。对2016年和2017年的平均有效场的比较表明,2017年的二氧化碳和甲烷浓度相对于2016年均有所增加。结论在这项研究中,我们证明了基于监测点现场测量和空气颗粒物轨迹来评估大气组分平均浓度场的可能性。模拟的甲烷和二氧化碳浓度场的情况如下。二氧化碳在整个大陆的浓度较低,随着远离海岸线而升高,甲烷浓度分布则相反。根据计算结果,得到了模拟区域内海面上甲烷浓度空间分布较高的镶嵌模式。2017年,两种温室气体(二氧化碳和甲烷)的大气浓度相对于2016年都有所增加。编辑人:陆文涛审核人:史恒霖
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制