当前位置: 仪器信息网 > 行业主题 > >

显微粒子成像测速系统

仪器信息网显微粒子成像测速系统专题为您提供2024年最新显微粒子成像测速系统价格报价、厂家品牌的相关信息, 包括显微粒子成像测速系统参数、型号等,不管是国产,还是进口品牌的显微粒子成像测速系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微粒子成像测速系统相关的耗材配件、试剂标物,还有显微粒子成像测速系统相关的最新资讯、资料,以及显微粒子成像测速系统相关的解决方案。

显微粒子成像测速系统相关的资讯

  • 美国TSI公司网上讲座:粒子图像测速仪系统
    粒子图像测速仪系统   演讲人: 许荣川博士高级应用工程师   KHOO Yong Chuan Mike PhD   Senior Applications Engineer   网上讲座: 2011年1月12日上午10点   美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。   这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。   讲座将会进行40分钟及预留15分钟答疑环节。   这是TSI公司首次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年1月12日上午10点开始第一个讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。   具体内容:PIV原理及PIV实验基本原则 Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。   网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接www.tsi.com/FMwebinars(英文注册)或http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写表格,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。   讲师简介: 许荣川博士是TSI新加坡的高级应用工程师,他为东南亚包括澳大利亚,台湾及韩国等地的流体及粒子仪器用户提供应用解决方案和技术支持。他于1997年在英国拉夫伯勒大学获得机械工程学位并获全额奖学金完成其博士学位
  • 胤煌科技发布显微镜不溶性微粒检测仪新品
    YH-MIP-0103型显微镜不溶性微粒检测仪检测介绍药典规定:按照中国药典0903章节的要求,不溶性微粒的检测有两个方法,光阻法不溶性微粒检查和显微镜不溶性微粒检查。随着光阻法收录入药典作为不溶性微粒检查的一个方法以来,由于其操作简单,检测速度快,无需制样等优点深受广大用户的喜爱,也便成了用户偏爱和较高一种的检查方法。而显微镜法不溶性微粒慢慢淡出人们视野。随着药学的发展,尤其是制剂学的飞速进步,各式新的剂型进入临床,如注射用乳剂,常见的有丙泊酚、中长链脂肪乳、三腔袋脂肪乳等,脂质体,混悬剂,滴眼剂,混悬剂,易产生气泡剂型等。此种注射剂剂型的特殊性,无法利用常用的光阻法检测不溶性微粒,因为其样品本身的不透明性、高粘度等原因,使得采用光阻法检测会产生假性结果,因为光阻法会将样品本身和气泡也作为颗粒计入。中国药典CP中规定所有的注射剂都要做不溶性微粒项目检查,故而显微镜法不溶性微粒检查设备是非常重要的选择。常规显微镜不溶性检查的缺陷常规显微镜不溶性微粒检查大家会采用一台简单显微镜,人工进行计数。此种操作的难点是:无法避免人为的原因导致计数的偏差,主观性太强;最重要的是人为计数对实验员眼睛的要求较高,用眼过度会造成视力过早下降,引起一些不必要的眼疾;操作不规范性,测试结果重复性差YH-MIP-0103系列显微镜不溶性微粒检测仪上海胤煌科技有限公司自主研发生产的全自动显微镜不溶性微粒检测仪YH-MIP-0103系列,从样品制备到测试完成有一套完整的方案。1)直接按照药典要求出具报告;2)全自动进行滤膜全扫描,并进行颗粒图片分析;3)可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维;4)按照颗粒性质进行归类分析统计;5)光阻法检测不通过时,作为光阻法不溶性微粒的一个验证;显微镜不溶性微粒检测仪设备构成样品过滤装置,烘干装置,检测分析系统,电脑等。检测分析系统可以根据用户要求配置奥林巴斯体式显微镜、奥利巴斯金相显微镜、徕卡金相显微镜、尼康金相显微镜等。显微镜不溶性微粒检测仪应用领域应用范围:乳剂、脂质体、滴眼剂、混悬剂、易产生气泡剂型、粘度大制剂等执行标准:中国药典CP,美国药典USP 788、USP 789,欧洲药典 EP,英国药典 BP2013,日本药典JP等YH-MIP-0103系统介绍:组成:显微镜颗粒分析系统既可以观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;该系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;是传统显微测量方法与现代图像处理技术结合的产品;软件:测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;专业软件控制分析过程,手动对焦,手动光强,自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接, 数字化显微镜分析系统;数据传输:R232 接口数据传输方式将颗粒图像传输到分析系统; 颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;特点:直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点; 避免激光法的产品缺陷,扩展检测范围;YH-MIP-0103系统介绍:胤煌科技为您奉献的专门高性价比实验室显微镜。可以轻松地根据需要进行明场、暗场、相衬、荧光、偏光等多种观察;还可以连接照相机、数码摄像头,与电脑联机工作。1)物镜:独立校正光学系统,物镜拥有更高的数值孔径,成像更加平坦,清晰范围可达视场边缘。5X、10X、20X、30X、40X、50X、80X、100X 等可根据要求选配、经过防霉处理;2)目镜:高眼点,屈光度可调。10X 目镜视场范围有 20mm 和 22mm 两种配置。经过防霉处理;3)阿贝聚光镜:数值孔径 NA1.25,中心可调,带相衬板插孔,配孔径光阑调节装置,聚光镜孔径光阑采用与物镜色圈相同颜色的标记,方便您的使用;4)暗场聚光镜:专门用于暗场观察,安装方便;5)偏光装置:加配起偏器和验片器,您便可以轻松进行简易偏光观察;6)多功能转盘式相衬聚光镜:数值孔径 NA1.25,配置多功能相衬聚光镜,您可以配合 10X-100X 相衬物镜进行相衬观察,配合 10X-40X 物镜进行暗场观察,也可以明场观察;7)内倾式转换器:方便您放置切片,变换物镜进行观察;8)机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm。低位同轴移动手轮;9)无导轨机械载物台:平台尺寸大于 100*100mm,可容纳 2*50mm 快切片,配切片定位夹;X/Y 方向移动范围大于 50*50mm,低位同轴移动手轮,调节手轮可以根据您的用手习惯任意安装在载物台的左手或右手一侧;10)电动载物台:平台行程:大于 80*70mm;行程:2000μm;定位精度:≤±5μm;典型分辨率: 单步 0.625μm;11)观察筒:双目或三目铰链式观察筒;三目分光比 20/80,可以轻松与数码摄像头或照相机连接工作;视场较高可配置到 22mm;有 48-75mm和 52-75mm 两种不同的双目瞳孔,调节距分别适用于亚洲和欧美人士使用,您可以根据自己双目距离作出灵活的选择;12)粗微动手轮高度可调:根据您手形的大小,粗微动手轮高度可调,为您的手臂带来轻松和舒适;13)照明系统:6V/20W、6V/30W 卤素灯或者 LED 多种光源可供选择。抽屉式的灯座设计让您只需简单地拔出、插入便可方便地更换灯泡;14)高效率的独立散热系统:即使在 6V/30W 卤素灯 48 小时不间断照明的环境下,机身也不会烫手,完全解决了长期困扰研究人员的机身发烫问题;15)增高器:果您体型高大,可选配增高器,保证您观察时的坐姿更加舒适;16)搬运把手:保证您移动显微镜时轻松安全;YH-MINP-0103产品配置 显微镜不溶性微粒检测仪技术参数测试范围: 1 μm - 500 μm放大倍数:40X-l000X 倍比较大分辨:0.1 μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232 或 USB 方式供货期:30 个工作日精 确 度:95%(按中国药典 2010 版校准)YH-MIP-0103分析过程: YH-MIP-0103系统介绍:美国药典 USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典 EP6.0、EP7.0、EP7.8、EP8.0;英国药典 BP2013、BP2012、2010、2009;日本药典 JP16、JP15、JP14;印度药典 IP2010 版;WHO 国际药典 IntPh 第四版;中国药典 2010 年、2015 年;GB8368 输液器具;ISO21510;ISO11171 等。GB/T 11446.9-2013 电子级水中微粒的仪器测试方法。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。 创新点:显微镜不溶性微粒检测仪 全自动进行滤膜全扫描,并进行颗粒图片分析,可以区分颗粒性质,鉴别不溶性微粒的来源,是金属还是纤维按照颗粒性质进行归类分析统计,检测分析系统可按客户要求配置奥林巴斯体式显微镜、奥林巴斯金相显微镜等 显微镜不溶性微粒检测仪
  • 重庆科技学院300.00万元采购粒子图像测速
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 招标文件: 附件1 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院工业安全与爆炸防护实验室建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02461 采购执行编号:1708-BZ2200461555AH 项目名称:重庆科技学院工业安全与爆炸防护实验室建设 采购方式:公开招标 预算金额:3,000,000.00元 最高限价:3,000,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求粒子成像测速系统(PIV系统) 1,700,000.00元 1 套 粒子图像测速系统PIV,包括:同步控制器、PIV专用图像采集系统、PIV专用双腔激光光源及光学组件、激光片光整形器件、软件控制、分析平台,以及高性能图形工作站。 包号:2 包内容 最高限价 数量 单位 简要技术要求 爆炸性能测试及附属设备 1,300,000.00元 1 批 多物态管道式可视化火焰传播实验系统:采用分压法精密比例配气,手动配气。 最高限价总计:3,000,000.00元 合同履行期限:包1:中标人应在采购合同签订后180个日历日内交货并完成安装调试。包2:中标人应在采购合同签订后90个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月9日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 09:30 投标文件递交截止时间: 2022年12月26日 10:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2022年12月26日 10:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自本公告发布之日起5个工作日 七、其他补充事宜 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。 八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:吴荐 彭晓玲 代理机构电话:023-67118096 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:吴荐 彭晓玲 项目联系人电话:13527346015 项目联系人邮箱:2337035465@qq.com 九、附件 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:粒子图像测速 开标时间:2022-12-26 10:00 预算金额:300.00万元 采购单位:重庆科技学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆市政府采购中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 招标文件: 附件1 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院工业安全与爆炸防护实验室建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02461 采购执行编号:1708-BZ2200461555AH 项目名称:重庆科技学院工业安全与爆炸防护实验室建设 采购方式:公开招标 预算金额:3,000,000.00元 最高限价:3,000,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 粒子成像测速系统(PIV系统) 1,700,000.00元 1 套 粒子图像测速系统PIV,包括:同步控制器、PIV专用图像采集系统、PIV专用双腔激光光源及光学组件、激光片光整形器件、软件控制、分析平台,以及高性能图形工作站。 包号:2 包内容 最高限价 数量 单位 简要技术要求 爆炸性能测试及附属设备 1,300,000.00元 1 批 多物态管道式可视化火焰传播实验系统:采用分压法精密比例配气,手动配气。 最高限价总计:3,000,000.00元 合同履行期限:包1:中标人应在采购合同签订后180个日历日内交货并完成安装调试。包2:中标人应在采购合同签订后90个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月9日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 09:30 投标文件递交截止时间: 2022年12月26日 10:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2022年12月26日 10:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自本公告发布之日起5个工作日 七、其他补充事宜 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。 八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:吴荐 彭晓玲 代理机构电话:023-67118096 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:吴荐 彭晓玲 项目联系人电话:13527346015 项目联系人邮箱:2337035465@qq.com 九、附件 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc
  • 大连理工大学295.00万元采购粒子图像测速
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 辽宁省-大连市-甘井子区 状态:公告 更新时间: 2022-12-25 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 2022年12月25日 12:18 公告信息: 采购项目名称 大连理工大学随车水下三维粒子图像测速系统采购项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 大连理工大学 行政区域 大连市 公告时间 2022年12月25日 12:18 获取招标文件时间 2022年12月26日至2022年12月30日每日上午:8:00 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 开标时间 2023年01月17日 09:00 开标地点 大连市甘井子区软件园路80号科技园大厦B座609室 预算金额 ¥295.000000万元(人民币) 联系人及联系方式: 项目联系人 李楠 项目联系电话 0411-39700100 采购单位 大连理工大学 采购单位地址 大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 采购单位联系方式 李老师;0411-84709969 代理机构名称 大连理工招标代理有限公司 代理机构地址 大连市甘井子区软件园路80号科技园大厦B座601室 代理机构联系方式 李楠;0411-39700100 项目概况 大连理工大学随车水下三维粒子图像测速系统采购项目 招标项目的潜在投标人应在大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱)获取招标文件,并于2023年01月17日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DUTASZ-2022861 项目名称:大连理工大学随车水下三维粒子图像测速系统采购项目 预算金额:295.0000000 万元(人民币) 最高限价(如有):295.0000000 万元(人民币) 采购需求: 采购随车水下三维粒子图像测速系统1套,用于水下航行器、水面船舶等的流场测量,测量系统整体跟随拖车一起前进,测量结果更接近于船舶真实航行状态下船体的流场,从而可以研究船体周围流场运动特征、涡流作用机理以及船体与自由面的相互作用等科学问题,同时也是开展水下航行体伴流场特征及流噪声机理研究的重要试验手段,具体要求详见招标文件。 本项目 随车水下三维粒子图像测速系统 可提供进口产品。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 合同履行期限:自签订合同之日起,接到采购人供货通知后8个月内货到采购人指定地点安装调试验收合格。 本项目(不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 1)非专门面向中小企业采购项目;2)中小微企业、监狱企业、残疾人福利性单位、节能、环保产品优先采购等;3)截至开标时间,经 信用中国 网站(www.creditchina.gov.cn)、 中国政府采购网 网站(www.ccgp.gov.cn)查询,被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的不得参加本采购项目,查询结果以资格审查过程中现场网络截图为准;4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本采购项目的采购活动。 3.本项目的特定资格要求:代理商须具有制造商合法有效授权(国产设备除外)。 三、获取招标文件 时间:2022年12月26日 至 2022年12月30日,每天上午8:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 方式:通过电子邮箱提交报名材料扫描件进行报名。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月17日 09点00分(北京时间) 开标时间:2023年01月17日 09点00分(北京时间) 地点:大连市甘井子区软件园路80号科技园大厦B座609室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.获取招标文件时间:2022年12月26日8:00-2022年12月30日17:00(双休日及法定节假日除外)。 2.获取文件方式:通过电子邮箱提交报名材料扫描件进行报名。 3.获取文件地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 4.通过电子邮箱提交报名材料扫描件进行报名:在招标文件发售期内,申请报名和购买招标文件的投标人请将营业执照(或事业单位法人证书)副本复印件、法定代表人身份证明(法定代表人报名提供)或法定代表人授权委托书(授权委托人报名提供,应附法人代表和被授权人的身份证明复印件)、《报名及购买文件登记表》(格式自拟,须含法定代表人或授权委托人的电子邮箱、联系电话、办公电话等)、招标文件费汇款凭证(招标文件费须以公司电汇方式至采购代理人公司银行账户,须备注项目名称及投标人名称)、上述材料加盖公章、扫描后发至电子邮箱710578087@qq.com,经采购代理人确认报名后,发售招标文件。 5.投标保证金:4万元,保证金形式及缴纳方式见招标文件。 6.公司名称:大连理工招标代理有限公司; 开户行:农行高新技术产业园支行; 账号:34263001040002404; 行号:103222006805。 注:1.如投标人为 通过电子邮箱提交报名材料扫描件进行报名 ,招标文件费以实际到账时间为准,报名截止时间后收到的材料及费用不予认可。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:大连理工大学 地址:大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 联系方式:李老师;0411-84709969 2.采购代理机构信息 名 称:大连理工招标代理有限公司 地 址:大连市甘井子区软件园路80号科技园大厦B座601室 联系方式:李楠;0411-39700100 3.项目联系方式 项目联系人:李楠电 话: 0411-39700100 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息关键内容:粒子图像测速 开标时间:2023-01-17 09:00 预算金额:295.00万元 采购单位:大连理工大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大连理工招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 辽宁省-大连市-甘井子区 状态:公告 更新时间:2022-12-25 大连理工大学随车水下三维粒子图像测速系统采购项目公开招标公告 2022年12月25日 12:18 公告信息: 采购项目名称 大连理工大学随车水下三维粒子图像测速系统采购项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 大连理工大学 行政区域 大连市 公告时间 2022年12月25日 12:18 获取招标文件时间 2022年12月26日至2022年12月30日每日上午:8:00 至 11:30 下午:13:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 开标时间 2023年01月17日 09:00 开标地点 大连市甘井子区软件园路80号科技园大厦B座609室 预算金额 ¥295.000000万元(人民币) 联系人及联系方式: 项目联系人 李楠项目联系电话 0411-39700100 采购单位 大连理工大学 采购单位地址 大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 采购单位联系方式 李老师;0411-84709969 代理机构名称 大连理工招标代理有限公司 代理机构地址 大连市甘井子区软件园路80号科技园大厦B座601室 代理机构联系方式 李楠;0411-39700100 项目概况 大连理工大学随车水下三维粒子图像测速系统采购项目 招标项目的潜在投标人应在大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱)获取招标文件,并于2023年01月17日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:DUTASZ-2022861 项目名称:大连理工大学随车水下三维粒子图像测速系统采购项目 预算金额:295.0000000 万元(人民币) 最高限价(如有):295.0000000 万元(人民币) 采购需求: 采购随车水下三维粒子图像测速系统1套,用于水下航行器、水面船舶等的流场测量,测量系统整体跟随拖车一起前进,测量结果更接近于船舶真实航行状态下船体的流场,从而可以研究船体周围流场运动特征、涡流作用机理以及船体与自由面的相互作用等科学问题,同时也是开展水下航行体伴流场特征及流噪声机理研究的重要试验手段,具体要求详见招标文件。 本项目 随车水下三维粒子图像测速系统 可提供进口产品。进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品。 合同履行期限:自签订合同之日起,接到采购人供货通知后8个月内货到采购人指定地点安装调试验收合格。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 1)非专门面向中小企业采购项目;2)中小微企业、监狱企业、残疾人福利性单位、节能、环保产品优先采购等;3)截至开标时间,经 信用中国 网站(www.creditchina.gov.cn)、 中国政府采购网 网站(www.ccgp.gov.cn)查询,被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的不得参加本采购项目,查询结果以资格审查过程中现场网络截图为准;4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本采购项目的采购活动。 3.本项目的特定资格要求:代理商须具有制造商合法有效授权(国产设备除外)。 三、获取招标文件 时间:2022年12月26日至 2022年12月30日,每天上午8:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 方式:通过电子邮箱提交报名材料扫描件进行报名。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年01月17日 09点00分(北京时间) 开标时间:2023年01月17日 09点00分(北京时间) 地点:大连市甘井子区软件园路80号科技园大厦B座609室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.获取招标文件时间:2022年12月26日8:00-2022年12月30日17:00(双休日及法定节假日除外)。 2.获取文件方式:通过电子邮箱提交报名材料扫描件进行报名。 3.获取文件地点:大连市甘井子区软件园路80号科技园大厦B座601室(电子邮箱) 4.通过电子邮箱提交报名材料扫描件进行报名:在招标文件发售期内,申请报名和购买招标文件的投标人请将营业执照(或事业单位法人证书)副本复印件、法定代表人身份证明(法定代表人报名提供)或法定代表人授权委托书(授权委托人报名提供,应附法人代表和被授权人的身份证明复印件)、《报名及购买文件登记表》(格式自拟,须含法定代表人或授权委托人的电子邮箱、联系电话、办公电话等)、招标文件费汇款凭证(招标文件费须以公司电汇方式至采购代理人公司银行账户,须备注项目名称及投标人名称)、上述材料加盖公章、扫描后发至电子邮箱710578087@qq.com,经采购代理人确认报名后,发售招标文件。 5.投标保证金:4万元,保证金形式及缴纳方式见招标文件。 6.公司名称:大连理工招标代理有限公司; 开户行:农行高新技术产业园支行; 账号:34263001040002404; 行号:103222006805。 注:1.如投标人为 通过电子邮箱提交报名材料扫描件进行报名 ,招标文件费以实际到账时间为准,报名截止时间后收到的材料及费用不予认可。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:大连理工大学 地址:大连理工大学采购与招标管理办公室(大连理工大学南门科技园C座)411室 联系方式:李老师;0411-84709969 2.采购代理机构信息 名 称:大连理工招标代理有限公司 地 址:大连市甘井子区软件园路80号科技园大厦B座601室 联系方式:李楠;0411-39700100 3.项目联系方式 项目联系人:李楠 电 话: 0411-39700100
  • 普洛帝发布不溶性微粒检测显微镜计数系统新品
    普洛帝不溶性微粒检测显微镜计数系统PLD-MPCS2.0A不溶性微粒显微镜计数系统 不溶性微粒显微镜法 显微镜计数系统 显微镜不溶性微粒计数系统不溶性微粒显微镜计数系统是普勒新世纪实验按照普洛帝分析仪器事业部的规划,于2001年推向市场的成熟系统仪器;符合中国药典规范附录0903不溶性微粒检查法第二法(显微计数法}。观察颗粒形貌,还可以得到粒度分布、数量、大小、平均长径比以及长径比分布等,为科研、生产领域增添了一种新的粒度测试手段;不溶性微粒显微镜计数系统微纳米颗粒计数器为一种图像法粒度分布测试以及颗粒型貌分析等多功能颗粒分析系统,该系统包括光学显微镜、数字 CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成;测试软件具有操作员管理系统、测试标准、零件测试模板、图像存储、颗粒追踪、报告输出、清洁度分析等功能;全面自动标准选择、颗粒尺寸设定、颗粒计数,或按用户设定范围计数,自动显示分析结果,并按照相关标准确定产品等级;将传统的显微测量方法与现代的图像处理技术结合的产物;专业软件控制分析过程,手动对焦,手动光强(颗粒清洁度测试必须人为干预进行),自动扫描,自动摄入,自动分析;专用数字摄像机将显微镜的图像拍摄及扫描;全自动膜片扫描系统,无缝拼接,数字化显微镜分析系统;R232接口数据传输方式将颗粒图像传输到分析系统;颗粒图像分析软件及平台对图像进行处理与分析;显示器及打印机输出分析结果;直观、形象、准确、测试范围宽以及自动识别、自动统计、自动标定等特点;避免激光法的产品缺陷,扩展检测范围;现实NAS、ISO等国际标准方法的认可;提供“OIL17服务星”签约式服务;不溶性微粒显微镜计数系统产品应用:大输液、小针剂、水、水乙二醇、水溶液、溶水产品等检测!完全并高于2020版《中国药典》的要求,内置药典、麻醉器具、输液器具检测标准,可直接进行各种装量的注射液、无菌粉末,及医疗器具微粒污染滤除率检测;航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造、制冷、电子、半导体、工程机械、液压系统等领域;对各类液体如油田回注水、污水、自来水、纯净水、高纯水、电子级水、超纯水、口服液、酒、饮料、牛奶、清洗剂、润滑油等液体进行固体颗粒污染度检测及不溶性微粒的检测。不溶性微粒显微镜计数系统执行标准:GB/T 11446.9-2013 电子级水中微粒的仪器测试方法美国药典USP 788、USP 789、USP35-NF30、USP32-NF27;欧洲药典EP6.0、EP7.0、EP7.8、EP8.0;英国药典BP2013、BP2012、2010、2009;日本药典JP16、JP15、JP14;印度药典IP2010版;WHO国际药典IntPh第五版;中国药典2020年、2020年;GB8368输液器具;ISO21510;ISO11171等。0.1~3000μm的超宽范围、超高分辨率满足全球510多个标准要求。可根据客户要求,植入相应“光阻法颗粒度”测试和评判标准。不溶性微粒显微镜计数系统技术参数:订制要求:各类液体检测要求;测试范围: 1μm-500μm放大倍数:40X~l000X倍分辨率:0.1μm显微镜误差:0.02(不包含样品制备因素造成的误差)重复性误差: 5%(不包含样品制备因素造成的误差)数字摄像头(CCD):300万像素标尺刻度:0.1μm分析项目:粒度分布、长径比分布、圆形度分布等自动分割速度: 93%软件运行环境:Windows 2000、Windows XP接口方式:RS232或USB方式供货期:30个工作日精 确 度:95%(按中国药典2020版校准);10% (按美国药典、ISO21501校准)鉴定机构:国家西北计量测试中心(民品)售后服务:普洛帝中国服务中心/普研检测。创新点:1、我司符合药典2020版0903显微镜法的仪器 2、实现上光源、下光源双向监测功能 3、引入金属颗粒、非金属颗粒和纤维丝等颗粒属性检测 4、微量样品0.01ml的痕量试样测试 5、高分辨率可实现X100~X1000的测试 不溶性微粒检测显微镜计数系统
  • TSI 网上讲座: 粒子图像测速仪系统 II ( 2011年3月22日)
    美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案;寻求如何优化系统得到更可靠数据。 这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。 讲座将会进行40分钟及预留15分钟答疑环节。 这是TSI公司第二次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年3月22日上午10点开始此次讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。 具体内容:PIV原理及PIV实验基本原则;Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。 网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接 http://www.instrument.com.cn/netshow/SH100732/guestbook.asp (中文注册)简单填写表格,并点击&ldquo 发送&rdquo 。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • AdvaScope-专为电子显微镜用户提供粒子探测系统定制开发服务
    您是否对基于Timepix芯片的混合像素X射线探测器感兴趣?您是否想要咨询关于电子显微镜的探测器升级解决方案?来自捷克的Advacam公司将欧洲CERN 开发的 Medipix/Timepix 技术商业化,为全球客户提供从硅传感器制造、微封装加工到混合像素光子计数探测器的X射线全产业链解决方案。同时在应用方面不断扩展,先后成立了衍生子公司 Radalytica 和 InsightART,分别从事复合材料诊断和艺术品分析。现在,衍生家族将再添一员- AdvaScope!电子显微镜的诞生,使人类的微观视野达到了原子精度的水平。经过五十多年的发展已成为现代科学技术中不可缺少的重要工具,被广泛应用到生物学、医学、材料科学、地质勘探、灾害鉴定以及工业生产等多种领域。AdvaScope正是瞄准这一应用,专为从事EM (Electron Microscopes)应用研究的客户提供定制化粒子探测系统,以及从客户痛点出发,提供专业的电子显微镜升级开发咨询服务。AdvaScope的成立,也标志着Advacam正式进军国际电子显微镜市场。我们能提供什么OUR TECHNOLOGY /AdvaScope可定制适用于EM应用的单粒子灵敏探测器,与常规探测器相比,拥有更优的分辨率、更快的速度和数量级的灵敏度改进。(4D )STEM in SEM/TEMµED (micro electron diffraction)EBSDEELSMicro/nano CTPtychographyX-ray irradiation systemsAND加速粒子探测系统的定制开发基于Timepix 探测系统的电子显微镜开发咨询diffraction pattern measured for Si sample aligned to [100] zone axisEBSD difraction pattern acquired in Thermo Fisher Scientific EM with a Timepix detector团队介绍OUR TEAM /AdvaScope创始团队汇集了来自电子显微镜和混合像素探测器两个领域的专家。其母公司Advacam与CERN Medipix Family有着密切合作,在混合像素光子计数X射线探测器开发领域始终保持着国际领先地位。同时公司与电子显微镜制造商,如FEI,TESCAN等国际巨头达成了战略合作关系。Pavel Stejskal- Scientific DirectorPavel 拥有核物理、高速数字和射频电子、信号处理和数据采集方面的专业背景,获伦敦帝国理工学院高能物理学博士学位。曾任职于CERN及FEI(现为赛默飞世尔科技),担任研究科学家一职。拥有直接电子探测、算法开发和信号处理等方向的多项专利。Michael Pohl- Managing DirectorMichael 毕业于捷克理工大学。在生产、工程、质控、项目管理方面拥有三十年的经验。Jan Jakůbek来自母公司Advacam的Jan负责监督研发工作及开发新的成像方法。Jan从事辐射成像和探测器研发多年,在实验和粒子物理、算法、电子和软件方面拥有丰富的经验。Jan 在布拉格捷克理工大学获得核物理博士学位,曾任捷克理工大学实验与应用物理研究所的创始成员和前系主任。Jan Sohar同样来自母公司Advacam的Jan 是一名业务开发专家,负责内部和外部流程改进。Jan 的背景是供应链管理、融资和公司运营。他在与技术初创企业合作方面拥有丰富的经验。SW专家团队AdvaScope软件团队在使用 Timepix 探测器开发定制解决方案方面拥有丰富的经验。他们为基于帧或数据驱动的采集策略开发了无损和加速的数据处理程序。他们对系统控制、监控、调节和校准的各个方面都有深刻的理解。合作伙伴Partners /北京众星联恒科技有限公司作为捷克Advacam公司中国区的总代理,也在积极探索和推广基于Timepix / Medipix芯片的混合像素X射线探测技术在中国市场的应用,目前已有众多客户将MiniPIX、AdvaPIX和WidePIX系列探测器成功应用于电子探测、空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。我们也非常期待从事EM研究的客户联系我们,我们可以一起尝试做更多的事情。相关阅读Timepix3 |易于集成的多功能直接探测电子探测器Timepix3芯片原理及应用介绍(原理篇)
  • 4916万元预算!暨南大学2022年4-7月仪器采购意向盘点
    暨南大学在中国政府采购网上发布2022年4-7月仪器采购意向,总采购预算达约4916万元,拟采购纳米粒度仪、手套箱、涂布机、宽光谱检测系统、食品均质机、粉碎机、显微镜、浓缩机、色谱仪、高速冷冻离心机、三维显微粒子测速仪、全自动酸洗机、医用仪器等。暨南大学预计仪器采购日期集中在2022年4月、5月以及7月。具体仪器采购信息详见下表。暨南大学是中国第一所由政府创办的华侨学府。“暨南”二字出自《尚书禹贡》:“东渐于海,西被于流沙,朔南暨,声教讫于四海。”意即面向南洋,将中华文化远播到五洲四海。学校目前是中央统战部、教育部、广东省共建的国家“双一流”建设高校,直属中央统战部管理。暨南大学是中国历史最悠久的大学之一。学校的前身是1906年清政府创立于南京的暨南学堂。后迁至上海,1927年更名为国立暨南大学。抗日战争期间,迁址福建建阳。1946年迁回上海,1949年8月合并于复旦大学、交通大学等高校。新中国成立后,暨南大学于1958年在广州重建,“文革”期间一度停办,1978年在广州复办。值得一提的是,暨南大学学生在国内外高水平赛事中屡创佳绩,奥运健儿苏炳添、陈艾森、谢思埸等重大国际赛事上多次为国争光。暨南大学2022年4-7月仪器采购意向序号采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期1暨南大学药学院药剂学团队纳米粒度仪等实验室设备采购项目A033499其他专用仪器仪表详见项目详情150.62022年4月2暨南大学信息科学技术学院新能源技术研究院手套箱集成涂布机一体机采购A02062002电气物理设备详见项目详情452022年4月3暨南大学光子技术研究院宽光谱检测系统采购项目A02120105光学仪器检测器具详见项目详情99.92022年4月4暨南大学光子技术研究院纳米光刻实验室设备采购项目A021107放大器详见项目详情37.72022年4月5暨南大学药学院高速冷冻离心机等实验室设备采购项目A031207食品均质机,A02053201粉碎机,A02100301显微镜,A02052506浓缩机械,A02100404光学式分析仪器,A02100408色谱仪,A032017临床检验设备,A02052501离心机,A02100309激光仪器,A02100405射线式分析仪器详见项目详情894.12022年5月6暨南大学纳米光子学研究院设备采购项目A02100309激光仪器详见项目详情562022年5月7暨南大学能源电力研究中心科研设备采购项目-三维显微粒子图像测速仪A02100405射线式分析仪器 A02100406波谱仪 A02100707速度测量仪表详见项目详情1952022年5月8暨南大学光子技术研究院全自动酸洗机实验室设备采购项目A020699其他电气设备详见项目详情302022年5月9暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032003医用电子生理参数检测仪器设备详见项目详情3002022年5月10暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032003医用电子生理参数检测仪器设备详见项目详情1252022年5月11暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032001手术器械详见项目详情1402022年5月12暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032007医用内窥镜详见项目详情1002022年5月13暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032022手术急救设备及器具详见项目详情1802022年5月14暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032001手术器械详见项目详情1402022年5月15暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032004医用光学仪器详见项目详情1502022年5月16暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032007医用内窥镜详见项目详情1502022年5月17暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032001手术器械详见项目详情1002022年5月18暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032011医用X线设备详见项目详情2502022年5月19暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032023口腔科设备及技工室器具详见项目详情1602022年5月20暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032026医用低温、冷疗设备详见项目详情1002022年5月21暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032017临床检验设备详见项目详情2002022年5月22暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032011医用X线设备详见项目详情2502022年5月23暨南大学附属第一医院(广州华侨医院)医疗设备 采购项目A032011医用X线设备详见项目详情4002022年5月24暨南大学光子技术研究院微波光子与光通信实验室设备采购项目A021110电子示波器 A02100309激光仪器A02080599其他光通信设备详见项目详情662.22022年7月
  • 570万!华南理工大学显微成像流式多维度分析系统采购项目
    项目编号:GZSW23156HG1028项目名称:华南理工大学显微成像流式多维度分析系统采购项目预算金额:570.0000000 万元(人民币)最高限价(如有):570.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求最高限价万元(人民币)1显微成像流式多维度分析系统1(套)本项目采购显微成像流式多维度分析系统一套,用于对细胞、微生物或其它微粒特征进行多参数的快速定性、定量和定位分析。可在分子和细胞水平对大量悬浮样本的遗传信息、表观、功能和特异性标志物的表达等进行研究和分析。5701.经政府采购管理部门同意,本项目(显微成像流式多维度分析系统)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。2.本项目不分包组。3. 本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后90天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):收到信用证后90天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州顺为招标采购有限公司地址:广东省广州市越秀区环市中路205号恒生大厦B座自编B501-B505、B512-B525房联系方式:潘小姐020-83592216-8153.项目联系方式项目联系人:潘小姐电话:020-83592216-815
  • 【清洁度显微镜微百科】产品和检测设备与时俱进
    # 始于航天,行于汽车清洁度最早的历史应用于航空航天工业,也可以用符号Sa表示。60年代初美国汽车工程师( SAE )和美国宇航工业协会( SAE )开始使用统一的清洁度标准,从而全面地应用于航空和汽车行业。机电仪表产品的清洁度是一项非常重要的质量指标。清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。(摘自:百度百科)而汽车行业中关于清洁部件的要求,最早则由罗伯特博世公司(Robert Bosch)在1996年为了提高柴油汽车发动机共轨喷射系统的生产质量而提出的,他们在生产流程中发现小喷嘴很容易被系统中残留的污染颗粒堵塞,因此提出了生产中清洁部件的质量规范,由此诞生了零部件清洁度测试标准。此后,在汽车系统中很多可靠性问题都被归因于微粒子污染,即零部件清洁度不足。(摘自网络)产品与要求一同进化随着汽车工业的的大规模发展,汽车类产品的制造技术日益复杂,为了保障汽车的行驶安全,因此需要更高水平的污染控制能力。(当然,不仅是汽车、航空航天、重型机械和电气工程行业,技术产品日益复杂,因此对生产条件和生产部件的清洁要求也日益提高。)技术设备和部件表面上残留的污物可能会导致设备性能不可靠和/或很差;在制造过程中,设备上残留的颗粒会造成停工、延误交货时间、浪费材料和能源以及退货等问题。技术清洁度检测应用包括对ABS系统、柴油喷射器、制动卡钳、液压系统、管道、PCB、互连系统和较大重型机械部件的清洁情况进行检测。清洁度检测过程技术清洁度检测是一个包含了一系列准备步骤和检测步骤的较为复杂的过程,此文将对技术清洁度的检测过程进行概括介绍。检测之前对部件的准备工作分为如下步骤:部件清洗准备阶段始于从生产线上取下一个部件样本并进行清洗(在提取步骤之前)。提取在放置于无尘室的提取柜中去除被测部件上的颗粒。可以通过冲洗、喷洗、晃动冲洗或超声波清洗的方法去除颗粒。过滤对提取液进行过滤,并在滤膜上收集提取的颗粒(过滤材料包括纤维素、聚酯、玻璃纤维和尼龙网布)。烘干并称重滤膜被烘干,并准备接受进一步分析。滤膜烘干后,会留下所有杂质,然后,使用分析天平对其称重检测过程包括以下步骤:图像采集和载物台的移动烘干的滤膜被放置在电动显微镜的载物台上,以采集检测所需的图像。颗粒的探测观察滤膜的图像,以找到表现为明亮背景中黑色区域的颗粒。粒径的测量根据不同参数对所探测到的颗粒进行测量,这些参数包括:最大卡尺直径(与颗粒投影相切的两条平行线之间的距离)和等效圆直径。粒径的分类对颗粒进行了测量之后,将颗粒分成不同的粒径级别组。两个主要粒径等级为差值(由最小和最大粒径定义)和累积(仅由最小粒径定义)。颗粒计数外推法在滤膜中定义一个区域进行扫查,并探测其中的颗粒。这些区域可以是滤膜尺寸(整个滤膜区域)、流经区域(颗粒所覆盖的滤膜区域)、最大扫查区域(检测所能扫查的最大区域),以及检查区域(由用户定义的实际扫查区域)。颗粒计数归一化由外推法获得的颗粒计数被归一为某种比较值,从而可以对多次测量获得的结果进行比较。归一化方法包括清洗区域(归一为1000平方厘米区域的颗粒计数)、清洗体积(归一为100立方厘米区域的颗粒计数)、清洗样件(归一为单一样件的颗粒计数),以及过滤流体(归一为1毫升或100毫升过滤流体的颗粒计数)。污染水平的计算这种分类水平不是由粒径决定的,而是由(大多数国际标准)所定义污染级别中的颗粒总体数量决定的。清洁度代码的定义某些标准将测量数据的表现方式简化为简要的说明。这种清洁度代码根据标准而定义,并由粒径的级别和污染水平构成。最大审核值进行核查以获得最大审核值是一个可选步骤。如果需要获得一个最大审核值,则会在检测配置中确定,也可能会确定一个颗粒绝对数量值或者一个最大清洁度代码。反光颗粒和非反光颗粒的区分金属颗粒和非金属颗粒之间的区别是通过确定颗粒是否反光而完成的(这种区分极其重要,因为金属颗粒会造成比非金属颗粒大得多的伤害)。纤维鉴别在滤膜上探测到的纤维通常与滤膜上发现的其他颗粒来自于不同的地方(例如:纤维可能来自工作服或者抹布)。因此需要根据评估清洁度所使用的标准,识别、分析或忽略纤维。结果的复核在复核结果的过程中可能会执行以下操作:删除被错认为颗粒的项目;将靠得很近并被错认为是单个大颗粒的多个颗粒分开;将靠得很近并被错认为是不同颗粒的一个颗粒的组成部分融合在一起;修正错误的颗粒标签(例如:金属或非金属)。报告的创建技术清洁度检测报告可以包括某些颗粒采集参数的说明、颗粒分类表、颗粒区域覆盖的详细信息,以及最大颗粒的图像。CIX清洁度显微镜:为技术清洁度检测而设计技术清洁度检测向检测人员提出了一系列挑战,其中包括在检测过程中核查检测结果,同时观察反光和非反光颗粒,每天检测多个样本,基于不同的标准修正并重新计算结果,以及制作合规性报告分享结果。OLYMPUS CIX系列清洁度显微镜,特别为技术清洁度检测而设计,不仅可以迎接上述挑战,而且使用方便,可以使用户在非常舒适的条件下完成检测。OLYMPUS CIX系列清洁度显微镜的高端光学部件,硬件和软件的无缝整合,以及无需维护的可靠设计,确保了图像条件的再现性,并使清洁度检测成为一项可以轻松完成的日常任务。
  • 粒子束成像设备的分辨能力测试原理和测试方式
    一、测试原理粒子束成像设备如SEM、FIB等,成像介质为被聚焦后的高能粒子束(电子束或离子束)。以扫描电镜(SEM)为例,通过光学系统内布置的偏转器控制这些被聚焦的高能电子束在样品表面做阵列扫描动作,电子束与样品相互作用激发出信号电子,信号电子经过探测器收集处理后,即可得到由电子束激发的显微图像。图1:偏转器的结构示意(左);电镜图像(右)基于以上原理,一台粒子束设备在进行显微成像时,其分辨能力与下落至样品表面的粒子束的束斑尺寸相关,束斑的尺寸越小,扫描过程中每个像元之间的有效间距即可越小,设备的分辨本领越高。当相邻的两个等强度束斑其中一个束斑的中心恰好与另一个束斑的边界重合时,设备达到分辨能力极限(图2)。图2:分辨能力极限示意图不考虑粒子衍射效应时,经聚焦后的粒子束截面可视为圆形(高斯斑),其束流强度沿中心向边缘呈高斯分布(图3)。以扫描电镜为例,在光学设计和实验阶段,通常使用直接电子束跟踪和波光计算(direct ray-tracing and wave-optical calculations)方法,来获得聚焦电子束的束斑轮廓。该过程是将电子束的束流分布采用波像差近似算法来计算图像平面上的点展宽函数PSF(Point Spread Function),基于PSF即可估算出包含总探针电流的某一部分(如50%或80%)的圆的直径,从而得到设备的分辨能力水平。图3:高斯斑的截面形状和强度分布示意图但是在设备出厂后,由于粒子束斑尺寸在纳米量级,无法直接测量,因此行业通常使用基于成像的测试方法,测试粒子束设备的分辨能力。 锐利物体边界的边界变化率法是行业目前达到共识的测试粒子束斑尺寸的方法,即使用粒子束成像设备对锐利物体(通常是纳米级金颗粒)进行成像,沿图像中锐利物体的边缘绘制亮度垂直边缘方向的变化曲线,并选取曲线上明暗变化位置一定比例对应的物理距离,来表示设备的分辨率(图4)。为了保证测试准确性,可以在计算机帮助下取数百、数千个锐利边界的亮度变化率曲线求取均值,以获知设备的整体分辨能力。图4:金颗粒边界测量线(上图红线);测量线上的亮度变化(下左);取多条测量线后得到的设备分辨率示意(下右)边界变化率曲线上亮度25%-75%位置之间的物理距离d,可以近似认为是粒子探针束流50%时所对应的粒子束斑直径,在粒子束成像设备行业通常用此距离d来最终标识设备的分辨能力。图5:边界变化曲线与高斯斑直径对应示意图二、测试方式「 样品的选择 」金颗粒通常采用CVD或者PVD等沉积生长的方法获得,由于颗粒形核长大的过程可以人工调控,因而最终得到的金颗粒直径的大小可以被人工控制,所以视不同用途,金颗粒的规格也不同。以Ted Pella品牌分辨率测试金颗粒为例,用于SEM分辨率测试的标准金颗粒有五种规格,其中颗粒尺寸较小的高分辨、超高分辨金颗粒(如617-2/617-3)通常用于测试场发射电镜的分辨能力;颗粒尺寸较大的金颗粒(如617/623)通常用于测试钨灯丝或小型化电镜的分辨能力,详细的颗粒尺寸和适用设备见图6。测试时,不合适的金颗粒选择无法准确反映一台电镜的分辨能力。图6:Ted Pella品牌金颗粒规格及适用机型「 SEM光学参数的设置 」分辨率的测试旨在测试设备在不同落点电压下的各个探测器的极限分辨能力,因此,与电子光学相关的成像参数设置需要注意以下内容:(1)视场校准:保证放大倍数、视场尺寸的准确;(2)目标电压:这里特指落点电压,即电子束作用在样品上的真实撞击电压;(3)探测器:不同探测器收取信号的能力不同,因此获得图像的极限分辨能力不同,因此都要测试,通常镜筒内探测器ETBSE;(4)光阑/束斑:通常在每个电压下使用可以正常获得图像的最小光阑(以获得极限分辨能力);(5)工作距离:通常在每个电压下使用可以正常获得图像的最小工作距离(以获得极限分辨能力)。「 SEM图像采集条件 」(1)合理的测试视野/放大倍数测试时,所选用的测试视野(放大倍数)需要根据设备的分辨能力做出调整,一般放大倍数取每个像素的pixel size恰好与真实束斑尺寸接近即可。比如:对于真实分辨能力约1.5nm的设备,调整放大倍数使屏幕上每个像素对应样品上的真实物理尺寸为1.5nm,即在采集1024*1024像素数的图像进行测试的前提下,选择不大于1024*1.5nm≈1.5um的视野进行测试即可。表1:分辨率测试的FOV及放大倍数估算表(2)合理的亮度、对比度采集金颗粒图像时,亮度和对比度的选择也需要合理,也就是通常所讲的不要丢失信息。在不丢失信息的前提下,图像亮度对比度稍微偏高或偏低,只要边缘变化曲线的高线和低线均未超出电子探测器采集能力的上限或者下限,曲线虽然在强度方向(Y方向)出现的位置和差值有所变化,但距离方向(X方向)及变化趋势均不改变,因此使用25%-75%变化率对测量出来的分辨率数值d基本没有影响(图7)。然而,当使用过大的亮度、对比度设定后,当边缘变化曲线的高线和低线至少一边超出电子探测器采集能力的上限或者下限,再使用25%-75%变化率对测量出来的分辨率数值d就不再准确,这时测出的分辨率数值无效(图8)。图7:合理的亮度对比度及边界变化率的曲线图8:不合理的亮度对比度及边界变化率的曲线三、总结基于上述图像学进行的分辨率测试,是反映粒子束设备整体光学、机械、电路、真空等全面综合性能的关键手段。该测试在设备出厂交付时用于验证设备的性能指标,在设备运行期间不定期运行该测试以关注分辨率指标,可以快速帮助使用人员和厂商工程师快速发现设备风险,从而及时制定维护、维修方案,以延长设备的稳定服役时间。 钢研纳克是专业的仪器设备制造商,同时提供完善可靠的第三方材料检测服务、仪器设备校准服务,力求在仪器设备产品的开发、生产、交付、运行全流程阶段遵循行业标准和规范,采用统一的品质监控手段,保证所交付产品品质的稳定可靠。参考文献[1] J Kolo&scaron ová, T Hrn&ccaron í&rcaron , J Jiru&scaron e, et al. On the calculation of SEM and FIB beam profiles[J]. Microscopy and Microanalysis, 2015, 21(4): 206-211.[2] JJF 1916-2021, 扫描电子显微镜校准规范[S].本技术文章中扫描电镜图像由钢研纳克FE-2050T产品拍摄。
  • BioTools发布全球首创的便携显微拉曼分子光谱成像系统
    仪器信息网讯 2015年3月10日,在Pittcon 2015开幕第一天的新闻发布会上,美国BioTools公司推出了全球首创的u-Raman便携式显微拉曼分子光谱成像系统和u-BioRaman便携式生物分子显微拉曼分子光谱成像系统。该款产品由手性振动光谱先驱Prof. L.A. Nafie教授带领的专家团队研发而成。   该项新产品的推出构建了显微成像和分子光谱的桥梁,将显微拉曼分子成像系统从实验室带入更广阔,更多新视野下的现场应用。   该款系统比便携式缝纫机还要小,新型移动设计使得光路设计更短更有效率,集成的PTZ样品台设计极大地增加了扫描速度使得样品无需任何处理,采用SERS可轻松测量低至1微升或PPm量的细菌、血液以及代谢物等。其操作及其简便的设计,将使其成为工业、药物、法检、博物馆、医生办公室、输液诊室以及食品和水的测试领域里的强大的工具。   BioTools预计将于下半年向全球发货。   展位合影(右三为Prof. L.A. Nafie教授)
  • 科学家发明癌细胞“照妖镜”:黄金纳米粒子
    以色列物理学家研发使用黄金纳米粒子检测早期癌症的方法首次通过人体测试。以色列巴伊兰大学纳米科技及先进材料研究所的德奥尔· 菲克斯勒教授率领的团队,经过5年的研究证实了纳米技术在癌症早期诊断中的光明前景。他们研发的非侵入无辐射光学系统,被用于检测脑部、颈部及口腔癌症,也可用来检测位于舌头、咽喉部位的癌症发病情况。该方法已在动物身上测试成功,最近也通过了人类测试,被确认有效。   几分钟即可检测出癌症且成功率超过90%   这种发明是如何工作的?如果一位口腔感到疼痛并伴有其他病症的患者去看医生,有一种令人不安的可能就是,该患者正受到口腔癌、舌癌或喉癌的折磨。医生要求患者使用一种特殊的混合物漱口,几分钟后便能确认患者是否患有癌症。   这样的测试很简单,患者只要花上几分钟,用含有黄金纳米粒子的混合物漱口,这些粒子能够有效给癌细胞着色,着色部位被一个专门研发的工具扫描成图,医生便可在电脑屏幕上查看结果。当前的临床试验表明,该方法可成功检测出人类舌头及咽喉部位的癌症。舌癌的检测在特拉维夫大学牙医学院进行,咽喉癌的检测由舍巴医学中心耳鼻喉部完成。菲克斯勒说:&ldquo 我们将试验结果和病人活检结果进行对比,该试验的成功率超过90%。&rdquo   两种技术手段成就这一快速检测技术   菲克斯勒研发的检测方法包括了两种在医学领域还未充分展示其全部潜能的技术手段,&ldquo 物理扩散&rdquo 技术和&ldquo 纳米技术&rdquo 。   &ldquo 物理扩散&rdquo 技术发展于上世纪70年代末,主要的理论基础是光束在身体器官上的反射能够帮助检测肿瘤。对被器官阻碍的光线扩散的研究可以显示出器官哪一部分吸收或反射了光线,从而有助于检测癌细胞生长。菲克斯勒说:&ldquo 研究者们花费了很长时间构建模型,尝试找出光线反射原理下器官发生了什么,然而该领域的研究停滞了一段时间,因为该模型无法确切显示肿瘤是否被检测到,也无法确认扩散源是否来自身体的不同部分。作为基础研究的极好模型,事实证明它没有多少临床价值。&rdquo 他解释道:&ldquo 被称为漫反射的理论模型自20世纪80年代就很流行,但对癌症的检测不能仅依赖于光线对器官的反射这一依据,要确认癌细胞是否生长,我们需要能够更好地描绘器官图像的物质或微粒。&rdquo   &ldquo 大约12年前,一种被称为分子药剂的新思路进入人们的视线。&rdquo 菲克斯勒说。和先前寻求大体图像的思路不同,新思路希望寻求分子层面的结论。以此思路为基础,一种被称为&ldquo 对比成像&rdquo 的方法在近十年中研发出来。运用该方法,医生将一种秘密药剂注射到患者身体中,植于医生希望探测癌细胞生长的地方,从而获得所需图像,这种秘密药剂就是纳米粒子。其中,黄金纳米粒子因其无毒且与人体具有较好的集成度而被广泛使用。   &ldquo 事实上,纳米粒子是在我们血液中运行的小型机器人。&rdquo 菲克斯勒解释说,&ldquo 当纳米粒子在癌症抗体分子中时,我们可以观察到,这些粒子能够黏着于癌细胞。因此无需核磁共振或CT检查,癌细胞便可被识别出来。因为某种量子特性,黄金纳米粒子在一定的波长下能够对光线产生很强的反射作用。&rdquo   近年来,一种使用黄金纳米粒子成像的技术被研发出来,基于这种技术的疾病探测和治疗仪器随之出现,但这种仪器有个实质问题,即如何平衡创建高清质量的图像与所需黄金数量的关系。   新算法模型还可将该技术扩展于检测其他疾病   菲克斯勒和他的同事对自己的探测方法不断改进。&ldquo 这就像在寻找隧道。&rdquo 他解释道,&ldquo 仅探测外部环境找到隧道并不容易,有时候你需要等待有人从里面出来。我们不仅依据粒子反射的光线,同时还根据人体组织上光线扩散产生的效果检测癌细胞。&rdquo   研究人员改变了黄金纳米粒子传统的球形形状,把它做成了杆形,改变了粒子反射波的长度,使粒子更深入地穿透到人体组织中。更重要是,他们研发了一种数学算法,能将粒子反映的信息转化成实际的图像。&ldquo 粒子穿透组织,我们看不到反射。&rdquo 菲克斯勒说,&ldquo 但我们可看到它们如何在人体组织内影响光扩散。基于从组织细胞反射出来的光子数量,可建立计算数学函数。&rdquo   菲克斯勒的方法不限于癌症检测,他还在开发多发性硬化症的诊断方法。他的研究引起了国际科学界的关注, 去年6月,伦敦医学院为他颁发奖学金,资助其之后一年在伦敦国王学院与其他科学家一同继续此研究。44岁的菲克斯勒出生于特拉维夫,现任巴伊兰大学先进光学显微镜实验室主任。 他在瓦伦西亚大学完成博士后工作,曾在中国华南师范大学激光研究所担任客座教授。
  • 评新而论Vol.05 卓立汉光显微荧光寿命成像系统RTS2-FLIM
    听用户真实评价,晓新品技术进展!【评“新”而论】第5期,是曾获“3i奖-2022年度科学仪器行业优秀新品”的卓立汉光显微荧光寿命成像系统RTS2-FLIM。本次分享2位来自高校、科研院所的用户评价。 评新而论区 用户1:荧光寿命成像系统,解决了我们关于在微观尺度下研究材料超快寿命的问题!单位:浙江省某高校我们采购的是卓立汉光基于FLIM的超快光谱测试系统,配合飞秒激光器和条纹相机,用于研究钙钛矿材料在大电流注入下的俄歇复合问题,放大自发辐射(ASE)的效应以及宽禁带半导体材料等。 这套系统可以帮助我们从科学机理上去理解器件发光的内在规律,从而为设计更高效和更长使用寿命的器件提供理论支撑和研究方向。用户2:助力开发低成本、可产业化和小型化的光电功能器件,应用于光通信、光信息处理、光存储等方向。单位:长春某研究所我们采购了卓立汉光公司的FLIM加条纹相机系统主要用于钙钛矿太阳能电池、钙钛矿发光LED、钙钛矿激光以及有机高分子光电功能材料的研究。这套系统还配备了显微镜下专用的低温附件,可以帮助我们研究器件本征失效机理,进而提出解决方案,开发更加稳定的材料体系和先进的器件技术。 仪器新品区 卓立汉光显微荧光寿命成像系统RTS2-FLIM|查看报价参数什么是显微荧光寿命成像技术(FLIM)?显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。FLIM 两大应用——01——材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量;量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针;钙钛矿电池/LED 薄膜的组分分析、缺陷检测;铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测;镧系上转换纳米颗粒;GaAs 或GaAsP 量子阱的载流子扩散研究。——02——生命科学领域细胞体自身荧光寿命分析;自身荧光相对荧光标记的有效区分;活细胞内水介质的PH 值测量;局部氧气浓度测量;具有相同频谱性质的不同荧光标记的区分;活细胞内钙浓度测量;时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量;代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像。显微荧光寿命成像系统RTS2-FLIM是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。高度适用于光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质。参数指标系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统——03——更多用户应用案例1、用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量最大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。2、钙钛矿太阳能电池研究研究中展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。“3i奖-2023年度科学仪器行业优秀新品”评选火热进行中!获奖结果将于ACCSI2024中国科学仪器发展年会现场揭晓并颁发证书。时间:4月17-19日地点:苏州狮山国际会议中心详情点击:https://www.instrument.com.cn/accsi/2024/index 日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct 关于:“3i奖—科学仪器行业优秀新品”仪器及检测3i奖,又名3i奖(创新innovative、互动interactive、整合integrative),是由信立方旗下网站:仪器信息网和我要测网联合举办的科学仪器及检验检测行业类奖项,是随着行业的发展需求,应运而生。从旗下第一个奖项优秀新品奖于2006年创办,3i奖为记录行业发展路上的熠熠星光,截至目前,已设置有12个常设奖项。“科学仪器行业优秀新品”作为3i奖中非常重要的一项,旨在将在中国仪器市场上推出的、创新性比较突出的国内外仪器产品全面、公正、客观地展现给广大的国内用户,同时,鼓励各仪器厂商积极创新、推出满足中国用户需求的仪器新品。“科学仪器行业优秀新品”评选活动已经成功举办了十七届。评选出的年度优秀新品受到越来越多仪器用户、国内外仪器厂商以及相关媒体的关注和重视。经过10余年的打造,该奖项已经成为国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信,仪器信息网新品首发栏目也成为了国内外科学仪器厂商发布新品的首选平台。
  • 岛津在日推出全新分析装置—成像质量显微镜iMScope
    对以光学显微镜观察到的样品可以直接实施质谱分析 - 应用于疾患相关物质发现与生物体机能阐明 - 成像质量显微镜 iMScope 岛津制作所现已推出融合了光学显微镜与质谱分析仪技术的全新分析检测装置&mdash 成像质量显微镜『iMScope』。『iMScope』采用本公司独有的高聚焦激光光学系统与高精度样品移动系统,能够以5微米以下的领先世界水平的高分辨率下,取得生物体样品的质谱分析图像,观察分子的分布状态。实现了大气压下的质谱分析,可以分析更接近与活体状态的组织。通过重合、解析从光学图像获得的形态信息与从质谱分析图像获得的分子分布状态,期待应用于疾患相关标记物发现、药物动力学观察等领域。 *作为应用基质辅助激光解吸电离(MALDI)法的市售成像质谱分析装置,具有领先世界的高分辨率(据2013年4月本公司调查) 本产品将与自动前处理装置iMLayer共同出展5月14日在韩国举办的生物化学分子生物学会(KSBMB)以及6月10日在北美举办的美国质谱分析学会(ASMS)。 【开发背景】 传统的质谱分析法是将生物体组织样品破碎等后、提取物质得到的混合液体,然后使用液相色谱仪等进行分离,测定目的分子。因此,无法得知某一分子在样品的什么部位高浓度存在或在样品中感兴趣的部位有什么样的分子高浓度存在。研究人员渴望有一种分析装置可以对见到的物质、见到的部位中所含的分子直接实施质谱分析,实现研究人员愿望的装置便是成像质量显微镜『iMScope』。 举例来说,『iMScope』对诸如生物体组织切片这样的平板状样品照射激光,电离所含分子并检测。并且按规定的间隔移动激光,连续检测样品上的离子。通过将激光照射位置信息与其位置上含有的离子量进行二维图像化,可以获知特定分子的分布状态。比如,即使在组织上极小的局部存在作为疾病指标的分子时,也可以将其分布以图像方式检出。并且,通过比较多个样品的结果,诸如组织差异所造成的含有分子或医药品和其代谢物的分布差异等,也可以以图像方式进行测定、比较。 具有光学显微镜并可以在大气压下实施成像质谱分析的全新分析装置iMScope是可以应用于广泛领域的划时代的新解析工具,引起研究人员的高度期待,可以在各个领域最为尖端的研究开发中发挥威力,比如,特定癌干细胞中高浓度存在的分子,并将此分子作为标记物的癌早期诊断法的开发;阐明医药品代谢、聚集过程的药物动力学观察;解明食品中有助于增进健康的有效成分的分布;以增加有效成分量为目的的农作物品种改良;电路板、化成品材料的缺陷解析等,不胜枚举。 『iMScope』是将科学技术振兴机构(JST)尖端计测分析技术?仪器开发计划所获成果实施产品化的产物。以浜松医科大学为中心开发了样机后,以岛津制作所为中心开发出来了实用装置。在实用化的过程中,庆应义塾大学也参与了开发工作。基于上述机构的高见充实了必要的功能,使之成为方便使用的产品,最终开发成功了『iMScope』。 【本产品的特长】 1. 高分辨率:实现领先世界水平的5微米高分辨率采用本公司独有技术高聚焦激光光学系统与实现高精度样品位置移动的三维样品台驱动系统,作为成像质谱分析装置,成功获得了5微米以下的领先世界水平的高分辨率的质谱分析图像。即使诸如视网膜等具有10微米左右大小的微细结构的组织,也可以观察其内部的分子分布状态。另外,利用同时推出的自动前处理装置iMLayer,能够以简便的操作准备适于高分辨率成像质谱分析的样品。 2. 采用大气压MALDI,可以直接分析光学显微镜观察到的样品 离子源采用可以在大气压下进行离子化的大气压MALDI,可以直接对观察到的样品进行质谱分析。与真空MALDI法相比,不仅装置是启动时间短、测定时间快,更可以分析挥发性分子或接近活体状态的组织。 使用iMScope专用软件Imaging MS Solution,可以在光学显微镜图像上设置成像质谱分析条件,并且还备有若干已预先设置分析条件的文件,无需进行繁琐的条件设置,能够以观测光学显微镜的感觉进行成像质谱分析。 3. 高速分析:高于传统分析100倍以上的高速成像 iMScope的独有技术,以质谱分析仪保持使用1kHz的高速Nd:YAG激光进行多次激光照射而离子化的离子,一同进行质谱分析,与传统的质谱分析装置相比,实现了100倍以上(本公司内部比较)的高速成像。 例如,对2.5mm见方的样品以10微米分辨率进行成像质谱分析时,使用传统装置约花费10天的时间,但使用iMScope分析,则约3小时便可完成分析。将正常细胞与癌细胞进行比较等时,需要获取2张质谱分析图像,即便如此,iMScope只需约6小时即可完成,即如果在白天调制样品,夜晚进行分析,第二天一早便可获得检测结果,大幅加快了研究开发速度。 ※『iMScope』源自Imaging Mass Scope的新词。 鼠视网膜脂质的分布。仅在10&mu m分辨率的图像上可以识别脂质多重层,也可观察视网膜色素上皮层(10&mu m)。 *分辨率20&mu m、50&mu m、100&mu m的图像是根据分辨率10&mu m的质谱分析图像使用软件模拟制作而成 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • analytica 2014国际研讨会聚焦微粒物质
    为什么山峦有时候看起来是蓝色的,但是在日出和日落的时候却变成了完全不一样的颜色?为什么一些城市要设置低排放区域?许多类似的问题答案都是:悬浮微粒,也就是在空气中漂浮的细小的固体或液体物质。根据其来源、化学组成、数量和大小的不同,悬浮微粒可以对人体和环境造成不同程度,有时甚至是极度危险的侵害。4月1-3日在慕尼黑国际会议中心(ICM)举行的analytica国际研讨会上,国际知名科学家将就它们所带来的挑战作精彩演讲。   为保护人们免遭微粒物质对身体的损害,不同领域的科学家们对悬浮微粒进行了多年的研究。研究中最大的挑战之一是化学和生化分析,因此,今年的analytica国际研讨会将&ldquo 悬浮微粒和健康&rdquo 列为核心主题。大会第一天(4月1日),罗斯托克大学教授、慕尼黑Helmholtz研究中心化学家Ralf Zimmermann将主持一整天的关于悬浮微粒的讨论。来自德国、澳大利亚、芬兰、英国、加拿大、挪威、瑞士和美国的科学家们一共将作14场演讲,解释悬浮微粒的特征、如何进入人体以及对我们的健康造成什么样的影响。此外,他们还将介绍汽油、海运油料、生物油料和生物物质燃烧的后果,以及所产生的悬浮颗粒中不同纳米粒子的比例。   纳米粒子是指直径100纳米以下的微粒,它们能轻易对人体造成伤害。但是,直径达10微米的花粉也可以引起过敏。除过敏外,微粒物质还能导致哮喘和其他呼吸道及心血管疾病。所有干燥微粒中,有机物质的比例大概为70%,且种类达数百之多。因此,在对它们的处理中分析化学面临严峻的挑战。问题首先在于如何&ldquo 收集&rdquo 这些微粒,而如此收集的微粒的复杂性又如何。我们可以选择色谱分离以及质量光谱分析方法,这些技术现在已经越来越精细。有着极高解析度的基于质量光谱分析的技术和现代在线分析技术仍在用于气体和颗粒相的检测。   除微粒物质外,大会还将推出水质分析、代谢物质和蛋白质组学等方面的内容。因此,analytica国际研讨会将覆盖所有分析类的话题。您可以访问www.analytica.de/conference或www.gdch.de/analyticaconf2014了解最新大会活动。大会入场券已经包含在展会的参观票价中。   analytica 国际研讨会由GDCh (德国化学学会)、GBM (生化与细胞生物学学会) 和DGKL (德国临床化学及实验室药物学会)三大科研机构共同主办。
  • 超声波技术的应用
    超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。下面我们介绍一下几种常见的应用:1、细胞破碎超声波破碎细胞有操作简单,重复性好,节省时间等优点,多用于微生物和组织细胞破碎。超声波频率高于15-20KHz,在菌悬液中形成空化效应,使细胞产生急剧震荡而导致破裂,用于提取细胞内含物,如:大肠杆菌制备酶等。2、超声波化学合成超声波的空化效应过程中,空气泡产生高达5000K的高温,大于200MPa的压力。这就成为超声波化学合成的能量来源,利用这些能量可以在一些微粒表面合成出纳米粒子。3、超声波制药1)注射用医药物质的分散——将磷酯类和胆固醇和药水的混合 物,经过超声分散,可以得到更小粒子供静脉注射使用2)草药提取——利用超声破碎植物组织,加速溶剂穿透组织, 提高中草药有效成分提取率。如金鸡纳树皮中生物碱浸出,一般方法需要5小时以上,采用超声波分散只需要半个小时就可以完成。3)制备疫苗——将细胞或病菌借助于超声分散将其灭活后,用于疫苗制作。4、超声波在化妆品领域的应用超声波对化妆品的乳化和分散效果,形成更小的乳化微粒,使化妆品更深入渗透到肌肤层中,让肌肤更好吸收,发挥更好的效力和作用。使用超声波分散,在不需要使用乳化剂的情况下就能使蜡及石蜡乳化,化妆水等油的微粒子分散,微粒直径可以在1um以下。5、超声波对酒的醇化—催陈技术新酒的口感辛辣,味道差,需要经过较长时间的储存陈化,产生一系列的物理和化学变化及缔合过程,使辛辣、刺激性变小,酒味甘绵柔和,香味增加,口味协调,即为生酒的老熟。通过使用17.5-22KHz的超声波处理5-10min,可以酒的老熟时间缩短1/3到1/2.6、超声波清洗超声波清洗是基于空化作用,即在清洗液中无数气泡快速形成并迅速内爆,由此产生的冲击将浸没在清洗液中待清洗物体表面的污物剥落下来。随着超声波频率的提高,气泡数量增加而爆破冲击力减弱,因此,高频超声波特别适用于小颗粒污垢的清洗,而不破坏其工作表面WIGGENS提供完整的超声波系列产品:超声波清洗机、超声波振荡水浴、超声脱气机、制冷型超声机、超声破碎仪、超声波专用隔音箱等。超声波清洗超声波振荡水浴超声波脱气机超声波破碎仪
  • 多功能单细胞显微操作技术在病毒研究中的应用 ——在单病毒粒子--单细胞水平上研究病毒的感染
    病毒的感染研究通常是在大量细胞实验中进行的,一般要将许多培养细胞同时暴露于病毒中,这就使得研究单个病毒侵入事件和研究病毒在单个细胞之间的感染传播十分困难。多功能单细胞显微操作FluidFM技术通过温和的、微通道和力反馈控制的探针,将单个病毒粒子突破性的沉积在选定的单个细胞上,从而实现前所未有的控制,在单个病毒粒子--单个细胞水平上研究病毒感染。FluidFM技术可以帮助阐明关于毒性、病毒复制或宿主免疫应答的基本问题,从而促进新型抗病毒药物和疫苗的开发。放置单个病毒粒子单个病毒粒子可以被放置在您选择的细胞上的确切位置注入单个病毒粒子直接将单个病毒粒子注入特定细胞的细胞质或细胞核中测量生物量的变化测量细胞硬度的变化和单细胞力谱对感染细胞进行分离、提取和分析分离被感染的细胞,或进行单细胞活细胞提取,进而进行测序、质谱等分析观察和监测通过集成的成像系统和追踪软件对细胞进行长时间连续监测 FluidFM技术如何提升您的病毒学实验? 1. 在病毒感染方面获得全新的视角FluidFM技术为病毒学研究引入了新的实验可能性,允许在贴壁细胞培养中控制病毒粒子与您所选择的细胞进行的相互作用。这为我们提供了全新的视角:细胞进入和感染机制方面;细胞反应、病毒协同性和病毒生命周期阶段;增殖,扩散率和细胞间感染方面FluidFM操作病毒的工作原理 2. 量化宿主防御和病毒协同性通过在细胞上放置一定数量的病毒粒子,宿主细胞对病毒的防御就可以被量化。因此,可以研究感染概率、宿主防御的局限性以及病毒粒子之间的合作关系。1个病毒粒子通过FluidFM微管的空心悬臂准备放置。图片由苏黎世联邦理工学院P. Stiefel提供。4个病毒粒子沉积在一个选定的单细胞上。图片由苏黎世联邦理工学院P. Stiefel提供。 3. 监测病毒在细胞间传播FluidFM技术一体机集成了CO2和温度控制的活细胞模块,同时也集成了成像模块。这保证了受感染细胞的细胞培养环境,并与软件支持的自动追踪功能一起,允许长时间观察受感染或操纵受感染细胞。这使得我们可以详细了解病毒感染是如何从宿主细胞传播到邻近细胞乃至传播到其他培养细胞的。 4. 将单个受感染细胞导入正常培养基,或将单个正常细胞导入处理培养基轻柔地从贴壁或悬浮培养中取出单个细胞,以高的精度定位地将其放入另一个孔板中,这样的操作可以充分保证细胞的活力。使得将单个感染细胞引入健康培养基后的进一步研究成为可能。同样的方法也可以用于将健康细胞、耐药细胞或药物处理后的细胞放置于受感染的培养基中。分离单个细胞 5. 单细胞活细胞的提取,以便进一步分析FluidFM技术可以根据形态学或荧光标记从培养物中分离出单个细胞。在保持完全存活的情况下,这些感兴趣的细胞可以在新的培养皿中扩增,或进行进一步的蛋白质组学或转录组学分析。甚至可以进行单细胞活细胞检测,如Live-Seq、TOF等。 6. 从感染的单细胞中获得单细胞力谱FluidFM探针集成了力学反馈功能,允许定量的机械相互作用,可达pN别的力学分辨率。测量由单个细胞感染引起的生物物理变化,如硬度的变化,粘附力的变化,甚至质量的变化。因此,FluidFM可以将病毒在宿主细胞上引起的形态变化与机械变化联系起来。单个细胞从完全贴壁、融合的培养状态中被拽离出来,并记录单细胞力谱。视频由德国Würzburg大学医药与牙医科学院A. Sancho和J. Groll提供参考文献:[1]. Koehler, M., Petitjean, S.J.L., Yang, J., Aravamudhan, P., Somoulay, X., Lo Giudice, C., Poncin, M.A., Dumitru, A.C., Dermody, T.S. & Alsteens, D. Reovirus directly enganges integrin to recruit clathrin for entry into host cells. (2021) Nature communications, 12, 2149.[2]. J. Yang, J. Park, M. Koehler, J. Simpson, D. Luque, J.M. Rodriguez & D. Alsteens. Rotavirus Binding to Cell Surface Receptors Directly recruiting a-integrin. (2021). Advanced Nanobiomed Research.[3]. Guillaume-Gentil, O., Rey, T., Kiefer, P., Ibáñez, A. J., Steinhoff, R., Brönnimann, R., Dorwling-Carter, L., Zambelli, T., Zenobi, R., & Vorholt, J. A. (2017). Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. Analytical Chemistry, acs.analchem.7b00367.[4]. Guillaume-Gentil, O., Grindberg, R. V., Kooger, R., DorwlingCarter, L., Martinez, V., Ossola, D., Pilhofer, M., Zambelli, T., & Vorholt, J. A. (2016). Tunable Single-Cell Extraction for Molecular Analyses. Cell, 166(2), 506–516.[5]. Guillaume-Gentil, O., Zambelli, T., & Vorholt, J. A. (2014). Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab on a Chip, 14(2), 402–414.[6]. Guillaume-Gentil, O., Potthoff, E., Ossola, D., Dörig, P., Zambelli, T., & Vorholt, J. A. (2013). Force-controlled fluidic injection into single cell nuclei. Small, 9(11), 1904–1907.[7]. P. Stiefel, F.I. Schmidt, P. Dörig, P. Behr, T. Zambelli, J. A. Vorholt, and J. Mercer. Cooperative Vaccinia Infection Demonstrated at the Single-Cell Level Using FluidFM. Nano Letters, 2012.
  • analytica 2014国际研讨会聚焦:微粒物质
    为什么山峦有时候看起来是蓝色的,但是在日出和日落的时候却变成了完全不一样的颜色?为什么一些城市要设置低排放区域?许多类似的问题答案都是:悬浮微粒,也就是在空气中漂浮的细小的固体或液体物质。根据其来源、化学组成、数量和大小的不同,悬浮微粒可以对人体和环境造成不同程度,有时甚至是极度危险的侵害。4月1-3日在慕尼黑国际会议中心(ICM)举行的analytica国际研讨会上,国际知名科学家将就它们所带来的挑战作精彩演讲。   为保护人们免遭微粒物质对身体的损害,不同领域的科学家们对悬浮微粒进行了多年的研究。研究中最大的挑战之一是化学和生化分析,因此,今年的analytica国际研讨会将&ldquo 悬浮微粒和健康&rdquo 列为核心主题。大会第一天(4月1日),罗斯托克大学教授、慕尼黑Helmholtz研究中心化学家Ralf Zimmermann将主持一整天的关于悬浮微粒的讨论。来自德国、澳大利亚、芬兰、英国、加拿大、挪威、瑞士和美国的科学家们一共将作14场演讲,解释悬浮微粒的特征、如何进入人体以及对我们的健康造成什么样的影响。此外,他们还将介绍汽油、海运油料、生物油料和生物物质燃烧的后果,以及所产生的悬浮颗粒中不同纳米粒子的比例。   纳米粒子是指直径100纳米以下的微粒,它们能轻易对人体造成伤害。但是,直径达10微米的花粉也可以引起过敏。除过敏外,微粒物质还能导致哮喘和其他呼吸道及心血管疾病。所有干燥微粒中,有机物质的比例大概为70%,且种类达数百之多。因此,在对它们的处理中分析化学面临严峻的挑战。问题首先在于如何&ldquo 收集&rdquo 这些微粒,而如此收集的微粒的复杂性又如何。我们可以选择色谱分离以及质量光谱分析方法,这些技术现在已经越来越精细。有着极高解析度的基于质量光谱分析的技术和现代在线分析技术仍在用于气体和颗粒相的检测。   除微粒物质外,大会还将推出水质分析、代谢物质和蛋白质组学等方面的内容。因此,analytica国际研讨会将覆盖所有分析类的话题。您可以访问www.analytica.de/conference或www.gdch.de/analyticaconf2014了解最新大会活动。大会入场券已经包含在展会的参观票价中。   analytica 国际研讨会由GDCh (德国化学学会)、GBM (生化与细胞生物学学会) 和DGKL (德国临床化学及实验室药物学会)三大科研机构共同主办。   关于analytica   analytica是分析、诊断、生物及实验室技术领域的国际盛会,每两年在德国慕尼黑召开一届。自1968年品牌创立以来,展会以发展成为全球分析、诊断、生物技术行业和科研及应用行业用户的重要交易平台。展会同期举办的analytica国际研讨会是全球领先的分析学术盛会,为科研界精英讨论化学、生化和实验室药物等问题提供绝佳机会。2012年共有30,481名观众和1,026家展商参加analytica。   更多展会和相关活动信息请访问:www.analytica.de/en   关于analytica China   analytica China(慕尼黑上海分析生化展)是analytica全球网络的一部分。2014年9月24-26日analytica China将在上海新国际博览中心N1、N2、N3馆隆重召开。展会规模将达30,000平方米,预计将吸引超过20个国家及地区约700家中外展商,集中展示包括分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备等在内的最新产品及应用,提供全方位的实验室技术解决方案。更多信息,敬请访问展会官网:www.a-c.cn   慕尼黑国际博览集团   慕尼黑国际博览集团是世界领先的展览企业之一。仅在慕尼黑一地,慕尼黑国际博览集团就每年组织近40场展览,涵盖资本货物、消费品及高科技行业等众多领域。每年有超过30,000家展商和近200万观众参加集团在慕尼黑展览中心、ICM-慕尼黑国际会议中心和慕尼黑MOC展览中心举办的展会。慕尼黑国际博览集团举办的领先国际展会均接受独立审计。   此外,慕尼黑国际博览集团还在亚洲、俄罗斯、中东和南非举办展览。集团在欧洲、亚洲和非洲拥有9家分公司,并在60多个国家设有代表处,服务于90多个国家,并形成自己的全球性业务网络。集团在可持续性方面也作出了突出贡献:我们是世界上第一家由TÜ V SÜ D 授予高能效认证的展览企业。
  • 激光粒度分析技术在药物制剂研究、产业化中的应用
    激光粒度分析技术在药物制剂研究、产业化中的应用 源自:中国粒度仪网         日期:2012-8-14         浏览量:7 这项技术的研究和应用在医疗卫生实践和工业实践中占据着极其重要的地位,起着推动医、药科学向前发展的作用。近年来,由于药物新制剂已经成为了医药产业的增长点,全世界新释药系统销售额稳步增长,约占整个医药市场的10%以上。治疗新观念促进了新释药系统的开发,新技术推动了新制剂产品上市。激光粒度分析仪在药物制剂研究和生产中所发挥的作用越来越大,受到药物制剂研究和生产工艺中质量鉴控的工程技术人员、药品检验人员的重视。以下是微粒激光检测技术在新制剂科研和生产上应用的讨论。      一、微囊方面:      微型包囊技术是当今世界发展迅速、用途广泛而又比较成熟的一种技术。制备微胶囊的过程称为微胶囊化(microencapsulation),它是将固体、液体或气体包裹在一个微小的胶囊中。微囊的粒子大小,因制备工艺及用途不同而不同,理论上可以制成0.1~1000nm的微囊,从而有微米微囊和纳米级纳米囊之分。微囊的制备有物理化学法、物理机械法和化学法三类。其中物理化学法中相分离工艺现已成为药物微囊化的主要工艺之一,该工艺仍涉及一些质量问题未能作定量的研究并难于准确评价,如普遍存在的微囊粘连、聚集问题。相似的工艺得到的产品在粒径范围及释放数据方面有着很大的差异。用LS激光微粒测定方法,可以比较直观地观察到样品的微粒大小及其分布,分布得越集中,表示越均匀(图)。通过这一检测可发现工艺过程是否合理,并且控制得是否严谨。微囊化反应敏感程度是否合适,条件的微小变化会引起明显效果差异的情况下达到可控。例如,以明胶为囊材的工艺流程。      囊心物囊材      \/      &darr      混悬液(或乳状液)      &darr      凝聚囊      激光微粒检测点&rarr &darr 稀释液      &darr 沉降囊      └--&rarr &darr      固化囊      &darr      微囊&rarr 制剂      所用稀释液浓度过高或过低,可使凝聚囊粘连成团或溶解。      二、微球      微球(microspheres)是指药物分散或被吸附在高分子聚合物基质中而形成的微粒分散体系。药物可溶解或分散在高分子材料基层中,形成基层型微小球状实体的固体骨架物。其微粒大小一般在1~300&mu m,甚至更大。另外,将固体药物或液体药物作囊心物包裹而成药库型微小胶囊,称微囊。两者没有严格区分。微球粒径大小不一(0.01~700&mu m),检测方法除显微镜法、电子显微镜法之外,就是激光粒度测定法和库尔特计数仪法。激光粒度分析是比前两种方法所反映的面更广泛。显微镜局限于视野之内,电镜所观察到的范围更小,只能较为精细地观察到粒子的形态。从制剂研究和生产的角度出发,激光粒度分析和库尔特计算法更能指导工艺,反映质量。      三、粉雾剂(powderinhalation)      粉雾剂是一种或一种以上的药物,经特殊的给药装置给药后以干粉形式进入呼吸道,发挥全身或局部作用的一种给药系统,具有靶向、高效、速效、毒副作用小等特点。根据给用药部位的不同,可分为经鼻用粉雾剂和经口腔用(肺吸入)粉雾剂。粉雾剂的特点有:①无胃肠道降解作用;②无肝脏首过效应;③药物吸收迅速,给药后起效快;④大分子药物的生物利用度可以通过吸收促进剂或其他方法的应用来提高;⑤小分子药物尤其适用于呼吸道直接吸入或喷入给药;⑥药物吸收后直接进入循环,达到全身治疗的目的;⑦可用于胃肠道难以吸收的水溶性大的药物;⑧患者顺应性好,特别适用于原需进行长期注射治疗的病人;⑨起局部作用的药物,给药剂量明显降低,毒副作用少。不同的给药部位对微粒大小的要求不同,如肺吸入粉雾剂要求主药粒径应小于5&mu m,而鼻用粉雾剂粒径则应为30~150&mu m。粉雾剂的质量研究是粒子质量检查。主要检查粒径分布,粒子的形态,测定这些项目,用LS激光粒度分析仪是比较适合。      四、脂质体的粒径和分布      脂质体粒径大小和分布均匀程度与其包封率和稳定性有关,直接影响脂质体在机体组织的行为和处置。脂质体的粒径小于100nm,在血循环的时间较长,若脂质体的粒径大于200nm,则脂质体很容易被巨嗜细胞作为外来异物而吞噬,脂质体在体内的循环时间很短。影响脂质体粒径和分布的因素很多,可以这样认为,凡影响脂质体聚结稳定的因素,都关系到脂质体的粒径和分布。脂质体的检验,用激光粒度分析法能快速简单地显示出脂质体的粒径,可测出平均粒径、中位粒径,分布图可以判断出粒子是否均匀和稳定。      五、脂质体眼科用药系统      脂质体作为眼部给药系统,其组成材料为磷脂双分子层膜,类似于生物膜,易与生物融合,促进药物对生物膜的穿透性,故药物外用滴眼的跨角膜转运效率较高;通过选择不同的制备方法,制成脂质体粒径为0.02~5&mu m之间,滴入眼部无异物感,不影响眼睛的正常生理功能。      脂质体眼科用给药系统的制备与一般的脂质体相似。质量控制&mdash 运用激光粒度分析仪应在均质之后取样分析。      六、新型乳剂稳定性      乳剂是两种互不相混溶的液体借助表面活性剂的乳化作用,使一种液体分散在另一种液体中形成不均匀的微米或纳米分散系统。在这一范围内对乳剂作微观检查,应用激光粒度分析仪是可以测定乳剂微粒子的大小及其分布。可以通过116个分析通道分析出每一个粒子直径区间中粒子的大小及个数;可以通过粒子分布图观察粒子总体分布和均匀度;也可以通过对分布图统计表收集常用的技术参数。      七、纳米粒      一般认为纳米粒的粒径大小界定在1~1000nm范围内。已研究的纳米粒包括聚合物纳米与纳米球、药质体、脂质纳米粒、纳米乳和聚合物胶囊。      例如:油相用液状石蜡可制得纳米球平均粒径820nm      棉子油制得纳米球平均粒径560nm.等。      小结:随着药物制剂技术的迅速发展,新制剂逐步从实验室向医药生产企业进行产业化转移。激光粒度分析在工艺控制和药品质量控制中的应用也显得越来越重要。了解和掌握激光粒度分析方法迎接医药制剂新时代,将会使我们从中受益。
  • 岛津新一代成像质谱显微镜iMScope TRIO上市
    岛津公司面向生命科学相关研究机构、制药企业等广泛领域隆重推出成像质谱显微镜iMScope的最新一代产品「iMScope TRIO」。“TRIO”进一步发扬光大iMScope独有的质谱分析成像、光学图像、定性分析3大特长。 iMScope是科学技术振兴机构(JST)的尖端计测分析技术/仪器开发项目成果之一经产品化后于去年4月上市的产品,是世界首台可重叠光学显微镜图像与大气压下质谱分析所得5μm以下高分辨率分子分布图像进行观察的产品,现在正应用在最尖端的研究开发项目中。 作为在研究机构中根据正常组织与病患组织中分子分布状况的差异发现疾病相关生物标志物的工具,以及在制药领域作为可在观察药物或其代谢物分布的药代动力学分析、观察药物聚集组织周围代谢物变化的毒性评价、检测已知及未知物质增减的药效评价等用途上发挥威力的独有装置为人瞩目。在岛津与国立肿瘤研究中心实施的共同研究中,确立了直接测定以往无法测定的生物体组织内药物分布的技术等,获得了与疾病超早期诊断以及新药开发密切相关的先进研究成果。 在世界各地有众多世界大制药公司以及进行尖端质谱分析成像的大学与研究院所,此次「iMScope TRIO」的上市将强有力地支持上述机构的研究工作。 本公司将进一步推进与研究机构等的共同研究,开发肿瘤研究、脳功能解析等基础研究、DDS(Drug Delivery System:药物输送系统)、代谢组学、法医学、脂质解析等方面的应用。「iMScope TRIO」作为临床诊断领域的有效工具需求将日益高涨。 成像质谱显微镜iMScope TRIO 【本产品的特长】1.领先世界水平的高空间分辨率质谱分析成像配备的紫外光激光可聚光至5μm,实现了5μm以下领先世界水平的质谱分析成像空间分辨率。即便是视网膜(10μm)等薄组织,也可观察到其中所含脂质的层次结构。2.光学图像与质谱分析成像的融合在软件上可简便且高精度地重叠观察高分辨率光学显微镜光学图像与质谱分析成像。能够详细解析病患、抗癌剂的分布等感兴趣区域。3.基于IT-TOF功能实现高度定性分析具有离子阱(IT)质谱分析的n次方解析与飞行时间型质谱(TOF)相结合的IT-TOF功能,可实施高精度的精密质量分析。不仅可以从成像用样品解析分析,还可以通过与LC(液相色谱仪)联用,对于从组织中提取、分离的样品进行分析。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • FRITSCH粒度仪——日本海域海洋微粒的粒径分析
    在浩瀚无垠的海洋中,隐藏着一个对生态平衡至关重要却常被忽视的秘密——悬浮颗粒的复杂粒径组成。这些微小的颗粒物不仅是海洋沉积物生成的关键指标,也直接影响着海洋生态系统的健康与人类社会的福祉。近年来,随着技术的进步,科学家们开始采用精密仪器来深入探索这一领域,其中,Analysette 22 NeXT激光粒度仪正成为揭示海洋微世界奥秘的强大工具。海洋微粒:未知的威胁在日本海的阿贾克斯湾,研究者们收集了宝贵的样本,随后进行了深入分析。目标是通过先进的技术手段,揭开海底焊接与切割作业过程中产生的悬浮颗粒的神秘面纱。这一过程看似遥远,实则与我们息息相关——因为这些微米级的颗粒物,正是对人类及海洋生物健康构成潜在威胁的因素。青岛鑫龙达海洋工程有限公司 _水下检验, 水下清理清淤与打捞救助,水下焊接切割,水下绳据切割 (qdxld.cn)在这个实验中,从距离日本海阿贾克斯湾海岸30米的表层收集了20个水样。实验中的被测颗粒是通过使用特殊的药芯焊丝PPS-APL2 D-1.6mm(技术要求1274-001-83763787)在海水中焊接和切割金属而获得的,速度为-265mm/min。使用“VD-309P焊接整流器”作为焊接机。60秒后取样,这对应于水下焊接1个电极的燃烧时间。激光科技的力量:精准解析微小世界在这项前沿研究中,Analysette 22 NeXT激光粒度仪发挥了核心作用。这款高科技设备能够精确测量和分析颗粒大小分布,其精度之高,轻松捕捉到直径小于10μm的微小粒子。这些数据对于理解海洋环境中污染物的动态以及它们对生态系统的影响至关重要。无人为影响的海洋悬浮颗粒粒径分布的累积曲线执行水下切割后海洋悬浮颗粒粒径分布的累积曲线 执行水下焊接工作后海洋悬浮颗粒的粒度分布中,可看出所有样品中9.9μm微粒的峰值,主要颗粒分数为60%。焊接下的海洋:未被充分认识的污染源研究表明,海底焊接作业期间,直径小于10μm的颗粒物占比高达30%至60%。这意味着,这些细微的污染源不仅广泛存在,而且其浓度水平足以对海洋生物造成负面的毒理学效应,进而威胁整个海洋生态系统的稳定性和多样性。悬浮颗粒粒径分布测量结果的比较直方图显示,在人为影响下,水下焊接过程中主要排放粒径小于10μm的有害物质。从科研到行动:保护海洋生态的紧迫使命该研究揭示了水下焊接活动可能对海洋生态系统的水生生物产生负面的毒理学效应,强调了研究悬浮颗粒复杂粒度组成的重要性,尤其是在评估和管理海洋环境中的人为污染源时。这项研究成果不仅仅是学术上的突破,更是对环境保护的强烈呼吁。了解这些微粒的来源、分布及其潜在危害,是制定有效环保策略、减少人类活动对海洋环境影响的前提。借助如Analysette 22 NeXT这类高精度仪器,科学家们能够更准确地评估海洋污染状况,为政策制定者提供科学依据,共同推动更加可持续的海洋开发利用方式。总之,随着科技的进步,我们有了揭秘海洋微粒世界的利器。然而,技术的革新也要求我们以更加负责任的态度去使用这些知识,共同努力保护好地球上这片最后的蔚蓝。Analysette 22 NeXT激光粒度仪的运用,不仅是一项科学研究的成就,更是向实现海洋生态保护迈出的重要一步。
  • 美国PSS发布生物蛋白不溶性微粒检测仪新品
    AccuSizer 780 A2000 SIS 蛋白质注射液不溶性微粒检测仪 注射剂不溶性微粒检测方案全覆盖提升注射剂用药安全遵循法规规范基本信息仪器型号:AccuSizer 780 A2000 SIS工作原理:光阻法[Light Obscuration(LO), Light Extinction(LE),Light block(LB)]检测范围: 0.5 μm – 400 μm AccuSizer 780 A2000 SIS 蛋白质注射液不溶性微粒检测仪集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μm – 400 μm外,更可下探到0.5μm的极限值。 AccuSizer 780 A2000 SIS 蛋白质注射液不溶性微粒检测仪内置各国药典的检测标准,更可通过自定义检测标准符合多种应用场景,也可以避免后续药典标准升级之虞。 AccuSizer 780 A2000 SIS蛋白质注射液不溶性微粒检测仪搭载的AccuSizer软件完全符合US 21CFR Part11要求,具有数据自动备份,审计追踪,权限分级,电子签名,以及可连接Lims系统等多项功能,再原有的经典型号780 A2000 SIS基础上增配了具有50uL的微量进样能力模块,是检测大小注射液、蛋白注射液、混悬液、口服液、滴眼液等液体制剂及无菌粉末和无菌原料药的不二选择。技术优势1、检测范围广0.5μm-400μm;2、高分辨率,高灵敏性,统计精度高;3、粒子灵敏度 ≤10PPT4、粒径准确度 ≥98%5、粒子计数准确度 ≥90%6、符合21CFR法规软件——符合cGMP要求;7、现场校准,无需返厂;8、模块化设计,便于升级及维护;9、512通道,不放过任何细微颗粒;10、符合美国药典USP787、788、789、1788、中国药典CP、欧洲药典EP、日本药典JP等要求,且可自定义报告和标准;11、集自动取样(选配)、自动检测、数据处理以及自动清洗等自动化功能与一身;512数据通道 对于颗粒计数器来说,通道数越多,意味着其在特定测量量程内划分的区域越多。AccuSizer 780 颗粒计数器系列的仪器对于0.5μm - 400.0μm的测量范围按照指数等级划分有512个通道,意味着其在粒径越小处划分的范围越细,例:1.586μm-1.675μm。这样做的优点是显而易见的,一方面仪器实现了计数的准确性,将测量的结果作最细致的分析,而不是将结果作大致的分类。另一方面,对于测量复杂体系和多组分的样品,数据能很好的体现在结果图谱及数据中。图1多通道的优势 如上四张图是同样一个样本在使用不同通道的时候的表现,明显可以看出,使用8、16、32个通道的时候,仅仅能判断颗粒度在一个范围内,不能明确到底多大。而换用512高通道后,粒径大小的辨析度明显增加,对于峰值的判断更加清晰明了。高分辨率 高通道的优势换来的是高分辨率的优势。所谓分辨率,在这里指的是分辨同一体系内不同粒径大小的能力。得益于超前的设计理念和软硬件组合,AccuSizer 780系列仪器除了能够呈现完全不同于经典光散射的颗粒计数分布外,相对于经典的电阻法和光阻法,具有更高的分辨率和准确性。它不会错过任何“尾部” 大颗粒,而这些“尾部”大颗粒往往是决定产品好坏的标准。图2 AccuSizer 780 高分辨率展示 如图2所示,同一个样本中混合0.7μm,0.8μm,1.3μm,2μm,5μm,10μm,15μm,20μm,50μm,100μm,200μm 11种标准PSL粒子,AccuSizer 780可以很容易将每种不同大小的标粒区分清楚。图3 SPOS VS Laser diffraction 图3展示了同一个样本在SPOS技术和激光衍射法(Laser diffraction,LD)粒度仪中测得的结果。样本使用的是过400目筛(37μm)的样本。SPOS技术(绿色线)显示在35μm以上是没有粒子的,这和实际情况相符。但是使用LD检测得到的仅仅是“相似”的分布,但是在100μm本来没有颗粒的情况下却给出了还有大量大颗粒的假性结果。US 21CFR Part 11法规软件——符合cGMP要求 AccuSizer 780 A7000 APS不溶性微粒检测仪全系配备了符合美国联邦法规21章第11款(21 CFR PART11)要求的软件。具有数据自动备份,审计追踪,权限分级,电子签名,可连接Lims系统等多项功能。 中国食品药品监督管理局(NMPA)有政策趋势将对医药研发企业实施规范的GLP 管理。使用符合21 CFR PART 11法规的软件更能符合现在GLP/GMP的要求。产品优势 模块化设计将主机(数据处理中心),进样器,传感器分模组进行设计,既利于维护,也有助于后续的升级。主机:512通道计算实现仪器的高分辨率、高灵敏度;进样器:使用洁净度、耐受度超高的PFA管路,测样过程安全、简单、快捷,配备不同型号的注射器,拆卸方便;传感器独立安装,方便拆卸,既有利于维护维修,也便于更换其他型号传感器。CETAC自动进样器微量进样器微量进样 随着诸如蛋白质注射液等新型注射剂的研发和上市,对于金贵样品的“痕量”检测提出了要求。PSS使用先进的微控技术,可以实现最小容量到50μl的检测量,大大减少样品浪费,降低检测成本。 而新版药典如对于体积精度更是提出了苛刻的要求。AccuSizer 780 A2000 SIS不溶性微粒检测通过了严格测试,可以保证进样量的准确性。表1 微量进样器的精确度确认 表中可以看出,在50微升的重复性,AccuSizer 780 A2000 SIS表现优异,重复三次的RSD值为2.4%。CETAC自动进样 在传统的粒度仪使用过程中,需要操作人员时刻在现场操作。因为粒度仪的测试结果都是累计结果,也就是说,数据需要一定的时间来累积才能获得准确的结果。一般来说,一个样品要取得比较好的数据重现性和准确性,需要3-15分钟,甚至更长时间。现代实验室如果有大量的样品进行检测,会花费很多时间。PSS粒度仪可全系搭配CETAC自动进样系统,一次性可以检测24-96个样品,这会大大节省操作时间。创新点: 最新版蛋白注射液的不溶性微粒标准大大提高了对仪器的检测灵敏性和微量进样的重要性。 本最新型号根据蛋白注射液的最新药典要求,增配了小容量注射进样系统,可以最少到150微升。虽然大大减少了进样量,却仍然满足体积精确度5%的标准。 生物蛋白不溶性微粒检测仪
  • 同济大学纳米拉曼成像系统(高分辨共聚焦显微拉曼光谱仪与原子力显微镜联用系统)中标公告
    一、项目编号:0811-234DSITC0372(招标文件编号:0811-234DSITC0372)二、项目名称:纳米拉曼成像系统(高分辨共聚焦显微拉曼光谱仪与原子力显微镜联用系统)三、中标(成交)信息供应商名称:国药集团国际贸易(香港)有限公司供应商地址:香港湾仔轩尼诗道288号英皇集团中心1601室中标(成交)金额:449.5600000(万元)四、主要标的信息序号供应商名称货物名称货物品牌货物型号货物数量货物单价(元)1国药集团国际贸易(香港)有限公司纳米拉曼成像系统(高分辨共聚焦显微拉曼光谱仪与原子力显微镜联用系统)HORIBA FRANCE SASLabRAMOdyssey Nano壹套4495600五、评审专家(单一来源采购人员)名单:王宇晓、范冬梅、边玮、陈燕、褚成成(采购人代表)六、代理服务收费标准及金额:本项目代理费收费标准:按照国家发改委1980号文件《招标代理服务费管理暂行办法》规定标准下浮33%收取,服务费金额不足8000元的,按8000元收取。本项目代理费总金额:3.5813000 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜1、本项目为机电产品国际招标项目,本公告已于同日在机电产品招标投标电子交易平台、中国招标投标公共服务平台同步发布。2、本项目中标金额为(CIP人民币)4,495,600.00,合同最终结算时以实际发生金额为准。3、本项目的评标结果已在机电产品招标投标电子交易平台、中国招标投标公共服务平台上公示,评标结果公示无异议,根据《机电产品国际招标投标实施办法(试行)》,本项目的评标结果已自动生效并进行公告。”九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:同济大学     地址:上海市四平路1239号        联系方式:贾老师      2.采购代理机构信息名 称:上海东松医疗科技股份有限公司            地 址:0086-21-63230480转8610、8621            联系方式:林之翔、张智岚            3.项目联系方式项目联系人:林之翔、张智岚电 话:  0086-21-63230480转8610、8621
  • 中科院分子细胞卓越中心陈铭、赵宏伟:高内涵成像分析系统应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由中国科学院分子细胞科学卓越创新中心化学生物学技术平台陈铭研究员和高级工程师赵宏伟联合供稿,以下为供稿内容:高内涵成像分析系统,通俗来讲就是自动化成像平台和图像定量分析平台的集成,于20世纪90年代中后期推出第一代产品。高内涵成像分析系统的出现得益于自动化技术的进步,也依赖于计算机辅助的图像自动采集和信息提取能力的提升,其鲜明特点就是图像采集速度快、样品检测通量高、数据分析功能强。高内涵主要应用于高通量药物筛选和功能基因组筛选的细胞表型类实验检测,也适用于中低通量的细胞学研究中实验条件的摸索和优化。本文主要从图像高通量采集和图像批量分析两个方面介绍一下应用心得,并简要介绍一下我们在高内涵使用中遇到的一些思考。1. 自动化成像:图像采集要兼顾成像速度和成像质量的平衡作为高通量检测设备,高内涵的成像速度非常快,现在的技术能在5分钟之内完成一整块384孔板的单通道单视野的高质量图像采集。高内涵的成像对象通常是板底透明的微量多孔板,包括1-1536孔板,其中以96孔板和384孔板的使用最为常见。当然,借助于适配器的使用,也可以实现对培养皿和玻片的观察。根据板底材质的不同,分为PS材质多孔板和玻璃底多孔板,其中板底透明的黑色PS材质微孔板使用较广泛。根据板底厚度的不同,板底厚度大于200 μm的属于厚底板,小于等于200 μm的属于薄底板。薄底板多用于高数值孔径物镜的成像,厚底板适配于长工作距离物镜。同时,由于高数值孔径物镜比较宽,容易与多孔板边缘的裙边相撞,导致多孔板最外面的一圈的孔无法成像,现在也有低裙边的多孔板来兼容高数值孔径物镜的整板成像。此外,出于特定的实验目的,还有一些特殊的板型,也可以在高内涵上进行图像采集,比如适用于3D 类器官培养的U型底多孔板,用于研究细胞迁移能力的Transwell孔板等。区别于一般的荧光显微镜,高内涵属于自动化的倒置荧光显微镜,通常搭配自动化的载物台来驱动多孔板的移动。目前通用的载物台是机械载物台和高精度磁悬浮载物台,可以实现连续时间点成像后稳定的视频输出。由于所有的微孔板的板底都无法保证厚度是绝对一样的,因此高质量图像采集的自动化还依赖于精确自动聚焦技术的发展。常用的聚焦方式包括基于激光的硬件聚焦和基于图像的软件聚焦。基于激光的硬件聚焦是通过光源的反射或折射实现的,利用近红外激光探测微孔板的底部界面作为自动聚焦的参照,特点是速度快、重复性高、光毒性低。我们平台目前使用的高内涵设备的聚焦方式为硬件聚焦,包括双峰探测和单峰探测两种板底探测方式。双峰探测的原理是利用激光探测微孔板板底下表面和空气之间的界面得到第一个探测峰,物镜继续向上移动,激光会探测到微孔板板底上表面和溶液之间的界面得到第二个探测峰,对于样品的聚焦就是在第二个探测界面上加上聚焦高度实现的。这种双峰探测方式可以保证同一个荧光通道的图像都是在样品的同一高度上采集得到,聚焦精确,但同时也相对容易受到一些因素的干扰造成聚焦困难,包括微孔板板底的厚度及均一度,以及溶液的性质和体积等。当使用低倍物镜或检测玻片样品时,双峰探测模式不再适用,只能使用单峰探测方式,即在自动聚焦时只能探测到多孔板板底的下表面和空气之间的界面或者玻片和空气之间的界面。单峰探测模式下,自动聚焦的实现是把单峰界面作为聚焦参照,加上板底厚度或玻片厚度作为理论上的第二个界面从而实现样品的自动聚焦。这种单峰探测方式下聚焦更容易些,但共聚焦成像的精确度会降低。需要特别注意的是硬件聚焦对于板底的洁净程度要求较高,多孔板在进行成像前最好用喷过消毒酒精的无尘纸擦拭,而且要保证物镜镜头洁净无尘,避免因为板底和物镜上的灰尘造成聚焦失败。另外有些自动化微孔板成像设备,还配置了软件聚焦模式。软件聚焦是指机器自动在z轴上拍摄一系列图像,根据算法挑选最大对比度的图像作为样品图像,这种软件聚焦模式速度通常较慢,而且容易因细胞碎片或死细胞等原因导致聚焦不精确。作为显微镜,高内涵的成像模式也包括宽场成像和共聚焦成像。高内涵仪器上宽场成像用途比较广泛,但对于一些信噪比很低的实验或者需要观察亚细胞结构的筛选则必须使用共聚焦成像。为了适配检测通量和检测速度,因此高内涵上的共聚焦只能是转盘共聚焦,有效提高了成像速度的同时但也会导致图像分辨率受一定损失。目前主流的高内涵品牌推出的共聚焦,有较低端的LED光源的单转盘共聚焦,也有激光光源的双转盘共聚焦。由于共聚焦排除了非焦平面的杂散光,到达样品的激发光的光子数量的急剧锐减,微透镜双转盘共聚焦能极大地提高到达样品的光子数量,从而达到比较好的成像效果。高内涵的共聚焦通常搭配水镜使用,与空气镜相比,水镜的透光量是空气镜的4倍以上。另外,目前虽然有的高内涵搭配了油镜,但是油镜并不适用于高通量筛选,进行稳定的大规模自动化实验时还是空气镜和水镜更为适用。作为高通量自动化仪器,高内涵通常会搭配机械臂和多孔板堆栈来提高检测通量。考虑到荧光成像样品最好避光保存,降低荧光淬灭或衰减风险,在使用多孔板堆栈时,条件允许的情况下最好能做适当的避光措施以更好地保护样品的荧光信号。在实际科研应用中,有的实验细胞密度较低,有的实验因为药物处理或siRNA处理导致的细胞毒性问题使部分样品孔内细胞比较稀疏,有的类器官成像实验中样品只存在于孔内的部分区域,对于上述这些情况可以考虑使用低倍物镜进行预扫描,对扫描结果进行简单的图像分析确认精确的检测区域,再对目标区域进行高倍物镜下的正常图像采集。这不仅可以节省大量的检测时间,同时也避免了大量冗余数据的产生。2. 细胞图像分析:标准化、多参数、高通量、无偏差高内涵图像采集速度快和检测通量高的直接结果是会产生海量的图像数据,因此,标准的、无偏差的批量图像分析是必不可少的。同一批次的筛选样品,设置一个通用的图像分析方法,可以稳定的用于所有筛选数据的批量分析。高内涵分析软件能够根据细胞图像提取数百到数千个特征参数,用于定义或区分不同细胞表型,也可以输出所有的特征参数用于实验数据的评价。高内涵的图像分析软件可包含三个难度的分析模式:简单的预设方法模式,灵活的模块化组合模式,以及难度最大的个性化分析方法开发模式。预设方法模式对操作新手比较友好,按照实验类型简单修改后套用即可,比如细胞计数、荧光强度分析、细胞增殖分析、细胞凋亡分析、蛋白核质转位分析、蛋白受体内化分析、Spot分析等等。由于面临的实验需求多种多样,在我们平台的实际科研应用中高内涵图像分析通常采用灵活的模块化组合模式,优化调整不同的模块参数使其更加贴合具体的实验需求。基于这种分析模式,细胞的亚群分析、基于图像的纹理分析、细胞周期分析、Spot分析、神经细胞分化分析、单细胞迁移轨迹追踪分析、微核分析、类器官分析、免疫细胞杀伤分析等实验类型,都已获得很好的分析效果。图像分析主要包括以下步骤:图像的处理、图像分割、特征参数的定量和提取、细胞亚群分类和结果输出。图像分析环节特别具有挑战性的步骤就是图像分割,尤其是对于样品质量比较差或者是没有荧光标记的明场图像而言。对于细胞分布不均匀,细胞核拥挤成团的样品的分割,往往要尝试很多分割方法,包括对图像进行锐化或模糊化处理、通道叠加、调整细胞识别方法的荧光阈值或对比度、优化不同切割方法的参数等,从而获得最好的分割效果。对于分割不理想的图像,可以将细胞区域和背景区域分割,对细胞区域进行整体定量。现在随着机器深度学习技术在高内涵图像分析软件中的应用拓展,软件图像分割能力已得到很大提升。当微孔板上孔内细胞表型的异质性比较大的时候,采用整孔平均值这样的参数定义不同处理之间的差异时,往往信号的窗口比较小。为了增大信号窗口,可以考虑采用将细胞群体划分为不同的亚群,针对不同的亚群进行数据分析,或者是计算某个亚群在群体细胞中的占比。对于荧光图像的分析,多数情况下平均荧光强度(即mean-mean值,每个孔内所有像素点的平均荧光强度)可以反映不同孔之间的差异,但当不同处理导致细胞形态发生变化时,总荧光强度的平均值(即sum-mean,每个孔内所有细胞的总荧光强度的平均值)更能反映真实的孔间差异。对于一些荧光强度比较低的样品,阴性样品和阳性样品的信号窗口不够大的时候, 通过扣除背景信号,也可以提高阴性阳性之间的信号窗口。我们常用的背景信号的计算方法有四种:① 通过平均荧光强度和对比度,反推背景荧光强度;②通过纹理分析,找出没有细胞的区域定义为背景区域,定量该背景区域的荧光值为背景荧光强度;③圈选细胞之外的一圈无细胞区域为背景区域,定量该区域的荧光强度;④制备没有荧光标记的细胞孔,该孔的荧光值作为背景荧光。高内涵分析软件虽然能够对细胞图像提取成百上千个生物学参数,但大多数情况下,简单表型只需要其中一个或几个参数就可以进行数据评价,判断药物处理效果和反映趋势。常用的参数包括:荧光强度、荧光总强度、细胞数量、细胞面积、阳性细胞比例、荧光强度比值等。但是有一些复杂的细胞表型,无法用单个或几个参数进行简单区分,这时候结合软件的机器自学习功能/深度学习功能,利用多参数体系对细胞群体进行分类,可能更容易实现不同表型的区分。3. 高内涵系统使用过程中需注意完善的地方总的来说,高内涵细胞成像和图像分析功能都很强大,但是在实际的使用中也面临着一些问题和挑战。首先,高内涵实验产生的数据量非常庞大,高效安全的数据存储管理非常重要。如果由于配套电脑的硬盘容量跟不上实际实验规模的需求,仪器管理员往往会处于频繁的数据备份和硬盘清理工作中。同时也需要有高速稳定的数据信息传输途径,确保采集好的图像能及时传输到分析软件系统,避免发生数据丢失的情况。其次,图像分析对电脑的运算性能要求比较高,特别是有些类型的图像分析方法步骤复杂,定量参数繁多。比如单细胞实时追踪实验,需要对单个细胞的多个连续时间点进行多参数定量统计,最后的结果输出阶段也需要对单个细胞数据进行呈现,因此对电脑的运算能力很有挑战。如果配置的数据分析电脑性能与这类图像分析的需求不太匹配,往往会导致分析速度过慢甚至容易发生宕机现象。最后,对于实心的类器官样品,目前常见的高内涵系统的激光穿透效率和成像分辨率还不足够理想,重构获得的三维图像可以用于获取体积面积等参数,但还不太能对球体深处内部细胞进行高质量分割,也较难获取准确的蛋白定位信息。相信这也是高内涵成像系统在未来发展提升中会逐渐优化解决的一些要点。本文作者:赵宏伟,化学生物学技术平台,高级工程师陈铭,化学生物学技术平台,平台主任,研究员
  • 美国PSS发布PSS-780 A2000 SIS不溶性微粒检测设备新品
    PSS-780 A2000 SIS不溶性微粒检测设备 注射剂不溶性微粒检测方案全覆盖提升注射剂用药安全遵循最新法规规范基本信息仪器型号:PSS-780 A2000 SIS工作原理:光阻法[Light Obscuration(LO), Light Extinction(LE),Light block(LB)]检测范围: 0.5 μm – 400 μm PSS-780 A2000 SIS不溶性微粒检测设备集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μm – 400 μm外,更可下探到0.5μm的极限值。 PSS-780 A2000 SIS不溶性微粒检测设备内置各国药典的检测标准,更可通过自定义检测标准符合多种应用场景,也可以避免后续药典标准升级之虞。 PSS-780 A2000 SIS不溶性微粒检测设备搭载的AccuSizer软件完全符合US 21CFR Part11要求,具有数据自动备份,审计追踪,权限分级,电子签名,以及可连接Lims系统等多项功能,具有50uL的微量进样能力,是检测大小注射液、蛋白注射液、混悬液、口服液、滴眼液等液体制剂及无菌粉末和无菌原料药的不二选择。技术优势1、检测范围广0.5μm-400μm;2、高分辨率,高灵敏性,统计精度高;3、粒子灵敏度 ≤10PPT4、粒径准确度 ≥98%5、粒子计数准确度 ≥90%6、符合21CFR法规软件——符合cGMP要求;7、现场校准,无需返厂;8、模块化设计,便于升级及维护;9、512通道,不放过任何细微颗粒;10、符合美国药典USP787、788、789、1788、中国药典CP、欧洲药典EP、日本药典JP等要求,且可自定义报告和标准;11、集自动取样(选配)、自动检测、数据处理以及自动清洗等自动化功能与一身;512数据通道 对于颗粒计数器来说,通道数越多,意味着其在特定测量量程内划分的区域越多。AccuSizer 780 颗粒计数器系列的仪器对于0.5μm - 400.0μm的测量范围按照指数等级划分有512个通道,意味着其在粒径越小处划分的范围越细,例:1.586μm-1.675μm。这样做的优点是显而易见的,一方面仪器实现了计数的精准性,将测量的结果作最细致的分析,而不是将结果作大致的分类。另一方面,对于测量复杂体系和多组分的样品,数据能很好的体现在结果图谱及数据中。图1多通道的优势 如上四张图是同样一个样本在使用不同通道的时候的表现,明显可以看出,使用8、16、32个通道的时候,仅仅能判断颗粒度在一个范围内,不能明确到底多大。而换用512高通道后,粒径大小的辨析度明显增加,对于峰值的判断更加清晰明了。高分辨率 高通道的优势换来的是高分辨率的优势。所谓分辨率,在这里指的是分辨同一体系内不同粒径大小的能力。得益于超前的设计理念和软硬件组合,AccuSizer 780系列仪器除了能够呈现完全不同于经典光散射的颗粒计数分布外,相对于经典的电阻法和光阻法,具有更高的分辨率和精准性。它不会错过任何“尾部” 大颗粒,而这些“尾部”大颗粒往往是决定产品好坏的标准。图2 AccuSizer 780 高分辨率展示 如图2所示,同一个样本中混合0.7μm,0.8μm,1.3μm,2μm,5μm,10μm,15μm,20μm,50μm,100μm,200μm 11种标准PSL粒子,AccuSizer 780可以很容易将每种不同大小的标粒区分清楚。图3 SPOS VS Laser diffraction 图3展示了同一个样本在SPOS技术和激光衍射法(Laser diffraction,LD)粒度仪中测得的结果。样本使用的是过400目筛(37μm)的样本。SPOS技术(绿色线)显示在35μm以上是没有粒子的,这和实际情况相符。但是使用LD检测得到的仅仅是“相似”的分布,但是在100μm本来没有颗粒的情况下却给出了还有大量大颗粒的假性结果。US 21CFR Part 11法规软件——符合cGMP要求 AccuSizer 780 A7000 APS不溶性微粒检测仪全系配备了符合美国联邦法规21章第11款(21 CFR PART11)要求的软件。具有数据自动备份,审计追踪,权限分级,电子签名,可连接Lims系统等多项功能。 中国食品药品监督管理局(NMPA)有政策趋势将对医药研发企业实施规范的GLP 管理。使用符合21 CFR PART 11法规的软件更能符合现在GLP/GMP的要求。产品优势 模块化设计将主机(数据处理中心),进样器,传感器分模组进行设计,既利于维护,也有助于后续的升级。主机:512通道计算实现仪器的高分辨率、高灵敏度;进样器:使用洁净度、耐受度超高的PFA管路,测样过程安全、简单、快捷,配备不同型号的注射器,拆卸方便;传感器独立安装,方便拆卸,既有利于维护维修,也便于更换其他型号传感器。CETAC自动进样器微量进样器微量进样 随着诸如蛋白质注射液等新型注射剂的研发和上市,对于金贵样品的“痕量”检测提出了要求。PSS使用先进的微控技术,可以实现最小容量到50μl的检测量,大大减少样品浪费,降低检测成本。 而新版药典如对于体积精度更是提出了苛刻的要求。AccuSizer 780 A2000 SIS不溶性微粒检测通过了严格测试,可以保证进样量的准确性。CETAC自动进样 在传统的粒度仪使用过程中,需要操作人员时刻在现场操作。因为粒度仪的测试结果都是累计结果,也就是说,数据需要一定的时间来累积才能获得准确的结果。一般来说,一个样品要取得比较好的数据重现性和准确性,需要3-15分钟,甚至更长时间。现代实验室如果有大量的样品进行检测,会花费很多时间。PSS粒度仪可全系搭配CETAC自动进样系统,一次性可以检测24-96个样品,这会大大节省操作时间。创新点:1、全新型号传感器 2、更新了外观设计 3、软件版本的升级 PSS-780 A2000 SIS不溶性微粒检测设备
  • 2722万!Bruker、Zeiss等中标武汉大学高分辨离子淌度质谱仪、冷冻光电联用系统、晶格层光显微成像系统、三重四级杆液质联用仪采购项目
    一、项目编号:ZB0107-202212-ZCHW0954(招标文件编号:ZB0107-202212-ZCHW0954)二、项目名称:武汉大学高分辨离子淌度质谱仪、冷冻光电联用系统、晶格层光显微成像系统、三重四级杆液质联用仪采购项目三、中标(成交)信息供应商名称:上海同霖进出口有限公司供应商地址:上海市静安区曲阜路123弄30号2602室中标(成交)金额:845.0000000(万元) 供应商名称:武汉脑赛思仪器设备有限公司供应商地址:武汉东湖新技术开发区光谷三路777号自贸生物创新港B区(生物医药平台检验研发楼)N807-808室(自贸区武汉片区)中标(成交)金额:598.8000000(万元) 供应商名称:广东省中科进出口有限公司供应商地址:广东省广州市越秀区先烈中路100号大院9号102房自编A一楼中标(成交)金额:898.0000000(万元) 供应商名称:武汉贝徕美生物科技有限公司供应商地址:洪山区珞狮路362号湖北农业科技大楼8楼801室中标(成交)金额:380.5000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海同霖进出口有限公司 高分辨离子淌度质谱仪 Bruker/德国 timsTOF HT 1套 / 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 2 武汉脑赛思仪器设备有限公司 冷冻光电联用显微镜系统 Carl Zeiss Microscopy Gmbh/德国 Crossbeam 350 满足招标文件要求 / 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 3 广东省中科进出口有限公司 晶格层光显微成像系统 AB SCIX(Distribution)新加坡 QTRAP 6500+ 1套 / 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 4 武汉贝徕美生物科技有限公司 三重四级杆液质联用仪 Carl zeiss microscopy gmbh/德国(耶拿) Lattice lightsheet7 1套 /
  • 上海应物所在纳米粒子活细胞成像、胞吞和胞内运输方面取得进展
    p   近日,中国科学院上海应用物理研究所物理生物学研究室与加州大学圣地亚哥分校合作,发展了一种基于金纳米粒子的荧光-纳米等离子体双模态成像fPlas探针,并对其在胞内运输中的聚集过程及聚集态对其传输动力学的影响开展研究。相关结果发表于《自然-通讯》(Nature Communications, 2017, 5, 15646)。 /p p   胞吞及囊泡运输是细胞信号传导和能量交流的重要生理过程。其中,纳米粒子的胞吞和胞内运输过程研究是设计新型纳米药物载体和纳米诊疗方法的基础。物理生物学研究室的博士研究生刘蒙蒙和副研究员李茜等在研究员樊春海和加州大学教授Lal的指导下,通过发展fPlas探针实现了在单细胞水平半定量研究纳米粒子聚集状态的方法,可以清晰区分活细胞中呈单分散、小聚集体和大聚集体的金纳米粒子,并与暗场显微镜下的绿色、黄色以及亮黄色颗粒信号分别对应。他们进一步通过纳米等离子体成像与荧光成像的联用,实现了活细胞内纳米粒子聚集状态与定位信息同时获取。对金纳米粒子在细胞内通过微管进行运输,并且对在运输过程中发生逐步聚集的过程进行了实时成像,发现其聚集状态对相关囊泡的运动状态有重要影响。这一研究结果揭示了纳米粒子在细胞内的运输与其聚集状态直接相关,为设计新型纳米药物提供了新的思路和靶点。 /p p    center img width=" 500" height=" 279" alt=" " src=" http://www.cas.cn/syky/201706/W020170614416182049650.jpg" / /center p /p p style=" text-align: center " & nbsp 上海应物所在金纳米粒子活细胞成像和胞内运输方面取得进展 /p /p
  • 岛津发布iSpect DIA-10系统,进军粒子图像分析市场
    p style=" text-indent: 2em text-align: justify margin-top: 15px " 4月16日,岛津公司发布了iSpect DIA-10系统,这是一种动态粒子图像分析系统,可通过对液体样品的粒子进行成像来自动测量粒子的大小,形状和数量浓度。它通过对流经流动路径的液体样品中的粒子进行高放大率成像,短短两分钟就可以完成该过程。随着这个系统的发布,岛津已明确进入了粒子图像分析市场。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 近年来,随着研发和质量控制的日益复杂化,对测量粒子形状和检测异物的需求也日益增长。鉴于这种需求,岛津推出了这一系统,该系统是利用粉末测量和图像分析两项技术开发出来的。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 该系统除了可以应用在研发、油漆、药品质量控制等传统领域外,该系统还旨在为新领域服务,如锂离子电池、纤维素纳米纤维和3D打印机用金属粉末的研发应用。 /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 15px " strong 特征 /strong /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 1.微量样品测量 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 可以测量小至50μL的样品,可以最大限度地减少稀有或昂贵样品的使用,从而降低测量成本。虽然可以使用有机溶剂,但清洁所需的量很小,这样减少了浪费,并最大限度地减少了对环境的影响。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 2.可靠的粒子检测 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 其流路设计最大限度地减少了通过摄像机视野外的粒子,从而可以更少的遗漏粒子,检测的可靠性高。除了对样品中包含的异物和粗颗粒的高灵敏度检测外,其数量浓度测量具有高度的可重复性。 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 3.配备自动对焦功能 /p p style=" text-indent: 2em text-align: justify margin-top: 15px " 该系统配备了自动对焦功能,可在约15秒内完成相机对焦。与传统的手动聚焦相比,除了缩短操作的时间之外,还消除了由于手动对焦而导致的数据变化。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/d9ad2e17-3d6d-4356-a4e0-a321b859cdf7.jpg" title=" 23.jpg" alt=" 23.jpg" / /p p br/ /p
  • 揭秘岛津生物药聚集体粒子表征的创新之道
    导读生物药发生聚集后药效会明显减弱,还可能导致人体出现休克,岛津基于流动成像技术开发的粒子分析系统,对生物药中亚可见类聚集体以及不溶性微粒物或外源性组分检测提供了全新分析手段。 受新冠疫情影响,世界各国经济遭受重创,在面临资本寒冬的大环境中生物医药产业一枝独秀,逆势增长,俨然成为世界经济发展以及全球健康保障的指明灯。生物药可对病原体进行特异性攻击,副作用小,药效显著,但易受到环境温度、压力、存储条件、外界异物引入等因素影响而发生聚集。研究表明,生物药发生聚集后药效会明显减弱或消失,严重时还会因免疫反应而导致人体出现休克症状。 对于生物聚集体的分析,小于100nm的不可见聚集体通常使用空间排阻色谱法(SEC)检测,对于10um以上可见区聚集体美国药典和日本药典规定使用光阻法进行检定,但在100nm至10um之间并无合适的定量评价方法。2020版中国药典第四部关于不溶性微粒物检查,第一法光阻法,第二法显微计数法。光阻法只能给出计数浓度,不能查看粒子形貌及聚集状态,显微计数法虽然能查看粒子形貌及个数,但检定效率低且代表性差。 图1 生物聚集体大小及粒径范围分布 岛津iSpect DIA-10基于流动成像技术开发的粒子分析系统综合了粒度、显微观察、粒子计数三类仪器的特点,可以精确捕捉粒子形貌、粒径大小分布、能对不同大小粒子进行有效区分并给出对应粒径范围粒子的计数浓度结果,最低仅需50uL样品消耗且有非常高的灵敏度。对于生物药中亚可见类聚集体的检定以及相关的不溶性微粒物或外源性组分检查可提供一个全新分析手段。图2 岛津iSpect DIA-10动态颗粒图像分析系统 应用实例 生物药中不溶性亚可见微粒物的检查 样品处理:人体免疫球蛋白(1mg/mL)两份,一份80℃加热3min,一份机械搅拌10min样品分析:使用iSpect DIA-10分别观察其蛋白聚集形成状态 图3 80℃加热3min后粒子状态 图4 机械搅拌10min后粒子状态 图5 粒子检定结果 生物蛋白聚集体的粒径范围一般在0.2~10um之间,传统的蛋白聚集体评价方法中存在“无法一次性完成亚可见区的测定、”无法边施压(加热或机械刺激)边测定“、”无法回收已测样品“和“无法进行定量”等问题。岛津开发的生物医药聚集体评价系统Aggregates Sizer可以完美解决上述问题。图6 生物聚集体评价系统Aggregates Sizer ? 定量评价生物聚合体浓度(ug/mL)? 高灵敏度生物聚合体分析,一次仅需0.4mL? 具有温度控制及机械搅拌功能? 间隔1秒的超快速聚集过程监控? 可进行超过15小时的连续不间断测定 应用实例 不同温度及机械压力刺激下,生物蛋白聚集情况分析 样品:静脉注射免疫球蛋白(IVIG)热压力处理:在70℃下对1mL IVIC溶液进行5、7、9分钟培养后,取0.4ml进行测定机械刺激处理:5mL IVIC溶液室温中按190次/分钟速度搅拌,进行8个小时的连续测定 通过Aggregates Sizer生物医药聚集体评价系统对聚集体粒径、生成的聚集体浓度随时间的变化进行评价,结果如图7、图8所示。由图可知,施加热压力时,只在0.2um附近增加聚合体,而1um以上的粒径处并未生成聚集体。施加机械刺激时,随着时间的增加,可以发现在0.2~10um区域聚集体增加。FDA认证中将亚可见区分为0.2~2um和2~10um两个区域进行分别评价,而使用Aggregates Sizer只需一次测定即可得到整个区域的聚合体生成量信息。Aggregates Sizer采用的qLD法可以有效评价蛋白质在研发制造过程中受热压或机械刺激对生物药品的影响评价。图7 70℃加热 图8 190次/分钟速度搅拌 总结 生物药具有副作用小药效显著的特点,但在生产、运输、使用过程中容易产生聚集而影响药效,在生物聚集体大量存在的100nm~10um粒径范围内并无有效的评价方法,无相关的在线模拟实验(温度、机械压力影响)手段、无法进行定量分析、无法回收已测样品等,针对这一系列问题,岛津开发的Aggregates Sizer生物医药聚集体评价系统以及基于流动成像技术开发的iSpect DIA-10粒子分析系统可以很好的解决上述问题,可为生物药开发及品质监控提供全新的解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制