当前位置: 仪器信息网 > 行业主题 > >

荧光寿命成像显微系统

仪器信息网荧光寿命成像显微系统专题为您提供2024年最新荧光寿命成像显微系统价格报价、厂家品牌的相关信息, 包括荧光寿命成像显微系统参数、型号等,不管是国产,还是进口品牌的荧光寿命成像显微系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光寿命成像显微系统相关的耗材配件、试剂标物,还有荧光寿命成像显微系统相关的最新资讯、资料,以及荧光寿命成像显微系统相关的解决方案。

荧光寿命成像显微系统相关的论坛

  • 请教瞬态荧光光谱和荧光寿命成像的区别?

    瞬态荧光光谱是用来测荧光寿命,荧光衰减曲线的,但是荧光寿命成像(FLIM)的时候也能得到各个点的衰减曲线,也能得到荧光寿命。这两个一样么?能直接用FLIM来做荧光寿命的分析么?求高手指教~不胜感激

  • 【求助】FLIM 荧光寿命显微镜

    关于荧光寿命显微镜. 第一次发明这个技术的是小日本京都大学.现在小弟需要他们关于这个技术的第一次发表的文章.E 文,日文都可以谢谢大家了.继续这个文章用来写我的Research Paper 的.

  • 延长金相显微镜的使用寿命的方法

    如何延长金相显微镜的使用寿命(显微镜的使用方法)使用时显微镜时应注意以下几点:(现仅以金相显微镜的使用方法为例作为说明)1、条件许可情况下,建议您的试验室应具备三防条件:防震(远离震源)、防潮(使用空调、干燥器)、防尘(地面铺上地板);电源:220V±10%,50HZ;温度:0°C—40°C。2、金相显微镜调焦时注意不要使物镜碰到试样,以免划伤物镜。3、当载物台垫片圆孔中心的位置远离金相显微镜物镜中心位置时不要切换物镜,以免划伤物镜。4、亮度调整切忌忽大忽小,也不要过亮,影响灯泡的使用寿命,同时也有损视力。5、所有(功能)切换,动作要轻,要到位。6、关机时要将亮度调到最小。7、非专业人员不要调整照明系统(灯丝位置灯),以免影响成像质量8、更换卤素灯时要注意高温,以免灼伤;注意不要用手直接接触卤素灯的玻璃体。9、关机不使用时,将物镜通过调焦机构调整到最低状态。

  • 活体荧光寿命光度测量系统

    [url=http://www.f-lab.cn/microscopes-system/tcspec.html][b]活体荧光寿命光度测量系统[/b][/url]能够同时[b]测量活体荧光寿命和光度值[/b],它采用时间[b]相关单光子计数TCSPC[/b]技术,非常适合动物活体荧光寿命测量和组织荧光寿命测量和光度测量。采用皮秒激光器和单光子计数探测器,集成高速电路,光学和光纤探测器,有力保证了荧光寿命测量。活体荧光寿命测量系统配备了灵活软件,使得用户随意移动动物,也可测量荧光寿命并记录光度值。而配备了4个光纤探测器确保了整套荧光寿命测量系统可以重复,长时间并且同时测量样品。[img=活体荧光寿命光度测量系统]http://www.f-lab.cn/Upload/tcspec.jpg[/img][b]活体荧光寿命测量系统特点[/b]采用TCSPC时间分辨单光子计数技术,时间通道宽度降低到813飞秒采样间隔高达10微秒皮秒脉冲激光光源可提供445nm, 473nm, 488nm, 515nm, 和640nm 波长供选择配备4个单光子计数探测器覆盖450-700nm能够与其它动物行为记录仪器和电生理学以及基因仪器同步使用方便移动,配备手推车[img=活体荧光寿命光度测量系统]http://www.f-lab.cn/Upload/fluorescence-lifetime-1.JPG[/img][b]活体荧光寿命测量的意义[/b]荧光强度揭示发光样品的相对丰度,而荧光寿命能够反映出直接生化环境(比如氧化,还原,PH值),分子交互作用(比如通过FRET释放小分子)以及分子内部变化。通过定量分析荧光寿命图像和光谱数据,就可知道功能荧光分子或荧光蛋白,这对于探索常规组织的活体生化化学,疾病机理以及研究药物对于组织影响非常重要。活体荧光寿命测量光度系统领先的技术这款活体荧光寿命测量系统结构紧凑,具有超高的时间分辨率,非常适合活体生物化学信号采集分析,广泛用于生命科学,医学,动物学,用于人类疾病临床前研究和药物研发以及生命科学和医学研究。这套系统采用时间分辨单光子计数技术,具有超高的时间分辨率(皮秒到纳秒),能够记录实时动态荧光信息,结合FRET技术和仪器,可提供2-8nm 尺度的超高孔径分辨率[img=活体荧光寿命光度测量系统]http://www.f-lab.cn/Upload/fluorescence-lifetime-2.JPG[/img][b]活体荧光寿命测量光度系统典型应用[/b]脑科学研究行为科学研究动态钙记录疾病机理研究神经学研究电生理学研究自由移动动物学研究[b]活体荧光寿命测量光度系统[/b]:[url]http://www.f-lab.cn/microscopes-system/tcspec.html[/url]

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 如何让金相显微镜的寿命更长久

    一般显微镜都是有使用寿命的,但是不同的操作人员使用,寿命会有所不同,这个跟平时的操作习惯和后期维护有很大的关系,想了解这方面知识的可以仔细看完本文,本篇文章主要以金相显微镜为例,其它类型显微镜可参考本文:1) 把所使用的金相显微镜真正当作自己的财产,轻拿轻放。2) 亮度调整方面,要适当,一般情况下建议不要调到最亮,也不要调到最暗,能满足工足条件即可。3) 工作过程中,要注意保护物镜,注意不要让硬物、尖物划伤物镜,对镜对造成损害。4) 如果操作完成,请将显微镜的亮度调到最低。5) 显微镜对于工作环境也是有要求的,理想的工作环境应该满足防潮、防震、防尘三个条件,温度也是建议不要太高或太低,0摄氏度~40摄氏度之间为最佳。6) 为了保证成像质量,显微镜的照明系统(灯丝位置灯),不是专业人士应该严禁触碰和调整。7) 显微镜在操作完成以后,物镜的焦距要调到最低。8) 显微镜在操作完以后,停止使用,为了防尘,通常会盖上防尘罩,这个时候需要注意的就是防火,正确操作就是应该等机器等却以后再盖防尘罩。其它的各人在操作的时候都会有一些自己的技巧,也欢迎同我们分享发布。

  • 如何延长金相显微镜的使用寿命

    使用时显微镜时应注意以下几点:(现仅以金相显微镜的使用方法为例作为说明)1、条件许可情况下,建议您的试验室应具备三防条件:防震(远离震源)、防潮(使用空调、干燥器)、防尘(地面铺上地板);电源:220V±10%,50HZ;温度:0°C—40°C。2、金相显微镜调焦时注意不要使物镜碰到试样,以免划伤物镜。3、当载物台垫片圆孔中心的位置远离金相显微镜物镜中心位置时不要切换物镜,以免划伤物镜。4、亮度调整切忌忽大忽小,也不要过亮,影响灯泡的使用寿命,同时也有损视力。5、所有(功能)切换,动作要轻,要到位。6、关机时要将亮度调到最小。7、非专业人员不要调整照明系统(灯丝位置灯),以免影响成像质量8、更换卤素灯时要注意高温,以免灼伤;注意不要用手直接接触卤素灯的玻璃体。9、关机不使用时,将物镜通过调焦机构调整到最低状态。

  • 延长金相显微镜的使用寿命方法

    1、条件许可情况下,建议您的试验室应具备三防条件:防震(远离震源)、防潮(使用空调、干燥器)、防尘(地面铺上地板);电源:220V10%,50HZ;温度:0C-40C。2、调焦时注意不要使物镜碰到试样,以免划伤物镜。3、当载物台垫片圆孔中心的位置远离物镜中心位置时不要切换物镜,以免划伤物镜。4、亮度调整切忌忽大忽小,也不要过亮,影响灯泡的使用寿命,同时也有损视力。5、所有(功能)切换,动作要轻,要到位。6、关机时要将亮度调到最小。7、非专业人员不要调整照明系统(灯丝位置灯),以免影响成像质量。8、更换卤素灯时要注意高温,以免灼伤;注意不要用手直接接触卤素灯的玻璃体。9、关机不使用时,将物镜通过调焦机构调整到最低状态。10、关机不使用时,不要立即该盖防尘罩,待冷却后再盖,注意防火。以上几点仅是一些应特别注意的地方。希望大家在使用过程中应小心加细心,如确实在使用显微镜时有遇到难题自己无法解决时,可立即电话联系显微镜商家寻找解决方法。

  • YEESPEC智能细胞成像系统,全新一代科研级无目镜显微镜

    YEESPEC智能细胞成像系统,全新一代科研级无目镜显微镜

    http://ng1.17img.cn/bbsfiles/images/2017/10/2016082816541190_01_3092793_3.jpg  YEESPEC智能细胞成像系统已全面升级:强大的配置与功能,高品质成像质量,更方便的显微操作,绝对能带给您眼前一亮的全新体验。  作为新一代的智能细胞成像系统,它比传统显微镜操作要方便许多,所有的操作工程都可以通过前面的触摸控制屏完成。只要轻轻地点几下屏幕,就可以轻松地完成整个细胞成像过程,包括:镜头切换、荧光切换、聚焦。  同时,因为设计的小巧,我们也可以把它放在培养箱或者安全柜里使用,可以边做实验室边观察。  YEESPEC智能细胞成像系统,更是科研的得力助手。与传统活细胞工作站相比,它具有更强大的功能特点。  1、 操作方便,即开即用:  采用全触控屏操作,也可以通过手机端平板端进行操作;荧光光源采用高亮度LED光源,不需要预热。  2、 成像质量好,光路的主要元器件均采用原装进口:  采用顶级CCD芯片、原装进口长工作距离荧光物镜、Omega荧光滤光片、K9光学玻璃载物台,透过率非常高。  3、 没有耗材,使用成本低:  采用高亮度白色LED,荧光光源采用高亮度单色LED。LED的寿命是5万个小时以上,基本上仪器买回去10年都不用更换。  4、保证实验安全:  内部装有两块10000mAh,12V的电池,短时间观察使用时可以不需要接电源,即使停电也可以完成实验,保证了实验安全。

  • 倒置荧光显微镜与活细胞的培养

    倒置荧光显微镜与活细胞的培养

    细胞活体的培养,是现代生物医学界一重要科研项目,细胞的繁殖,复制,新陈代谢过程,这些都是科学家们都想观察到的现象,借助于荧光显微镜,我们可以很清楚的观察到细胞的所有繁殖过程,那么什么样的倒置荧光显微镜比较好呢? 我们需要注意一下几点:倒置荧光显微镜一般由落射荧光显微系统与倒置生物显微系统组成,采用优良的无限远色差独立校正光学系统,配置长工作距离平场消色差物镜与大视野目镜。紧凑稳定的高刚性主体,充分体现了显微操作的防振要求。落射荧光显微系统采用模块化设计理念,可以安全、快揵地调整照明系统,切换荧光滤色片组件。产品可应用于细胞组织,透明液态组织的显微观察,也可用于生物制药,医学检测、疾病预防等领域内的荧光显微术观察。 我们来看看倒置荧光显微镜到底是怎么样的!http://ng1.17img.cn/bbsfiles/images/2016/06/201606131012_596689_1783654_3.jpg倒置荧光显微镜成像效果http://ng1.17img.cn/bbsfiles/images/2016/06/201606131014_596690_1783654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606131014_596691_1783654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606131014_596692_1783654_3.jpg

  • 【分享】延长金相显微镜的使用寿命方法

    1、条件许可情况下,建议您的试验室应具备三防条件:防震(远离震源)、防潮(使用空调、干燥器)、防尘(地面铺上地板);电源:220V±10%,50HZ;温度:0°C—40°C。 2、调焦时注意不要使物镜碰到试样,以免划伤物镜。 3、当载物台垫片圆孔中心的位置远离物镜中心位置时不要切换物镜,以免划伤物镜。 4、亮度调整切忌忽大忽小,也不要过亮,影响灯泡的使用寿命,同时也有损视力。 5、所有(功能)切换,动作要轻,要到位。 6、关机时要将亮度调到最小。 7、非专业人员不要调整照明系统(灯丝位置灯),以免影响成像质量。 8、更换卤素灯时要注意高温,以免灼伤;注意不要用手直接接触卤素灯的玻璃体。 9、关机不使用时,将物镜通过调焦机构调整到最低状态。 10、关机不使用时,不要立即该盖防尘罩,待冷却后再盖,注意防火。以上几点仅是一些应特别注意的地方。希望大家在使用过程中应小心加细心,如确实在使用显微镜时有遇到难题自己无法解决时,可立即电话联系显微镜商家寻找解决方法。

  • 显微系统(KEYENCE—基恩士)

    [font=&]【题名】:显微系统(KEYENCE—基恩士)[/font] [font=&]【链接】: https://www.doc88.com/p-8969240676677.html?s=like&id=5[/font]

  • 【原创】如何选购显微数码成像分析系统?

    一、前沿2009年10月6日,瑞典皇家科学院宣布,将2009年诺贝尔物理学奖的一半授予美国科学家威拉德• 博伊尔和乔治• 史密斯,因为他们于1969年发明了半导体集成电路成像技术,CCD感应器。经过四十年的发展,CCD技术由实验室逐步走向了市场,具有越来越广阔的应用。CCD数码成像对摄影产生了革命性的影响。在感光胶片之外,人们可以通过电子电路捕捉图像,这些以数字形式存在的图像更加易于处理和分发。数字图像已经成为许多研究领域中不可替代的重要工具。数码成像技术应用到显微镜上,以替代以往的胶卷拍摄,现在已经广泛应用了。以前我们用胶卷来进行显微拍摄,要等一卷拍完,冲洗出来才能确定拍摄的图像是否清晰,如果拍摄的图像不理想,而显微观察的样品又失效了,就需要重新制作样品,给研究工作带来很大的不便,而现在使用显微数码相机来拍摄显微图像,所见即所得,当时就是保存处理,甚至统计分析,极大的提高了工作效率。二、显微数码成像系统的组成显微数码成像系统包括CCD/CMOS专业相机,图像采集处理软件,显微镜接口,数据传输线等,其中最核心的设备是CCD和CMOS图像传感器,前者由光电耦合器件构成,后者由金属氧化物器件构成。两者都是光电二极管结构感受入射光并转换为电信号,主要区别在于读出信号所用的方法。CCD(Charge Coupled Device ,感光耦合组件)上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。CCD的结构分三层 ,第一层“微型镜头”“ON-CHIP MICRO LENS”,这是为了有效提升CCD的总像素,又要确保单一像素持续缩小以维持CCD的标准面积,在每一感光二极管上(单一像素)装置微小镜片。CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYG补色分色法。原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。第三层:感光层,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。数码成像的核心器件除CCD,现在越来越多的使用CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体,CMOS和CCD一样同在数码相机中可记录光线变化的半导体。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。CMOS的优势在于成本低,耗电需求少,便于制造, 可以与影像处理电路同处于一个芯片上,缺点是较容易出现杂点。三 显微镜成像系统相关参数对CCD/CMOS数码成像系统的结构和原理有了一个基本了解后,我们再对成像系统的一些基本参数作一个说明。在实际应用中,很多用户对像素多少很敏感,一上来就提到我要多少万像素的成像系统,其实在专业成像应用中,像素多少只是影响成像的一个因素,还有其他很多指标,包括分辨率,感光器件大小,动态范围,灵敏度,量子效率,信噪比等。感光器件的面积大小是衡量显微成像系统质量的一个重要指标,感光器件的面积越大,捕获的光子越多,感光性能越好,信噪比越低。当前数码成像系统中较常应用的感光器件规格如下:1英寸(靶面尺寸为宽12.7mm*高9.6mm,对角线16mm),2/3英寸, 1/2英寸,1/3英寸,另外有时也用到1/1.8英寸,1/2.5英寸的CCD/CMOS感光器件。 像素是CCD/CMOS能分辨的最小的感光元件,显微数码成像系统的像素由低到高有:45万左右,140万左右,200万左右,300万左右,500万左右,900万像素,甚至还有更高的达到2000万像素以上。一般来说,像素越高,图像分辨率越高,成像也就越清晰,但有时候图像分辨率达到一定程度后,就不是影响成像质量的主要指标了。比如图像分辨率高,噪声也很高时,成像质量也不会很好。暗电流是导致CCD噪音的很重要的因素。暗电流指在没有曝光的情况下,在一定的时间内,CCD传感器中像素产生的电荷。我们在做荧光拍摄的时候,需要的曝光的时候比较长,这样导致CCD产生较多的暗电流,对图像的质量影响非常大。通常情况下通过降低CCD的温度来最大限度的减少暗电流对成像的影响。Peltier制冷技术一般可将CCD温度降低5-30°C,在长时间拍摄或一次曝光超过5-10秒,CCD芯片会发热,没有致冷设备的芯片,“热”或者白的像素点就会遮盖图像,图像会出向明显的雪花点。CCD结构设计、数字化的方法等都会影响噪音的产生。当然通过改善结构、优化方法,同样能减少噪音的产生。显微荧光或其他弱光的拍摄对CCD噪音的降低要求很高,应选用高分辨率数字冷却CCD成像系统,使其能够捕获到信号极其微弱的荧光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。所以一般在荧光及弱光观察时需要选择制冷CCD。在显微数码成像过程中,对于荧光及弱光的拍摄,除了制冷降低热噪声外,还可使用 BINNING技术提高图像的灵敏度,BINNING像素合并是一种非常有用的功能,它可被用来提高像素的大小和灵敏度,比如摄像头像素大小为5u,当经过2x2合并后,像素大小为10u,3X3合并后,像素大小为15u, 这是图像的整体像素变少了,但成像的灵敏度可提高9倍。动态范围表示在一个图像中最亮与最暗的比值。12bit表示从最暗到最亮等分为212=4096个级别,16bit即分为216个级别,可见bit值越高能分出的细微差别越大,一般CMOS成像系统动态范围具有8-10bit, CCD以10-12bit为主,少部分可达16bit。对动态范围进行量化需要一个运算公式,即动态范围值 = 20 log (well depth/read noise),动态范围的值越高成像系统的性能就越好。量子效率也称像素灵敏度,指在一定的曝光量下,像素势阱中所积累的电荷数与入射到像素表面上的光子数之比。不同结构的CCD其量子效率差异很大。比如100光子中积累到像素势阱中的电荷数是50个,则量子效率为50%(100 photons = 50 electrons means 50% efficiency)。值得注意的是CCD 的量子效率与入射光的波长有关。对显微数码成像系统的参数有了整体认识后,在实际应用中选择合适型号的产品就比较容易了。高分辨率显微数码成像技术在国外已有二十来年的发展历史,产品目前已比较成熟。国外的专业数码产品有多个品牌,比较著名的有德国的ProgRes,美国Roper Scientific的系列产品,另外OLYMPUS、NIKON、LEICA、ZEISS等显微镜厂家也有一些配套的专业数码成像系统 。其中CCD成像系统主要采用SONY及KODRA公司的芯片,因此相关产品性能差别不是很大。国内专业数码成像产品的设计制造时间还不长,但随着配套技术的成熟,100万像素以上的CCD/CMOS专业数码成像产品开始陆续推出,主要的专业厂家有北京的大恒、微视、杭州欧普林,广州明美等企业。北京大恒早期主要研发生产图像采集卡,目前可以量产140万像素的CCD摄像头,130万/200万/320万/500万像素CMOS摄像头,主要用到工业领域。

  • 徕卡DM750生物显微镜

    徕卡DM750生物显微镜

    徕卡DM750生物显微镜http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581595_3049546_3.jpg 徕卡DM750生物显微镜,是为高级生命科学课程的全面要求以及医学、兽医和牙医学校的专业培训专门设计的,同时,是为了革新科研教学以及实验在生命科学课程上有更多的动手操作时间而专门设计开发的。这款教学显微镜,设计人性化,操作简单,成像清晰,在日常实验工作中带来便利的同时,徕卡DM750生物显微镜在使用及维护方面也显示出了极大的优势。1、一体化的垂直手柄便于运输,保证更安全的搬运显微镜;各种镜筒在安全地固定在支架上的同时可以自由旋转;带目镜锁定螺钉的标准镜筒可以防止目镜脱落;2、一体化的电源线收集盒避免了电源线包装不当对显微镜组件造成的损坏;垂直电源线插入可以防止电源线在保存或使用时部分脱离主机,并且使实验台干净整洁;3、LED长寿命照明,平均使用寿命超过15年。LED 照明消耗的能量比标准卤素照明少大约 80%;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581597_3049546_3.jpg4、专利的延时开关功能可在2小时不用后自动关闭照明,节约能源;5、徕卡显微系统有限公司在显微镜的所有触点上都使用了添加剂进行处理,可以抑制细菌生长。这样利用显微镜表面的特殊处理有助于防止疾病传播,从而形成更健康的实验室环境;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581596_3049546_3.jpg6、标准聚光镜,放大倍率4X-100X;7、聚光镜可实现明场和相衬的转换。选配用于低放大倍率的摇摆式聚光镜;8、可以选装具有最佳照明和对比度的Koehler视场照明;9、DM750配备4位或5位物镜转换盘;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581599_3049546_3.jpg10、可配相衬、荧光、共览、集成或独摄像CCD,提供了无限扩展的可能;11、DM750显微镜载物台采用特殊材料加工,可以更好的防止摩擦损坏;12、重平衡聚焦手柄提供了惯性,可以非常精确地定位聚焦;http://ng1.17img.cn/bbsfiles/images/2016/01/201601121035_581600_3049546_3.jpg13、所有包装都是完全可回收利用的;所有玻璃组件中均不含铅;所有产品都经过独立的安全实验室的测试,并带有 cULus 和 CE 认证标志以证明其设计安全。 徕卡显微系统有限公司致力于教育发展和为国际社会做贡献。为了我们自己和子孙后代,我们积极实施可以让我们的环境更清洁、更安全的措施!

  • 荧光寿命讨论

    哪款分子荧光可以测试样品的荧光寿命呢?请问各位大侠荧光寿命是怎么定义的,一般来说荧光物质的荧光寿命大约多长时间呢?

  • 【网络讲座】:3月31日 显微成像与显微切割在干细胞研究领域应用实例分享

    【网络讲座】:3月31日 显微成像与显微切割在干细胞研究领域应用实例分享

    【专家讲座】:显微成像与显微切割在干细胞研究领域应用实例分享【讲座时间】:2016年03月31日 10:00【主讲人】:张坤 徕卡显微系统生命科学部应用专家。【会议简介】干细胞涉及到个体发育、器官移植、延缓衰老、癌症治疗等方方面面。单个的干细胞是如何分裂、分化成新的细胞、组织或器官呢?在成体中,干细胞又是如何完成细胞修复更新的使命呢?如果要将特定的干细胞从复杂的组织器官中分离出来,分析其特异的遗传、代谢性质,该采用什么样的手段呢?在这次Webinar中,我们将介绍如何借助共聚焦、双光子、超高分辨率显微镜及激光显微切割等先进的显微成像分析技术一一解决在干细胞研究中的这些问题。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016年03月31日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/18985、报名及参会咨询:QQ群—171692483http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667315_2507958_3.jpg

  • 【原创大赛】显微荧光成像制冷CCD

    为何荧光显微镜需要使用制冷CCD相机?众所周知,荧光显微镜是利用被观测物体发出荧光来进行观测的显微镜。在外部光源的激发下,被检测物体发出荧光,从而进行观察。与普通显微观察不同的是,荧光显微镜并不直接使用外部光源,而是使用被观测物体发出的荧光。相比普通光源,荧光光源的强度要小得多,反映到成像上面,即意味着相比普通显微拍摄的曝光时间,荧光拍摄的曝光时间要长得多。但是,单方面的延长曝光时间,并不能得到好的显微荧光图像,因为随着曝光时间的增强,噪声也大幅度的的增加,严重影响了成像质量。科学家研究发现,由于曝光时间延长而导致的噪声的增加主要来自于CCD产生的暗电流噪声,于是冷CCD应运而生。所谓冷CCD,就是利用一定的制冷技术对CCD芯片进行制冷,让它在较低的温度下进行工作,从而有效的降低暗电流噪声。所以荧光显微镜的图像采集需要配套制冷CCD才能得到满意的图片,因为荧光的强度不足可见光的万分之一,这就决定采集荧光图像的CCD必须具备很高的灵敏度,为了消除图像采集过程中,因亮度不足而出现的噪点,最好采用制冷CCD来完成。无锡超微光学的LC-140A/500A显微荧光成像制冷CCD,是一款研究级的显微荧光成像专用相机,最适用于极弱光和微光的应用及提供最佳颜色还原和灵敏度的显微荧光成像专业用CCD,图像传感器具有高动态范围,优秀的灵敏性,配合12位数据采样输出,并支持2 x 2,4 x 4硬件binning。,具有小型化、操作简单、性能稳定等特点,适用在Nikon,leica,Zeiss,Olympus等显微镜上。提供企业或研究单位在化学发光成像分析、多色荧光成像分析等之研究及应用领域。

  • 【原创】徕卡DM500生物显微镜

    【原创】徕卡DM500生物显微镜

    徕卡DM500生物显微镜 徕卡DM500生物显微镜是创新教学显微镜的新一代选择,为了革新科研教学以及实验在生命科学课程上有更多的动手操作时间而专门设计开发的。这款教学显微镜,成为激发科学学习和有效教育下一代科学家的好工具。徕卡DM500生物显微镜设计人性化,操作简单,成像清晰,在日常实验工作中带来便利。http://ng1.17img.cn/bbsfiles/images/2015/12/201512110936_577336_3049546_3.jpg极佳的光学特性:基于与徕卡显微系统有限公司的研究型显微镜系列相同的光学平台,学生们可以享受到卓越的光学性能,而且几乎可以使用徕卡显微系统有限公司显微镜产品系列的所有附件。方便收存: DM500一体化垂直握柄,便于运输,可以轻松地放到高架子上;支架正面的凹槽与握柄一起发挥作用,可以用两手更安全地搬运显微镜。 DM500显微镜支架的独特造型可以防止控制装置在显微镜并排保存时受损。 DM500集成的电源线包装设计避免了不当电源线包装对显微镜组件造成的损坏;垂直电源线插入可以防止电源线在保存或使用时部分脱离支架。http://ng1.17img.cn/bbsfiles/images/2015/12/201512110936_577337_3049546_3.jpg长寿命照明: DM500采用LED 照明,观察中呈现白色冷光,平均寿命可超过 15 年,实验时不再需要更换灯泡,节省更换灯泡的费用。载物台: DM500显微镜载物台没有暴漏的传动齿条,避免了碰擦受伤的风险;边缘为圆角设计,不会伤及皮肤。防菌涂层: 教学环境中,因接触表面而传播的疾病备受关注。徕卡显微系统有限公司在显微镜的所有触点上都使用了添加剂进行处理,可以抑制细菌生长。这样有助于防止通过显微镜表面接触而发生的疾病传播,并有助于形成更健康的实验室环境。http://ng1.17img.cn/bbsfiles/images/2015/12/201512110937_577338_3049546_3.jpg观察筒: 目镜与镜筒集成在一起,防止脱落;预设屈光度调节,避免屈光度设置错误的可能;还有其它镜筒可选。准备就绪 预对中,预对焦聚光器,无需调节。 Leica DM500 非常适于初级的生命科学课程。显微镜支架具有“即插即用”功能。所有学生要做的就是打开电源,把样本载玻片放到载物台上,对焦就可以享受观察的乐趣了!

  • 荧光宏观成像系统简介

    [url=http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html][b]荧光宏观成像系统[/b][/url]macroscopic imaging专业为心脏成像 cardiac imaging而设计,[b]荧光宏观成像系统[/b]macroscopic imaging和光学映射,光学图谱技术厂用于整体荧光显微镜和荧光成像系统中。[b]荧光宏观成像系统[/b]macroscopic imaging集成了高科技高强度光源照明样品或反射照明样品,结合高数值孔径镜头,CCD相机和光电二极管探测器。宏观成像系统实验通常采用双波长,这样可测量细胞内钙离子和膜电位。宏观成像系统提供固定或可变的镜头系统,捕捉视场从4x4mm到50x50mm,并且可根据用户实验而增加放大成像器。[img=宏观成像系统]http://www.f-lab.cn/Upload/macroscopic-imaging.jpg[/img]荧光宏观成像系统:[url]http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html[/url][b][/b]

  • 固相微萃取纤维头的寿命

    向各位高手请教一下固相微萃取纤维头的一般的使用寿命是多久?怎么判断是否需要更换新的固相微萃取纤维头?谢谢!http://simg.instrument.com.cn/bbs/images/brow/emyc1007.gif

  • 荧光寿命的测量的资料

    荧光寿命的测量的资料。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18558]荧光寿命[/url]

  • 【求助】激光工作物质荧光寿命测量的方法

    荧光寿命和荧光量子产率是荧光物质的重要发光参数。荧光寿命(τ)定义为当激发光切断后,荧光强度衰减到原强度的1/e所经过的时间。它表示了荧光分子的S1激发态的平均寿命。....对这个问题我重视认识不上去~555希望高手可以从物理原理的角度给我讲解一下这个问题(方法问题),具体一些谢谢。或者给我一些相关材料~非常感谢!

  • 荧光寿命origin作图

    [color=#444444]前几天做了荧光寿命光谱,发过来的txt文本数据Y值(counts)几乎都是0,本人没做过荧光寿命的拟合图,哪位高手能帮帮忙?[/color]

  • 【求助】nF900 荧光寿命测定仪

    [em0815] 前几天做了荧光寿命的检测,用的是英国Edinburgh公司nF900型纳秒荧光寿命测定仪,哪位高手知道一下,此仪器的激光脉冲为多少啊?谢谢了!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制