当前位置: 仪器信息网 > 行业主题 > >

原位探针离子化质谱仪

仪器信息网原位探针离子化质谱仪专题为您提供2024年最新原位探针离子化质谱仪价格报价、厂家品牌的相关信息, 包括原位探针离子化质谱仪参数、型号等,不管是国产,还是进口品牌的原位探针离子化质谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原位探针离子化质谱仪相关的耗材配件、试剂标物,还有原位探针离子化质谱仪相关的最新资讯、资料,以及原位探针离子化质谱仪相关的解决方案。

原位探针离子化质谱仪相关的论坛

  • 敞开式离子化质谱技术在中草药研究中的应用(一)

    敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。⒈敞开式离子化质谱技术的基本原理、特点和分类AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。

  • 敞开式离子化质谱技术在中草药研究中的应用(一)

    敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。⒈敞开式离子化质谱技术的基本原理、特点和分类AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。

  • 四极杆质谱仪种类

    [font=&][size=18px]四极杆质谱仪种类有多种。[/size][/font][font=&][size=18px]1、按分析目的可分:实验室四极杆质谱仪和工业四极杆质谱仪。[/size][/font][font=&][size=18px]2、按质量分析器的工作状态可分:静态四极杆质谱仪和动态四极杆质谱仪。[/size][/font][font=&][size=18px]3、按进样方式可分:直接探针进样四极杆质谱仪和色谱进样四极杆质谱仪等。[/size][/font][font=&][size=18px]4、按离子化方式可分:电子轰击电离四极杆质谱仪、化学电离四极杆质谱仪、场电离四极杆质谱仪、场解吸电离四极杆质谱仪、快原子轰击电离四极杆质谱仪、基质辅助激光解吸电离四极杆质谱仪、电喷雾电离四极杆质谱仪和大气压化学电离四极杆质谱仪等。[/size][/font][font=&][size=18px]5、按用途可分:生物四极杆质谱仪、制药四极杆质谱仪、化工四极杆质谱仪、食品四极杆质谱仪、抗生素四极杆质谱仪、白酒四极杆质谱仪、乳品四极杆质谱仪、植物油四极杆质谱仪和重金属四极杆质谱仪等[/size][/font]

  • 二次离子质谱仪原理简介

    二次离子质谱仪原理简介二次离子质谱仪(Secondary Ion Mass Spectrometry, SIMS)又称离子探针(Ion Microprobe),是一种利用高能离子束轰击样品产生二次离子幵迚行质谱测定的仪器,可 以对固体或薄膜样品迚行高精度的微区原位元素和同位素分析。由于地学样品的复杂性和对 精度的苛刻要求,在本领域内一般使用定量精度最高的大型磁式离子探针。该类型的商业化 仪器目前主要有法国Cameca 公司生产的 IMS1270-1300 系列和澳大利亚ASI 公司的 SHRIMP 系列。最近十年来,两家公司相继升级各自产品,在灵敏度、分辨率及分析精度 等方面指标取得了较大的提升,元素检出限达到ppm-ppb 级,空间分辨率最高可达亚微 米级,深度分辨率可达纳米级。目前,大型离子探针可分析元素周期表中除稀有气体外的几 乎全部元素及其同位素,涉及的研究领域包括地球早期历叱不古老地壳演化、造山带构造演 化、岩石圀演化不地球深部动力学、天体化学不比较行星学、全球变化不环境、超大型矿床 形成机制等。因而国内各大研究机构纷纷引迚大型离子探针(北京离子探针中心的SHRIMP II SHRIMPIIe-MC、中科院地质不地球物理研究所的 Cameca IMS-1280、Cameca IMS-1280HR 和NanoSIMS 50L、中科院广州地球化学研究所的 Cameca IMS-1280HR、 中核集团核工业北京地质研究院的 IMS-1280HR),大大提高了国内微区分析的能力。 本实验室配备了Cameca 公司生产的IMS1280 离子探针和其升级型号 IMS1280HR。 两台仪器的基本原理及设计相同,升级型号IMS1280HR 主要在磁场设计上有所改迚,具 有更高的质量分辨率和传输效率。该型仪器从功能上可分为四部分,如图一所示:一次离子 产生及聚焦光路(黄色部分)、二次离子产生及传输光路(蓝色部分)、双聚焦质谱仪(粉 色部分)和信号接收系统(紫色部分)。Cameca 离子探针可以类比为一台显微镜,离子源 相当于显微镜的光源,传输光路相当于物镜,质谱仪相当于滤镜,而接收器相当于目镜或照 相机。 图一, IMS1280/HR 型离子探针原理示意图 一次离子部分包含了两个离子源分别是可以产生O 离子的双等离子体离子源(Duo Plastron Source)和产生Cs 离子的热电离铯离子源(CsIon Source),一 般分别对应地学领域分析中的正电性元素(如 Pb、U、Th、REE、Li、Ca 等)和负电性元 等)。两个离子源由软件控制选择,所产生的离子通过高压(一般为数千伏特)加速后迚入一次离子质量过滤器(PBMF)迚行质量筛选,常用的一次离子有 16 16O2 133Cs 离子。后续的一次离子光路通过调整离子透镜Lens2,Lens3 和Lens4 电压可以获得两种照明方式:均匀照明(科勒照明或平行光照明)和高斯照明。一次离子光路原理如图二所示。 均匀照明模式使用离子透镜Lens2 将一次离子束调整为“平行光”,幵穿过位于其后 的一次束光阑(PBMF_Aperture),再通过离子透镜Lens4 将该光阑成像到样品表面。在 该模式下,离子束的直径由PBMF_Aperture 的大小决定,由于该光阑受到离子束的剥蚀 而逐渐变大,因此实际上这种模式的离子束直径是随时间丌断变化的,对空间分辨率丌太敏 感的应用可以使用该模式。实验室的常规定年就使用了这种照明模式,由于其离子束密度均 匀,在样品表面留下的剥蚀坑为椭囿形的平底坑。 图二 一次离子光路原理示意图 在高真空条件下,带有数千电子伏特(eV)的高能带电离子轰击固体样品的表面时,部分 一次离子注入到固体内部并不其路径上的样品原子发生弹性或非弹性碰撞。通过碰撞而获得能量 的内部原子又不其周围的原子再次进行碰撞并产生能量传导,这个过程称为级联碰撞。最终,部 分样品内部电子、原子或分子获得了足够的能量逃逸出样品表面,产生了溅射现象。在溅射出的 各种微粒中,有小部分发生了电离,产生了二次离子。这些二次离子被样品表面的+10KV到 -10KV的高压加速,通过离子透镜聚焦后进入双聚焦质谱仪进行质量筛选。溅射及加速示意图 请见图三。 高斯照明模式在PBMF之后使用了三个离子透镜:Lens2、Lens3和Lens4。其中Lens2 不Lens3将离子束汇聚,L4将汇聚后的离子束聚焦到样品表面,形成束流密度中心高周围低 的高斯分布。这种模式下,在样品表面产生的剥蚀坑是接近囿形的V型坑。这种模式下离子 束的直径主要受到L2不L3透镜电压的影响,而对光阑的剥蚀效应很小,因此可以长时间保 持离子束直径丌变。实验室常规的稳定同位素分析以及空间分辨高于10微米的小束斑定年 分析都采用了高斯照明模式。 丌同元素的二次离子产率相差巨大,而且每种元素在丌同基体中的产率也丌尽相同,甚 至同一元素的同位素之间在丌同的基体中也表现出丌固定的产率(基体效应)。在实际分析 时实测值不理论值会产生较大差异。因此,要使用离子探针进行高精度的元素、同位素分析, 必须使用不被测样品成分和结构一致的标准物质进行校正。而标准样品的稀缺性也成为制约 和影响离子探针分析的瓶颈。目前,本实验室目前已开发了锆石氧同位素标准物质 (Penglai)、方解石碳-氧同位素标准物质(OKA)、锆石Li同位素标准物质(M257)、锆 石年龄标准物质(Qinghu)等。 图三,离子探针溅射示意图 二次离子产生后迚入离子传输光路,该部分相当于显微镜的物镜,通过调节该“物镜” 的放大倍数,配合后续的光阑及狭缝的调整,可在质量分辨率确定的条件下对仪器的传输效 率迚行优化,保证分析精度。入口狭缝是传输光路和质谱仪的分界面。离子束通过传输光路 聚焦后,在入口狭缝处汇聚。调节入口狭缝的宽度可控制迚入质谱仪的离子束宽度,从而控 制质谱仪的质量分辨率。质量分辨率要求越高,入口狭缝所对应的宽度就越窄,二次离子信 号的强度损失也就越多。因此,在满足分析要求的前提下,尽量使用较低的质量分辨率。离 子探针分析中,样品表面溅射出的二次离子组成非常复杂,包括了单原子离子、分子离子、 多电荷离子、复杂聚合物离子等,对质量分辨率要求极高。为了兼顾离子探针的质量分辨率 和传输效率,必须采用大磁场半径的设计。该型离子探针的最低质量分辨率为~900,而最 高可用质量分辨率大于20000. 磁式质谱仪主要利用运动离子在磁场中的受力偏转实现对特定质量电荷比值的离子的 选择。磁式离子探针一般使用双聚焦磁式质谱,可以实现速度聚焦和方向聚焦,在二次离子 能量分布范围较大的情况下实现高质量分辨率和高传输效率。双聚焦质谱仪由静电分析器和 扇形磁场质量分析器组成,当二者的能量色散在焦平面上相互抵消时即实现了双聚焦。 IMS1280/HR 离子探针的静电场及磁场半径均为585mm,在质量分辨率5000 的条件下, 其传输效率90%。 离子经过质谱仪的质量色散后迚入离子接收系统。该型仪器的接收系统分为三个部分: 具有5 个接收位置,共7 个接收器的多接收系统;具有三个接收器的单接收系统和微通道 板成像系统。多接收系统能够同时接收的最大的质量差异为17%,最小质量差异为~0.4%, 是典型的同位素质谱配置。5 个接收位置可在各自轨道上沿聚焦面移动,根据被测同位素的 信号强度可选择安装法拉第杯或电子倍增器。最外侧的两个接收位置还分别额外加装了一个 法拉第杯,增加配置的灵活性,如图四所示。多接收器分析可以提高效率,并能抵消一部分 因为一次离子或仪器其他参数波动引起的分析误差,是提高分析精度的最直接手段。实验室 的高精度稳定同位素分析(氧同位素、碳同位素及硫同位素等)都是用多接收器的。目前本 实验室两台离子探针采用了丌同的接收杯配置,其中一台偏重于稳定同位素分析,在多接收 器中安装了多个法拉第杯,而另一台则偏重微量元素尤其是Pb 同位素分析,主要配置为电 子倍增器。单接收系统具有一个工作在离子计数模式下的电子倍增器和高低两个丌同量程的 法拉第杯,组成了具有10 动态接收范围的大量程接收系统。对于质量范围超过17%的分析,一般使用单接收系统,例如传统的U-Pb 定年分析,其需要测量的质量数从196-270, 使用的是单接收系统中的电子倍增器收集所有信号。 使用微通道板成像时,仪器工作在离子显微镜模式下,成像的分辨率取决于二次离子光 路的设置,而不一次离子束的直径无关。由于微通道板性能的制约,这种模式一般只用于辅 助的定性判断和仪器参数的调整,而丌用于定量分析。离子探针还有一种二次离子扫描成像 模式。类似于扫描电子显微镜的工作原理,通过同步一次离子的扫描位置和电子倍增器的接 收时间,可以将电子倍增器测量到的信号强度不其在样品上的位置对应起来,从而重构出经 过质量筛选的离子分布图像。该图像的分辨率取决于一次离子束的直径,可用于元素、同位 素二维分布分析

  • 世界一流实验室-离子探针

    由科技部、国土资源部和中科院合资共建的国家大型科学仪器中心——北京离子探针中心,自2001年成立以来,经过几年的努力,已跻身世界著名地质年代学实验室行列。 为肯定该中心主任刘敦一的科学贡献,《美国科学杂志》(AmericanJournalofSciences)不久前出版专辑,祝贺刘敦一七十华诞。9月11日,国土资源部召开北京离子探针中心发展战略研讨会。国土资源部副部长汪民在会上讲话,科技部副部长刘燕华发来贺电,对该中心取得的成就给予高度肯定。北京离子探针中心成立7年来,奉行“开放、共享、高效”的方针,承担科技部、国土资源部、国家自然科学基金等20多个项目。 其进口的高分辨率二次离子探针质谱仪(SHRIMPⅡ)每天4小时、每周7天不间断运行,成为世界上运行效率最高的质谱仪,国内外科学家利用该仪器,获得了丰富的年代学数据和高水平的研究成果。特别是在国际上首创了通过互联网远程控制来进行高分辨率锆石铀—铅年龄测定工作的方法,得到国际地学专家的广泛赞誉。

  • 敞开式离子化质谱技术在中草药研究中的应用(二)

    ⒉敞开式离子化质谱技术在中草药研究中的应用建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论。⑴直接电离离子源直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析是将[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。⑵直接解吸电离离子源自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。⑶解吸后电离离子源DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。⑷在中草药质量评价和质量控制中的应用随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。⑸本实验室的研究工作中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。①中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 ②中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 ③对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 ④DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 ⑤开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。⒊总结与展望中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。

  • 电子探针室配套设备?

    电子探针室配套设备有哪些?如:等离子体质谱仪室:配备等离子体质谱仪、真空泵、水循环系统、稳压电源、不间断电源、温湿度计,除湿机、空气净化机、气瓶柜(如需要)、氩气净化机(如需要);

  • 敞开式离子化质谱技术在中草药研究中的应用(二)

    ⒉敞开式离子化质谱技术在中草药研究中的应用建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论。⑴直接电离离子源直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析是将[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。⑵直接解吸电离离子源自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。⑶解吸后电离离子源DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。⑷在中草药质量评价和质量控制中的应用随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。⑸本实验室的研究工作中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。①中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 ②中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 ③对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 ④DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 ⑤开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。⒊总结与展望中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。

  • 关于质谱离子化的问题

    样品的离子化程度很低,进质谱后信号强度很低,有没有方法加强离子化程度,从而提高检测物质的信号离子丰度?

  • 小谈在线质谱技术

    目前越来越多的环境监测、排放源监测、工业控制方面运用到了在线质谱技术。这一技术以高特异性和高灵敏度得到了广泛的认可。那么什么是在线质谱技术?其内涵有哪些分类可以选择呢?以下就来简单介绍一下:质谱分析法是测量离子质荷比的分析方法,离子质荷比即质量-电荷比。其遵循样品导入→离子源→分析器→检测器的方式,将样品导入离子源中发生电离,生成带电荷离子,然后运用加速电场将离子束引入分析器中,再利用电场和磁场使其发生相反的速度色散,再将它们聚焦起来而得到质谱图,从而确定其质量。而在线质谱则是在这之后增加了数据处理和控制系统、并可以将有效数据上传至云服务器,达到远程、实时查看及数据分析的目的。质谱技术根据样品导入、离子源、分析器、检测器等均有着不同的分类和组合方式,可谓种类繁多。按样品导入可分为:1)直接引入,将低挥发性、热稳定性好的样品直接装在探针上进行电流极具加热,样品在高温下挥发形成蒸汽,蒸汽被引至离子源中离子化。2)间接引入,色谱引入和膜进样。色谱引入是将样品通过毛细管导入至离子源。而膜进样则是采用硅聚合半透膜,阻挡基体和溶剂,并使小分子有机物通过膜壁。按电离技术主要包含:1)等离子体解吸2)快原子轰击3)电喷雾4)基质辅助激光解吸按离子源主要包含:1)电子电离,其离子化试剂为电子,适宜气态样品2)化学电离,其离子化试剂为气体离子,适宜气态样品3)解吸电离,其离子化试剂为光子、高能粒子,适宜固态样品4)喷雾电离,其离子化试剂为高能电场,适宜热溶液按分析器主要包含:1)双聚焦质谱仪2)四极杆质谱仪3)飞行时间质谱仪4)离子阱质谱仪5)傅立叶变换质谱仪按检测器主要包含:1)电子倍增管2)离子计数器3)感应电荷检测器4)法拉第收集器按属性组合主要包含:1)[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱仪2)液相色谱质谱仪3)基质辅助激光解吸飞行时间质谱仪4)傅里叶变换质谱仪5)火花源双聚焦质谱仪。6)感应耦合等离子体质谱仪。7)二次离子质谱仪这些分类只是目前质谱分析的主要分类,根据分析样品和目的的不同,运用不同的技术和组合会衍生更多的应用分类。在线质谱设备专业性相对较强,针对客户不同的要求、检测环境和检测物质等都有着不同的仪器配置方案。

  • 液相质谱电喷雾探针脱落

    液相质谱的电喷雾探针脱落下来了。本来是与离子源锥孔平行的,现在掉到很下面来了。是什么原因造成的,该怎么解决。请各位大神帮帮忙。

  • 【分享】敏感高分辨离子探针

    敏感高分辨离子探针II(shrimpII)是一个高精度的二级离子质谱(SIMS)粒子探针通过用几微米的离子束轰击固体样品的方法探测同位素和进行化学表面分析(也称科勒聚焦)。SHRIMPII通过双聚焦的方法(能量和质量的双聚焦)的质谱达到高质量分辨率。这种方法将使用有很大旋转半径的磁场和电场分析仪。

  • 质谱是如何让待测样品离子化的

    以ESI正离子为例,通常产生的M+H正离子的H源是流动相中带来的吗,如果是的话,那么以非质子性纯有机相做流动相是否无法让待测样品离子化,质谱也就没有信号。恳请大佬解惑。

  • 质谱 化合物离子化

    [color=#444444]有个化合物,质谱定量,采用MRM模式,流动相水相0.1%甲酸水,有机相ACN,稀释剂ACN:H2O:甲酸=1:1:0.1, 色谱柱C18柱,但是化合物线性不好,150%的峰面积和50%的峰面积都不成倍数关系,请问这种情况改怎么办。[/color][color=#444444]像如下所示的化合物是不是磺酸酯不容易离子化,有什么办法让他容易离子化昵,加酸还是加碱?[/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2018/0813/w242h550431_1534172568_185.png[/img][/color]

  • 质谱仪五大组成结构及作用

    [font=&][size=18px]质谱仪的组成:真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。[/size][/font][font=&][size=18px]1、真空系统作用,是减少离子碰撞损失。若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子-分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。[/size][/font][font=&][size=18px]2、进样系统[/size][/font][font=&][size=18px]高效重复地将样品引入到离子源中并且不能造成真空度的降低。间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。[/size][/font][font=&][size=18px]3、离子源或电离室作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。电子电离源的特点:电离电压:70eV;加一小磁场增加电离几率;EI源电离效率高,碎片离子多,结构信息丰富,有标准化合物质谱库;结构简单,操作方便;样品在气态下电离,不能汽化的样品不能分析,主要用于气-质联用仪;有些样品得不到分子离子。[/size][/font][font=&][size=18px]4、质量分析器作用将离子源产生的离子按质荷比m/z的大小分开。[/size][/font][font=&][size=18px]5、离子检测器[/size][/font][font=&][size=18px]法拉第杯(直接电测法)离子流直接为金属电极所接收,并用电学方法记录离子流大小。二次电子倍增器(二次效应电测法) 一定能量的正离子打击阴极的表面,产生若干二次电子,然后用多级瓦片状的二次电极(或称打拿极)使二次电子不断倍增,后为阳极所检测。 二次电子倍增器的检测极限更低。好点的质谱会同时配备这两种检测器[/size][/font]

  • 有关质谱离子化方式、质量分析器的图片

    在这个网页上 http://www.proteomics.ac.cn/cpic.html常见图表—离子化方式I: 快原子攻击(FAB)离子化方式II: 基质辅助激光解析(MALDI)离子化方式III: 电喷雾(ESI)美妙的 nano-ESI 喷雾照片 质量分析器I: 双聚焦质谱 质量分析器II : 三级四级杆质谱 质量分析器III : 离子阱质谱 质量分析器IV: 飞行管质谱质量分析器V: 傅立叶回旋变换质谱 不同质量分析器的比较 MALDI原理图Q-Tof原理图 盐和胶粒对MALDI 等等希望对大家有帮助。

  • 电感耦合等离子体质谱仪(ICP-MS)

    电感耦合等离子体质谱仪(ICP-MS)是一种多元素微量分析和同位素分析仪器。用电感耦合等离子体(ICP)作为离子源,元素在ICP中离子化,所产生的离子被引入质谱计进行分析。这种仪器灵敏度很高,是目前进行无机元素分析的最有力工具之一。

  • [推荐]:新的离子化技术-冷喷雾质谱

    此离子化技术非常适合非共价键结合的对热不稳定化合物的质谱测试。如氢键、配位键,疏水作用等。我们购买的仪器已经安装完成。并成功得到一些ESI不稳定化合物的分子离子峰。如果谁有这类难题请与我联系。

  • 上海药物所发表质谱离子化理论探讨研究论文

    LC-MS/MS联用技术是药物分析和药代研究的重要检测技术,在生物样品中微量中药多成分的分析也日益广泛。中科院上海药物研究所李川课题组一直致力于微量中药多成分分析的技术创新,从而促进中药分析和中药药代动力学的发展。近日,李川课题组牛巍和朱小红等在国际质谱学领域权威杂志Journal of Mass Spectrometry上发表了低浓度电解质效应在不同离子源对八个银杏成分内酯和黄酮化合物分析影响的研究成果,丰富了质谱离子化机理。 该研究通过在流动相中加入电解质,比较了银杏黄酮类及内酯类成分在API 4000 Qtrap和TSQ Quantum两离子源上的响应差异。加入低浓度电解质,因电喷雾液滴导电性、表面积/体积比值增加等原因,大部分化合物在两离子源的响应增加,基质效应减弱。但随着浓度增加,两类化合物在两离子源上的表现明显不同。通过降低雾化气温度、比较基质效应强弱等手段,研究人员揭示了差异原因,认为加入电解质后,液滴半径减小有助于形成气态离子,但辅以高温雾化气后液滴缩小过快,减少了化合物离子分布至液滴表面时间。与此同时,液滴内电解质离子浓度的增加使逐渐缩小的液滴趋于拥挤,阻碍化合物离子向液滴表面迁移,最终导致化合物响应下降。研究人员由此得出液相电解质的运用需与质谱离子喷雾条件相匹配的结论。该研究成果为中药多成分体内分析提供了思路和指导。 李川课题组前期关于低浓度电解质效应和脉冲梯度色谱等技术创新有助于应对体内微量中药物质分析的挑战,课题组目前已在Journal of American Society for Mass Spectrometry、Rapid Communication in Mass Spectrometry、Journal of Chromatography A等SCI杂志上发表7篇相关文章。该项研究工作得到了国家科技重大专项“重大新药创制”(2009ZX09034-002)和国家自然基金会(3077277)的资助。

  • 质谱仪--有机质谱仪的日常维护、清洗

    1.机械泵和分子泵的维护机械泵的维护主要是更换机械泵油。通过机械泵的油面窗口可以看到泵油的颜色,正常情况下,泵油的颜色应该为无色或者浅黄色如果泵油颜色变暗或呈深褐色,表明泵油的质量下降,需要更换,一般情况下每三个月更换一次。不同公司的泵油不可以混合使用,当需要更换不同公司品牌的泵油时,必须用新泵油润洗至少一次。维持适当的油面高度也是机械泵的日常维护工作之一,当机械泵处于工作状态下时,油面高度应在最小与最大刻度之间。机械泵需要定期进行震气,震气的目的是将捕集在回油装置的机械泵油重新抽回至机械泵内,以确保机械泵内有足够的油,同时震气也能将溶解在机械泵油里面的气体和溶剂尽量排出。震气时只需将震气阀打开保持15min左右,一般情况下每周进行一次震气。此外,机械泵需要定期清理散热片上的灰尘,以免灰尘积累较厚影响散热机械泵的连接管路也需要定期检查是否老化损坏,如果老化损坏必须及时更换,不然将影响仪器抽真空效果。安装真空部件时,用甲醇湿润无尘纸沿一个方向将外露的O形圈擦拭干净,并将与O形圈接触部件的相应位置也擦拭干净,否则这两个地方任何部位有纤维、颗粒之类的物质残留,都会令密封不实而导致漏气,从而影响仪器真空度。分子泵的日常维护内容相对较少,有的分子涡轮泵每隔数年需要更换润滑油芯。平常保持分子泵的良好散热和避免非正常断电能在一定程度上延长分子泵的使用寿命。2.空气过滤网的清洗一般质谱仪都配有空气过滤网,该网能有效地过滤空气中的灰尘颗粒物,需要定期取出用清水清洗干净后晾干再安装回去。如果过脏无法清洗干净或者损坏时,需要更换新的过滤网。空气过滤网若长时间未清洗或更换,积累灰尘导致堵塞,将影响质谱仪电路板及其他部件的散热,严重时将影响数据的采集。有的质谱仪虽然配备了冷却循环水系统,也需要定期清洗或更换空气过滤网及水过滤网。3.离子源的维护离子源的维护主要是离子源的清洗。这里以目前较为常用的ESI离子源为例,简单阐述其清洗要点,ESI离子源的清洗非常重要一般情况下,每隔几天就需对离子源进行一次清洗。各个仪器厂家的ESI离子源虽然存在一定差别,但清洗的方法却大同小异。首先是离子源的拆卸,每个仪器厂商的离子源耦合到质谱上的方式不尽相同,一般参照仪器规程小心将离子源拆下,置于干净不易脱落毛絮的布上,如:无纺布、镜头布等,注意静电防护,操作人员需戴上干净的无粉手套。然后是离子源的清洗,将离子源拆散后,置于干净的烧杯中,加入有机溶剂(如甲醇、丙酮异丙醇等),超声清洗30min左右。注意:选择何种清洗溶剂可以根据实验所做的样品类型组合交替超声清洗。最后将清洗干净的离子源晾干或用氮气吹干,原样装回。需要留意的是每个步骤都需要特别小心,轻取轻放,避免硬物碰伤。如果ESI探针内使用的是石英毛细管而不是金属毛细管时,需特别留意石英毛细管的棕色涂层是否有不齐整现象,必须将石英毛细管末端切割平整,否则将严重影响喷雾效果。而使用金属毛细管时需要留意末端是否有弯折情况,若有需要则更换金属毛细管,否则严重影响喷雾效果。4.质谱透镜系统的清洗清洗质谱传输透镜首先需要将质谱仪彻底关机,整个过程需要穿戴干净的无粉手套,按照仪器的操作规程小心地将质谱透镜取出,用蘸润甲醇(色谱纯)的无尘纸轻轻将透镜擦拭,注意同时需要对透镜孔的内部进行清洗。与清洗ESI离子源类似,将透镜置于干净的烧杯中,根据透镜的污染情况选用相应的溶剂超声清洗30min左右,如甲醇、50%甲醇或其他有机溶剂。应避免透镜与硬物触碰损坏,同时避免接触无机酸碱,否则有腐蚀透镜的可能。超声清洗完毕后,取出晾干或用氮气吹干,按正确的流程安装回质谱仪上。5.质谱仪的校正质谱仪需要定期进行校正,用户可根据测试样品的需求制定仪器校正计划。一般情况下,每次重新开机都需要对仪器或仪器的某些项目进行校正,当然不同公司的质谱仪的质量稳定性存在一定差别,所需要的校正频率也不一样。对于质量精度很高的高分辨质谱仪所需要校正的频率相对较高,校正时需要配制或者购买仪器厂家专用的校正液,按照仪器校正规程对仪器进行校正。质量校正是质谱仪日常维护中非常重要的一环,只有在仪器质量轴准确的情况下,才能收集到可靠有效的实验数据。6.质谱仪工作环境的保证为确保质谱仪在一个良好的环境下运行环境的温度、湿度均需要控制在质谱仪正常工作的范围内。同时,需要保证质谱仪的供电正常,负载达到要求,接地良好。并且,质谱仪应避免安装在多尘,离地铁、铁道较近的有振动的区域内。

  • 【讨论】岛津这台质谱仪到底“高端”在哪?

    【讨论】岛津这台质谱仪到底“高端”在哪?

    近期,在食品药品检定研究院药品检验装备购置项目中,岛津公司的基质辅助激光解离离子化-串联飞行时间质谱仪成功中标。 http://ng1.17img.cn/bbsfiles/images/2011/02/201102151650_277854_2197752_3.jpg上图是岛津公司目前最先进的基质辅助激光解离离子化-串联飞行时间质谱仪AXIMA Performance这台机器真的有那么牛吗?是不是也是在卖概念?岛津的这款质谱仪到底高端在哪?在哪些方面做了改进?有哪些应用是目前普通的质谱仪不能做的?……欢迎大家踊跃讨论~

  • 傅立叶变换离子回旋共振质谱仪

    它的核心部件是带傅立叶变换程序的计算机和捕获离子的分析室。分析室是一个置于强磁场中的立方体结构。离子被引入分析室后,在强磁场作用下被迫以很小的轨道半径作圆周运动,离子的回旋频率与离子质量成反比,此时不产生可检出信号。如果在立方体的一对面上(发射极)加一快速扫频电压,一对极板施加一个射频电压,当其频率与离子回旋频率相等时则发生满足共振条件时,离子吸收射频能量,运动轨道半径增大,撞到检测器产生可检出信号。这种信号是一种正弦波,振幅与共振离子数目成正比。实际使用中测得的信号是在同一时间内所对应的正弦波信号的叠加。这种信号输入计算机进行快速傅立叶变换,利用频率和质量的已知关系可得到质谱图。傅立叶变换质谱仪具有很高的分辨率(可达100万以上)和很高的灵敏度,但仪器价格和维持费用也很高。

  • 【原创大赛】三维原子探针试样制备流程

    【原创大赛】三维原子探针试样制备流程

    APT(atom probe tomography)技术是目前定量分析纳米尺度不同元素原子分布最微观的先进技术。图1是三位原子探针工作原理示意图,如图所示,采集数据时,样品分析室必须达到超高真空(一般小于10[sup]-8[/sup]Pa的真空度),然后将样品冷却至低温(20-80K,取决于样品性质),以减小样品中原子的热振动。样品作为阳极接入1-15KV正高压,使样品尖端原子处于待电离状态。在样品尖端叠加脉冲电压或脉冲激光后,其表面原子就会电离并蒸发。用飞行时间质谱仪(time of flight, TOF)测定蒸发离子的质量/电荷比值,从而得到该离子的质谱峰以确定其元素种类。用位置敏感探头记录飞行离子在样品尖端表面的二维坐标,通过离子在纵向的逐层累积,确定该离子的纵向坐标,进而给出不同元素原子的三维空间分布图像。图1为上海大学三维原子探针仪器示意图。[align=center][img=,515,315]http://ng1.17img.cn/bbsfiles/images/2017/07/201707051546_01_2423358_3.png[/img][/align][align=center][b]图1 三维原子探针实验仪器图[/b][/align]APT式样的制备要求也很高,具体如下:首先,利用电火花线切割将片状样品加工成0.5mm×0.5mm×15mm的棒状样品。采用两次普通电解抛光的办法获得晶界距离样品尖端仅几十纳米的概率很低,但距离为几百纳米的概率会高很多。电解抛光后的针尖状样品安装在改造后的TEM样品杆上,利用TEM观察针尖样品,确定针尖的曲率半径,晶界与针尖尖端的距离,及通过SAED确定晶界两侧晶粒的取向关系。[align=center][img=,329,254]http://ng1.17img.cn/bbsfiles/images/2017/07/201707051546_02_2423358_3.png[/img][/align][align=center][b]图2 三维原子探针实验仪器图[/b][/align]将那些样品尖端附近几百纳米范围内含有晶界的样品挑选出来进行毫秒脉冲电解抛光,经过这样的精细抛光后,可使得晶界距离样品尖端更近。经过多次试验统计,样品经过20V,1ms的脉冲电解抛光可以使样品尖端减短75~400nm。这样,利用毫秒脉冲电解抛光的办法,对已含有晶界的针尖样品进行精细抛光,可以获得合适APT分析晶界偏聚的针尖样品,如图3所示。[align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/07/201707051547_01_2423358_3.jpg[/img][/align][align=center][b]图3 三维原子探针针尖状式样图[/b][/align]

  • 实验室分析仪器--质谱分析词汇- 选定离子的监测(SIM)

    也称为选定离子的记录(SIR) 也可参阅四级杆和扫描。在四级杆上,能够调节DC和RF电压设置,仅让一个带电颗粒通过(单质荷比)到达检测器。结果噪音显著减少,当灵敏度显著增加时,出现信号(此m/z的所有颗粒始终被检测),这完全以检测不到混合物中的其它质荷比的颗粒为代价。热喷雾虽然文献报道这种类型的接口已有一段时间,但是直到1980年代早期才普及。Vestal和Blakely应值得赞赏,因为他们在LC和MS之间首次建立了实际可行,完全商业化的接口技术。大约流速1mL/min的LC溶剂在探针中,被加热(绝缘管大约1-2英尺长,75-150微米的内径),形成的蒸汽喷入质谱仪。质谱仪中的气溶胶液滴被进一步去溶剂,形成离子,进入分析器(以适合的角度喷射),会受到透镜电压的影响。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制