当前位置: 仪器信息网 > 行业主题 > >

植物根系图像分析系统

仪器信息网植物根系图像分析系统专题为您提供2024年最新植物根系图像分析系统价格报价、厂家品牌的相关信息, 包括植物根系图像分析系统参数、型号等,不管是国产,还是进口品牌的植物根系图像分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物根系图像分析系统相关的耗材配件、试剂标物,还有植物根系图像分析系统相关的最新资讯、资料,以及植物根系图像分析系统相关的解决方案。

植物根系图像分析系统相关的论坛

  • 植物根系分析仪连接电脑,如何打开软件系统

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  植物根系分析仪连接电脑,如何打开软件系统?  要连接植物根系分析仪到电脑并打开软件系统,通常可以按照以下步骤进行:  连接设备:  打开植物根系分析仪的开关,并摘除扫描仪的黑色盖板。  使用适当的数据线(如USB线)将植物根系分析仪与电脑连接。确保数据线的一端插入分析仪的数据接口,另一端连接到电脑的USB接口。  安装驱动程序:  如果电脑尚未安装植物根系分析仪的驱动程序,则需要从仪器制造商的官方网站下载并安装。驱动程序是使电脑能够识别并与分析仪通信的关键软件。  插入加密狗:  将加密狗(如果分析仪需要的话)插入到电脑的USB接口中。加密狗可能用于验证软件的授权或提供额外的功能。  打开软件:  打开与植物根系分析仪配套的软件。这通常是一个专门用于分析根系图像和数据的应用程序。  设置连接:  在软件中,选择正确的连接选项以识别并连接到植物根系分析仪。这可能涉及选择正确的通信端口或设备标识符。  启动软件:  根据软件的提示或要求,完成必要的设置或初始化步骤。  点击确认键或等待一段时间,让软件自动启动并连接到分析仪。  开始使用:  一旦软件成功启动并与分析仪连接,你就可以开始使用它来扫描和分析植物根系了。  请注意,具体的步骤可能会因不同的植物根系分析仪型号和软件版本而有所差异。因此,在实际操作之前,建议参考仪器制造商提供的用户手册或联系技术支持以获取更详细的指导。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405231015371346_9106_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 植物根系分析仪有什么用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405241126218307_5132_5604214_3.jpg!w690x690.jpg[/img]  植物根系分析仪是一种基于图像识别技术的专业仪器,主要用于植物离体洗净后的根系分析。它以其强大的功能和广泛的应用领域,为植物学研究和农业生产提供了重要的科学依据。本文将深入探讨植物根系分析仪的用途及其在各个领域中的具体应用。  首先,植物根系分析仪能够准确测量和分析植物根系的多种参数。通过该仪器,研究人员可以方便地获取根的总数量、根尖数量、根总长、根平均直径、根总体积、分叉点等相关指标。此外,它还能对颜色进行分析,从而更全面地了解根系的生长状态和形态特征。这些参数的获取对于研究植物的生长规律、生理特性以及适应环境的能力具有重要意义。  在农学领域,植物根系分析仪发挥着关键作用。通过该仪器,研究人员可以深入了解不同作物根系的生长情况,包括形态、结构、生长速度以及受环境因素的影响程度等。这有助于制定更合理的栽培管理措施,提高作物的产量和品质。同时,植物根系分析仪还可以用于研究植物对逆境的响应机制,为培育抗逆性强的作物品种提供科学依据。  在生物学和生态学领域,植物根系分析仪同样具有广泛的应用价值。通过分析根系材料中的水分、氮素、碳素以及微生物等成分,研究人员可以更好地了解植物与土壤之间的相互作用关系。此外,该仪器还可以用于研究植物根系的分泌物及其对环境的影响,为生态修复和环境保护提供有力支持。  此外,植物根系分析仪在植物育种领域也发挥着重要作用。通过分析不同作物品种根系的生长速度、形态结构及其生长规律,研究人员可以筛选出具有优良根系特性的品种,为作物育种提供宝贵的资源。同时,该仪器还可以用于评估不同栽培模式下植物根系的生长状况,为优化栽培模式提供科学依据。

  • 植物根系扫描仪介绍

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405241140032166_2994_5604214_3.jpg!w690x690.jpg[/img]  植物根系扫描仪,这一尖端科技设备,无疑是现代农业与生态研究领域的璀璨明珠。它不仅承载着科学家们对根系奥秘的无限探索,更是农业生产与生态保护工作中不可或缺的重要工具。  植物根系扫描仪,顾名思义,是一种专门用于观察和分析植物根系的设备。它拥有高精度的图像采集技术,能够非破坏性地获取植物根系的详细形态信息。无论是根系的长度、直径,还是分支数量和生长方向,这款扫描仪都能一一精准捕捉,为研究者提供全面而细致的数据支持。  在农业科学研究领域,植物根系扫描仪的应用广泛而深远。它能够帮助科学家们深入了解不同作物种类的根系形态和生长规律,为优化种植技术、提高作物产量提供科学依据。同时,这款扫描仪还能揭示根系与土壤之间的复杂交互关系,为土壤改良和生态修复工作提供重要指导。  此外,在生态保护和修复领域,植物根系扫描仪同样发挥着不可替代的作用。它能够监测土壤退化、水土流失等环境问题对根系生长的影响,为制定有效的生态保护措施提供技术支持。通过这款扫描仪,我们可以更加直观地了解根系在生态系统中的作用和价值,从而更好地保护和利用这一宝贵的自然资源。  总之,植物根系扫描仪以其独特的优势和功能,为现代农业与生态研究领域注入了新的活力。它的出现不仅提升了我们对根系的认识和理解,更为推动农业可持续发展和生态保护工作提供了有力支持。

  • 植物根系分析仪检测结果是否准确

    植物根系分析仪检测结果是否准确

    [size=16px]  植物根系分析仪的检测结果准确性取决于多个因素,包括仪器的质量和性能、操作的正确性、样本的准备和处理等。以下是一些影响植物根系分析仪检测结果准确性的关键因素:  仪器质量和性能: 使用高质量的根系分析仪通常会提高结果的准确性。精密仪器通常具有更高的分辨率和稳定性,能够更精确地测量根系的参数。  操作的正确性: 操作人员需要按照仪器的操作手册和相关方法正确地操作仪器。错误的操作可能导致结果的偏差。  样本准备和处理: 样本的准备和处理对于根系分析的准确性至关重要。根系样本应该被适当地清洗、固定和处理,以避免任何外部因素的干扰。  数据分析和解释: 数据的分析和解释也是确保准确结果的重要步骤。使用适当的分析方法和软件来处理和解释数据是关键。  环境因素: 根系分析的环境因素,如温度、湿度和光照条件,也可能影响结果的准确性。这些因素需要在分析中加以考虑。  根系生长阶段: 不同生长阶段的植物根系可能具有不同的形态和特性。因此,在分析时需要考虑植物的生长阶段。  根系分析仪的校准: 定期校准根系分析仪以确保其性能和测量的准确性是重要的。校准可以帮助纠正仪器的误差。  总之,为了确保云唐植物根系分析仪的检测结果准确,需要注意上述因素,并严格按照操作规程执行。此外,可以通过与其他方法或仪器的比较来验证结果的准确性,以确保所得数据的可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309131026366807_8752_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 根系分析仪根系怎么放

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  根系分析仪根系怎么放,在使用根系分析仪时,正确地放置根系是确保分析结果准确性的关键步骤。以下是一个清晰、详细的放置根系的步骤说明:  一、准备工作  确保仪器状态:首先,确保根系分析仪与电源连接稳固,并且仪器处于正常工作状态。检查仪器是否显示正常,无错误提示。  准备样本:  选择具有代表性的植物个体作为待测样本。  仔细整理植物的须根系,去除附着在根系上的多余土壤和杂质,同时保持根系的完整性,避免在处理过程中造成损伤。  二、放置根系  固定样本:  根系分析仪通常会配备一个样本架或夹具,用于固定植物样本。  将处理好的植物根系部分放置在样本架上,确保根系与架子接触紧密,避免在扫描过程中出现晃动或移动。如果根系较长或较多,可以适当调整样本架的位置或角度,以便更好地固定根系。  检查接触:  确保根系与根系分析仪的扫面板(或扫描区域)接触紧密,没有间隙或悬空部分。这有助于确保扫描结果的准确性和完整性。  三、调整与扫描  调整焦距与角度:  根系分析仪通常会配备高分辨率相机和图像采集软件。通过软件界面,可以实时观察到植物根系的图像。  调整相机的焦距和角度,确保图像清晰可见,并且整个根系都在扫描范围内。  启动扫描:  按下根系分析仪上的采集按钮或软件界面上的相应按钮,启动图像采集程序。根系分析仪将自动采集根系的图像或数据。  四、后续处理  图像预处理:  采集到的根系图像可以通过图像处理软件进行预处理,如灰度化、二值化等操作,以消除噪声和不相关信息。  特征提取与分析:  利用根系分析仪的算法或功能,从预处理的图像中提取植物根系的特征参数,如根长、直径、面积、分支数量等。  对这些特征参数进行详细的分析和解读,以了解植物根系的生长情况和形态特征。  结果展示与应用:  将分析结果以图表、报告等形式展示出来,以便更好地理解和解释植物根系的特征和结构。  根据分析结果,可以评估不同条件下植物根系的生长状况,优化栽培条件,提高作物产量和抗逆能力。  总之,在使用根系分析仪时,正确地放置根系是确保分析结果准确性的重要步骤。通过遵循上述步骤和注意事项,可以更加有效地利用根系分析仪来研究植物根系的生长情况和形态特征。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/07/202407021053079701_7741_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 咨询植物根系生长监测系统

    单位最近要采购监测植物根系生长的仪器,现在接触的有两家进口的BTC-100和CI-600、还有一家国产仪器rootscanner,各家都在展示自己的优点。各位不知有没有用过,说说使用心得,帮助我做出选择。

  • 能测定植物地下根系的NIR有便携式的吗?

    能测定植物地下根系的NIR有便携式的仪器吗? 最好国外进口的仪器,国内仪器质量不好,不满足应用要求。比如,测定地下植物根系生物量,含C P K 等含量。 谁知道,联系我,我想买仪器。 联系人:13810269812

  • 植物冠层分析仪应用范围

    植物冠层分析仪应用范围

    [size=16px]  植物冠层分析仪是一种用于评估植物群落结构和生长状态的工具。它通过非接触式的方式,通常使用激光雷达、摄影设备或其他传感技术,来测量植物的空间分布、高度、覆盖度等参数。这些信息有助于科学家、生态学家、农业研究人员等更好地理解植物群落的动态变化和生态系统的健康状况。植物冠层分析仪的应用范围包括但不限于:  生态学研究: 通过植物冠层分析,可以了解不同植物种类在一个生态系统中的分布、竞争关系、生长状态等,从而揭示生态系统的结构和功能。  农业和园艺: 农业研究人员可以利用植物冠层分析仪来监测作物的生长情况、病虫害的影响、植被覆盖度等,以优化农作物的管理和产量。  森林管理: 植物冠层分析有助于评估森林内不同树种的分布、树木的高度和生长状况,为森林资源管理和保护提供数据支持。  城市规划: 在城市环境中,植物冠层分析可以用于评估绿地的覆盖度、树木的分布以及城市绿化的健康状况,从而改善城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量和居住环境。  环境监测: 植物冠层分析仪可以用于监测自然生态系统的变化,例如湿地、草原和荒漠等,以及气候变化对植被的影响。  自然灾害评估: 在自然灾害(如森林火灾、洪水等)后,植物冠层分析仪可以用于评估植被恢复的情况,帮助恢复受损的生态系统。  科学研究: 科学家可以利用植物冠层分析仪的数据来研究植物生长的模式、群落动态、物种多样性等问题。  总之,植物冠层分析仪在生态学、农业、环境科学等领域都具有广泛的应用,它为研究人员提供了非常有价值的数据,有助于更好地理解和管理自然和人工生态系统。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251011533536_221_6098850_3.png!w690x690.jpg[/img][/size]

  • 植物冠层分析仪的重要性

    植物冠层分析仪的重要性

    [size=16px]  植物冠层分析仪的重要性  植物冠层分析仪是一种用于研究植物冠层结构和功能的工具,具有重要性的多个方面:  生态研究:植物冠层是生态系统中的关键组成部分,影响着能量流、物质循环和生物多样性。植物冠层分析仪可用于研究植物群落的结构和功能,帮助科学家了解生态系统的生态学过程。  气候变化研究:植物冠层分析仪可以用来监测植物的生长、光合作用和蒸腾等生理过程。这对于研究气候变化对植物生态系统的影响以及植物对气候变化的响应至关重要。  农业和林业管理:在农业和林业领域,植物冠层分析仪可以用来评估作物或森林的生长情况、叶片面积、叶片光合效率等重要参数,有助于提高农作物产量和森林管理效率。  生态系统管理:植物冠层分析仪还可用于监测自然生态系统的健康状况,例如森林、湿地和草原。这有助于保护和管理这些生态系统,以维持生物多样性和生态平衡。  水资源管理:植物冠层分析仪可以用来估算植物的蒸腾率,从而帮助管理地下水和地表水资源。这对于水资源管理和干旱监测非常重要。  城市规划:在城市规划中,植物冠层分析仪可以用来评估城市绿化程度、城市热岛效应和城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,以改善城市环境和居民生活质量。  总之,云唐植物冠层分析仪在生态学、气候研究、农业、林业、城市规划等领域都有着重要的应用价值,可以提供关键的数据和信息,帮助人们更好地理解和管理植物冠层及其与周围环境的互动关系。这有助于维护生态平衡、应对气候变化和改善生活质量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151009031666_868_6098850_3.png!w690x690.jpg[/img][/size]

  • 【求助】(已应助)根系分泌物文献求助

    求助根系分泌物文献两篇:张福锁. 根分泌物及其在植物营养中的作用: Ⅰ. 缺锌对双子叶植物根系分泌物的影响[J]. 北京农业大学学报, 1991, 17(2): 63-67.张福锁. 根分泌物及其在植物营养中的作用: Ⅱ. 缺锌对禾本科植物根系分泌物的影响[J]. 北京农业大学学报, 1991, 17(4): 67-70.谢谢!

  • 【原创】植物样品中稳定碳同位素的EA-IRMS系统分析方法 1-试验仪器与原理部分

    【原创】植物样品中稳定碳同位素的EA-IRMS系统分析方法 1-试验仪器与原理部分

    植物样品中稳定碳同位素的EA-IRMS系统分析方法 1==============================================摘要:通过多组实验对比,分析和讨论了利用元素分析仪-稳定同位素比率质谱仪(EA-IRMS)联用技术测定植物样品碳同位素比值的实验条件,初步建立了植物样品中稳定碳同位素组成的EA-IRMS分析方法,同时对系统分析的稳定性和精密度等进行了检验分析。结果表明:当IRMS真空度为7×10-7mBar,高压3.0 KV,EA系统Carrier-He载气流量在90 mL/min~100 mL/min,Conflo-He载气流量为80kPa,氧喷条件为110 mL/min时,使用Cr2O3/CoO作为EA氧化柱氧化剂填料,严格控制样品残余和本底空白的条件下,植物样品的测定精密度±0.20‰,测定准确度达到0.01‰,满足分析测试的要求。关键词:元素分析-稳定同位素比率质谱仪系统(EA-IRMS);植物样品;稳定碳同位素--------------------------------------------------------碳素是主要的生命元素和自然组分,对生命体功能乃至整个生态系统的功能都起着非常重要的作用。碳稳定同位素在地质、环境、生物、农业以及生态系统等各领域的研究中都有着越来越广泛的应用。植物稳定碳同位素分析技术是近年兴起的一项快速、可靠的技术[1]。利用稳定碳同位素技术可以揭示植物碳素循环过程中所包含的物理、化学、代谢以及气候和环境等许多方面的信息[2]。目前,对于植物中稳定碳同位素比值的分析和测定,较为详细、系统的方法报道尚不多见。碳同位素分析的基本原理是在高温下以过量的氧气将样品中的碳素氧化为CO2,然后将通过分离纯化得到的纯净的CO2气体送入质谱测定其δ13C值。与传统的多循环分析系统、通用分析系统以及密闭安瓶法[3]相比较,EA-MS方法简化了繁琐的前处理手续,大大降低了人为造成的试验误差,具有快速、高效、便捷的优点。而且EA-MS连用技术在湖海沉积物以及悬浮颗粒物等样品的碳、氮同位素测定中均能达到较好的精确度和准确度[4,5,6]。稳定碳同位素的分析方法随着近年来元素分析仪-质谱仪(EA-MS)连用技术的兴起和发展,也得到了长足、快速的发展。本试验的工作旨在确定采用EA-IRMS连用技术测定植物样品的稳定碳同位素的一般性实验条件及系统的稳定性,并针对植物样品稳定碳同位素测定过程中应该注意的一些问题,进行了探讨和分析。-------------------------------------------------------1 试验仪器与原理1.1 仪器构成EA-IRMS分析系统主要由三部分组成:Flash EA 1112型元素分析仪,配有AS200型自动进样器;连续流接口装置Conflo Ⅲ;Thermo Finnigan DELTAplus XP 稳定同位素比率质谱仪(stable isotope-ratio mass spectrometers,IRMS),如图1所示。这三部分仪器装置均为美国Thermo Finnigan公司产品。Flash EA 1112主要由氧化柱、还原柱、吸水柱和分离柱等部分构成,其主要功能是将样品中的碳转化为CO2;Conflo Ⅲ通过整流将CO2引入IRMS,其构成了EA-IRMS的进样系统;IRMS主要有离子源、质量分析器、离子流检测器、真空系统、供电系统和数据处理系统等部件构成,主要用以进行稳定性C同位素的分析。[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904131414_143859_1626579_3.jpg[/img]图1 EA-IRMS系统主要装置结构Fig.1 Main structure of EA-IRMS system1.2 试验原理简述被测样品在锡舟的紧密包裹下通过AS200被送入EA氧化柱中,样品在过氧环境中瞬间高温分解,形成的含有碳、氮、氧、硫等各成分的混合气体在高纯氦气(99.999%)的运载下依次通过还原柱、吸水柱和分离柱进入进样系统Conflo Ⅲ;在此过程中,样品中的碳被最终转化成CO2,并通过色谱分离柱与其它气体分离、纯化;CO2经过Conflo Ⅲ整流后在高纯氦气(99.999%)的运载下被送入IRMS的离子源中;离子源将CO2样品中的原子、分子电离成为离子,质量分析器将离子按照质荷比的大小分离开,以离子检测器测量、记录离子流强度,用高纯二氧化碳(99.995%)作为参考标准,得出质谱图;最后通过数据处理系统进行计算,测得样品的碳同位素比值。

  • 【原创】植物样品中稳定碳同位素的EA-IRMS系统分析方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=99213]植物样品中稳定碳同位素的EA-IRMS系统分析方法[/url]通过多组实验对比,分析并讨论了利用元素分析仪一稳定同位素比率质谱仪(EA-IRMS)联用技术测定植物样品中碳同位素比值的实验条件。初步建立了植物样品中稳定碳同位素组成的分析方法,同时对系统分析的稳定性和精密度等进行了检验分析。结果表明:当IRMS真空度为7×10~ kPa,高压3.0 kV,EA系统Carrier-He载气流量在9O~100 mLrain一,Conflo-He载气压力为80 kPa,氧喷条件为110 mLrain时,使用crz()3/Co O 作为EA氧化柱氧化剂填料,在严格控制样品残余和本底空白的条件下,植物样品的测定精密度为士0.20‰ ,测定值与给定值值偏离0.01‰ 。

  • 植物分类系统与化学成分的关系

    现代植物分类是按照植物形态的异同、习性的差别以及亲缘关系的远近系统排列的。因此,一般说来,在植物分类系统中位置愈接近的植物,它们的亲缘关系就愈接近。植物分类系统与化学成分的关系,实际上是指植物亲缘关系与化学成分的关系。    各种植物由于新陈代谢类型的不同,产生了各种不同的化学物质——生物碱类、甙类、萜类等等。这些化学成分在植物中的遗传和变异,是与植物系统位置、植物的环境条件(气候、土壤与生物等)密切有关的。植物分类系统与化学成分的关系可大致归纳为下述几个方面:  1.每一种植物在恒定的环境条件下、具有制造一定的化学成分的特性,而这个特性是这种植物的生理生化特征。如颠茄产生莨菪烷衍生物类生物碱,人参产生三萜类皂甙,薄荷产生萜类等等。  2.亲缘关系相近的植物种类由于有相近的遗传关系,往往具有相似的生理生化特征。亲缘关系愈近,共同性愈多;亲缘关系愈远,共同性愈少。如异喹啉类生物碱主要分布于多心皮类及其近缘类植物的一些科中,如木兰科、睡莲科、马兜铃科、防已科、毛莨科、小檗科、罂栗科、芸香科等。这些科中的生物碱的化学结构也显示相互之间有紧密的亲缘关系,与产生它们的植物科之间的亲缘关系一致。吲哚类生物碱中最大的一族为鸡蛋花烃(Plumerane)型吲哚生物碱,这族生物碱仅存在于夹竹桃科中的鸡蛋花亚科植物中。同属植物的亲缘关系很相近,因而往往含有近似的化学成分。如小檗属(Berberis)植物含小檗碱,大黄属(Rheum)植物含羟基蒽醌衍生物等等。  3.一般说来与广泛存在于植物界的代谢产物有更近似化学结构的简单化学成分(如黄嘌吟与咖啡碱化学结构很近似),在植物界的分布较广,分布的规律性不明显。有些化学成分在系统发育过程中,经过一系列的突变,因而结构也较复杂,如马钱子碱、奎宁等。这类物质的分布往往只限于某一狭小范围的分类群中。但某些起源古老的成分,虽经一系列突变,结构亦较复杂,但它们在植物界中的分布,还是有一定范围的,而且这种类型成分与植物亲缘之间的联系表现得更为明显和突出,例如上述异喹啉类生物碱的分布。  植物分类系统与化学成分间存在着联系性这一概念,已广泛应用于药用植物的研究、野生资源植物的寻找等方面。如具有降压与安定作用的蛇根碱(Reserpine)自印度的夹竹桃科萝芙木属植物蛇根木Rauvolfia serpenitina (L.)Benth ex Kurz中发现后,从该属的其他约20种植物中亦发现了利血平,并根据植物的亲缘关系在萝芙木属的两个近缘属中找到了同类生物碱。为了发掘具抗菌作用的小檗碱的资源植物,经植物分类学与植物化学综合研究,发现小檗碱在中国主要分布在5个科(小檗科、防已科、毛莨科、罂粟科、芸香科)16个属的多种植物中,而以小檗科小檗属较理想。又据研究,莨菪烷类生物碱主要集中分布于茄科茄族(So1aneae)中的天仙子亚族(Hyoscyaminae)、茄参亚族(Mandragorinae)及曼陀罗族(Datureae)植物中,并发现了含碱量较高,有生产价值的新原料植物——矮莨菪(Przewalskia shebbearei(C.E.C.Fischer) Kuang, ined)及马尿泡(P. tangutica Maxim.)。再如生产可的松等激素药物的原料——甾体皂甙,不仅在薯蓣属(Dioscorea)的几十种植物中有发现,而且在亲缘关系相近的一些科中也有发现。必须注意的是,植物的系统发育与其所含化学成分的关系是十分复杂的。由于植物界系统发育的历史很长,发掘出来的古生物学资料不够齐全,加上多数植物的化学成分尚未明了,有些成分的分布规律还未被揭示及认识,所以,有关植物的系统发育与化学成分的关系的研究尚未成熟,有待于进一步研究。在应用植物分类系统与化学成分间的联系性时,必须具体问题具体分析。  近年来,在植物分类学与植物化学这二门学科间出现了一门新的边缘学科——植物化学分类学(P1ant chemotaxonomy)。它的主要研究任务是:  (1)探索各级分类群(如科、属、种等)所含化学成分(包括主要成分、特有成分和次要成分)及其合成途径。   (2)探索各种化学成分在植物系统中的分布规律。  (3)在以往研究的基础上,配合传统分类学及各有关学科,从植物化学成分的角度,共同探索植物的系统发育。  显然,这一新兴学科在认识植物系统发育方面有重大的理论意义,并可为有目的地开发、利用植物的资源、寻找工业原料等提供理论依据。例如通过对毛莨科与单子叶植物的百合目植物所含生物碱、甾体化台物、三萜化合物、氰醇甙和脂肪酸等五类化学成分的比较分析,发现二者具有很多类似的化学成分,有的成分甚至仅仅为它们所共有。联系到百合目与毛莨科的一些原始类群在形态和组织解剖上的某些相似性,从而认为二者有着十分密切的亲缘关系,即单子叶植物通过百合目起源于原始的毛莨科植物。这一研究结果在了解客观存在的植物系统发育的真实情况方面,具有一定的理论意义。  又如根据国内外在药用植物研究工作方面的大量实践、目前从中国药用植物中大致归纳出一些具重要生物活性的成分(生物碱、黄酮类、萜类、香豆精等)及药理作用的植物类群。由此可见,植物化学分类学是一门富有活力的新学科,它的研究成果值得药用植物学与药用植物化学工作者重视与运用。

  • 植物冠层分析仪如何测量植物叶片平均倾角

    植物冠层分析仪如何测量植物叶片平均倾角

    [size=16px]  植物冠层分析仪是用于研究植物群落结构、生长和生态系统功能的仪器。测量植物叶片的平均倾角是其中的一个重要参数,它可以揭示植物在空间上的排列方式、生长状态以及对光能的吸收利用情况。以下是一般情况下植物冠层分析仪测量植物叶片平均倾角的基本步骤:  仪器设置和安装: 安装冠层分析仪,确保其与被测量的植物位于适当的距离和角度。通常,仪器需要放置在离植物适度远的位置,以获取整体叶片分布的信息。  数据采集: 冠层分析仪通常会发射激光束或其他传感信号,然后测量信号的反射或传播情况。这些信号在与植物叶片交互时会发生变化,从而可以推断出叶片的倾角信息。  数据处理: 仪器收集到的数据需要进行处理,以计算出植物叶片的平均倾角。处理的方法可能因仪器型号和工作原理而异。一种常见的方法是基于接收到的信号强度变化来计算叶片的角度。  统计分析: 多次测量不同位置的数据,然后对这些数据进行统计分析,以获得叶片的平均倾角。这可以帮助消除单一测量点的误差,并提供更准确的结果。  需要注意的是,不同的植物冠层分析仪可能有不同的工作原理和测量方法,因此在使用特定仪器时,应该参考其使用手册或操作指南,以了解详细的操作步骤和数据处理方法。[/size][align=left]  此外,随着技术的不断发展,可能会有新的方法和技术用于测量植物叶片的平均倾角,所以建议在实际操作中保持关注最新的技术进展。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251019084435_6824_6098850_3.png!w690x690.jpg[/img][/align]

  • 手持式植物养分速测仪如何检测植物叶面温度

    手持式植物养分速测仪如何检测植物叶面温度

    [size=16px]  手持式植物养分速测仪如何检测植物叶面温度  手持式植物养分速测仪通常不用于测量叶面温度,而是用于测量植物的营养元素含量、叶绿素含量等参数。要测量叶面温度,通常需要使用红外热像仪或红外温度计等专门的仪器。以下是如何使用红外热像仪来测量植物叶面温度的一般步骤:  准备手持式植物养分速测仪:  打开手持式植物养分速测仪,并确保它已经达到稳定的工作状态。  根据仪器的使用说明,进行必要的校准和设置。  准备测量环境:  在测量之前,确保测量环境没有明显的干扰因素,如直射阳光、风、或其他热源。  将手持式植物养分速测仪对准要测量的植物叶面区域。  进行测量:  按下手持式植物养分速测仪上的触发按钮来拍摄或记录叶面的红外热图像。  等待仪器处理图像数据,以获取叶面温度信息。  手持式植物养分速测仪可以直接显示叶面温度,而其他仪器可能需要将数据传输到计算机或移动设备上进行分析。  分析结果:  分析所获得的红外热图像,查看叶面温度的分布情况。  记录或分析所需的温度数据,以了解植物的温度状况。  云唐手持式植物养分速测仪能够测量物体表面的温度,因此可以用于监测植物叶面的温度分布,以帮助农业和植物研究人员更好地理解植物的生长和健康状态。要获得准确的叶面温度数据,确保仪器的使用和环境设置是适当的,并根据仪器的说明进行操作。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181128595765_5081_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【原创】植物样品中稳定碳同位素的EA-IRMS系统分析方法 4--结果与讨论部分

    【原创】植物样品中稳定碳同位素的EA-IRMS系统分析方法 4--结果与讨论部分

    植物样品中稳定碳同位素的EA-IRMS系统分析方法 4==================================================3 结果与讨论3.1 EA-IRMS系统的稳定性及线性范围在确定的EA-IRMS系统条件下,连续测定10组标准CO2气体相对于工作标准高纯CO2气的 δ13Cvswst值,统计EA-IRMS系统的稳定性和线性范围,见表2。计算其标准偏差为0.018‰ (稳定性指标),达到仪器所要求的0.05‰范围,故系统稳定性可靠。表 3 EA-IRMS系统的稳定性Table3 Stability of EA-IRMS system[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904131430_143869_1626579_3.jpg[/img]EA-IRMS系统条件相同,对10组不同进气量的标准CO2气体进行测定,其不同离子流强度的δ13C值列于表3。从表中可以看出,离子流强度范围为1.0 V~7.5 V,其总体线性R=0.045‰ / V,符合仪器指标0.06‰/ V。通常以1.5 V~5 V作为实验的线性范围,则其线性指标R=0.029‰ / V,优于总体线性。表4 EA-IRMS系统的线性Table 4 Linearity of EA-IRMS system[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904131431_143870_1626579_3.jpg[/img]3.2 氧化柱氧化能力的变化及其累积影响根据实验观察和重复连续测定检验,本实验所确定的系统条件可使一般植物样品完全反应。对于植物样品,氧化柱氧化能力的下降速度很慢,远低于土壤等样品测定时的下降速度。在测定300个植物样品后发现,碳同位素比值和平均值之间未出现显著偏差,样品残余的离子流强度最大达到100 mV。氧化炉中的Cr2O3颜色无明显变化,CoO稍有变黑。经重复使用表明,未变色的氧化铬依然有较强的氧化能力。而氧化钴变色是因为与含硫含卤素物质反应所致[8]。所以测定植物样品并不会导致氧化柱的整体氧化能力迅速下降。测定后期出现较小的偏差,主要是因柱内堆积有一定量的灰烬,使样品与氧化剂不能充分接触,造成少量残留,从而影响到下一个样品的测定值。对此,可在产生残留的样品反应后进行放空氧化,使其残留完全反应,以减小这种累积效应;一般2~3次氧化后,其残留基本会被消除完全。但这种重复氧化的方法也只是在一定程度上减小影响,要保证氧化柱的氧化能力,及时清理氧化柱中的样品灰烬是非常必要的;此外,要在测定一定批次的样品后及时更新氧化柱的氧化剂填料,才能保证样品测定结果的准确性。3.3 EA-IRMS系统测定植物δ13C的准确度和精密度检验在本实验所确定的系统条件下,分别于2006和2007年分两次,称取8份等量的国际标准物质Urea(δ13C PDB=45.38%)和8份等量的同一植物样品SN002,进行连续测定,其测定值如表5所示。由表5测定数据可以看出, EA-IRMS系统两次测定碳同位素准确度均为:45.38‰-45.37‰=0.01‰;对植物碳稳定同位素两次测定的精密度均在±0.20‰ 以内,符合仪器测定要求,且具有较好的短期和长期重现性。表5 EA-IRMS系统测定植物δ13C的准确度和精密度Table 5 Accuracy and precision of measurement of carbon isotopic composition of plant samples by EA-IRM system[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904131434_143871_1626579_3.jpg[/img]4 小结由上述分析和讨论可知,在本方法所用仪器配置下,EA-IRMS系统测定植物样品中稳定碳同位素比值的适宜条件为:充分干燥植物样品,称样量0.1 mg ~0.25 mg;EA1112氧化柱以Cr2O3/CoO做氧化剂填充料,EA系统开机通Carrier-He载气恒定2.5 h后逐步升温,氧化柱温度980 ℃,还原柱温度640 ℃,吸水柱温度40 ℃,EA系统Carrier-He载气流量90 mL/min~100 mL/min,氧喷量110 mL/min;Conflo Ⅲ-He 载气压力为80 kPa;参考气流量控制在110 mL/min,使其产生的离子流强度在2 V~5 V之间。由当前已有的相关报道来看,对植物样品稳定碳同位素的测定,其平行测定之间的偏差一般均在0.2‰左右,在本实验条件下,测量精确度和重现性较好,完全满足测定要求。同时,与传统的离线分析系统相比较,本系统分析方法具有称样量小、样品前处理简化,氧化充分,系统稳定性更可靠,准确度和精密度高,分析更快速、便捷等特点,有利于对植物类样品中稳定性碳同位素组成的高效测定和分析。参考文献: [1] 冯虎元,安黎哲,王勋陵. 环境条件对植物稳定碳同位素组成的影响[J]. 植物学通报,2000,17(4):312~318.[2] G D Furquhar,J R Ehleringer,K T Hubick. Carbon Isotope Discrimination and Photosynthesis [J]. Ann Rev Plant Physical Plant Mal Bial. 1989,40:503~537.[3] 郑永飞,陈江风. 稳定同位素地球化学[M]. 北京:科学出版社,2000:28~29.[4] S Vizzini,G Sara,R H Michener et al. The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis[J]. Acta Oecologica,2002,23:277~ 285.[5] Kevin R C,Brian F. Small-sample methods for δ13C and δ15N analysis of the diets of marsh meiofaunal species using natural-abundance and tracer-addition isotope techniques [J]. Marine Ecology Progress Series,2002,240:85~92.[6] 曹建平,黄奕普,刘广山等. 海洋悬浮颗粒物中氮同位素的EA-IRMS法测定[J]. 台湾海峡,2003,22(1):1~8.[7] 王政,刘卫国,文启彬. 土壤样品中氮同位素组成的元素分析仪-同位素质谱分析方法[J]. 质谱学报,2005,26(2):71~75.[8] 曹蕴宁,刘卫国,宁有丰等. 氧化条件对样品有机碳同位素测定的影响因素讨论[J]. 地球学报,2005,26(Sup):55~56.[9] 邓广勇,王萍,陆泽波. CHNS元素分析仪燃烧反应管温度的设置及破裂原因分析[J]. 分析仪器,1999,3:56~57.

  • 【分享】图像分析仪在金相分析中的应用

    图像分析仪在金相分析中的应用近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。 金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。 由于金属材料中的显徽组织和非金属夹杂物等并非均匀分布,因此任何一个参数的测定都不能只靠人眼在显微镜下测定一个或几个视场来确定,需用统计的方法对足够多的视场进行大量的统计工作,才能保证测量结果的可靠性。如果仅靠人的眼睛在显微镜上进行目视评定,其准确性、一致性和重现性都很差,而且测定速度很慢,有些甚至因工作量过大而无法进行。图像分析仪以先进的电子光学和电子计算机技术代替人眼观察及统计计算,可以迅速而准确地进行有统计意义的测定及数据处理,同时具有精度高、重现性好,避免了人为因素对金相评定结果的影响等特点,而且操作简便,可直接打印测量报告,目前已成为定量金相分析中不可缺少的手段。 图像分析仪是对材料进行定量金相研究的强有力工具,也是日常金相检验的好帮手,可以避免人工评定带来的主观误差,从而也避免了扯皮现象。虽然在日常金相检验中,不可能也不必每次都使用图像分析仪,但当产品质量出现异常或金相组织级别处于合格与不合格之间而无法判别时,则可以借助图像分析仪对其进行定量分析,得出准确结果,确保产品质量。图像分析仪在金相分析中的应用,拓展了金相检验的检测项目,促进了检测水平的提高,对于提高检测人员的素质也是十分有益的。 图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。 为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。 计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。 图像分析仪通常都具有下列基本图像处理、分析功能:图像采集。 图像增强和处理:包括阴影校正,伪彩色处理,灰度变换,平滑、锐化;图像编辑等。 图像分割。 二值图像处理:包括形态学处理(腐蚀、膨胀、骨胳化等),二值图像的算术运算、联接、自动修补等。 测量:包括特征物统计,对其周长、面积、X/Y投影、轴长、取向角等参数进行统计测量。 数据输出。

  • 【分享】高效液相色谱法分析中药及植物药的进展

    高效液相色谱法分析中药及植物药的进展植物药越来越受到人们的重视。据报道,全世界大约有70%的人口医疗依靠各种类型的植物药〔1,2〕。对植物药的兴趣主要基于以下两个原因,一是人们普遍认为植物药具有较小的毒性,二是用合成方法寻求新药物的可能性变得越来越小,同时已有的西药对一些疑难病症无能为力。随着对植物药需求的不断增长,开展植物药的药代动力学、毒理学研究和质量控制,开发快速、灵敏、具有选择性的分析方法也越来越迫切。过去20年的实践经验表明,高效液相色谱(HPLC)是一种非常有效和普遍适用的植物药分析方法。近来,由于各种分析柱、高选择性和高灵敏度的检测器和复杂的商品化仪器联用系统的出现,植物药分析领域已被大大地推进。本文就HPLC在中药及植物药研究中应用的最新进展做简要评述。

  • 【分享】图像分析仪在金相分析中的应用2

    一、图像分析仪的原理及功能简介  图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。  为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。  计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。

  • 植物常量元素的分析

    3—5植物常量元素的分析在植物必需的常量元素中,氮、磷、钾、钙和镁是土壤农化分析的常规分析项目,尤以三要素的测定更为经常和重要。不论在诊断作物氮、磷、钾的营养水平和土壤供应各该元素的丰缺情况时,或者在确定作物从土壤摄取各元素的数量和施肥效应时,都经常要测定植物全株或某些部位器官中有关元素的含量。在收获物品质检定工作中,这5种元素的测定也有重要意义,例如食品和饲料中蛋白质的测定实际上就是有机氮的测定,而磷、钾、钙等则是营养价值最高的灰分元素。在作物化学诊断分析工作中,关于各类作物在不同生育期(特别是生长发育的关键时期)和不同部位器官(特别是敏感部位器官)中氮、磷、钾临界浓度(或果树诊断的标准值)的拟订很重要,它是解释分析结果和提出增产措施建议所必需的资料。这方面的数据国内国外都有许多报道,并有专著问世。但必须注意,各资料中报道的指标都是仅指某一采样期和某一特定部位器官而言的;诊断工作很复杂,植株内各营养元素彼此之间又有协助作用和拮抗作用,某元素含量的高低会影响到另一元素的指标或临界值。3—5.1植物全氮、磷、钾的测定植物中氮、磷、钾的测定包括待测液的制备和氮磷钾的定量两大步骤。植物全氮待测液的制备通常用开氏消煮法(参考有机肥料全氮的测定)。植物全磷、钾可用干灰化或其他湿灰化法制备待测液。本书介绍H2SO4—H2O2消煮法,可用同一份消煮液分别测定氮、磷、钾以及其它元素(如钙、镁、铁、锰等)。3—5.1.1植物样品的消煮(H2SO4—H2O2法)方法原理植物中的氮磷大多数以有机态存在,钾以离子态存在。样品经浓H2SO4和氧化剂H2O2消煮,有机物被氧化分解,有机氮和磷转化成铵盐和磷酸盐,钾也全部释出。消煮液经定容后,可用于氮、磷、钾①等元素的定量。本法采用H2O2加速消煮剂,不仅操作手续简单快速,对氮磷钾的定量没有干扰,而且具有能满足一般生产和科研工作所要求的准确度,但要注意遵照操作规程的要求操作,防止有机氮被氧化成N2或氮的氧化物而损失。试剂(1)硫酸(化学纯、比重1.84)(2)30%H2O2(分析纯)操作步骤:(1)常规消煮法称取植物样品(0.5mm)0.3~0.5g(准确至0.0002g)装入100ml开氏瓶的底部,加浓硫酸5ml,摇匀(最好放置过夜),在电炉上先小火加热,待H2SO4发白烟后再升高温度,当溶液呈均匀的棕黑色时取下,稍冷后加6滴H2O2②,再加热至微沸,消煮约7—10分钟,稍冷后重复加H2O2再消煮,如此重复数次,每次添加的H2O[s

  • 【原创】植物样品中稳定碳同位素的EA-IRMS系统分析方法 3--试验方法部之二

    【原创】植物样品中稳定碳同位素的EA-IRMS系统分析方法 3--试验方法部之二

    植物样品中稳定碳同位素的EA-IRMS系统分析方法 3=================================================2.3 氧喷条件的确定上述两种载气条件确定后,准确称取6份植物样品各(0.20±0.05)mg,分别在80 mL/min、90 mL/min、100 mL/min、120 mL/min、130 mL/min五种不同氧喷条件下反应,记录样品进样后连续反应产生的离子流强度,考察样品是否反应完全,见表1。氧气喷入量较小时,第一次反应产生的离子流强度较小,且在第二次反应时有40 mV~80 mV的残留量;而在100 mL/min喷量以上时,第一次反应即可完全。可见,加大氧气喷量也是增加对植物样品氧化程度的一种有效手段。而过大的氧气喷入量对还原炉有损害,氧喷量只需保证样品完全反应即可。因此设置EA 1112系统110 mL/min的氧喷量对于植物样品测定较为合适。表 1 不同氧气喷量对反应的影响Table 1 Influence of different oxygen injection[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904131425_143866_1626579_3.jpg[/img]2.4 参考气条件的确定参考气和样品进样量的大小是影响δ13C值的另一关键因素。比较参考气进样量与样品进样量的变化情况,参考气进样量的离子流强在2 V~5 V 所测碳同位素误差均小于0.05% ,参考气流量过高,容易造成本底值升高,影响本次或下次样品的测定值,同时样品的离子流强度相对偏低,也会造成测定值产生偏差;参考气流量过低,样品离子流强度相对偏高,同样会产生测定值的偏差。因此,参考气流量可控制在110 mL/min为最佳选择,同时通过对Conflo Ⅲ装置上参考气压力调整,使其进样量的离子流强度在2 V~5V。2.5 EA系统温度的确定氧化温度直接影响到样品是否被充分氧化,从而关系到δ13C值的稳定性。设置Conflo Ⅲ-He压力为80kPa,EA系统Carrier-He流量为96mL/min,110 mL/min的氧喷量,参考气流量为110 mL/min,测定一组等量(0.20±0.05mg)植物样品SN001,在不同氧化温度下反应,记录样品进样后连续反应产生的离子流强度和δ13C值,考察样品是否反应完全,见表2。表 2 不同氧化温度对反应的影响Table 2 Influence of different oxidation temperature[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904131427_143868_1626579_3.jpg[/img]植物样品中的碳素几乎都是有机态碳,无碳的矿物包裹体,所以相对易于氧化充分。由表2可以看出,850 ℃时植物样品即可充分氧化,无残留,与曹蕴宁等人[8]的研究结果相一致;且在温度达到950℃以上时,样品δ13C值更趋于稳定,不会产生碳同位素分馏。基于对植物样品的充分氧化,同时考虑到仪器系统对温度的要求, EA 1112系统开机通Carrier-He载气恒定2.5 h后升温,设置氧化柱温度为980 ℃,还原柱温度为640 ℃,吸水柱温度为40 ℃,对植物样品有机碳样品的氧化和CO2气体的纯化分离能达到较好的效果。2.6 氧化炉氧化剂填料的选择EA氧化柱通常所选用的氧化剂填料,目前主要有两种:氧化铜一铜(CuO/Cu)和氧化铬一氧化钴(Cr2O3/CoO)。根据所测定样品的不同测试者选择其中之一作为填料。但据研究报道,Cr2O3/CoO的氧化能力优于CuO/Cu,用Cr2O3/CoO作为氧化柱填料能够更为真实地反映样品的同位素组成[7],而且相对于氧化铜柱,Cr2O3/CoO柱在高温下不易破裂[9]。此外,通过长期实验观察发现,Cr2O3/CoO柱对于植物样品氧化较为完全,同时氧化剂使用时间也较长,还具有便于清理、更换的优点。据此,EA装置的氧化柱选用Cr2O3/CoO作为氧化剂填充料更为有效。

  • 【“仪”起享奥运】药用植物-内生菌的好处

    [size=16px] [/size] [size=16px][font=宋体][color=var(--weui-LINK)]植物内生菌[i][/i][/color]是指生活史的部分或全部阶段生活于健康植物组织或器官内部及细胞间隙,而不对植物引发致病反应的微生物[/font][font=宋体],内生菌不论在正常环境或逆境都可以促进植物的生长,还可以通过提高植物的养分吸收效率、调节相关植物激素而使寄主植物受益。根际是指在植物根系附近并受植物生长影响的土壤区域,是植物与外界环境进行沟通的主要场所,该区域有特定微生物群定殖,并受到植物根部释放的分泌物的影响。在根际中存在“植物[/font]-[font=宋体]土壤[/font]-[font=宋体]微生物”互作的复杂网络,植物根系通过释放根系分泌物充当三者沟通的媒介[/font][font=宋体],而存在于植物根际的微生物,称为根际微生物,被认为是植物的第[/font]2[font=宋体]基因组[/font][font=宋体],根际微生物与植物的生长发育密切相关,有强烈的根际效应[/font][font=宋体],根际微生物具有调控植物生长、抵御病虫害、增强抗逆能力、缓解连作障碍、影响次生代谢产物的作用[/font][font=宋体]。药用植物中菌种资源丰富,没有内生菌的植物极其罕见[/font][font=宋体]。若缺少内生菌的调控,药用植物抗逆与抗病虫害能力将会降低[/font][font=宋体],研究发现,内生菌及根际微生物对宿主植物具有正向调控作用,如促进植物生长、增强植物抗逆性、修复污染土壤、促进次生代谢产物积累等。[/font][/size]

  • 【金秋计划】角蒿属药用植物叶绿体基因组比较及系统发育分析

    [font=宋体]叶绿体作为光合作用的细胞器,同时还兼具氨基酸、核苷酸、脂肪酸、植物激素、维生素等的生物合成功能,拥有独立完整的基因组,在陆地植物和藻类的生理、发育中发挥着重要作用[/font][sup][1][/sup][font=宋体]。叶绿体基因组在被子植物中遵循母系遗传,序列较为保守,便于组装,同时携带大量自我调节的编码基因,是半自主性细胞器。相较于线粒体基因组和核基因组,叶绿体基因组在结构、基因数量和基因组成上更为保守,进化速率也相对适中[/font][sup][2-3][/sup][font=宋体]。基于以上优势,叶绿体基因组在揭示物种起源、进化演变以及不同物种之间的亲缘关系等方面具有重要价值[/font][sup][4][/sup][font=宋体]。近年来,叶绿体基因组已应用于羌活属[/font][sup][5][/sup][font=宋体]、柴胡属[/font][sup][6][/sup][font=宋体]、甘草属[/font][sup][7][/sup][font=宋体]、芍药属[/font][sup][8][/sup][font=宋体]及龙胆属[/font][sup][9][/sup][font=宋体]等药用植物的分子标记和系统发育等研究,这推动了[/font][font=宋体]药用植物的分子鉴定和系统进化等研究进展,进一步促进了本草类基因组学的发展[/font][sup][10][/sup][font=宋体]。[/font] [font=宋体]角蒿属两头毛亚属的两头毛[/font][i]Incarvillea arguta[/i] (Royle) Royle.[font=宋体]、波罗花亚属的密生波罗花[/font][i]I. compacta [/i]Maxim.[font=宋体]、黄波罗花[/font][i]I. lutea [/i]Bur. et Franch.[font=宋体]、藏波罗花[/font][i]I. younghusbandii[/i] Sprague[font=宋体],以及角蒿亚属的角蒿[/font][i]I. sinensis[/i] Lam.[font=宋体]均为紫葳科一年或多年生的草本药用植物,多分布在喜马拉雅山和东亚等地区。角蒿属植物在全世界约有[/font]15[font=宋体]种,分布在我国云南西北部、四川西部、西藏及青海等地的就有[/font]11[font=宋体]种[/font][sup][11][/sup][font=宋体]。[/font][font=宋体]角蒿属植物作为传统的药用植物,多被用于治疗各种临床疾病。邹琼宇等[/font][sup][12][/sup][font=宋体]提出,角蒿属植物中的单萜生物碱作为其特征化合物,具有较强的镇痛作用。除此之外,它们还有抗炎、抗贫血、抗癌等各种药理活性。而两头毛是各民族较为常用的中药,有抗炎、抗菌、防止胆石症等疗效[/font][sup][13][/sup][font=宋体]。密生波罗花作为常见藏药,其根、花、种子均可入药[/font][sup][14][/sup][font=宋体],有理气止痛、平肝潜阳、清热除湿的功效,临床上可用于治疗胃痛、黄疸、消化不良、耳脓、月经不调、高血压、肺出血等症状。宋超等[/font][sup][14][/sup][font=宋体]运用硅胶柱色谱法从密生波罗花中分离鉴定了[/font]1[font=宋体]组以神经酰胺为主的混合物,发现密生波罗花神经酰胺具有显著的抗炎活性。同时,李伟博等[/font][sup][15][/sup][font=宋体]发现密生波罗花中营养成分丰富且氨基酸种类齐全,具有很好的抗氧化活性,可作为天然抗氧化剂用于保健品的开发。黄波罗花入药部位为根部,具有滋补功效,同时它还有抗炎镇痛之疗效[/font][sup][16][/sup][font=宋体]。藏波罗花与同亚属的密生波罗花、黄波罗花一道作为传统藏药材[/font][font=宋体]“[/font][font=宋体]欧曲[/font][font=宋体]”[/font][font=宋体],可用于治疗消化不良、黄疸、高血压、肺出血等临床症状[/font][sup][17][/sup][font=宋体]。[/font] [font=宋体]目前,关于角蒿属植物的研究主要集中于化学成分[/font][sup][12-15][/sup][font=宋体]、药理活性[/font][sup][12-13, 16-17][/sup][font=宋体]等方面,从比较基因组学角度阐述角蒿属药用植物叶绿体基因组的研究较少。同时,随着对角蒿属药用植物功效的深入研究,陆续挖掘出其不同的药用价值,但由于角蒿属植物形态和功效的相似以及种间变异错综复杂的原因,导致本草记载中常出现同名异物或同物异名的情况。因此对角蒿属药用植物的叶绿体基因组研究可作为本草基源考证的一个方法,为角蒿属物种分子鉴定、系统发育以及资源保护等研究提供一定的参考。[/font]

  • 【讨论】植物成分分析

    我最近想做一个植物的成分分析。请问各位大侠,有那些比较好的分析方法?分析之前需要做哪些处理?谢谢

  • 植物中存在的氯如何分析

    植物纤维中的氯是植物生长的必需元素,我们公司生产的原料基本是植物纤维(纸浆),其氯元素对产品的电气性能会产生不良影响。为了确切知道纸浆中氯的含量我们采取了各种测试方法。1、热水抽提法,将植物纤维(纸浆)在热水(水是经过纯化处置的)抽提一定的时间,然后用各种化学方法进行检测其含量,如硝酸银比浊法、硝酸汞滴定法、离子色谱法。2、将纸浆在更高温条件进行更长时间的抽提,将抽提液进行裂解,再进行离子色谱分析的方法。3、将植物纤维进行燃烧,收集所有烟雾(吸收于水中),然后进行离心,取清的水液进行比浊、滴定及离子色谱分析。上述三类方法中,我们不知道哪一种方法会更客观,也存在一些疑问,请大家一起探讨:1、热水抽提的是水溶性氯物质,植物中应当存在有机形式的氯元素。不管是高温还是沸水都不太可能完全抽提出氯元素,而且氯元素存在形式如果不是离子形式,不管是滴定、比浊还是离子色谱均测试不全面(当然在样品处理时用酸进行反应也可能是可行的。)。2、用燃烧法,再进行酸处理能否对氯元素全部进行离子化反应呢?目前本人还不能完全肯定,但相信反应客观能力上应当比前述的要强些。各位大侠也请发表高论,我们一起讨论讨论吧。

  • 植物冠层分析仪有哪些优势

    植物冠层分析仪有哪些优势

    [size=16px]  植物冠层分析仪是一种用于测量和分析植物群落中植物冠层结构的工具。它在生态学、林业、农业等领域中被广泛使用,有许多优势:  非破坏性测量:植物冠层分析仪通常使用激光、雷达或摄影等技术进行测量,这些方法不需要直接接触植物,因此不会对植物造成损伤,有利于长期监测和研究。  高效快速:与传统的人工测量方法相比,植物冠层分析仪可以快速地收集大量数据。这对于研究人员来说节省了时间和精力,并且能够获得更全面的数据集。  准确性和精度:现代植物冠层分析仪使用先进的传感器和算法,能够提供高度准确和精确的测量结果。这对于科研工作和资源管理决策非常重要。  多维信息获取:植物冠层分析仪不仅可以获取植物的高度信息,还可以获得关于植物分布、密度、覆盖度、树冠形状等多种信息,帮助研究人员更好地理解植物群落的结构与功能。  长期监测和比较:由于植物冠层分析仪具有非破坏性和高效快速的特点,可以用于长期的生态监测和植被变化的研究。研究人员可以跟踪不同时间点的数据,分析植物群落的动态变化。  自动化和标准化:使用植物冠层分析仪进行测量可以减少主观因素的影响,使数据更加客观和可重复。这对于科研的可靠性和数据比较具有重要意义。  适用于多种环境:植物冠层分析仪适用于不同类型的植被,包括森林、草原、农田等,扩展了其应用范围。  生态学研究与资源管理:植物冠层分析仪为生态学研究和自然资源管理提供了强大的工具。研究人员可以更好地了解植物群落的结构、物种多样性、生长状态等信息,从而制定更有效的保护和管理策略。  尽管植物冠层分析仪具有许多优势,但也需要考虑其成本、数据处理复杂性以及某些环境条件下的限制。云唐建议在选择使用植物冠层分析仪时,需要综合考虑其优势和局限性,以满足特定研究或管理的需求。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251010121585_7702_6098850_3.png!w690x690.jpg[/img][/size]

  • 天然植物未知物分析

    最近分析一个天然植物,好多未知物,大家帮忙看一下,谢谢。26.347, 26.708,27.275,27.567(龙涎酮?),29.665, 29.752 ,30.101,30.661 ,31.271,33.729,34.539,34.725, 36.792,37.159, 37.290, 39.126,45.718。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制