当前位置: 仪器信息网 > 行业主题 > >

气相色谱点火点检测器

仪器信息网气相色谱点火点检测器专题为您提供2024年最新气相色谱点火点检测器价格报价、厂家品牌的相关信息, 包括气相色谱点火点检测器参数、型号等,不管是国产,还是进口品牌的气相色谱点火点检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱点火点检测器相关的耗材配件、试剂标物,还有气相色谱点火点检测器相关的最新资讯、资料,以及气相色谱点火点检测器相关的解决方案。

气相色谱点火点检测器相关的论坛

  • 气相色谱FID检测器点火方式讨论

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]FID检测器常见的是点火线圈点火,也遇到了使用电子打火的方式。两种方式哪一种更加好呢?

  • 气相色谱FID检测器,点火之后很多杂峰

    气相色谱FID检测器,点火之后很多杂峰

    [color=#444444]气象色谱FID检测器,为什么点火之后很多杂峰?是柱子被污染了吗?还是操作不对?有分析的大神们能给指点一下吗?[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906271534557246_2200_1848218_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906271534561537_6938_1848218_3.jpg!w690x517.jpg[/img][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/06/201906271534571179_6656_1848218_3.png!w690x387.jpg[/img][/color]

  • 鲁班日记:Agilent7890A气相色谱仪FPD检测器点火失败

    鲁班日记:Agilent7890A气相色谱仪FPD检测器点火失败

    [b]故障描述: [/b]因近期的一个项目需要启用Agilent7890A[url=http://www.instrumentguider.com/ynjweb/products/list.htm?type=2][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url][/url]FPD检测器,然而该检测器已有一年未使用,开机后发现点火失败。[b]可能的原因:[/b]1. 方法参数是否正确2. 色谱柱安装问题3. 气体纯度是否达标,安捷伦要求使用纯度大于 99.999%的气体4. 从 [url=http://www.instrumentguider.com/ynjweb/parts/detail.htm?proId=40]EPC[/url]出来的气体流量不对5. 点火线圈老化或者密封 O 型圈老化漏气[b]维修过程[/b]:1. 检查方法参数:查看方法参数设置(氢气:75ml/min;空气:100ml/min;尾吹气:60ml/min)与方法中的设定一致。2. 检查色谱柱:拆卸下色谱柱,测量色谱柱伸出石墨垫的长度为146mm,符合厂家要求的145mm±1mm。3. 检查气体纯度,由于手头上没有检测气体纯度工具,就用使用同一套气路系统的FID检测器点火。FID检测器点火成功。 [table][tr][td] [/td][td] 氢气 [/td][td] 空气 [/td][td] 尾吹气 [/td][/tr][tr][td] 设定值 [/td][td] 75 [/td][td] 100 [/td][td] 60 [/td][/tr][tr][td] 实际值 [/td][td] 40 [/td][td] 62 [/td][td] 40 [/td][/tr][/table]4. 检测气体流速:用死堵螺母堵死检测器,用流量计在FPD出口逐个测量气体流量,发现每个气体流量偏小。由于该检测器有一年左右时间未使用,可能是O型圈老化。5. 更换点火密封圈。5.1 关闭FPD检测器使其降温,或调用关机方法。5.2 取下放空管组件[img=,304,249]https://ng1.17img.cn/bbsfiles/images/2024/02/202402270840160810_8906_5509470_3.png!w638x558.jpg[/img]5.3松开外壳固定螺丝,取下外壳[img=,600,300]https://ng1.17img.cn/bbsfiles/images/2024/02/202402270840592138_6714_5509470_3.jpg!w600x300.jpg[/img]5.4松开固定点火器电缆组件的套环螺丝取下套环和电缆组件。[img=,412,402]https://ng1.17img.cn/bbsfiles/images/2024/02/202402270841084259_7355_5509470_3.png!w515x502.jpg[/img]5.5用1/4扳手松开并取下点火塞[img=,399,309]https://ng1.17img.cn/bbsfiles/images/2024/02/202402270841160740_3209_5509470_3.jpg!w360x279.jpg[/img]图中白色的橡胶圈就是O型圈6. 更换喷嘴的O型圈[color=red]由于该部件拆卸比较复杂不建议自己拆卸。[img=,600,300]https://ng1.17img.cn/bbsfiles/images/2024/02/202402270843184253_6010_5509470_3.png!w600x300.jpg[/img][/color][b]结果:[/b]经过上述的处理后,重新开启仪器点火成功。用流量计测试检测器的气体流量与设定值基本一致。[b]总结:[/b]FPD检测器如果长期未使用检测器里面的O圈老化从而导致检测器密封性变差、气体流量不准、点火困难。注:本文档由[color=#3B3C3C]仪诺嘉科技(杭州)有限公司[/color]提供,要引用请标注来源本公司官网[url=http://www.instrumentguider.com/][font='MicrosoftYaHei',serif]www.instrumentguider.com[/font][/url][color=#3B3C3C]。[/color]

  • 气相色谱FID检测器的问题

    气相色谱FID检测器没点火之前基线是0,但点火后就有20-30mv了。这是氢气燃烧的原因产生电信号吗,如果不是,那是什么产生的呢?请高人指点 ,谢谢

  • 脉冲放电检测器

    有哪位大虾用过美国热电带脉冲放电检测器(PDD)的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],它的性能如何?能检测那些组分,灵敏度怎样? ------------------------------------------------------------------------------------------- [em06]

  • 气相色谱跑空针有鬼峰,如何排查检测器部分因素?

    如题,在排查检测器问题时,要用堵头封住检测器入口,打开检测器,看是否还有杂峰。这里所用的堵头可以用检测器端固定色谱柱的用的固定头(我记得有一次一个工程师用的就是这个,不排除记错了)吗?如果用固定头,打开检测器是不是不能点火?排查步骤来自《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]百问精编》第44问。

  • 气相色谱FID检测器点火问题

    [color=#444444]韩国英麟[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],点火时起始氢气流量30ml/min,空气流量100ml/min,此时虽然点火成功了,但仪器无法判别,最后只能自动切断氢气和空气。求分析原因,寻求解决方案。不胜感激[/color]

  • 【讨论】气相色谱检测器讨论

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器发展很快,目前大概有20多种:1、热导检测器 thermal conductivity detector,TCD 又称热导池检测器,也称卡他计(Katharomater)。2、氢火焰离子化检测器 flame ionization detector, FID 又称火焰电离检测器。3、氮-磷检测器 nitrogen-phosphorus detector ,NPD 4、电子俘获检测器 electron capture detector,ECD,对电负性化合物(能俘获电子的组分)具有特别高的灵敏度的一种选择性检测器。5、火焰光度检测器 flame photometric detector, FPD 是对含磷、含硫的化合物有高选择性和高灵敏度的一种[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。6、无放射源电子俘获检测器 non-radioactive electron capture detector 一种不用放射源的电子俘获检测器。7、氦电离检测器 helium ionization detector ,HID, 用于永久性气体超微量分析的一种检测器。8、氩电离检测器 argon ionization detector ,AID, 其工作原理与氦电离检测器完全相同,只是用氩气作载气。9、电离截面检测器 ionization cross section detector 又称截面积电离检测器。10、电子迁移率检测器 electron mobility detector 是一种用于检测微量永久性气体的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。11、光离子化检测器 photo-ionization detector, PID 利用紫外光能激发解离电位较低(小于10.2eV)的化合物,使之电离,在电场作用下形成电流而进行检测的一种检测器。12、质量选择检测器(质谱),MSD。13、傅里叶变换红外光谱检测器,FTIR。14、原子发射光谱检测器,AED。15、脉冲火焰光度检测器,PFPD。16、脉冲放电检测器,PDD。17、气体密度天平检测器,GDB。18、化学发光检测器,CLD。19、电导检测器,ELCD。20、微库仑检测器 micro coulometric detector 又称电量检测器。但是,应用最多的仍然是TCD、FID,像ECD、NPD、FPD相对来说还比较少,特别是在石油化工领域,PFPD和HID,以及SCD到底用途有多大,发展趋势是什么?

  • 气相色谱FPD检测器未开空气什么影响

    [color=#444444]岛津的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]FPD检测器 开机检测时忘开空气了 有24小时多 这样对仪器有什么影响么 今天过来发现没开空气 再重新点火成功后 进样针吸样 但是界面不显示采集结果 没有分析结果 请问大神们知道怎么回事[/color]

  • 气相色谱FID检测器的清洗方法

    当气相色谱FID的沾污不严重时,可不必卸下清洗,只需将色谱柱取下,用一根管子将进样口与检测器连接起来,然后通入载气,并将检测室升温至120℃以上,从进样口先注入20μL左右的蒸馏水,再用几十微升丙酮或氟利昂溶剂进行清洗。在此温度下保持1~2h,检查基线是否温度,若仍不满意可重复上述操作或卸下清洗。 当沾污比较严重时,必须卸下清洗。先卸下收集极、极化极、喷嘴等,若喷嘴是石英材料制成的,先将其放在水中浸泡一夜。若喷嘴是不锈钢等材料制成的,则可与电极等一起,先小心地用细砂纸(300~400号)打磨,再用适当溶剂(如1:1甲醇-苯)浸泡,也可以用超声波清洗,最后用甲醇洗净,放置于烘箱中烘干。注意勿用含卤素的溶剂(如氯仿、二氧甲烷等),以免与零件中的聚四氟乙烯材料作用,导致噪声增加。洗净后的各个部件,要用镊子取出,勿用手摸。 烘干后装配时也要小心,否则会再次沾污。各个零件装入气相色谱仪后,先通载气30min,再点火升高检测室温度,最好先在120℃保持数小时之后,再升至工作温度。来源:分析测试百科网

  • 【求助】气相色谱检测器无法点火

    [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]新手求助!安捷伦6890,检测器无法点火,空气、氢气、氮气各自分别选中的时候都可以到达指定的流速,但是三者一起开,空气的流速就一直上不去,氢气是正常的,而氮气实际流速大于指定流速。另外在关掉氢气和氮气流速后,无法快速回复到0,需要花很长时间下降。请问这是什么地方出了问题?谢谢各位!

  • 4种常用的气相色谱检测器的清洗办法?

    1热导检测器TCD的清洗将热导检测器冷却至室温并取下色谱柱,将隔垫置于检测器入口的螺母或者接头组件上,将螺母或接头组件置于检测器接头上并拧紧,确认有尾吹气流,通过隔垫向检测器注射10μL~100μL甲苯、苯、丙酮、十氢萘等溶剂,注射总量至少1mL,完成注射之后允许尾吹气继续流动10min以上,缓慢增加热导池的温度,使其比正常操作温度高20℃~30℃,30min之后将温度降低至正常值,并按照正常情况安装色谱柱。 注意:不能向检测器中注射卤代溶剂! 对于柱流失、样品污染产生沉积物污染热导检测器。引起基线漂移、噪声增加或测试色谱图响应改变时,可以采用热清洗,即通过加热检测器池体以蒸发掉污染物。2氢焰离子化检测器FID的清洗 当沾污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器联接起来,然后通载气并将检测器炉温升至120度以上,从进样口先注入20微升左右的蒸馏水,再用几十微升丙酮或氟里昂(Freon113等)溶剂进行清洗。在此温度下保持1-2小时检查基线是否平稳,若仍不满意可重复上述操作或卸下清洗。 当沾污比较严重时,必须卸下清洗。先卸下收集极,正极,喷嘴等,若喷嘴是石英材料制成的,先将其放在水中进行浸泡过夜。若喷嘴是不锈钢等材料做成,则可与电极等一起,先小心用细砂纸(300-400#)打磨,再用适当溶剂(浸泡如甲醇与苯1:1),也可以用超声波清洗,最后用甲醇洗净,放置于烘箱中烘干。注意:勿用含卤素的溶剂(如氯仿、二氯甲烷等)。以免与聚四氟乙烯材料作用,导致噪声增加。 洗净后的各个部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气30分钟,再点火升高检测室温度,最好先在、120度保持数小时之后,再升至工作温度。 3电子捕获检测器ECD的清洗 注意:电子捕获检测器中有放射源,通常为Ni63,因此要特别小心。 先拆开检测器中有放射源箔片,然后用2:1:4的硫酸、硝酸及水溶液洗检测器的金属及聚四氟乙烯部分。当清洗液已干净时,再用蒸馏水清洗,然后用丙酮洗,再置于100度左右的烘箱中烘干。对H3源箔片,先用己烷或戊烷淋洗,绝不能用水洗。废液要用大量水稀释后弃去。对Ni63源更应小心,绝不能与皮肤接触,只能用长镊子操作。先用乙酸乙酯加碳酸钠淋洗或用苯淋洗,再于沸水中浸泡5分钟,取出烘干,装入鉴定器中。装入仪器后通载气30分钟,再升至操作温度,几小时后备用。清洗剩下的废液要用大量水稀释后才能弃去。4氮磷检测器(NPD)的清洗[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]NPD需要进行定期清洗 在大多数情况下,只清洗收集极和喷嘴。一般[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]都配有刷子和金属丝。刷子用于清扫喷嘴口的颗粒物。不要迫使太粗的金属丝或探针进入喷嘴口,否则喷嘴口将被破坏若喷嘴变形,将会导致灵敏度下降或峰形变差。用刷子清洁之后,可以用超声波清洗各个部件。最终将需要更换喷嘴,因此,强烈推荐在手头有备用的喷嘴。经过一段时间的使用,来自于铷珠或样品的残留物将会积聚在收集极上,并导致基线问题。在更换铷珠2-3次后,应该清洗检测器。 每次拆装均会造成金属垫片等的磨损。几次拆装之后(5次或更多次),密封环就可能无效导致基线不稳。更换检测器部件时一定要将检测器温度降低到室温。因为NPD没有任何火焰,其喷嘴不像FID喷嘴那样收集二氧化硅和燃烧烟尘。虽然可以清洗喷嘴,但是简单的用新喷嘴取代脏喷嘴往往更加实用。清洗喷嘴如果用金属丝,要是清洁的,小心操作,千万不要损坏喷嘴的内部,也可以使用超声波清洗喷嘴。

  • 点火失败,如何清洗检测器底座,使得能够正常点火

    我们的7890A气相最近点火老是失败,排除气源、点火线圈等原因,仍不能正常点火。堵住检测器能正常点火,工程师分析因为喷嘴腐蚀,检测器底座较脏,使得密封性变差,需清洗检测器底座,如何清洗检测器底座;若是把色谱柱接检测器低些是否也能解决点火问题?

  • 气相色谱仪常用检测器的清洗

    [align=center][size=24px][b]气相色谱仪常用检测器的清洗[/b][/size][/align][align=left][size=18px] 在气相色谱仪操作过程中,检测器有时会被流失的固定相及样品中的高沸点成分、易分解或有腐蚀性的物质玷污。此时应对检测器进行清洗。 清洗时可分三种情况:第一种是玷污物质仅限于高沸点成分,通常可将气相色谱仪检测器加热到蕞高使用温度后,再通入载气,即可清除。第二种情况是检测器仅存在程度较轻的玷污,此时可用蒸汽清洗的方法。过程是在进样口注入几十微升蒸馏水或丙酮等溶剂,待1~2小时后,检查基线是否平稳即可。第三种情况是在上述两种简单方法不能解决问题时所采用的彻底清洗方法,此方法要求拆装检测器,同时还要选择适宜的溶剂,即所[/size][size=18px]选[/size][size=18px]择的溶剂,既要能溶解玷污物,又不对检测器造成新的污染和损坏。此时清洗过后的部件不要直接用手摸。[/size][/align][align=left][size=18px]1、热导检测器(TCD)的清洗TCD检测器在使用过程中可能会被柱流出的沉积物或样品中夹带的其他物质所污染。TCD检测器一旦被污染,仪器的基线出现抖动、噪声增加。有必要对检测器进行清洗。欧美的TCD检测器可以采用热清洗的方法,具体方法如下:关闭检测器,把柱子从检测器接头上拆下,把柱箱内检测器的接头用死堵堵死,将参考气的流量设置到20~30 ml/min,设置检测器温度为400℃,热清洗4-8 h,降温后即可使用。国产或日产TCD检测器污染可用以下方法。仪器停机后,将TCD的气路进口拆下,用50mL注射器依次将丙酮 ( 或甲苯,可根据样品的化学性质选用不同的溶剂 ) 无水乙醇、蒸馏水从进气¨反复注入5~10次,用吸尔球从进气口处缓慢吹气,吹出杂质和残余液体,然后重新安装好进气接头,开机后将柱温升到200℃,检测器温度升到250℃,通人比分析操作气流大1~2倍的载气,直到基线稳定为止。对于严重污染,可将出气口用死堵堵死,从进气口注满丙酮 ( 或甲苯,可根据样品的化学性质选用不同的溶剂 ) ,保持8 h左右,排出废液,然后按上述方法处理。当选用一种溶剂不能洗净时,可根据玷污物的性质先选用高沸点溶剂进行浸泡清洗,然后再用低沸点溶剂反复清洗。洗净后,加热赶去溶剂,将检测器装回到仪器上,再加热通载气冲洗数小时后,即可使用。2、氢火焰离子化检测器(FID)的清洗当FID玷污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器联接起来,然后通载气将检测器恒温升至120℃以上。再从进样口中注入20微升左右的蒸馏水,接着再用几十微升乙醇或氟里昂113溶剂进行清洗(用丙酮也可,但应注意,有的色谱仪氢焰室中喷嘴不适宜用丙酮清洗)。在此温度下保持1~2小时检查基线是否平稳,若仍不理想,可重复上述操作或按下面方法处理。当玷污比较严重时,须拆下检测器清洗。方法是先拆下收集极、极化极、喷嘴等,若喷嘴是石英材料制成的,先将其放在水中进行浸泡过夜;若喷嘴是不锈钢等材料做成,则可与电极等一起,先小心用300~400号细砂纸打磨,再用适当溶剂( 如1:1的甲醇与苯 )进行浸泡。也可用超声波清洗,蕞后用甲醇洗净,放置于烘箱中烘干。注意勿用氯仿、二氯甲烷一类的含卤素的溶剂。以免与聚乙烯材料作用,导致噪声增加。清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度玷污。装入仪器后,先通载气半小时,再点火升高检测室温度,蕞好先在120℃保持几小时之后,再升至工作温度。气相色谱仪是一般实验室常用的分析仪器,对气相色谱仪的维护和保养是各实验室经常遇到的问题。但是,因为具体情况不同,污染物及工作环境的差异,各实验室所采用的处理方法可能有所不同。正确的对仪器进行维护和保养,可增加仪器的使用寿命,减少仪器的故障率,保障分析工作的顺利进行。尤其是工厂实验室,经常对仪器进行维护和保养是化验室一项必不可少的工作,甚至影响企业的生产和经济效益。[/size][/align]

  • 气相色谱仪分析中检测器无信号输出的原因

    [align=center][b][size=24px]气相色谱仪分析中检测器无信号输出的原因[/size][/b][/align] 检测器的信号是气相色谱仪在分析目标样品时,样品经色谱柱分离以后在检测器上的响应值,通过信号的高低(峰面积或峰高)以及保留时间,对目标物进行定性定量。通常认为,一个合适的检测器应该对样品响应信号好并且稳定。但是,在分析过程中经常遇到检测器没有信号的情况,使得分析不能顺利进行。那么在气相色谱仪的分析中,造成检测器没有信号的原因有哪些?改如何解决?具体分析如下:  造成检测器无信号的原因很多,如信号线连接、进样系统、分离系统、检测器自身的问题、色谱工作站等。  1.样品未注入,由于注射器针头堵塞、进样口硅胶垫漏气等导致样品未进入分离系统;  2.检测器是否选择正确,信号线连接是否正常;  3.色谱工作站采集器是否打开,色谱软件设置是否正确;  4.色谱工作站采集器与计算机数据传输接口是否链接正常;  5.色谱柱与进样口和检测器链接是否正常;  6.色谱柱温度、进样器温度、检测器温度是否正常;  7.色谱柱是够出现断裂漏气情况;  8.检测器是否正常开启,参数设置是否正确;  9.载气、氢气、空气等气路连接是否正确;  10.检测样品浓度是否过低等。  解决方案 气相色谱仪在进样后,检测器没有信号输出。遇到这种情况,应当按照以上几种原因:样品、信号连接、进样针、进样口、检测器、色谱柱、气路的顺序逐一排查。  1.样品部分首先确认样品含需要检测的目标物,浓度配制是否正确。  2.信号连接及采集部分查看检测器输出信号线是否松脱,即确认检测器输出信号线与色谱工作站采集器的输入端连接是否正常。确保色谱工作站采集器输出端与计算机USB(或COM)接口连接正常,工作站通道选择正确。  3.进样部分确认样品是否正确注入,进样针有无堵塞;检查进样口硅胶垫是否老化漏气,确认衬管是否过脏需要更换。  4.检测器部分确定检测器的选择正确,确保所检测的目标物在所选择的检测器上有响应。检查确认检测器的温度、电流等参数设置正确。FID、FPD.NPD要检查氢气和空气及点火状况,ECD要检查电流是否设置正确,ECD、NPD要检查尾吹气设置是否正确,FPD要检查S、P滤光片是否安放正确。  5.色谱柱部分检查确认色谱柱与进样口和检测器连接正确,检查色谱柱是否出现断裂漏气等情况。  6.气路部分检查确认载气、氢气、空气等气路是否连接正确,气流大小设置是否正确,有无漏气等情况。 案例分析 一台气相色谱仪配备单进样口,并同时配备ECD和NPD,在日常的使用中可根据需要选择合适的检测器。  在一次使用ECD检测蔬菜中的有机氯农药残留约1个月后,欲使用NPD检测水果中的三唑类农药残留,发现在进样后不出峰,仪器不能正常检测。  首先查看进样针无堵塞现象,(3)解决方案 气相色谱仪在进样后,检测器没有信号输出。遇到这种情况,应当按照样品、信号连接、进样针、进样口、检测器、色谱柱、气路的顺序逐一排查。  更换进样口硅胶垫和衬管,检测器仍然无号,可排除进样部分问题。然后检查检测器输出信号线与色谱工作站采集器的输入端是否正常,信号线连接好,无脱落现象。  然后打开工作站;能正常地通过工作站控制仪器,并且查看工作站通道设置,一切正常。考虑到检测器出现无信号情况的前后没有更换载气(即氮气),且气瓶压力仍然维持在7.5MPa,排除载气问题。再用检漏液(最好是十二烷基磺酸钠溶液)检查载气的管线是否漏气,即载气的压力是否稳定,经检查管线不漏气。同时,考虑到整个气路的其他气体源(氢气发生器、空气发生器)没有任何变动,故排除气路问题。  考虑到实验室检测三唑类农药残留色谱柱的类型与以往正常检测无差异,同时检查色谱柱无断裂漏气等现象。经过在进样口端和检测器端重新安装色谱柱,检测器仍然无信号,故障依旧,排除色谱柱问题。  气相色谱的检测器通常需要设置的参数包括温度、各气体流量、电流等。这次故障中NPD已经排除温度和气路的问题,发现检测器信号很低,初步认定故障的问题出现在检测器部分。  拆开检测器,发现在NPD下端与色谱柱相连的部分出现生锈的痕迹。因此,怀疑由于南方天气潮湿,而在使用ECD的过程中,NPD长时间闲置,检测器下端没有堵死,并且没有开启尾吹气,在柱箱反复的升温降温过程中,NPD与色谱柱相连的部分生锈并堵住载气和样品的进入,造成检测器无信号。采用细砂纸对NPD锈迹进行打磨光亮后,重新安装开机,对铷珠进行烘烤老化后,仪器恢复正常。

  • 气相色谱仪FID检测器结构特点、基本操作、常见故障及排除

    [align=center][b][size=18px]气相色谱仪FID检测器结构特点、基本操作、常见故障及排除[/size][/b][/align] 在气相色谱仪众多检测器中,FID检测器(氢火焰离子化检测器)是气相色谱蕞常用一种检测器,它具有灵敏度高、线性范围宽、应用范围广、易于掌握等特点,特别适合于毛细管气相色谱。FID检测器对大多数有机化合物有很高的灵敏度,灵敏度比热导检测器TCD高100-10000倍。[b]一、结构特点[/b]  气相色谱仪FID检测器由离子座、离子头、极化线圈、收集极、气体供应等部分组成,离子头是检测器的关键部分。  微量有机组分被载气带入检测器以后,在氢火焰的作用下离子化。产生的离子在发射极和收集极的外电场作用下定向运动形成微电流。有机物在氢火焰中离子化效率极低,估计每50万个碳原子仅产生一对离子。离子化产生的离子数目,在一定范围内与单位时间进入检测器的被测组分的质量成正比。  微弱的离子电流经高电阻(108~1011 Ω)变换成电压信号,经放大器放大后,由终端信号采集即得出色谱流出曲线。在正常点火的情况下FID信号大小受离子化效应和收集效应的影响。其中离子化效应的影响因素有样品性质(不同的物质校正因子不同)和火焰温度(受几种气体的流量比影响);收集效应的影响因素有极化电压和喷嘴、极化极、收集极的相对位置。因此对同一样品要获得高灵敏度必须选择蕞佳氢气、载气、空气的流量比;蕞佳的喷嘴、极化极、收集极的相对位置与适当的极化电压。氢气、载气、空气的流量可通过实验摸索蕞佳条件,一般理论比为30∶30∶300。[b]二、基本操作[/b]  1)拧开各气体总压开关(逆时针旋转为开) ,旋转各调节阀,使各压力表 指示在 0.3~0.4 MPa(顺时针旋转为开) 。  2) 通入载气 2) 将载气流量调至 20~30ml/min (N , (载气压力表 1: 0.05MPa; 。 载气压力表 2:0.03 MPa)  3) 通载气约 10min 后 (若长期停机后重新启动操作时, 通载气 15min 以上) , 开启色谱仪电源总开关,设置所需柱箱、汽化、检测器 2 的工作温度。 柱箱温度必须低于色谱柱固定相蕞高使用温度(不锈钢色谱柱的使用温 度≤230℃, 毛细管色谱柱的使用温度≤300℃) 汽化室和检测器温度必须 , 高于 100℃(若无高沸点的组分一般设置 150℃) ,设置好后按运行键即 可升温。  4)将“灵敏度选择”置于 2 档,讯号衰减开关置于 1 档。打开微电流放大器 开关,旋转零位调节电位器,使基线在零位附近(在此之前应打开计算 机,进入 1 通道界面) 。  5)旋转空气流量调节阀,将空气流量调至 200~300 MPa(空气压力表指示 在 0.02~0.03 MPa,一般调至 0.03 MPa)待检测器温度升到 100℃时,即 可打开 H2,并旋转 H2 调节阀到压力表指示 0.02 MPa 附近,打开 H2 点 火开关阀,用电子点火枪在 FID 检测器出口处点火,点燃后关闭 H2 点 火开关阀。  6)待基流稳定后,准备进样(一般进样量为 0.4~0.5ml),进样后立即按下 带有“A”字样的按扭,此时开始采样。  7)当所有测试完毕停机时,必须先将 H2 开关阀关闭,再将微电流放大器 开关关闭,退出升温开始降温,待柱箱温度降至室温,汽化和检测器温 度降至 70℃以下时,关闭载气、空气、H2 和色谱仪电源总开关。[b]三、常见故障及排除[/b]  1、 进样后色谱不出峰  故障原因及排除方法如下:  (1)未点着火 首先用一冷的光亮的铁板置于检测器的上方,若有细小水珠生成,则证明火已点着;反之证明火未点着,此时,需检查氢气、氮气、空气的密封情况是否完好,是否有漏气现象。其次用皂沫流量计测量流速是否正常,适当增大氢气的流速,减小载气与空气的流速,待点着火后再将各流速调至蕞佳流速位置。  (2)信号输出中断 检查从色谱仪到工作站的信号线连接情况,观察有无接触不良或断开的情况。另外,在进样后用万用表测量色谱信号输出,观察有无信号输出,若无信号输出则证明此故障由色谱仪引起,需做进一步检查。  (3)收集极绝缘不好 测量收集极与仪器外壳的电阻应大于1013 Ω。  (4)其它方面的原因 主要包括进样垫损坏、色谱柱断裂(毛细管柱比较常见)、微量进样器损坏等。  2、基线噪声波动大  (1)电器方面的原因 首先将检测器信号线断开,在采集状态下观察基线运行情况,如果基线波动很大则可判断该故障是电器方面的原因,此时,需要进一步检查仪器接地是否良好(接地电阻应小于5 Ω)、线路板及各插件是否松动等。  (2)测量系统污染 断开信号线后,在采集状态下检查基线运行的情况,如果基线运行正常则证明测量系统污染。需要检查色谱柱是否失效(需活化处理)、柱进口是否污染(更换玻璃丝、玻璃衬管等)、检测器污染,主要是离子头的污染,因为此处高温会有杂质碳结,需要小心拆下检测器用中性溶剂清洗。  3、空气峰掩盖组分峰  分析微量组分时,如分析液态氧气中总烃含量时,氧信号峰保留时间蕞小,随后是甲烷、乙烷、乙烯等,如果调整不好会出现氧气覆盖甲烷或将氧气峰误判为甲烷峰。排除办法是逐渐降低氢气流速,依次进样可观察到氧气峰逐渐降低,调节至满意为止。

  • 做气相色谱分析的实话,从检测器那边出来的废气有哪些!

    一般做工作场所的有机物实验,都一般采用溶剂解析的方法。那有机物在色谱柱中基本上成分是没有什么变化的,只是在检测器点火的实话这个点上有没有什么变化。按道理说应该是有机物燃烧后只会产生二氧化碳和水。那么是不是所以的都会燃烧生成二氧化碳和水。如果这样的话 那气象色谱室就不会需要专门的排风罩在检测器上方了。如果没有生成水和二氧化碳,那么生成的到底是什么?盼各位大神帮忙分析分析

  • 气相色谱点火失败的问题汇总

    氢火焰离子化检测器(FID)火焰熄灭或点不着火的原因分析①冷凝。由于 FID 燃烧过程中导致水的形成 ,所以检测器温度必须保持高于 100 ℃,以免冷凝。长时间不开机时 ,需长时间进行烘烤后再点火。②柱流速过高。若必须使用大内径柱 ,可关小载气流速足够长时间以使 FID 点火。③检查安装的喷嘴类型是否适合使用的色谱柱 ,检查喷嘴是否堵塞。④点火补偿(List offset) 设置值可能太高或太低 ,调节该值。⑤关闭尾吹(makeup)流量 ,点着火后再打开。⑥氢气不纯。不知道大家有没有遇到过点火失败的时候,都是什么原因造成的?我这里收集了些版面的帖子,供大家参考:FPD面板点火成功,自动点火失败气相色谱点火失败,你都遇到过什么样的?气相色谱仪点火失败是什么原因?记一次FID点火失败案例【求助】GC2014C点火失败【求助】气相色谱点火失败【求助】气相色谱岛津2010FPD总是点火失败点火失败,如何清洗检测器底座,使得能够正常点火气相色谱点火失败故障【讨论】点火失败,两种说法,谁的正确?岛津GC2010点火问题GC2010气相FID点火故障的处理【原创】氢火焰检测器FID点火故障【原创】FID点火出问题FID 点火不着 原因分析

  • 气相色谱检测器操作注意事项

    [align=left] 1、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器尾吹气的使用[/align] 尾吹气是从色谱柱出口处直接进入检测器的一路气体,又叫补充气或辅助气。填充柱不用尾吹气,而毛细管柱则大都采用尾吹气。这是因为毛细管柱的柱内载气流量太低(常规柱为1~3ml/min),不能满足检测器的最佳操作条件(一般检测器要求20ml/min的载气流量)。在色谱柱后增加一路载气直接进入检测器,就可保证检测器在高灵敏度状态下工作。尾吹气的另一个重要作用是消除检测器死体积的柱外效应。经分离的化合物流出色谱柱后,可能由于管道体积增大而出现体积膨胀,导致流速减缓,从而引起谱带展宽。加入尾吹气后就消除了这一问题。 那么,尾吹气流量多少合适呢?这要看所用检测器和色谱柱的尺寸而定。比如,用0.53mm大口径柱时,柱内流量可达15ml/min,这对微型TCD和单丝TCD 来说已经够大了,就没必要再加尾吹气了。而对于FID、NPD、FPD则需要至少10ml/min的尾吹气流量,对于ECD就需要20ml/min的尾吹气(ECD一般需要载气总流量大于25ml/min)。使用常规或微径柱时,尾吹气流量应相应增大。经验参考值为:FID、NPD、FPD需要柱内载气和尾吹气的流量之和为30ml/min左右。ECD则需要40~60ml/min。当需要在最高灵敏度状态下工作时,应针对具体样品优化尾吹气流量以及其他气体流量。一般情况下,尾吹气所用气体类型应与载[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]同。 尾吹气流量是在安装好色谱柱后,在检测器出口处用皂膜流量计测定的。注意,测定尾吹气流量时要关闭其他气体(如使用FID时要关闭空气和氢气),用0.32mm以下内径的色谱柱时,可不关闭柱内载气,这时测得的流量为柱内载气和尾吹气流量之和。 2、FID 使用注意事项 (1)FID虽然是准通用型检测器,但有些物质在此检测器上的响应值很小或无响应。这些物质包括水久气体、卤代硅烷、H20、NH3、CO、CO2、CS、CCl4、等等。所以,检测这些物质时不应使用FID。 (2)FID是用氢气和空气中燃烧所产生的火焰使被测物质离子化的,故应注意安全问题。在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱。测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然。无论什么原因导致火焰熄灭时,应尽快关闭氢气阀门,直到排除了故障,重新点火时,再打开氢气阀门。高档仪器有自动检测和保护功能,火焰熄灭时可自动关闭氢气。 (3)FID的灵敏度与氢气、空气和氮气的比例有直接关系,因此要注意优化。一般三者的比例应接近或等于l:10:l,如氢气30~40 ml/min,空气300~400 ml/min,氮气30~40 ml/min。另外,有些仪器设计有不同的喷嘴分别用于填充柱和毛细管柱,使用时应查看说明书。 (4)为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度。一旦检测器被污染,轻则灵敏度明显下降或噪声增大,重则点不着火。消除污染的办法是清洗,主要是清洗喷嘴表面和气路管道。具体方法是拆 F 喷嘴,依次用不同极性的溶剂(如丙酮、氯仿和乙醇)浸泡,并在超声波水浴中超声10 min以上。还可用细不锈钢理穿过喷嘴中间的孔,或用酒精灯烧掉喷嘴内的油状物,以达到彻底清洗的目的。有时使用时间长了,喷嘴表面会积碳(一层黑色沉积物),这也会影响灵敏度。可用细砂纸轻轻打磨表面而除去。清洗之后将喷嘴烘干,再装在检测器上进行测定。

  • 气相色谱检测器的特点与选择

    气相色谱检测器的特点与选择

    通常我们把[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的色谱柱比作色谱分离的心脏,那检测器就是色谱设备的眼睛。无论色谱分离的效果多好,没有好的检测器就“看”不到分离结果。因此,高灵敏度、高选择性的检测器一直是色谱发展的关键技术。目前,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]采用的检测器有很多种类,商品化的有TCD、FID、FPD、NPD、ECD、PID、AED、IRD和MSD等这几种。下图为大家展示了几种常见检测器的特点和技术指标。[img=,690,956]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251427_01_2384346_3.jpg[/img] 质谱检测器(MSD)是质量型、通用型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器,其原理与质谱相同。它不仅能够给出一般[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器能获得的色谱图(也叫总离子流图TIC),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分子结构的信息,是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定性分析的有效工具。常被称为色谱-质谱(GC/MS)分析,将色谱的高分离能力与质谱的结构鉴定能力结合在了一起。质谱检测器实际上是一种专用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的小型质谱设备,一般配置电子轰击(EI)和化学电离(CI)源,也有直接质谱进样功能。质谱检测器的质量数范围通常为800-1000道尔顿,检测灵敏度和线性范围与FID接近,采用选择离子检测(SIM)时灵敏度更高。 原子发射光谱检测器(AED)采用微波等离子体技术,实际上也是一种联用分析技术。它是将色谱的高分离能力与原子发射的元素分析能力结合在一起,也是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有效的定性手段。GC/AED原则上可以测定除载气以外的所有元素,一次进样可同时检测不同元素的色谱图,根据元素色谱峰的面积或峰高可以确定化合物的元素组成。AED一个重要的优点是其响应值只与元素的含量有关,而与化合物的结构无关,因此可以进行所谓的绝对定量分析。 检测器的选择要依据分析对象和目的来确定,上图所列的各种检测器的主要用途可以供大家参考。一般,FID是通用型检测器,通常都要配置;ECD、NPD或FPD则是测定农残主要采用的检测器种类。PID主要用于芳烃和杂环类化合物的分析,化学发光检测器则主要用于含硫化合物的高灵敏度检测,这两种检测器的使用则较不普遍。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制