当前位置: 仪器信息网 > 行业主题 > >

气相质谱乙醇测试方法

仪器信息网气相质谱乙醇测试方法专题为您提供2024年最新气相质谱乙醇测试方法价格报价、厂家品牌的相关信息, 包括气相质谱乙醇测试方法参数、型号等,不管是国产,还是进口品牌的气相质谱乙醇测试方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相质谱乙醇测试方法相关的耗材配件、试剂标物,还有气相质谱乙醇测试方法相关的最新资讯、资料,以及气相质谱乙醇测试方法相关的解决方案。

气相质谱乙醇测试方法相关的论坛

  • 【原创大赛】液相色谱串联质谱法测定动物组织中卡巴氧和喹乙醇代谢物残留量

    【原创大赛】液相色谱串联质谱法测定动物组织中卡巴氧和喹乙醇代谢物残留量

    液相色谱串联质谱法测定动物组织中卡巴氧和喹乙醇代谢物残留量 摘要:采用高效液相色谱-电喷雾串联质谱仪(LC-ESI-MS-MS),建立了猪肉中卡巴氧代谢物脱氧卡巴氧、喹恶啉-2-羧酸和喹乙醇代谢物3-甲基喹恶啉-2-羧酸残留量的药物残留的检测方法,样品用甲酸溶液消化,蛋白酶水解,盐酸酸化,离心过滤后,过Oasis MAX固相萃取住或相当者净化。先用二氯甲烷洗脱脱氧卡巴氧,再用%甲酸乙酸乙酯溶液洗脱喹恶啉-2-羧酸和3-甲基喹恶啉-2-羧酸,氮气吹干洗脱液,残渣用甲酸+甲醇(19+1)溶液溶解,样液供液相色谱-串联质谱仪测定,内标法定量。本方法采用了2ug/kg,5ug/kg,10ug/kg,3个添加浓度,每个浓度6个平行样品,上述3种药物残留的回收率在80%~110%,相对偏差在2.03%~4.94%。关键词:液相色谱串联质谱法;脱氧卡巴氧;喹恶啉-2-羧酸;3-甲基喹恶啉-2-羧酸。1 引言卡巴氧(Carbadox) 和喹乙醇(Olaquindox) 同属喹喔啉类化合物 , 该类药物具有显著的促进动物生长的作用 , 用作猪等养殖动物的饲料添加剂。二者本身具有潜在的致畸变、致癌作用 , 其代谢物也可能带来健康风险。因此许多国家将以卡巴氧和喹乙醇列为对食用动物禁用或限用的药物 , 欧盟、中国、日本、美国、澳大利亚等对二者在动物组织内迅速代谢而产生的相应的代谢产物喹喔啉-2-羧酸(QCA)和 3-甲基喹喔啉-2-羧酸(MQ-CA)制定了残留监控的限量标准。在动物体内,喹乙醇和卡巴氧、经脱单氧、脱双氧后主要生成脱氧卡巴氧、喹恶啉-2-羧酸、3-甲基喹恶啉-2-羧酸,相对应的代谢物比较稳定,通常作为残留分析和监控的目标物质,代谢途径见图1。鉴于喹乙醇和卡巴氧的毒性和潜在的危害,为了更好的对动物食品进行监控,本文旨在建立喹乙醇、卡巴氧代谢物的残留液质联用仪检测方法。 http://ng1.17img.cn/bbsfiles/images/2013/10/201310242215_472741_2082444_3.jpg2 实验部分1.1仪器与试剂1.1.1试剂和材料甲醇:德国默克,色谱纯。乙腈:德国默克,色谱纯;乙酸乙酯:德国默克,色谱纯;水:1.25L哇哈哈纯净水(杭州产);正己烷:Honeywell,色谱纯。甲酸:色谱纯乙酸:色谱纯浓盐酸:分析纯乙酸钠:分析纯甲酸乙酸乙酯溶液:2% 向400mL乙酸乙酯中加入10mL甲酸,用乙酸乙酯定容至500mL。甲酸溶液

  • 75%乙醇色谱测试

    各位老师,最近在做75%的乙醇含量测试。用的填充柱,手动进样。用的外标法,线性还行,但是同一个浓度重复性不太好。比如打10针,里面总有2-3针差距有点大。厂家说,因为乙醇里有水,所以重复性会差点,让我们十针里选七针就可以。但是我们领导说,可以用内标法,来降低进样量导致的误差,从而试重复性变好,想问下各位老师,这个方法可行吗?

  • 液相-质谱联用仪测试对送检样品的要求?

    想要分析一种未知有机混合物(无色流体)的成分,难溶于水,溶于乙醇、甲醇,具有一定粘度。(250℃后留有黑色残余,500℃挥发完.具有一定香味)美国WATERS的液相-高分辨质谱联用仪可以测吗? 或者还需要知道什么条件吗?看到有说这个仪器测化合物,又有说混合物也能测。 未知成分的只能测定性吗?没有用过液相质谱测试,求指点

  • 求助喹乙醇代谢物检测前处理方法

    最近准备开验肉类中喹乙醇代谢物的检测项目,前后做了快两个月了,回收率始终不好,最好的也就50-60%方法试过:GB/T 20746-2006 牛、猪的肝脏和肌肉中卡巴氧和喹乙醇及代谢物残留量的测定 液相色谱-串联质谱法农业部1077号公告-5-2008 水产品中喹乙醇代谢物残留量的测定 高效液相色谱法以及一些文献方法。只有用乙腈提取的回收率有时可以,但是因为提取液含水浓缩过程很长,同时也影响最后的定量结果。现在头都大了,时间紧迫。各位大侠有没有靠谱的前处理方法啊,分享一下啊。先谢谢各位了!

  • 【分享】空气中氯乙醇的测定方法 气相色谱法

    【分享】空气中氯乙醇的测定方法 气相色谱法

    空气中氯乙醇的测定方法 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 1 原理空气中氯乙醇经活性炭吸附,以异丙醇、正十四碳烷的二硫化碳溶液解吸,经FFAP色谱柱分离,用氢焰离子化检测器检测。以保留时间定性,根据氯乙醇与内标物正十四碳烷峰高比定量。2 仪器2.1 活性炭采样管:长10cm、内径4mm的玻璃管,内装活性炭100mg,两端用少量玻璃棉固定,管口用火熔封。2.2 个体采样器。2.3 微量注射器,5微升。2.4 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],氢焰离子化检测器,1.7ng氯乙醇给出的信噪比不低于3∶1。色谱柱:柱长2m,内径4mm,不锈钢柱。FFAP:Chromosorb W AW担体=10∶100柱温:130℃汽化室温度:145℃检测室温度:195℃载气(氮气):28ml/min3 试剂3.1 氯乙醇:化学纯,经重蒸馏。3.2 标准溶液:用异丙醇作溶剂配成80mg/ml氯乙醇贮备液,冰箱内保存,临用前稀释成不同浓度。3.3 FFAP,色谱固定液。3.4 Chromosorb W AW担体,60~80目。3.5 活性炭,色谱纯,20~40目。3.6 正十四碳烷,色谱纯(内标物)。3.7 异丙醇,色谱纯。3.8 二硫化碳。3.9 解吸剂:为含有5%(V/V)异丙醇,0.05%(V/V)正十四碳烷的二硫化碳溶液。4 采样在采样地点打开活性炭管(两端孔径至少2mm),接采样泵,垂直放置,以0.4L/min流量,抽取20L空气。采样后,将管两端套上塑料帽,于1周内分析。5 分析步骤5.1 对照试验:取未采样的活性炭管,按样品操作处理,作为空白对照。5.2 样品处理:将采样管内活性炭移于2ml比色管中,分别加入0.5ml解吸剂,30min后进样。5.3 标准曲线绘制:取4支2ml具塞比色管,各加100mg活性炭,分别用微量注射器注入0.25、0.50、1.00、4.00?l氯乙醇贮备液,放置过夜(使氯乙醇在活性炭上充分吸附),然后每管加0.5ml解吸剂(上述溶液分别相当于0.04、0.08、0.16、0.64?g/?l的标准溶液)。30min后每个浓度取2?l进样,重复3次,用保留时间定性,取峰高均值。用氯乙醇与正十四碳烷的浓度比对其峰高比绘制标准曲线。5.4 测定:从含有样品的比色管中取2微升解吸剂进样,用保留时间定性,根据氯乙醇与正十四碳烷的峰高比由标准曲线上查出相应的浓度比进行定量(图76)。[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201439_52381_1625938_3.jpg[/img]6 计算X=?C/V0式中:X——空气中氯乙醇的浓度,mg/m3;C——活性炭解吸下的氯乙醇量,微克(等于从标准曲线上查出氯乙醇与正十四碳烷浓度比乘190);V0——标准状况下的样品体积,L。7 说明7.1本法的检测限为1.7×10-3微克(进样2微升液体样品),最低检出浓度0.02mg/m3(20L空气样品)。当空气中氯乙醇浓度为1、2、4、16mg/m3时,变异系数分别为7.2%、9.8%、6.5%、4.4%。7.2 氯乙醇浓度为16~69mg/m3时,采样效率为100%。氯乙醇加入量为160~1280微克时,解吸效率为87.5%~96.1%。活性炭管穿透容量为1.2mg/100mg活性炭。7.3 采样管内活性炭应在7天内转移到解吸剂中,冰箱保存。7.4 为避免二硫化碳危害,解吸剂配制与加入均应在通风橱内进行。7.5 对稳定性好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],可采用外标法定量。

  • 甲醇中乙醇杂质组分含量测试

    国标GB 388 2011中,描述了测试甲醇中乙醇的实验方法。在安捷伦7890B仪器上,色谱柱规格30m,0.32um,0.25um;固定相HP INNOWAX;检测器FID求助问题:上述安捷伦仪器如何设置测试条件完成如题的任务

  • 【求助】气相色谱检测甲醇和乙醇的方法

    大家好,公司新进了一台[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],想检测甲醇和乙醇的含量。我以前只做过液相,对[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]不是很熟,在网上也没找到对应的国标,希望大家能为我提供这两种物质的检测方法或信息。在此先谢谢了!

  • 【原创大赛】水中微量甲基二乙醇胺含量测定方法研究-宁波分析测试团队

    【原创大赛】水中微量甲基二乙醇胺含量测定方法研究-宁波分析测试团队

    [align=center][b]水中微量甲基二乙醇胺含量测定方法研究[/b][/align][align=center]李久龙[/align][align=center](宁波中金石化有限公司,浙江,宁波,315200)[/align][b]摘要[/b]:目前分析水中甲基二乙醇胺含量的方法主要是使用电位电位滴定法或者色谱法进行测定,该方法主要是测量为百分含量的范围,是常量的测定方法;本次研究的是使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水中甲基二乙醇胺微量含量的检测,使用碱性专用色谱柱进行分离,氢火焰离子化检测器进行浓度测定,实现百万分之一(ppm级)微量含量的测定。[b]关键词:[/b]甲基二乙醇胺;微量;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法甲基二乙醇胺是目前广泛应用于油田气和煤气、天然气的[url=https://baike.so.com/doc/5398730-5636161.html][color=windowtext]脱硫[/color][/url]净化、乳化剂和[url=https://baike.so.com/doc/4138139-4337808.html][color=windowtext]酸性气体[/color][/url]吸收剂、酸碱控制剂、[url=https://baike.so.com/doc/5923244-6136165.html][color=windowtext]聚氨酯泡沫[/color][/url]催化剂。我司使用甲基二乙醇胺作为脱硫剂,对含硫液化气等含硫物料进行脱硫,甲基二乙醇胺作为脱硫溶剂需要循环使用,在使用过程中需要监控甲基二乙醇胺溶液的浓度,避免浓度过低对脱硫效率产生影响,此种含量的测定方法使用的是电位滴定法进行测量。在使用过程中未避免甲基二乙醇胺泄露等情况发生,我们要监控与之接触的冷却水中甲基二乙醇胺含量,避免因甲基二乙醇胺泄露导致水质指标不合格,从而腐蚀设备。但是目前分析行业内没有一个成熟完整的方法可以准确的进行测量水中微量甲基二乙醇胺的含量。在此背景下我们摸索使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水中微量甲基二乙醇胺的浓度,取得了较好的效果。[b][b][color=windowtext]1 [/color][color=windowtext]行业标准SY/T 6537测定常量浓度的甲基二乙醇胺方法的介绍[/color]1.1滴定法简介[/b][/b]用盐酸标准溶液滴定,以测定溶液中的胺含量。称取一定量的样品,加入溴百里酚蓝指示液,用盐酸标准溶液滴定至试液由蓝色变为黄色,煮沸1-2min,冷却后再次滴定至黄色,计算得出胺含量浓度。[b][b]1.2色谱法简介[/b][/b]让样品气化后通过高分子多孔微球色谱柱进行分离,使用热导池检测器进行检测,用校正面积归一化法计算各组分的含量,TCD是通用型检测器,具有分析范围广的特点,但是该检测器的测量下限较高,最低能精确分析到0.01%的测量范围。[b][b]1.3方法讨论 [/b][/b]上述两种方法主要是测定常量的,不能分析微量含量的甲基二乙醇胺。滴定法的缺点在于滴定剂的浓度太低不好配置,且滴定法的终点判断、滴定速度的控制等需要经验丰富的分析工进行操作,整个分析的耗人工时长较长,不符合化工厂中控化验室的分析理念;色谱法均为分析简单、分析速度快等特点,是我们理想的分析手段。但是上述两种方法都只能分析常量范围内的甲基二乙醇胺的浓度,想要分析微量浓度的甲基二乙醇胺需要选择新的条件进行分析。[b][b][color=windowtext]2 [/color][color=windowtext]使用色谱法测定微量甲基二乙醇胺含量方法的探讨[/color]2.1检测器类型的选择[/b]首先甲基二乙醇胺属于有机物,可以在FID检测器上有响应,且FID检测器的测量下限可以准确测量到0.001%的低浓度范围,可以作为备选的一个检测器类型;第二个考虑的检测器考虑选用氮专用检测器,如NCD检测器,因为甲基二乙醇胺中用氮元素存在,所以可以使用NCD检测器进行检测,但是考虑到NCD的测量范围较小,只能测定0.1-1000ppm范围内的样品,如果我们样品中含量过大,会污染检测器,所以NCD检测器作为第二备选检测器;[b]2.2色谱柱的选择[/b]经过查找文献初步选定了三种色谱柱,分别为:CP-Sil 8 CB(30m*0.25mm*0.5um)、DB-Wax(60m*0.32mm*0.25um)、DB-1(30m*0.32*0.25um);经过分析测试,DB-1和CP-Sil 8 CB两根柱子的分离效果、响应值及基线平稳度较好,但是考虑到柱子的碱性耐受度,将CP-Sil 8 CB柱作为第一备选,DB-1柱子作为第二备选;3 实验部分[/b]仪器型号:Agilent 7890B12位自动进样器:7693A色谱柱型号:CP-Sil 8 CB For Amines 0.32mm*20m检测器条件: 检测器类型:FID 温度:300℃ 空气流量:300ml/min 氢气流量:30ml/min 氮气流量:25ml/min载气:氢气,压力 50kpa进样口:温度:270℃,分流进样,分流比:50:1柱箱:初始温度:150℃,保持:5min 升温速率:6℃/min,升到220℃,保持5min[b]3 实验部分3.1实验仪器及试剂[/b]实验仪器:Agilent 7890B;12位自动进样器:7693A,5ul自动进样针;500mg/L的甲基二乙醇胺标样,溶剂为纯水;100ml容量瓶若干、移液管若干;色谱柱型号:CP-Sil 8 CB[b]3.2试验条件[/b]检测器条件: 检测器类型:FID 温度:310℃ 空气流量:300ml/min 氢气流量:30ml/min 氮气流量:25ml/min载气:氮气,载气流速:2ml/min进样口:温度:280℃,分流进样,分流比:10:1柱箱:初始温度:100℃,保持:2min; 升温速率:5℃/min,升到220℃,保持2min; 升温速率:10℃/min,升到250℃,保持20min;3.2.1检测器设置[img=,690,432]https://ng1.17img.cn/bbsfiles/images/2019/10/201910181638226950_5821_3389662_3.png!w690x432.jpg[/img]3.2.2自动进样器设置[img=,690,366]https://ng1.17img.cn/bbsfiles/images/2019/10/201910181638325100_953_3389662_3.jpg!w690x366.jpg[/img]3.2.3进样口设置[img=,690,429]https://ng1.17img.cn/bbsfiles/images/2019/10/201910181638121149_9928_3389662_3.jpg!w690x429.jpg[/img]3.2.4柱箱设置[img=,690,318]https://ng1.17img.cn/bbsfiles/images/2019/10/201910181638435079_1244_3389662_3.jpg!w690x318.jpg[/img]3.2.5色谱柱及载气[img=,690,272]https://ng1.17img.cn/bbsfiles/images/2019/10/201910181638571134_1565_3389662_3.jpg!w690x272.jpg[/img][b]3.3曲线的建立[/b]通过用纯水稀释500mg/L甲基二乙醇胺的标准溶液,分别得到0mg/L(纯水)、50mg/L、100mg/L、250mg/L及500mg/L的五种浓度的标准溶液。在色谱仪器上分别设置序列,每种浓度的样品做5次平行样,最终结果谱图如下: [img=,566,545]https://ng1.17img.cn/bbsfiles/images/2019/10/201910181636006532_2083_3389662_3.png!w566x545.jpg[/img]经曲线拟合,0-500mg/L的浓度范围内,线性率为0.99904,线性良好。[b]4 结果与讨论4.1 测量系统的重复性试验[/b]选取4个样品,由分三天进行测试,每个样品测量三次,测量结果如下,由分析结果来判定测量方法的重复性。[align=center]表1 重复性结果[/align] [table=549][tr][td] [align=center]样品名称[/align] [/td][td] [align=center]第一天平均结果[/align] [/td][td] [align=center]第二天平均结果[/align] [/td][td] [align=center]第三天平均结果[/align] [/td][/tr][tr][td] [align=center]A[/align] [/td][td] [align=center]20.5[/align] [/td][td] [align=center]20.1[/align] [/td][td] [align=center]20.2[/align] [/td][/tr][tr][td] [align=center]B[/align] [/td][td] [align=center]120.2[/align] [/td][td] [align=center]120.0[/align] [/td][td] [align=center]119.8[/align] [/td][/tr][tr][td] [align=center]C[/align] [/td][td] [align=center]250.1[/align] [/td][td] [align=center]249.0[/align] [/td][td] [align=center]248.2[/align] [/td][/tr][tr][td] [align=center]D[/align] [/td][td] [align=center]100.5[/align] [/td][td] [align=center]99.8[/align] [/td][td] [align=center]99.4[/align] [/td][/tr][/table]由表1可知,四个样品三天测定的平均结果整天偏差均小于1%,说明本法的平行性和重复性都达到分析方法要求。[b]4.2 分析方法精度确定[/b]根据检测器的性质及分析是色谱的峰高确定,本方法测量的下限可以定为10mg/L,测量精度0.1mg/L。[b]5 实验结论[/b][color=#2B2B2B]本实验建立了采用FID检测器,使用耐碱性的色谱柱[/color]CP-Sil 8 CB,选用合适的分离条件,可以分析微量浓度的水中甲基二乙醇胺的含量。此方法填补了我们脱硫废水中微量甲基二乙醇胺含量分析的空白,可以作为我司中间控制数据出具,为生产工艺提供数据支持。[b]参考文献:[/b]黄代红,聂崇斌,马波,常宏岗,印境.SH/T 6537-2002 天然气净化厂气体及溶液分析方法,中国石油西南油气田分公司天然气研究院,2002.05.28曹磊,武杰.快速[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]实验条件优化与应用;第十五次全国色谱学术报告会文集(上册) 2005李莉萍,赵忠孝,朱正祥. [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定脱碳液中MDEA和PIP含量,石油化工应用,2014.08

  • 气相色谱定量乙醇的方法

    [color=#444444]我要定量1%的乙醇水溶液中的乙醇,选用甲醇稀释十倍后进[url=https://insevent.instrument.com.cn/t/Mp]气相[/url](fid,毛细管),乙醇峰位置出现两个峰,这是为什么,单独进同样浓度的乙醇甲醇溶液,两个峰型都很好,所用原料均为色谱纯。[/color]

  • 【原创大赛】衍生化气相色谱质谱联用同时检测动物源性食品中喹乙醇和卡巴氧代谢物残留

    【原创大赛】衍生化气相色谱质谱联用同时检测动物源性食品中喹乙醇和卡巴氧代谢物残留

    摘要:建立了可以同时检测动物源性食品中喹乙醇代谢物—3-甲基喹噁啉-2-羧酸,和卡巴氧代谢物—喹噁啉-2-羧酸的固相萃取-气相色谱质谱联用检测法。样品经偏磷酸甲醇水解,乙酸乙酯萃取和磷酸盐缓冲液反萃取,用混合阴离子交换SPE柱净化后,洗脱液氮气吹干, N,N-二甲基甲酰胺二甲基缩醛衍生,衍生产物直接进气相色谱质谱联用仪检测。通过对猪肉、鸡肉和鸡蛋的添加回收试验,考察了方法的准确度、精密度和基质适应性。结果显示:目标分析物分别在0.5~5μg/kg质量浓度范围内呈良好线性,相关系数不低于0.9985;方法回收率达到87%~107%,相对标准偏差均小于15%;3-甲基喹噁啉-2-羧酸的检出限达到0.5μg/kg,甲基喹噁啉-2-羧酸的检出限达到0.2ug/kg;方法基质适应性良好。关键词:喹乙醇代谢物;3-甲基喹噁啉-2-羧酸;卡巴氧代谢物;喹噁啉-2-羧酸;甲酯化衍生;固相萃取;气相色谱质谱联用喹噁啉类兽药包括卡巴氧、喹乙醇、喹烯酮等品种。卡巴氧、喹乙醇曾作为抗菌促生长剂在养殖业中都得到广泛的应用。根据JECFA报告中对卡巴氧和喹乙醇的风险评估,不仅二者本身具有潜在的致畸变、致癌作用,其代谢物也可能带来健康风险。因此许多国家将卡巴氧和喹乙醇列为对食用动物禁用或限用的药物,毒理实验研究表明,喹噁啉类兽药具光敏毒性、致畸性和致癌性,欧盟已于1998年禁止其应用于可食性动物,中国兽药典(2005)明确规定,禁止在家禽及水产养殖中使用喹乙醇,但仍允许使用喹乙醇作为猪饲料添加剂。在动物体内,卡巴氧和喹乙醇经脱单氧、脱双氧后主要生成喹噁啉2-羧酸(QCA)或3-甲基喹噁啉2-羧酸(MQCA)。由于二者的原药在动物组织内代谢迅速(代谢途径见图1),而相应的代谢产物喹噁啉-2-羧酸(QCA)和3-甲基喹噁啉-2-羧酸(MQCA)则相对稳定,因此通常将这两个代谢产物作为残留分析和监控的目标物。1995年联合国粮农组织(FAO)/世界卫生组织(WHO)食品添加剂联合专家委员会(JECFA)将3-甲基喹噁啉2-羧酸(MQCA)规定为喹乙醇在动物组织中的残留标识物。2003年我国农业部规定了肌肉和肝脏组织中MQCA的最大残留限量分别为[fon

  • 乙醇采样及测试方法

    乙醇不属于有毒有害的物质,职业卫生标准及大气污染物排放标准中也没有,该参考什么方法了解实际情况呢?

  • 液相色谱仪检测水产品中喹乙醇

    今日使用SC标准使用液相色谱仪器检测虾中喹乙醇的残留量,标准品使用甲醇+水(15+85)溶液进行稀释,流动性也如此,待测物提取使用乙腈(无水硫酸钠进行脱水,助滤剂脱色),45度涡旋水域蒸发,流动性定容,仪器测试标准品的时候很稳定,检测样品回收率很不理想,几乎没有看到出峰,仔细查了一下喹乙醇的理化性质,容易挥发、分解,请问各位老师 做此项试验我该注意哪些细节呢 谢谢啦!

  • 【原创大赛】牙膏中二甘醇的测定--气相色谱-质谱法

    这是之前做过的一个方法,拿来参加原创大赛,支持一下气相质谱版由于涉及公司方法,省略了部分信息,请见谅。--------------------------------------------------------------------------------- 牙膏中二甘醇的测定气相色谱-质谱法1 范围本方法规定了牙膏中二甘醇的气相色谱-质谱测定方法。本方法适用于牙膏中二甘醇的测定。2 原理牙膏中二甘醇用无水乙醇提取,提取液过滤、定容后,用气相色谱-质谱测定,选择离子检测进行确证,外标法定量。3 试剂和材料除非另有说明,在分析中仅使用确认为分析纯的试剂和二次去离子水或相当纯度的水。3.1 无水乙醇;3.2 无水硫酸钠:于650℃灼烧4小时,储于密闭干燥器中备用;3.3 二甘醇标准品:纯度≥ 99%;3.4 二甘醇标准储备液:准确称取适量二甘醇标准品(精确到0.1 mg),一无水乙醇配制成浓度为500ug/mL的标准储备溶液。4 仪器4.1 气相色谱-质谱仪:配有质量选择检测器(MSD)。4.2 磁力搅拌器。4.3 溶剂过滤器。4.4 0.20 um滤膜。5 分析步骤5.1 试样处理称取牙膏试样约2.0 g(精确到1 mg),置于50 mL带塞锥形瓶中,加入无水乙醇,无水硫酸钠,在磁力搅拌器上搅拌10分钟,将提取液过滤于25 mL容量瓶中,用无水乙醇定容,混匀。滤液经滤膜(4.4)过滤,所得滤液供气相色谱-质谱测定。5.2 测定根据样液中被测物含量情况,选定浓度相近的标准工作溶液,对标准工作溶液与样液按色谱-质谱条件等体参插进样测定,二甘醇含量高,样液超过线性范围的,可用无水乙醇稀释后进行测定。如果样液与标准工作溶液的选择离子色谱图中,在相同保留时间有色谱峰出现,则根据二甘醇丰度比进行确证。6 结果计算结果按下式计算:X = c * V/m式中:X—牙膏中二甘醇的含量,ug/g;c—从标准工作曲线上查出的试样溶液中二甘醇的浓度,ug/mL;V—试样定容体积,[font=Times New Roma

  • 【原创大赛】微量乙醇对59种无机元素ICP质谱行为的影响

    【原创大赛】微量乙醇对59种无机元素ICP质谱行为的影响

    [align=center]微量乙醇对59种无机元素的ICP质谱行为的影响[/align]前言[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])技术因兼备灵敏度高、动态范围宽、多元素同时快速测定并能提供同位素比值信息等特点,已成为地质、环境、冶金、农业、生物、食品等多个领域中广泛应用的元素分析手段。随着[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]应用范围的扩展,人们对其分析性能的要求愈来愈高,尤其在对复杂基体样品中痕量及超痕量元素分析时,如何最大程度消弭基体效应影响并提高检测灵敏度和精密度是获得准确可靠结果的关键。向测试溶液中引入适量的醇类、有机酸或烃类等含碳试剂可在一定程度上有效降低某些元素的检出限,这一现象已经得到诸多研究的证实。李艳香等报道了2%乙醇作为基体改进剂对As、Se、Sb和Te的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]信号具有增敏效应(增敏因子在2~6)。何伟彪等对不同浓度乙酸的增敏效应进行了研究,发现100 g/L乙酸可使As和Se的信号增强4~7倍。Zhang等在测定富钙地下水中的痕量Se时,发现向等离子体中引入2 mL/min CH4可以使80Se16O+的灵敏度提高3.6倍。目前,不同含碳试剂对[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]信号影响的研究主要集中在As、Sb、Se、Te、I及Hg等少数难电离元素上,很少涉及其他元素。本文探讨了在一定仪器条件下,不同浓度乙醇基体对59种无机元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]行为的影响,分析了乙醇浓度-元素质量数-效应(Concentration-Mass-Effect)之间的关系,并研究了各相关元素在最大增敏效应下的灵敏度。1 实验部分1.1 仪器与试剂PerkinElmer [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url] Elan DRC-e型[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url],配备40.68MHz自激式射频发生器,耐腐蚀和高盐的GemCleanTM十字交叉雾化器和RytonTM高分子惰性材料Scott双通道雾化室(美国PerkinElmer公司)。Ag、Al、As、Au、Ba、Be、Bi、Cd、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、Ga、Gd、Ge、Hf、Ho、In、Ir、La、Li、Lu、Mg、Mn、Mo、Nb、Nd、Ni、Os、Pb、Pr、Pt、Rb、Re、Rh、Ru、Sb、Sc、Se、Sm、Sn、Sr、Ta、Tb、Th、Ti、Tl、Tm、U、V、W、Y、Yb、Zn、Zr等59种元素标准溶液购自加拿大SCP SCIENCE公司,由难溶金属组合(700-101-134,10 mg/L,介质为0.5%HNO3/2%HCl/1%HF)、食品环境常用组合(700-101-121,10 mg/L,介质为5%HNO3/0.1%HF)、贵金属组合(700-101-105,10 mg/L,介质为10%HCl/痕量HNO3)及稀土元素组合(700-158-008,100 mg/L,介质为5%HNO3)等四个系列组成;优级纯硝酸(北京化学试剂研究所);分析纯无水乙醇(国药集团);去离子水(18.2 MΩ∙ cm)。1.2 实验条件1.2.1 测试溶液配制 以2%硝酸为稀释介质,先将稀土元素组合稀释至10 mg/L,再与等量难溶金属、食品环境常用及贵金属混合后逐级稀释,配制成5组(分别含乙醇0.4、0.8、1.2、1.6、2.0%,v/v)元素终浓度均为10 μg/L的混合标准溶液。1.2.2 [url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]主要工作参数 仪器预热后经调谐液(Ba Cd Ce Cu In Mg Pb Rh U,10 μg/L)调节最佳状态,射频功率:1100W;等离子气流量15 L/min;载气流量:0.94 L/min;辅助器气流量:1.2 L/min;透镜电压:6.0 V;采样流量:0.8 mL/min;校正方程:仪器软件推荐。2 结果与讨论2.1 测试核素的选择在1.2.2仪器条件下,测试一系列浓度的混合标准溶液,观测各元素主要同位素的信号,选择没有干扰(浓度与信号间线性关系良好)且相对丰度较高的同位素作为测试核素,本研究中各元素的测试核素为:107Ag、27Al、75As、197Au、138Ba、9Be、209Bi、111Cd、140Ce、59Co、52Cr、[color=#ff0000]133[/color][color=#ff0000]Cs[/color]、63Cu、164Dy、166Er、153Eu、69Ga、158Gd、74Ge、180Hf、165Ho、[color=#ff0000]115[/color][color=#ff0000]In[/color]、[color=#ff0000]193[/color][color=#ff0000]Ir[/color]、139La、7Li、175Lu、24Mg、55Mn、98Mo、93Nb、142Nd、60Ni、192Os、[color=#ff0000]208[/color][color=#ff0000]Pb[/color]、141Pr、[color=#ff0000]195[/color][color=#ff0000]Pt[/color]、85Rb、187Re、103Rh、102Ru、121Sb、45Sc、77Se、152Sm、[color=#ff0000]118[/color][color=#ff0000]Sn[/color]、88Sr、181Ta、159Tb、232Th、47Ti、205Tl、169Tm、238U、51V、184W、89Y、174Yb、66Zn及90Zr。2.2 混合标准溶液的稳定性四组标准溶液介质不尽相同,混合在一起理论上可能会因为F-和Cl-的存在产生沉淀,如Ba/Ca/Mg/Pb/SrF(2)和Ag/Rh/Pb/Cu+/Hg+/TlCl(2)。对混合标准溶液进行了一周内的稳定性测试,对比前后各元素的信号强度,经t-检验后未见显著差异(P 0.05),说明四组标准溶液可以混合配制,且在一周内保持稳定。2.3 乙醇对元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]信号的影响为考察微量乙醇存在对元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]信号响应强度的影响,实验选择体积分数分别为0.4%、0.8%、1.2%、1.6%及2.0%等5个浓度梯度,在一定[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]条件下进行对比研究。图1所示为不同乙醇浓度下59种元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]信号强度的变化情况。结果表明,测试溶液中微量乙醇的引入确对元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]响应信号存在影响,且随乙醇浓度或元素种类(质量数)的不同而呈不同规律。乙醇对52Cr的信号存在强烈的增敏效应,且增敏随乙醇浓度增大呈持续增强趋势,体积分数为0.4%和2.0%的乙醇使52Cr信号分别增强了5和35倍(图1 a)。低浓度( 0.8%)乙醇对24Mg和197Au的响应信号有明显的抑制效应,随着乙醇浓度增加,抑制效应渐弱进而转为增敏作用(图1 a)。对于75As、77Se、121Sb、209Bi、192Os、180Hf、181Ta、187Re、184W、205Tl、238U、193Ir、195Pt、208Pb、133Cs、115In、118Sn及除89Y外的其余所有稀土元素,随着乙醇浓度上升,元素响应信号逐渐增强,乙醇浓度为1.2%时,各元素响应信号均达最强,121Sb、77Se及75As的信号分别增强了近1、1.5及3倍,乙醇浓度继续增加则增敏效应渐弱(图1 b, c, d)。低浓度乙醇可以不同程度提高103Rh、111Cd、98Mo、102Ru、93Nb、107Ag、90Zr、138Ba、89Y、88Sr、85Rb、74Ge、69Ga、66Zn、60Ni及63Cu等元素的响应信号,随着乙醇浓度增大,增敏效果渐强直到最大,当乙醇浓度超过0.8%或1.2%时,增敏作用渐弱进而转为抑制,且抑制效应随乙醇浓度增大而加强(图1 e, f)。对59Co、55Mn、47Ti、51V及9Be等元素的信号,乙醇浓度在0.4%~0.8%之间时具有轻微的增敏效果,而在1.2%~2.0%之间时则转为明显的抑制效应(图1 g)。不同浓度乙醇对7Li、27Al及232Th等元素信号的影响均表现为抑制,且浓度愈高,抑制效应愈明显(图1 h)。[img=,489,266]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011018_01_3237657_3.png[/img] [img=,479,270]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011018_02_3237657_3.png[/img][img=,483,270]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011018_03_3237657_3.png[/img] [img=,484,265]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011019_01_3237657_3.png[/img][img=,486,263]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011019_02_3237657_3.png[/img] [img=,483,272]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011021_01_3237657_3.png[/img][img=,478,263]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011021_02_3237657_3.png[/img] [img=,474,274]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011021_03_3237657_3.png[/img] [align=center]图1 59种元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]信号强度随不同乙醇浓度的变化[/align]Fig. 1 Effects of ethanol with different concentrations on signal intensity of 59 elements进一步分析发现,对于绝大部分元素(除7Li、27Al、45Sc、52Cr、75As、77Se、121Sb及232Th外),在1.2%、1.6%及2.0%的乙醇浓度下,元素质量数与其响应信号变化之间存在良好的线性关系,如图2所示,同一乙醇浓度下,质量数愈大,抑制效应愈弱或增敏作用愈强;相同元素质量数下,抑制作用随乙醇浓度提高而趋强,增敏效应随之趋弱。[align=center][img=,491,294]http://ng1.17img.cn/bbsfiles/images/2017/08/201708011023_01_3237657_3.png[/img][/align][align=center]图2乙醇浓度、元素信号变化及质量数间的关系[/align][align=center]Fig. 2 The relationship among ethanol concentration, signal change and element mass[/align]相较于甲醇、丙酮、乙腈等有毒试剂,乙醇则相对安全,也是[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]分析中应用最广泛的醇类基体改进剂。微量乙醇存在影响[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]分析信号的作用机制是多方面的,通常认为,增敏作用是由于适量乙醇的引入改变了试液的物理特性,如黏度、表面张力、分子间的相互作用及气溶胶颗粒大小等,使得分析物进入等离子体中的传输速率增加,提高了雾化效率,从而改善分析性能。也有学者认为元素信号的增强是因为含碳有机物的存在会提高等离子体中碳和含碳多原子离子的密度,电离电位较高的元素可将其电子转移至碳和含碳多原子离子上,进而提高这些元素在等离子体中的电离度,对于电离能较高的部分元素电离能愈高,增敏效应越明显,如本研究中的121Sb(8.34 eV)、192Os(8.40 eV)、77Se(9.41 eV)及75As(9.47 eV)等;电离能较低的元素,如7Li(5.20 eV)、27Al(5.77 eV)及232Th(5.87 eV),可能由于空间电荷效应呈现抑制作用。乙醇浓度提高至一定量后,增敏作用渐弱或转为抑制效应,这可能是因为分解乙醇需要消耗大量能量,高浓度乙醇的引入会引起等离子体中心通道的冷却作用,从而降低了分析元素的电离度。适当提高ICP入射功率和雾化器流速可以抵消或对抗乙醇对等离子体的冷却作用,然而,过高浓度的乙醇仍有可能引起ICP的猝灭,尽管本研究中选择的ICP射频功率相对较低(1100 W),但绝大多数元素信号在0.4%至2.0%的乙醇浓度范围内均出现增敏峰值。2.4 检出限为考察微量乙醇存在对各元素检测灵敏度的影响,以2%硝酸作系列空白溶液(内含0.4%、0.8%、1.2%、1.6%及2.0%乙醇,v/v)连续测定20次,并计算各元素的检出限(LOD = 3δ,ng/L),结果见表1。从表中结果可知,除7Li、27Al及232Th外,微量乙醇存在可不同程度上改善其余56种元素的检测灵敏度,如0.4%乙醇提高了9Be和47Ti的灵敏度,0.8%乙醇使得45Sc的检出限降低了2倍,1.2%乙醇使121Sb、209Bi及75As等大部分元素的灵敏度都得到明显改善,2.0%乙醇使52Cr灵敏度提高了32倍。本研究中微量乙醇的存在对69Ga、74Ge、75As、77Se、121Sb、205Tl等元素检测灵敏度的影响情况与前人研究结果基本一致。[align=center]表1 基体中乙醇存在与否对检测灵敏度(LOD,ng/L)的影响[/align][align=center]Table 1 Comparison of detection sensitivities between the absence and presence of ethanol[/align][table][tr][td][align=center]元素[/align][align=center]Element[/align][/td][td][align=center]不含乙醇[/align]Without ethanol[/td][td][align=center]含乙醇[/align]With ethanol[/td][td][align=center]元素[/align]Element[/td][td][align=center]不含乙醇[/align][align=center]Without ethanol[/align][/td][td][align=center]含乙醇[/align][align=center]With ethanol[/align][/td][/tr][tr][td]24Mg[/td][td][align=center]35.9[/align][/td][td][align=center]34.1d[/align][/td][td]153Eu[/td][td][align=center]0.14[/align][/td][td][align=center]0.09c[/align][/td][/tr][tr][td]55Mn[/td][td][align=center]6.65[/align][/td][td][align=center]6.29a[/align][/td][td]77Se[/td][td][align=center]157.4[/align][/td][td][align=center]100.8c[/align][/td][/tr][tr][td]51V[/td][td][align=center]8.05[/align][/td][td][align=center]7.60a[/align][/td][td]142Nd[/td][td][align=center]0.90[/align][/td][td][align=center]0.55c[/align][/td][/tr][tr][td]9Be[/td][td][align=center]3.60[/align][/td][td][align=center]3.35a[/align][/td][td]208Pb[/td][td][align=center]3.11[/align][/td][td][align=center]1.90c[/align][/td][/tr][tr][td]66Zn[/td][td][align=center]46.8[/align][/td][td][align=center]42.4b[/align][/td][td]152Sm[/td][td][align=center]0.23[/align][/td][td][align=center]0.14c[/align][/td][/tr][tr][td]59Co[/td][td][align=center]1.45[/align][/td][td][align=center]1.31b[/align][/td][td]158Gd[/td][td][align=center]0.28[/align][/td][td][align=center]0.17c[/align][/td][/tr][tr][td]69Ga[/td][td][align=center]4.12[/align][/td][td][align=center]3.68b[/align][/td][td]141Pr[/td][td][align=center]0.20[/align][/td][td][align=center]0.12c[/align][/td][/tr][tr][td]88Sr[/td][td][align=center]1.55[/align][/td][td][align=center]1.38b[/align][/td][td]169Tm[/td][td][align=center]0.05[/align][/td][td][align=center]0.03c[/align][/td][/tr][tr][td]89Y[/td][td][align=center]1.58[/align][/td][td][align=center]1.39b[/align][/td][td]159Tb[/td][td][align=center]0.17[/align][/td][td][align=center]0.10c[/align][/td][/tr][tr][td]85Rb[/td][td][align=center]1.59[/align][/td][td][align=center]1.40b[/align][/td][td]164Dy[/td][td][align=center]0.23[/align][/td][td][align=center]0.13c[/align][/td][/tr][tr][td]74Ge[/td][td][align=center]3.49[/align][/td][td][align=center]3.05b[/align][/td][td]175Lu[/td][td][align=center]0.11[/align][/td][td][align=center]0.06c[/align][/td][/tr][tr][td]47Ti[/td][td][align=center]93.0[/align][/td][td][align=center]80.8a[/align][/td][td]238U[/td][td][align=center]0.17[/align][/td][td][align=center]0.09c[/align][/td][/tr][tr][td]60Ni[/td][td][align=center]9.41[/align][/td][td][align=center]8.06b[/align][/td][td]205Tl[/td][td][align=center]0.25[/align][/td][td][align=center]0.13c[/align][/td][/tr][tr][td]90Zr[/td][td][align=center]3.42[/align][/td][td][align=center]2.87c[/align][/td][td]195Pt[/td][td][align=center]0.31[/align][/td][td][align=center]0.16c[/align][/td][/tr][tr][td]107Ag[/td][td][align=center]2.48[/align][/td][td][align=center]2.02b[/align][/td][td]193Ir[/td][td][align=center]0.35[/align][/td][td][align=center]0.18c[/align][/td][/tr][tr][td]138Ba[/td][td][align=center]29.8[/align][/td][td][align=center]24.2c[/align][/td][td]166Er[/td][td][align=center]0.14[/align][/td][td][align=center]0.07c[/align][/td][/tr][tr][td]63Cu[/td][td][align=center]3.57[/align][/td][td][align=center]2.89b[/align][/td][td]165Ho[/td][td][align=center]0.10[/align][/td][td][align=center]0.05c[/align][/td][/tr][tr][td]102Ru[/td][td][align=center]23.7[/align][/td][td][align=center]19.0b[/align][/td][td]174Yb[/td][td][align=center]0.38[/align][/td][td][align=center]0.19c[/align][/td][/tr][tr][td]111Cd[/td][td][align=center]2.26[/align][/td][td][align=center]1.80c[/align][/td][td]184W[/td][td][align=center]1.07[/align][/td][td][align=center]0.46c[/align][/td][/tr][tr][td]93Nb[/td][td][align=center]0.92[/align][/td][td][align=center]0.73b[/align][/td][td]187Re[/td][td][align=center]0.26[/align][/td][td][align=center]0.11c[/align][/td][/tr][tr][td]98Mo[/td][td][align=center]1.47[/align][/td][td][align=center]1.14c[/align][/td][td]181Ta[/td][td][align=center]0.70[/align][/td][td][align=center]0.29c[/align][/td][/tr][tr][td]103Rh[/td][td][align=center]0.65[/align][/td][td][align=center]0.49c[/align][/td][td]192Os[/td][td][align=center]0.59[/align][/td][td][align=center]0.24c[/align][/td][/tr][tr][td]118Sn[/td][td][align=center]29.5[/align][/td][td][align=center]21.7c[/align][/td][td]180Hf[/td][td][align=center]0.69[/align][/td][td][align=center]0.28c[/align][/td][/tr][tr][td]139La[/td][td][align=center]0.37[/align][/td][td][align=center]0.26c[/align][/td][td]75As[/td][td][align=center]10.0[/align][/td][td][align=center]3.54c[/align][/td][/tr][tr][td]197Au[/td][td][align=center]0.63[/align][/td][td][align=center]0.44d[/align][/td][td]45Sc[/td][td][align=center]21.9[/align][/td][td][align=center]7.51b[/align][/td][/tr][tr][td]133Cs[/td][td][align=center]0.13[/align][/td][td][align=center]0.09c[/align][/td][td]209Bi[/td][td][align=center]0.33[/align][/td][td][align=center]0.10c[/align][/td][/tr][tr][td]115In[/td][td][align=center]0.41[/align][/td][td][align=center]0.28c[/align][/td][td]121Sb[/td][td][align=center]2.05[/align][/td][td][align=center]0.34c[/align][/td][/tr][tr][td]140Ce[/td][td][align=center]0.40[/align][/td][td][align=center]0.27c[/align][/td][td]52Cr[/td][td][align=center]31.4[/align][/td][td][align=center]0.95d[/align][/td][/tr][/table]注:上标“a”、“b”、“c”和“d”分别对应0.4%、0.8%、1.2%及2.0%的乙醇。Note: The superscript (‘a’, ’ b’, ’c’, ‘d’) refers to the concentration (0.4%, 0.8%, 1.2%, 2.0%) of ethanol.3 结论微量乙醇作为基体改进剂对59种元素[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]行为的影响随元素种类或乙醇浓度不同而分别呈一定规律。相同乙醇浓度下,大多数元素的抑制效应随元素质量数增加而减弱,增敏趋势随质量数增加而增强,尤其是对电离能大于8 eV的元素,增敏效果更明显;相同元素质量数下,乙醇浓度越高,抑制作用趋强或增敏效应趋弱。乙醇作为基体改进剂不同程度上降低了除7Li、27Al及232Th外其余56种元素的检出限,为扩展[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]应用领域提供更多可能。

  • 【方法】气相色谱法分离测定环孢素A中乙醇及丙二醇的含量

    目的:建立一个[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件同时分离测定环孢素A中乙醇及丙二醇的含量。方法:以GDX-101为固定相,柱长为2 m,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,氮气为载气,以二甲基亚砜为溶剂,以正丙醇为内标。结果:乙醇及丙二醇进样量分别在2.0~6.0 μg,1.0~3.0 μg,其峰面积与浓度呈良好的线性关系,加样回收率分别为99.9%(RSD<0.8%,n=5),101.4%(RSD<1.1%,n=5),精密度良好。结论:此[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件可同时测定环孢素A中乙醇及丙二醇的含量,方法简便准确。关键词 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 乙醇 丙二醇 环孢素A山地明(环孢素A)为诺华制药有限公司的产品,是一种免疫抑制剂,用于器官移植和骨髓移植中的抑制排斥现象以及自身免疫疾病。厂方质量标准中乙醇及丙二醇的含量采用石英毛细管柱测定,此种色谱柱在国内使用不普及,我们经多次试验,摸索出一较好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件,适用于国内检测,即以GDX-101为固定相,柱长为2 m,采用氢离子火焰检测器,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,氮气为载气,以二甲基亚砜为溶剂,以正丙醇为内标,可同时分离测定环孢素A中乙醇及丙二醇的含量,改进后的方法,乙醇与正丙醇的分离度为3.1,丙二醇与正丙醇的分离度为5.0,符合中国药典1995年版中乙醇量度检查的分离度要求[1],操作简便,结果准确可靠。1 仪器与试药  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]:SP-6890  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱:玻璃柱,长2 m,固定相为GDX-101。  乙醇、异丙醇、丙二醇均为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]纯,二甲基亚砜为色谱纯。  样品:环孢素A胶囊(山地明),由诺华公司提供,批号为187MFD0797;241MFD0797;166MFD0797;483MFD0797;477MFD0797。  标准贮备液及内标贮备液:精密称取[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]级的乙醇及丙二醇2.50及1.25 g分置50 mL容量瓶中,加二甲基亚砜至刻度,摇匀,作为标准贮备液;精密量取正丙醇5.0 mL置50 mL量瓶中,加二甲基亚砜至刻度,摇匀,作为内标贮备液。2 试验方法与结果2.1 色谱条件 采用GDX-101为固定相,柱长为2 m,氮气为载气,采用氢离子火焰检测器,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,即初始为165 ℃,保持12 min,以40 ℃。min-1升至280 ℃,并保持20 min,检测器温度为280 ℃,进样量为2 μL。2.2 分离度试验 称取乙醇、丙二醇及正丙醇各50 mg置同一50 mL量瓶中,加二甲基亚砜至刻度,摇匀,进样2 μL,按上述色谱条件试验,记录色谱图,见图1-A,乙醇、丙二醇及正丙醇的保留时间分别为1.15,2.22,7.54 min,计算乙醇与正丙醇及丙二醇与正丙醇的分离度,其分离度分别为3.1和5.0。图1 分离度色谱(A)及样品测定(B)色谱图1.乙醇 2.正丙醇 3.丙二醇 4.二甲基亚砜2.3 线性范围及标准曲线 分别精密量取乙醇和丙二醇标准贮备液1.0,1.5,2.0,2.5,3.0 mL,分别置50 mL量瓶中,并分别加入内标贮备液1.0 mL,使乙醇终浓度为1.0,1.5,2.0,2.5,3.0 mg.mL-1,丙二醇的终浓度为0.5,0.75,1.0,1.25,1.5 mg.mL-1,分别进样2 μL,以乙醇及丙二醇的进样量为横坐标,以它们的峰面积与内标峰面积之比为纵坐标,分别进行线性回归,结果线性关系良好,乙醇、丙二醇回归方程分别为:A=8.935×103C+7.858×102 r=0.998 8A=8.086×103C-1.649×102 r=0.999 92.4 精密度试验 用乙醇与丙二醇浓度分别2.0及1.0 mg.mL-1的溶液,重复进样5次,结果乙醇与丙二醇的RSD分别为0.7%和1.0%,精密度良好。2.5 回收率试验 采用加样回收法,取已知乙醇与丙二醇含量的样品2粒,用二甲基亚砜溶解,置50 mL量瓶中,精密加入内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,精密量取此溶液4.0,4.5,5.0,5.5,6.0 mL,分别加入乙醇与丙二醇的浓度分别为2.0 mg.mL-1及1.0 mg.mL-1的标准溶液6.0,5.5,5.0,4.5,4.0 mL,混匀,量取混匀后的溶液2 μL,注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],测定这5份溶液的乙醇和丙二醇含量,计算回收率,乙醇的平均回收率为99.9%(RSD<0.8%,n=5),丙二醇的平均回收率为101.4%(RSD<1.1%,n=5)。2.6 样品的测定 取乙醇和丙二醇标准贮备液2.0 mL,内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,作为对照品溶液;取环孢素A胶囊2粒,置50 mL量瓶中,用二甲基亚砜溶解,精密加入内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,作为样品溶液;分别量取对照品溶液和样品溶液各2 μL,注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],按上述色谱条件测定,以内标法计算含量,即得;见图1-B。2.7 对比试验结果 取环孢素A样品5批,用改进后的方法测定样品中乙醇和丙二醇的含量,与厂方测定数据相比,结果基本吻合,见表1。表1 乙醇和丙二醇对比试验结果(%) 批号 本法结果 厂方测定数据 乙醇 丙二醇 乙醇 丙二醇 187MFD0797 101.0 106.3 100.5 105.0 241MFD0797 99.2 99.2 100.6 100.6 166MFD0797 101.7 102.7 101.3 103.0 483MFD0797 98.8 96.8 99.3 97.2 477MFD0797 99.1 98.1 98.9 97.7 3 讨论3.1 本法与原厂方方法相比,方法更为简便,条件普及,有利于对样品质量的控制。3.2 原厂方标准在测定乙醇含量时,以正丁醇为溶剂,由于正丁醇的保留时间与丙二醇过于接近,分离度达不到要求,本法采用二甲基亚砜为溶剂,不影响样品的溶解,同时使丙二醇与二甲基亚砜的分离度符合定量分析的要求。3.3 曾用固定相为GDX-401的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]柱进行检测,乙醇与正丙醇得到完全分离,但丙二醇与溶剂峰重叠,分离度达不到要求。3.4 采用程序升温,可使溶剂出峰时间加快,缩短分析时间。王俊秋(北京市药品检验所 北京 100035)庞青云(北京市药品检验所 北京 100035)余立(北京市药品检验所 北京 100035)参考文献1,中国药典.1995.二部:附录44

  • 乙醇溶剂峰不能去掉!

    最经用hp-innowax30*0.25*0.25 测试样品,升温程序为:初始50℃,以3℃/min升到250℃,发现乙醇溶剂峰在10-12min出峰,计算乙醇溶剂峰温度在80-86℃之间,因此,为了避免乙醇溶剂峰,优化升温程序为90℃(保持2min),以3℃/min升到150℃,然后以5℃/min升到200℃,在以10℃升高到250℃(10min)后发现,在10min左右还是有乙醇溶剂峰!!这是为什么呢?2.改用乙腈作为溶剂时,发现同样的现象,不管怎么提高初始温度,总是有乙腈溶剂峰?难道是柱子选的不对?对优化升温程序带来很大的困扰。现在只能在这个时间段关闭质谱检测器,急盼老师指导!

  • 气相色谱法测定三乙醇胺遇到的问题

    请问有没有老师用中极性色谱柱测过三乙醇胺?我们新买的仪器目前只有中极性柱,工业三乙醇胺的检测方法推荐使用强极性柱,也有看到用弱极性和中弱极性柱测试的。我设置的程序升温的终温是260℃,进样口温度是300℃,检测器温度是320℃,始终只有溶剂峰无目标峰。请问各位老师有没有遇到过这种情况?

  • 【求助】氯乙醇的气相测定

    请问大家有没有做过2-氯乙醇的气相测定啊?5ppm的,我用DB-WAX做出的峰面积太小,请问有没有好的方法可以检测出来呢?谢谢了

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制