当前位置: 仪器信息网 > 行业主题 > >

智能畜电池放电测试仪

仪器信息网智能畜电池放电测试仪专题为您提供2024年最新智能畜电池放电测试仪价格报价、厂家品牌的相关信息, 包括智能畜电池放电测试仪参数、型号等,不管是国产,还是进口品牌的智能畜电池放电测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能畜电池放电测试仪相关的耗材配件、试剂标物,还有智能畜电池放电测试仪相关的最新资讯、资料,以及智能畜电池放电测试仪相关的解决方案。

智能畜电池放电测试仪相关的资讯

  • 《锂离子电池和电池组充放电测试设备规范》等118项目标准报批公示
    根据标准制修订计划,相关标准化技术组织已完成《锂离子电池和电池组充放电测试设备规范》等45项行业标准和《锂离子电池组安全设计指南》等73项国家标准的制修订工作。在以上标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2022年5月26日。以上标准报批稿请登录中国电子工业标准化技术协会网站(www.cesa.cn)“标准报批公示”栏目阅览,并反馈意见。公示时间:2022年4月27日-2022年5月26日附件:1.45项电子行业标准名称及主要内容2.73项推荐性国家标准名称及主要内容工业和信息化部科技司2022年4月27日
  • 精邦LIMS促进新能源电池检测实验室智能化管理方向发展
    作为战略性新兴行业之一,中国新能源汽车近年来发展迅速。数据显示,2018年中国新能源汽车产销量突破100万辆,产销规模连续三年位居全球第一。但同时,新能源汽车自燃、电池寿命短等与动力电池安全有关的事件和问题的频发为新能源汽车行业敲响了警钟。什么是新能源汽车检测试室呢?为什么要建设新能源汽车检测实验室呢?新能源电池实验不同于家用电器和汽车电子产品实验,由于电池的危险性,电池测试过程中可能会产生有害气体、冒烟、明火、爆炸,这些问题可能导致环境空气污染、设备损坏、人员受伤,甚至对人身财产造成巨大损失。因此,电池试验室的规模大小,场地建设,设备购置,以及日常的运营成本都需要引起重视。实验室主要分为电池性能测试评价、环境可靠性测试评价、安全滥用性测试评价三大平台,其测试能力覆盖动力电池单体、模组、Pack(电池包)及系统级别的各项产品,可满足多项国际标准及中国国家标准。通常具有完整测试能力的电池检测实验室 ,可规划成如下功能分区:1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等。2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合试验台。3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等。4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水侵泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、温度箱等。另一方面,为此建立的电池安全检测标准有: 国际标准(IEC)、欧盟标准(EN)、中国标准(GB QC)、美国标准(SAE UL)、日本标准(JIS),针对新能源汽车应用较为广泛的标准是UN 38.3、QC 743、SAND 2005-3123、UL 2580、ISO 12405。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。新能源汽车检测实验室为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况应运而生。通过电池安全检测标准的新能源汽车才能在安全上有长久的保障,相信未来新能源汽车的安全性会得到大大改善。精邦实验室信息化管理平台针对未来汽车实验室科学管理,开发出汽车行业LIMS系统软件,该系统是一款以ISO/IEC17025、ISO9000等精细化管理标准为基础,采用现代化的电子信息技术和数据库系统,专业为汽车企业实验室和质量检验平台设计方案的综合型业务管理系统。汽车实验室精邦LIMS系统关键程序模块:1. 样品管理:是检测中心的关键工作之一。精邦LIMS针对取样、来样加工、试样、留样、余样等差异环节特征的样品,提供样品接收、确认、前处理、派发、传递、检测、保存、处理、退回等全程管理功能模块运用条形码标签建立样品的唯一性界定和查询精准定位。2. 检测管理,具备分配任务、分配管理、结果备案、评价、审核等检测流程管理功能模块,支持数值、字段、文档、报表、图谱等各类结果类别。可设置计算方法、判定指标值等业务流程标准,根据实验仪器接口功能模块,同时导入初始检测统计数据运用电子签章技术性审核结果,保证网络安全;3. 设备维护: 提供设备台账,申购采购,应用记录,维修保养,计量检测,出现故障检修,借还备案,状态控制,销毁报废,利用率统计分析等管理功能模块。较大底限地提升实验室设备等设施自动化技术管理能力;4. 规范管理,为实验室应用的规范丰富多彩提供数字化管理,便捷相关技术人员免费在线查看,并对规范方式的追踪,非标准方式的制订、确认和应用推行有效管理。5. 人员管理针对检测中心的各类技术人员,精邦LIMS提供健全的人员管理方案如技术人员基本资料、人事关系、专业能力确认、资质确认、授权管理、工作记录、监管、评价、学习培训、绩效考评等6. 物资管理精邦LIMS提供实验室物资管理,合格供应商管理,耗材申购、采购、项目验收、入库管理,领用备案,库存量智能提醒(有效期限、库存值)等管理功能模块建立耗材的标准化管理,动态性管控并有效控制耗材使用量,减少检测成本费7. 质量控制精邦LIMS针对实验室內部审核、管理评审、能力验证、实验室间核对、外部审查(如资质证书评定、实验室认可)等相关品质活动,提供了活动计划、活动变更、活动执行、不良整顿 等质量管理和质量控制功能模块8. 数据分析精邦LIMS针对各检测业务的对象、业务流程阶段、业务流程状态智能生成月表、年报表或阶段性可视化报表,同时强大功能的报表设计构思器,允许客户自定义报表格式和內容来源,定期进行或实时生成各类的可视化图形报表,为业务流程分析、市场拓展、领导层管理决策填报数据支持9. 流程优化精邦LIMS嵌入工作流引擎,可为检测中心量身定做定制最贴切的工作流程,将信息流(凭证)、商品流(样品)、审批流(每日任务)有机化学融合成一体化,建立检测业务流程的全程动态性管理, 能够迅速响应检测中心业务流程飞速发展的需求精邦LIMS系统面向生产制造产业,技术专业的质量检验实验室LIMS系统软件提升规范性与智能化管理能力,全方位覆盖了实验室和质量检验平台的经营范围,为汽车产品质量检验的每个阶段提供全方位、精细的管理解决方法,并将各部门日常任务工作中有机地相结合,形成个完整性、统一性的业务流程管理平台,全部工作都能够使用LIMS协调工作。10.智能数据分析 数据智能分析中心主要是针对系统已经存在的检测数据进行多维度、多层级的单向、多项目组合分析管理。通过数据分析能够把数据之间的逻辑关系清晰的展现出来,以满足企业对历史检测数据的纵向、横向分析,以便为产品研发、生产、采购提供科学的建议,同时有效的减低产品研发成本、提高产品的质量、缩短研发周期。精邦数据智能分析中心通过可视化的展现可以快速、精准的对检测数据进行分析,图表与图形智能的展现,帮助实验室从历史检测数据中提取数据进行综合排优比对与建议。◆ 精邦数据智能分析中心不仅仅是前端报表,还包括元数据管理与数据中心(数据仓库);◆ 不仅仅是数据可视化,不仅仅是敏捷数据智能分析中心,精邦 BI 独有的多维动态分析与智能钻取轻松实现智能分析;◆精邦 BI 开发平台,包括数据转换管理(ETL)、OLAP 数据库设计、元数据管理、WEB多维报表设计、多维动态分析、智能钻取、智能报告、数据填报、移动应用、微信应用、单点登陆等 10 余项功能,专注企业级应用,更符合第一方实验室的信息化现状及需求;通过数据匹配组成最佳产品体系分析,形成研发数据库为研发部提供数据支撑; 根据不同的测试安排和类型,数据分析的功能分为数据对比和 SPC 监控两部分。 1 数据对比主要是同一测试项目可直接较 ,如客户需 60 度 7 天后 厚度膨胀(内阻、 厚度膨胀(内阻、 OCV OCV、恢复容量剩余处理方式一样),可以将不同阶段,不同规格的试验单,在一表中展示(busbar 形式,或客户要求的其他),并可以直接导出比较图表、原始数据。 2 SPC 监控主要针对品质稳定性监控,比如量产电池的厚度、容量、倍率、存储、循环 150 次的结果,做长期跟踪,并依据时间、批次,给出某一关键指标的趋势变化图,若出现超规格情况,可依据严重程度,系统自动给出预警(比如邮件、短信)通知,可设置不同层级(工程师、经理、总监、副总、总经理等); 3 数据对比 选择测试用例及需要进行对比的测试任务进行数据可视化对比分析,包括不限于倍率、循环、存储、高低温测试,可针对不同项目不同关注点进行比较,比如容量(保持率)、厚度(增长)、放电能力、内阻增加等各个方面进行展示。对于原始的充放电数据(放电数据),循环数据,都可以直接叠加比较。 该软件可以查询相关的功能,并设置了重置,可以一次性对比几个测试,选择重置,可以清空这些对比信息,主要的对比包括如下几点: 4 倍率放电测试记录在不同倍率(0.1C,0.2C,0.5C,1C,1.5C,2C)下,电芯的放电曲线
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • HORIBA应用科普 | 光谱分析助力锂电池产业突破:拉曼篇(1)锂电池充放电过程正负极的研究
    作者:RenataLewandowska,MiyokoOkada,TomokoNumata翻译:文军锂离子电池成就的奇迹谈起新能源汽车,就不得不说美国的“特斯拉汽车公司”,目前其打造的纯电动车采用为先进的锂离子能量存储,理论上48万公里行驶后电池衰减比例仅有5%。而其所配备的能量再生制动系统则可在车子减速时为锂离子电池组充电,使得车子在行走途中就可获得能量的补给。特斯拉MODEL 3可以说锂电池技术的发展不仅将特斯拉的新能源汽车变成了现实,创造了奇迹,更成就了特斯拉汽车公司CEO埃隆马斯克成为继乔布斯外第二个全球科技狂人。2017年5月9日,《时代》杂志发布了2017年“科技领域有影响的20人”榜单,埃隆马斯克上榜。随着对动力需求的不断增长和日趋复杂化,如何提高锂离子电池的性能始终是锂电池领域各厂家致力于突破的一个非常重要的课题。令人欣喜的是,激光拉曼光谱技术被越来越多的研究人员用于该领域的探索和突破。这种非接触的快速分析技术,能够直接分析材料中的结构变化,而不对材料产生影响。拉曼光谱技术已经被用作锂电池在充放电循环过程中的实时的原位分析,从而实现标准分析,包括材料结构和电子属性、耐久性,以及自动质量控制测试等。此外,新的研究还表明:拉曼光谱可以用于研究这些电池生命周期的各个阶段,诸如复杂体系中的新材料的表征、故障分析等。因篇幅有限,今天,本文重点为您揭示显微拉曼光谱在锂电池充放电过程中对正材料和负材料是如何进行分析的。 ▎如何分析?锂离子电池充放电过程中,锂离子经由电解液在两电之间穿梭,会带来两个电材料的结构变化。理想状态之下,这些变化都是可逆的。但是在实际情况中,充放电过程会给电池的正负电造成某些不可逆转的变化。那么它们的变化是怎样的?让我们通过拉曼光谱的“正分析”与“负分析”一窥究竟吧。01正分析锂离子电池常用的正材料是层状的锂钴氧(LiCoO2,LCO)材料。在充放电过程中,锂离子在层状的氧化钴八面体结构中重复地进行着插入—脱出过程。研究表明,电池过放电会导致氧化钴层的不可逆转的分解,成为氧化钴(CoO)和氧化锂(Li2O);而电池过充电则会导致LiCoO2转变成二氧化钴(CoO2)。所有这些变化都可以利用拉曼光谱进行观察。如下图1所示,拉曼光谱特征峰(橙色)属于锂钴氧正,而拉曼光谱谱线(红色)显示出了属于二氧化钴(CoO2)的特征峰。图1.正材料中有无CoO2的光谱区别.下图2是经历了一次充放电循环过程后,正材料的拉曼成像结果,拉曼成像清楚显示出了二氧化钴(CoO2)的存在,佐证了电池发生过充。图2. 经历了一次充放电循环过程后的锂钴氧正材料的拉曼成像蓝色对应非晶态碳,橙色对应锂钴氧,红色点对应不同浓度二氧化钴除了上述佐证正材料过充现象的存在,研究人员还利用拉曼光谱去寻找和研究新的正材料,比如不同种类的锂-过渡金属混合氧化物,如Li(Ni, Mn, Co)O2,LiMn2O4,这是目前研究的热点材料。这些材料各自具有不同的拉曼光谱特征峰,如下图3所示,拉曼光谱可为新型电材料研究提供技术支持。图3. LiCoO2、Li(Ni, Mn, Co)O2,LiMn2O4,Li2TiO3的拉曼光谱图02负分析锂离子电池常用的负材料是石墨,经过反复充放电循环以后,石墨电会发生退化。在石墨的拉曼光谱中,D峰和G峰的相对强度ID/IG比值与石墨电结构的损坏有着密切的关系。随着石墨电结构的退化,D峰的强度不断增加。在下图4中我们可以看出相对强度的变化。图5的拉曼成像中,可以清楚地看到石墨电结构的变化。图4. 具有不同相对比值ID/IG的石墨正材料的拉曼光谱图5. 石墨负经历一个充放电循环之后的拉曼成像:蓝色区域对应于缺陷较少的石墨,深蓝色区域对应于缺陷较多的石墨,橙色区域对应于树脂粘结剂。 ▎总结和展望由于拉曼光谱能够应对锂离子电池各类研发的需求,并满足在线自动质量控制的要求,因而借助拉曼光谱的探索,锂离子电池必将能够发挥出更大的“能量”。如果您对本文案例感兴趣,欢迎您点击识别下方二维码索取详细文章。 在下一篇文章中,我们将为您介绍拉曼光谱在锂电池充放电过程中对电解液如何进行分析,带您了解该项技术的其他应用,欢迎您的关注。手机识别二维码 阅读原文后,小编欢迎您留言说说看,您身边的锂电池应用都有哪些?特斯拉你已经开起来了吗? ▎延伸阅读R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev., 110 (2010)1278–1319.V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, R. Kostecki, Journal of Power Sources, 195 (2010) 3655–3660.R. Kostecki, J. Lei, F. McLarnon, J. Shim, K. Striebel, J. Electrochem.Soc., 153 (2006) A669-A672.R. Kostecki, X. Zhang, P.N. Ross Jr., F. Kong, S. Sloop, J.B. Kerr, K.Striebel, E. Cairns, F. McLarnon, F., report LBNL-48359, DOI:10.2172/861953.Paul Scherrer Institute, http://www.psi.ch/lec/electrochemical-energy-storage.Berkley Energy Storage & Conversion for Transportation and Re-newablesProgram, http://bestar.lbl.gov/HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 利用原位CT观察锂电池在充放电中的变化
    近几年中国锂电池的出货量持续增长,对电池的各种研究也在不断深入。锂离子电池充电后,其中的活性物质会发生体积膨胀,原位表征技术成为分析工作中的重要手段。这种变化有时并不显著,利用原位CT可以捕获微小变化的差异,让分析工作更加简单,品质管理更科学可靠。 小型锂电池外观电池整体的断面图像图中可见,间隙部分的增大。 放、充电后电池各层电极将放、充电后电池各层电极的图像进行对比,可见电极厚度上有微小膨胀,最终导致整体厚度的增加。 岛津微焦点X射线CT系统 inspeXio SMX-225CT FPD HR Plus——一款支持锂电池充放电试验的微焦点CTinspeXioSMX-225CTFPDHRPlus(可搭载充放电系统) • 人性化操作的理念贯穿整个设计。即使CT试验的步骤简化到三步,依然能拍摄出高质量的数据。• 维护保养简便易行,让设备的使用无后顾之忧。 本文内容非商业广告,仅供专业人士参考。
  • 电动汽车电池及充放电标准将在“十二五”期间出台
    电动汽车电池及充放电标准将在“十二五”期间出台   电动汽车换电池只需一分钟   全国政协委员、中国工程院院士、东北电网有限公司名誉总工程师黄其励在全国两会期间透露,目前国家电网正在研究电动汽车充电、电池生产等相关标准,预计将在“十二五”期间出台。   据悉,为了发展新能源汽车,目前各省市都计划或试点建设了充电站和充电桩。但是电动汽车充电需要时间,快速充电要10分钟,正常充电要1个小时。因此国家电网正在研究汽车充电换电池的方案及相关标准,但这首先需要全国出台相关的统一标准。   黄其励说,对于充电站来说,电动汽车的电池可以统一进行充电,充电的时间也可以灵活掌握,比方可以在全国用电低谷的时候充电。对于汽车用户来说,只需要把原来的电池卸下来,把充满电的电池再装上去就行,1分钟之内就可以换好电池,会比加油还简单。   据悉,充电、换电池的工作现在由哪个部门来负责尚未确定,但大家普遍认为由电力公司来统一操作比较合适。黄其励认为,电动汽车充电可换电池的相关国家标准只要一出台,电动汽车的发展就会非常快了。   据介绍,现在推广电动汽车最大的问题就是电池造价问题。“刚开始可能电池的价格会比较高,一般家庭买不起。但政府可以适当给予一些补助,鼓励购买新能源汽车,情况就会好起来。”黄其励说。
  • 环球分析测试仪器有限公司亮相2024氢燃料电池 技术创新与应用大会
    2024年4月18日-4月19日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在上海美仑国际酒店举办的“2024氢燃料电池技术创新与应用大会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借优异的硬件和专业的软件功能等优点吸引许多参会科研学者的驻足咨询交流。 此次活动由士研咨询主办,同时得到了同济大学燃料电池汽车技术研究所、上海市汽车工程学会、江苏省汽车工程学会、日本氢能燃料电池株式会社、韩国电池工业协会(KBIA)、嘉定氢能港等业内机的大力支持,力求将此次大会打造为业内交流合作的最佳平台。本次大会的主题定为“创新赋能,降本增效",聚焦氢燃料电池产业的前沿科技创新与高效发展,呼唤氢能行业精英汇聚上海,共同探讨氢燃料电池产业未来的新实践、新思路和新洞见。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 欧波同锂离子电池显微智能分析解决方案
    锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。 欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。 一、锂离子电池材料显微智能分析系统(LIBMAS) 锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。 图一:汇鸿锂离子电池显微智能分析系统 针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。 1)识别: 通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。 图二:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。 正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。 图三:二次球截面孔隙识别2)团聚体颗粒识别: 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在短时间内快速获得标准化的统计结果,如图四。 图四:一次颗粒团聚形成的二次球颗粒识别 电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。 图五:软件自动区分团聚颗粒及团聚颗粒截面 3)单晶颗粒识别: 相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。 图六:单晶颗粒的识别 4)大小二次球识别: 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图七。图七:大小二次球颗粒分布均匀性识别和统计 5)隔膜孔隙率统计: 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。 图八:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。 二、锂离子电池异物分析系统(LIBIAS) 目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe 图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象 针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。 图四:颗粒类型占比饼状图(左),三元统计相图(右) 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757.[2] https://doi.org/10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] https://www.science.org/doi/abs/10.1126/science.abc3167.[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46( 14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168. 作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。主题演讲来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了各自在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。新品发布会上,仰仪科技正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技工程师孙昕禹为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼备优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。活动回放——————————————————————————————————杭州仰仪科技有限公司成立于2006年,浙仪旗下实验室事业群成员,是专注于化工与新能源领域测试需求的国家高新技术企业。我们在温度测量与发生、测试容器制备、仪器集成与数据分析等核心技术上有深度积累,是化工领域测试仪器设备、解决方案的专业开发者。公司产品线主要有热分析与量热、理化参数测试、燃爆特性测试和化学品物理危险测试等,产品综合性能达到国际先进水平,在应急管理、货物运输、海关监管、市场监管、环境保护、高等院校、科研院所、大型企业及第三方检测等机构具有广泛应用且口碑良好。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开!
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了他们在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。会上,杭州仰仪科技有限公司正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技的孙昕禹工程师为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼具优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。
  • 约稿|锂离子电池显微智能分析解决方案全解析
    为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿,并整理相关学术文章和讲座视频,以期对材料表征技术进行全面的介绍和综述。相关内容将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。征稿活动进行中,欢迎来稿,征稿活动详情点击:【材料表征与检测技术盘点】专题:https://www.instrument.com.cn/zt/CLBZ以下为欧波同集团供稿,以飨读者:欧波同锂离子电池显微智能分析解决方案锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。1、 锂离子电池材料显微智能分析系统(LIBMAS)锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,最终导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。图一:汇鸿锂离子电池显微智能分析系统针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。1) 开裂球识别:通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图二:软件智能区分开裂球和普通球通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。图三:二次球截面孔隙识别2)团聚体颗粒识别:正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在最短的时间内快速获得标准化的统计结果,如图四。图四:一次颗粒团聚形成的二次球颗粒识别电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。图五:软件自动区分团聚颗粒及团聚颗粒截面3)单晶颗粒识别:相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。图六:单晶颗粒的识别4)大小二次球识别:除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图八。图八:大小二次球颗粒分布均匀性识别和统计5)隔膜孔隙率统计:锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图九:隔膜孔隙识别及孔隙率统计汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。二、锂离子电池异物分析系统(LIBIAS)目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。图四:颗粒类型占比饼状图(左),三元统计相图(右)汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. DOI: 10.7498/aps.67.20180757.[2] Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method.DOI:10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode.DOI:10.1126/science.abc3167[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46(14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168.作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
  • 环球分析测试仪器有限公司助力第三届中国国际氢能及燃料电池高峰论坛
    2024年4月11日-4月13日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在重庆帕格森蒂两江蒂苑酒店举办的“第三届中国国际氢能及燃料电池高峰论坛暨展览会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借其性能优异、简洁易用操作软件、强大离线数据分析软件、优越性价比及强大的拓展功能等诸多亮点受到广大参会科研学者的支持。 本次大会以“氢助双碳、引向未来"为主题,邀请来自政府主管部门、行业精英、涉氢企业、社会组织负责人、专家学者、企业家等齐聚美丽山城。旨在促进氢能产业技术“政、产、学、研、用"协同发展,推进氢能产业链基础设施建设,深入拓展氢能产业领域相关新技术、产品示范应用,助力实现双碳目标,推动氢能产业高质量发展。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 有“锂”走天下,兰格智能泵助力新能源锂电池行业
    最近,国内成品油价一直在变动,成为街头巷尾的谈资。与此同时,锂电池作为新能源汽车的动力来源行业也面临材料价格上涨,相关话题频上热搜。受益于新能源汽车行业飞速发展,锂电池新材料的研究也愈发火热。其中,全固态锂离子薄膜电池由于安全性更高等优点,日益受到重视。薄膜型全固态锂电池是在传统锂离子电池的基础上发展起来的一种新型结构的锂离子电池。其基本工作原理与传统锂离子电池类似,即在充电过程中Li+从正极薄膜脱出,经过电解质在负极薄膜发生还原反应;放电过程则相反。过程中电解质起着至关重要的作用,直接影响到薄膜电池的充放电倍率、循环寿命、自放电、安全性以及高低温性能。以某个全固态薄膜锂电池生产试验线的实际应用为例:兰格某客户在电解质试验工艺中,需要三个泵为一组,在不同的时间点输送试剂,一个小时为一个循环,一天连续工作8小时。挑战对于这种复杂的进样体系,常规的实验室人工管理显然无法满足要求,需要使用PLC、电脑等实现设备的自动化管理。对于常规的化学、材料实验室,这就大大增加了试验的难度,需要通过自动化工程来完成。尤其,研究人员想要随时改变实验参数,也难以灵活实现。兰格解决方案对于实验的过程进行模块化分解,兰格智能型蠕动泵可提供9种运行控制模块(匀速、匀加速、匀减速、阶梯加、阶梯减、正弦、均匀分配、减量分配、增量分配)和8种逻辑控制模块(方向、暂停、循环、事件触发、延时、跳转、外控输出、结束)。研究人员可以像搭建乐高积木一样,来使用智能蠕动泵。例如上述的电解质试验工艺,兰格智能泵程序可以做如下设定:更多优势:如果研究人员需要改变其中的步骤,只需插入或删除相应模块即可。如果要修改某个模块的运行参数,直接进入模块进行修改即可。同时整个工作过程可以保存为方法,在后续的试验中可以直接调用。新能源车行业是我国战略性新兴产业,而且锂电池和5G、化学储能、碳中和等等也都息息相关,未来仍将有“锂”走天下。兰格智能蠕动泵应对不同需求,可提供多种运行/逻辑控制模块的灵活选择,助力科学家与工程师实现更便捷的操作,提高有效性、可靠性和智能体验,为全球碳中和事业作出贡献!
  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到 智能全自动薄膜阻隔性测试仪
  • 游泳池水质测试仪该怎样选择?
    游泳池水质测试仪该怎样选择?【霍尔德电子HED-YL04】众所周知,泳池水质卫生新国标于2019年11月01正式实施,这是国家强制性必须实行的,年受到疫情影响很多泳池场所未开业,即使开放了去游泳的人的屈指可数,但是在水质处理方面不能落下,去年11月才实施新国标,那时很多泳池由于天气等各方面原因,早已经闭馆,所以对泳池水质新标准需要重新认识一下。余氯在泳池水中的作用很大,余氯主要来自于池水加入氯消毒剂一定时间后,所剩余的氯,称之为余氯。余氯值是直接体现消毒效果的指标,因此要让泳池水有持续杀菌的能力,每天都要投加氯消毒剂,新标准中余氯范围应在:0.3-1.0mg/L。 水质检测仪器配合快速显色检测试剂,可“快速、简单、准确、稳定”进行测量,拥有精美的外观造型,简单的操作界面,准确的检测系统,帮助用户获得精细的数据,可更准确、有效的分析水体状况,提预防,及时避免损失。应用行业:适用于 饮用水、自来水、医疗废水、工业污、河流监测、游泳场馆、水源保护、生产监测、科研实验等。仪器特点:安卓智能系统操作更佳简便快捷;内置操作流程、操作简单、无需培训、直接上手;检测速度快,现场读取数据;便携式体积小,重量轻,方便户外检测;外形小巧美观,工作稳定免维护,具有较好的性价比;采用进口冷光源,光学性能稳定,寿命长达10万小时;参数指标:余氯:0~3mg/L、0~20mg/L总氯:0~3mg/L、0~20mg/L二氧化氯:0~5mg/L,0~20mg/L臭氧:0~6mg/L波长范围:340~800nm测量方式:光电比色测量误差:≤5%重复性:0.5%稳定性:0.5%波长选择:自动操作系统:安卓智能操作系统显示屏幕:3.5寸彩色液晶触摸屏灵敏度(吸光度):0.001使用环境:温度0~50℃,湿度0~90%数据存储:80000条以上通讯:Type-C、WIFI、热点、蓝牙电池:5600mAh锂电池连续工作时间:12小时供电电压:5V/DC直流尺寸:180mm*80mm*70mm重量:700g支持语言:简体中文或英文
  • 国内首款智能一体式手套完整性测试仪GIT-WLAN
    智能一体式手套完整性测试仪GIT-WLAN内置锂电池,无需外接电源,充电方便;具有微电脑控制,LCD显示数据功能。与传统笨重的手套检漏仪相比,GIT-WLAN结构精巧,轻量化设计,单手即可轻松提起,使用更方便。 GIT-WLAN通过先进的WIFI功能,与PC端无线连接,无线传输检测数据,使用更灵活方便。PC端在线检测,可同时检测多个手套,无需拆卸手套;支持离线检测,离线检测需配置手套检测支架。 手套完整性测试仪软件具有多种测试设置程序,可对多种手套进行测试。满足21CFR part 11电子记录和电子签名认证要求。 应用先进的射频识别技术,自动识别手套编号,读取测试结果。 内置专用充气泵为手套/袖套充气,无需外接气源;全自动监控测试过程中充气密封圈和手套内的压力。 GIT-WLAN智能一体式手套完整性测试仪依据GB/T 25915.7-2010/ISO 14644-7:2004标准研发,完全符合法规要求。应用广泛 智能一体式手套完整性测试仪GIT-WLAN压力检测范围广,涵盖所有手套检测压力,适用于无菌检查隔离器、RABS系统、无菌分装、无菌生产等手套检漏。
  • AI助力新能源分析: 锂离子电池材料显微智能分析方案
    随着我国新能源汽车产业的规模越来越大,对动力锂电池的需求,也逐步增加。电动汽车的主要能量源是动力电池,其发展和应用在很大程度上受动力电池性能影响。锂离子电池发展至今,凭借其高电压、高能量密度、良好的循环性能和绿色环保等优势成为在新能源应用中广泛的化学储能器件之一。图1:锂离子电池的组成示意图 锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。随着对锂离子电池的研究不断深入,电池工业界正在迅速向更高能量密度和更低成本的电池技术努力,以达成零碳排放的目标。 但是目前在锂电池使用或储存过程中仍会出现一定概率的失效,一类是锂离子电池的材料自身缺陷引起的失效,例如正负极的结构衰退,电解液分解,隔膜的老化等;另一类是锂离子电池使用及存储环境引起的失效,例如环境温度过高,充放电过快,过度充放等,都严重降低了锂电池的使用性能、一致性、可靠性和安全性。图2:锂离子电池失效模式 虽然产品的诞生伴随着失效,但只要充分了解失效原因,掌握分析失效的方法和利器,就能从根本上找到并解决失效问题。对于锂电池来说,其失效归根结底是材料的失效。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎;硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化;隔膜孔隙阻塞等。电池性能和电池材料性质有着息息相关的关系,准确把握材料的特性,是解决电池问题并提升电池性能的重要途径之一。 软件特点简介 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”LIBMAS—锂离子电池材料显微智能分析系统”(以下简称LIBMAS),将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 针对传统软件自动化程度不足,操作复杂的弊端,汇鸿智能科技可为客户量身定制专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、二次颗粒分布均匀性、开裂球识别、截面孔隙统计、隔膜材料孔隙分析等锂电池材料分析。 应用案例0101开裂球、截面孔隙识别 通常在制备三元正极材料时,采用共沉淀法使亚微米一次粒子致密堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图1:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图1。 在锂电池中,锂离子在正极晶格中反复脱嵌,随着电流密度和颗粒尺寸的增加,仅仅几个循环就出现晶间裂纹。而产生的裂纹对电池性能、SOC、以及锂离子传输路径都会有一定影响。图2:二次球截面孔隙识别 正极颗粒内部通常为二次球颗粒形成的多晶结构,导致正极晶格在循环中容易发生各向异性体积变化,而产生孔隙。我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图2。使用LIBMAS对截面孔隙进行识别,以轮廓中心点为圆心画出同心圆,以各同心圆圆环内的孔隙率计算同心圆孔隙率RSD,见图3。 图3:二次球截面孔隙率统计及RSD计算 0202团聚颗粒识别 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的粒径在几个到十几个微米之间的二次颗粒。图4:一次颗粒团聚形成的二次球颗粒识别 通常团聚体颗粒内部较为密实,一次粒子之间连接处存在晶界。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图4、图5。图5:软件自动区分团聚颗粒及团聚颗粒截面 相对于单独的纳米粒子,这种形貌的团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。 然而在团聚体反复的充放电过程中,团聚体内部也反复经受一次颗粒体积变化产生的应力冲击,容易在一次颗粒之间的晶界处发生破碎。破碎后的颗粒不仅增大了活性物质的比表面积,进而加剧了活性物质和电解液之间的副反应。而且破碎后的一次粒子之间失去了有效的电接触,也进一步增加了电极材料的阻抗,不利于循环性能的保持。 03单晶颗粒识别图6:单晶颗粒的识别 团聚体的破碎受多种因素影响。减小体积变化程度可以减小应力应变对团聚体的损伤;另外,从前驱体和烧结工艺入手以尽可能增强烧成的团聚体颗粒内部密实度,增强一次粒子之间的结合力,从而提高团聚体颗粒抗破碎的能力。 另外,相比易产生颗粒粉碎的多晶正极材料,许多研究已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图6、7。 图7:单晶颗粒尺寸统计及分布图 04大小二次球识别 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图8、9。图9:大小二次球颗粒分布均匀性统计05隔膜孔隙率统计 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实,隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图10:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图10、11。 图11:隔膜孔隙率统计结果及孔隙面积分布图 针对锂电行业的特殊需求,汇鸿智能科技开发了一整套智能化锂离子电池材料分析系统。汇鸿智能科技公司是一家国际前沿微观AI图像分析生态平台开发公司,以“AI 即专家”为使命, 驱动AI技术,加速实验室智能化升级,构建实验室全场景智慧,为工业分析和质量控制赋能。
  • 利好科学仪器!欧盟电池法正式生效:电池回收、碳足迹要求升级
    仪器信息网讯 8月17日,欧盟官方公示满20天的《欧盟电池和废电池法规》(下称《欧盟电池法》,法规全文见文末附件)正式生效。核心要点:谁生产谁回收、谁进口谁回收。《欧盟电池法》对生产者责任延伸、电池回收管理、数字电池护照等提出更高要求,明确自2027年起,动力电池出口到欧洲必须持有符合要求的“电池护照”,记录电池的制造商、材料成分、碳足迹、供应链等信息。这将对中国动力电池企业出口欧洲产生重大影响。《欧盟电池法》生效利好科学仪器行业。新法规对电池回收、碳足迹、电池护照要求升级背后,科学仪器测试技术支撑作用突显,新法规文件中,“测试”一词出现达82次。如法规文件附件五的安全参数部分,依次对热冲击和循环、外部短路保护、过冲保护、过放电保护、过温保护、热传导保护、外力引起机械损伤、内部短路、热滥用、着火试验、气体排放等相关测试项目进行了描述。且多个测试项目明确要求需采用最先进的测试技术或测试仪器设备。《欧盟电池法》对于投放到欧盟市场的所有类型电池(除用于军事、航天、核能用途电池)提出了强制性要求。这些要求涵盖可持续性和安全、标签、信息、尽职调查、电池护照、废旧电池管理等等。同时,新电池法详细规定了电池以及含电池产品的制造商、进口商、分销商的责任和义务,并建立了符合性评估程序和市场监管要求。据华泰证券分析,《欧盟电池法》对我国产业链或将带来三方面影响:第一,碳排放的相关要求或将强制出口企业进行零碳转型,在生产技术上将向着高效低能耗、环保低碳等方向进行革新 第二,有望倒逼国内回收体系完善,长期将带动国内产业链的绿色转型,推进行业的可持续发展。回收要求趋严或利好已和海外厂商合作布局回收的企业 第三,电池护照旨在确保供应链的透明度,出口企业将面临护照数据库建设、护照管理系统维护及国际统一标准构建等挑战。《欧盟电池法》目录一览:第1章 一般规定第2章 可持续性和安全性要求第3章 标签、标记和信息要求第4章 电池一致性第5章 合格评定机构的通知第6章 第七、八章以外经营者的义务第7章 经济运营商在电池尽职调查政策方面的义务第8章 废电池管理第9章 数字电池护照第10章 第十章联合市场监督和欧盟保障程序第11章 绿色公共采购和修订限制的程序第12章 授权和委员会程序第13章 修正案第14章 最后条款附件1对物质的限制附件2碳足迹附件3通用便携式电池的电化学性能和耐久性参数附件4 LMT电池、容量大于2kWh的工业电池和电动汽车的电化学性能和耐久性要求附件5安全参数附件6标签、标记和信息要求附件7确定电池健康状态和预期寿命的参数附件8合格评定程序附件9欧盟一致性声明编号(申报的识别号)附件10原材料和风险类别清单附件11废旧便携式电池和废旧LMI电池收集率的计算附件12储存和处理,包括回收,要求附件13电池护照中应包含的信息附件14废旧电池装运的最低要求附件15相关表附:欧洲电池法规Battery regulation approved by EU Parliament.pdf
  • 动力电池安全性能检测实验室场地建设规划条件
    p   近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg" / /p p strong span style=" color: rgb(31, 73, 125) "   span style=" color: rgb(84, 141, 212) "   span style=" color: rgb(0, 112, 192) " 一、(规划)锂电池实验室设计依据及设备部署: /span /span /span /strong /p p    strong 1、依据标准规范: /strong /p p   满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。 /p p   实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。 /p p   1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。 /p p    strong 2、(规划)锂电池实验室设备布局: /strong /p p   在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区: /p p   1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。 /p p   2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。 /p p   3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。 /p p   4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。 /p p   5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。 /p p    strong 注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 二、(规划)锂电池实验室测试程序: /strong /span /p p    strong 1. 电池材料检测 /strong /p p   电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg" / /p p   工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。 /p p    strong 2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg" / /p p    strong 3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。 /p p img title=" 4.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg" / /p p    strong 4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测 /strong /p p   电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg" / /p p    strong 5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险: /strong /p p   1)着火、燃烧、爆炸 /p p   磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。 /p p   电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。 /p p   2)有毒气体的排放 /p p   由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。 /p p   3)漏液的污染性 /p p   电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、(规划)锂电池实验室——通风系统特点: /strong /span /p p   1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。 /p p   2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。 /p p   3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。 /p p   4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。 /p p   5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。 /p p   6、实验室的通风换气次数取每小时10~20次。 /p p   7、支管内风速取6~12m/s,干管内风速取8~14 m/s。 /p p   8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、(规划)锂电池实验室——内部装饰 /span /strong /p p    strong 1、天花 /strong /p p   (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。 /p p   (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。 /p p   (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。 /p p   (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。 /p p   (5)洁净室采用彩钢板天花板。 /p p    strong 2、地面 /strong /p p   (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。 /p p   (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。 /p p   (3)在装修过程中,抛光砖的铺设最适合于办公场所。 /p p   (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。 /p p   (5)洗涤室利用原有地面,节约成本。 /p p   (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。 /p p    strong 3、墙体 /strong /p p   (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。 /p p   (2)采用其他墙体全部贴500*500抛光砖 /p p   (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。 /p p   (4)采用玻璃间隔的设计使得开放式实验成为一种可能。 /p p   (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。 /p p    strong 4、门窗 /strong /p p   (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。 /p p   (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。 /p p    span style=" color: rgb(0, 112, 192) " strong 四、(建议)锂电池实验室注意事项: /strong /span /p p   实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。 /p p    strong 1.爆炸前预警: /strong 由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。 /p p    strong 2.爆炸过程控制: /strong 电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。 /p p    strong 3.污染物可回收: /strong 污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。 /p p    strong 4.试验室防爆系统: /strong 房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。 /p p    strong 5.每个防爆室配置有防爆灯,视频监控探头。 /strong 视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。 /p p    strong 6.充放电区: /strong 设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。 /p p    strong 7.消防要求: /strong 在人员操作区和样品区设置有消防烟感探头。 /p p    strong 8.视频监控要求: /strong 共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。 /p p    strong 9.实验室噪音: /strong 实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。 /p p    strong 10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。 /strong 设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 五、(规划)锂电池实验室水电要求: /span /strong /p p   1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /p p   2.独立地线:接地电阻≤4Ω /p p   3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /p p   4.排水:配管连接直径Φ100。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、(设计)锂电池实验室测量系统精度: /strong /span /p p   1.所以控制值的准确度应在以下范围内 /p p   2.电压:± 1.0% /p p   3.电流:± 1.0% /p p   4.温度: ± 2℃ /p p   5.时间:± 1.0% /p p   6.尺寸:± 1.0% /p p   7.容量:± 1.0%。 /p p    strong span style=" color: rgb(0, 112, 192) " 七、锂电池防爆实验室典型设计应用: /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " img title=" 6.png" src=" http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg" / /span /strong /p p style=" text-align: center " (锂电池实验室效果图) /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg" / /p p style=" text-align: center " (测试系统综合交钥匙工程) /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg" / /p p style=" text-align: center " (电池整体实验室正面) /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg" / /p p style=" text-align: center " (电池整体实验室背面) /p p    strong 作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器) /strong /p
  • 理化所高电流密度下可充放电式锌空气电池研究取得进展
    p   可逆锌空气电池具有价格低廉、环境友好和能量密度高(1084Wh kg-1)等优势,在便携式交通工具和能量储存器件应用方面潜力巨大。该电池的核心组分是驱动氧还原反应(ORR)和析氧反应(OER)的双功能催化剂,但存在动力学缓慢及循环稳定性差等问题。因此,发展廉价、高效的双功能催化剂,对于推动可逆锌空气电池的实际应用具有重要意义。 /p p   氮化物,如Ni3FeN等,因其独特的电子结构和半金属特性,在电催化氧气还原反应(OER)中,表现出优异的性能。但将Ni3FeN应用于可逆锌空气电池中,面临两个问题:一是氮化物的ORR活性低 二是氮化物的在合成过程(氨气气氛煅烧)中易团聚,难以得到更小尺寸、更多活性位暴露的氮化物,阻碍其OER性能的进一步提升。 /p p   近日,中国科学院理化技术研究所超分子光化学研究团队研究员张铁锐课题组采用“一石二鸟”的策略,通过引入钴氮共掺杂碳载体(Co,N-CNF),有效减轻Ni3FeN在高温合成过程中的团聚问题,从而缩小其尺寸至14nm 同时Co,N-CNF本身具备优良的ORR性能。因此,Ni3FeN/Co,N-CNF复合物的OER性能明显优于贵金属IrO2,ORR性能超过商业化Pt/C,该双功能催化剂可实际应用于可逆锌空气电池,并在高电流密度(50 mA cm-2)下长时间稳定工作。该策略为设计和合成多功能催化剂提供了新思路,可广泛应用于金属空气电池、可充放电式燃料电池、全分解水以及其他能源领域。 /p p   研究结果以3D Carbon Nanoframe Scaffold-immobilized Ni3FeN Nanoparticle Electrocatalysts for Rechargeable Zinc-Air Batteries’Cathodes为题发表在Nano Energy上。 /p p   研究工作得到科技部国家重点基础研究计划、国家自然科学基金委优秀青年科学基金项目、国家“万人计划”-青年拔尖人才支持计划、中科院战略性先导科技专项(B类)等的支持。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/9fe2701e-b381-4d1d-a592-676044849fe8.jpg" / /p p style=" text-align: center " strong Ni3FeN/Co,N-CNF复合物应用于可逆锌空气电池 /strong /p p & nbsp & nbsp & nbsp 论文链接:3D Carbon Nanoframe Scaffold-immobilized Ni3FeN Nanoparticle & nbsp Electrocatalysts for Rechargeable Zinc-Air Batteries’ Cathodes /p
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • Delta德尔塔仪器告诉您——如何才能杜绝电动自行车电池自燃
    5月10日晚上,成都市丛树家园小区一电梯内电瓶车起火,导致包括一名婴儿在内的多人烧伤视频在网上传播后,牵动人心。 电梯监控视频显示,10日19时33分,一男子乘电梯下楼,随后电梯停在某层楼,一名妇女怀抱着一名婴儿进入电梯,电梯继续下行。19时34分23秒,电梯再次停下,一男子推着一辆电瓶车进入电梯,身后还有一名双手提着物品的男子也紧跟进入。19时34分34秒,就在电梯门关闭瞬间,一秒钟时间不到电瓶车底部突然冒起浓烟,瞬间闪起了火光,电梯内迅速被火光和浓烟覆盖。视频显示,冒烟发生同时,推电瓶车的男子迅速伸手按了一下电梯开关。事发时,电梯内有4名大人和1名幼儿。对此很多网友表示,坚决反对电瓶车上楼! 对于网友的评论,我有不同的看法,作为主动方面,禁止电动自行车车进入电梯确实是可行的,但我们不能一昧的谴责推电动自行车进入电梯的男子,却往往忽略了z大的危害源头是电动自行车的电池。电动自行车是为了方便市民的工具,而不是成为大家“闻风丧胆”、相互嫌弃的工具。只有生产厂家按照国家的标准,做好安全检测才投放到市场,这才是遏制电动自行车电池自燃最有效的方法。由国家市场监督管理总局、国家标准化管理委员会批准的GB/T 36972-2018《电动自行车用锂离子蓄电池》国家标准于2018年12月28日正式发布,将于2019年07月01日正式实施,该标准对推动电动自行车用锂离子电池综合标准化工作及电动自行车锂离子电池推广应用具有重要意义和作用,同时也为电动车用锂离子电池领出了一条健康、可持续发展的道路。 Delta德尔塔仪器专业致力于GB/T 36972-2018《电动自行车用锂离子蓄电池》的研发和定制,可为客户提供锂电池安全检测实验室整体打包、一站式交钥匙工程服务。客户只需要提供试验场地,其他的交给我们为您搞定! (电动自行车锂电池安全测试系统综合交钥匙工程)《电动自行车用锂离子蓄电池》(GB/T 36972-2018)检测设备推荐清单序号测试项目本标准条款关键设备设名称辅助功能/引用标准能力说明要求试验方法1. I2(A)放电5.2.16.2.1① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1) 可选配充放电测试通道数和测试额定电流、电压;2) 防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。2. 充电6.2.1.13. 放电6.2.1.24. 2I2(A)放电5.2.26.2.25. 低温放电5.2.36.2.3① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配高低温试验箱内箱容积和温度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。6. 高温放电5.2.46.2.47. 荷电保持能力及荷电恢复能力5.2.56.2.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配恒温箱内箱容积和温度、湿度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。8. 荷电保持能力6.2.5.19. 荷电恢复能力6.2.5.210. 长期贮存后荷电恢复能力5.2.66.2.611. 循环寿命5.2.76.2.712. 内阻5.2.86.2.8① 电池内阻测试仪(推荐型号:HK3561R)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。13. 过充电5.3.26.3.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。14. 强制放电5.3.36.3.315.外部短路5.3.46.3.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路16.挤压5.3.56.3.5① 电池挤压试验机(0-35KN)(推荐型号:GS-MST930)1) 可选配挤压+针刺(穿刺试验)功能;2) 可选配红外摄像监控系统、自动灭火器装置、废气回收净化装置。17.机械冲击5.3.66.3.6① 机械冲击试验机(600g)(推荐型号:GS-MST980)可选配峰值加速度和试验负载18.振动5.3.76.3.7① 电磁振动试验机(0~400Hz)(推荐型号:GS-MST970)X,Y,Z三轴向振动;可选配振动频率、振幅范围及试验负载。19.自由跌落5.3.86.3.8① 电池跌落试验机(定向X,Y,Z)(推荐型号:GS-MST960)X/Y/Z定向跌落;可选配热成像相机、自动灭火器装置。20.低气压5.3.96.3.9① 高空低气压试验箱(11.6KPa)(推荐型号:GS-MST950)可选配试验箱体积(内容积)21.高低温冲击5.3.106.3.10①高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)可选配高低温试验箱内箱容积和温度范围22.浸水5.3.116.3.11① 电池水浸泡试验箱(推荐型号:GS-MST10)可选配实验水箱容积及温度控制范围23.过充电保护5.4.26.4.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。24.过放电保护5.4.36.4.325.短路保护5.4.46.4.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路26.放电过流保护5.4.56.4.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。27.静电放电5.4.66.4.6 ① 静电放电发生器(20kV)(推荐型号:ESD61002TA)引用标准:GB/T 17626.2-200628.模制壳体应力5.5.16.5.1① 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。29.壳体承受压力5.5.26.5.2① 电池壳体抗压试验装置(推荐型号:GS-KYL503)试验压力:250N30.壳体阻燃性5.5.36.5.3①水平垂直燃烧试验机(PLC+触摸屏)(推荐型号:GS-HUVL90)引用标准:GB/T 5169.16-201731.外形尺寸5.6.16.6.1① 游标卡尺(推荐型号:0-300mm)选配指针式/数显,测量量程可选32.充放电接口5.6.26.6.2目检引用标准:QB/T 442833.外观5.6.36.6.3目检/34.极性标志5.6.46.6.4酒精耐磨试验机(推荐型号:GS-YCR02)/合计需要仪器数量:约18台(国家纳米科学中心——锂电池实验室交付现场图片)设备已经成功运用到各大专业测试机构和生产厂家提供服务。第三方检测机构例如:广州SGS通标实验室,上海天祥ITS实验室,昆山出入境技术检验中心,广东质检院,深圳计量院,福建质检院(马尾基地),东莞标检产品检测有限公司(STC),各大企业例如:爱玛电动车,绿源电动车,喜德盛电动车等生产厂家品质研发部,深受客户好评。未来,Delta德尔塔仪器将持续用高品质的产品和服务,为电动自行车和电动助力车行业的发展添砖加瓦,为市民便捷出行、公共交通领域保驾护航,让人们生活的更加安全、舒适、和谐。张工yi八1,28零28677(WX同号)
  • 电弛新能源亮相CIBF 2024重庆国际电池技术交流展览会
    4月27日,重庆国际博览中心,第16届中国国际电池技术交流会/展览会盛大开幕。本次展会由中国化学与物理电源行业协会主办,以“链动全球赋能绿色驱动未来”为主,共计2200多家业内知名企业全方位、多维度参与展示全新技术成果,助推中国新能源产业高质量发展。作为此次展会参展商,电弛新能源携多款重磅产品亮相,展示在锂电池、氢能领域的测试技术产品,包括GPT-1000原位产气量测定仪、IPT-2000气体内压测测定仪、SFT-3000原位膨胀力测试仪、980Pro燃料电池测试系统、780电解水制氢测试系统、DSR数字型旋转圆盘电极等多款产品。近年来,我国新能源行业蓬勃发展。“新质生产力”引领绿色低碳发展。电池行业已然由高增长阶段迈入高质量发展阶段,人们更多地把目光投向电池的性能安全,从源头上开发更安全的电池产品。电弛新能源加大创新投入,基于电池原位产气量、内部气压、膨胀力等关键领域展开研究,研制了先进的电池测试设备,对于探索优化电池材料、结构,具有重要意义。在展会现场,电弛新能源以“专于电池,精于测试”为主题,带来的系列全新电池测试应用解决方案吸引了不少嘉宾的关注。“大家的热情超出我们的预期,对我们展示的最新电池测试技术产品兴趣浓厚,电弛新能源期待与业界朋友合作,一起助力中国电池产业发展”,电弛新能源代表感慨现场观众的热情,认真解答专业技术问题,介绍新产品特色功能。GPT-1000 原位产气量测定仪GPT-1000电池原位产气量测定仪可实现对锂/钠/半/全固态电池化成、过充、循环及存储等不同阶段产气情况的在线或离线监测。该系统提供一整套原位产气量与产气组分的在线测试解决方案。IPT-2000 原位气体内压测定仪IPT-2000原位气体内压测定仪采用先进的GSP气体采样接口设计,实现了对多种不同规格电芯的适配,满足大规模电芯测试的需求,进而为电芯产气分析、失效模式研究以及热失控安全性评估提供强有力的技术支持。SFT-3000 原位膨胀力测试仪SFT-3000原位膨胀力测试仪可在模拟真实的电池充放电工况下,对多种不同形态的电池进行膨胀尺寸和膨胀力的精确评估,助力电极材料的研发和电池膨胀机理的深入分析研究。近年来,我国氢燃料电池汽车产销量高速增长,氢燃料电池测试、电解水制氢等专业设备需求井喷,通过这些仪器设备,开发先进的氢能技术产品,有着重要意义。在本次展会上,电弛新能源展示了近年来在氢能技术研发成果,得到了与会专家、学者的关注。980Pro 燃电池测试系统980Pro燃料电池测试系统是专为PEM燃料电池膜电极(MEA)和电堆性能评估而设计的先进测试平台。可对燃料电池的性能和稳定性进行全面评估,已成功部署国内多所高校实验室。780 电解水制氢测试系统780电解水制氢测试系统兼容PEM与AEM技术应用的创新型电解水制氢测试系统。充分考虑了中国实验室的操作习惯。DSR 数字型旋转环盘电极在展台上,数字型旋转圆盘电极DSR凭借具有中国特色的“千山绿”设计吸引众多嘉宾围观,科技彰显人文,DSR凭借“数字化、更精准、‘狠’稳定”的技术优势,助力中国催化剂及氢能科研。目前,重庆国际电池技术交流会/展览会(CIBF2024)火热进行中,欢迎大家参观电弛新能源展会交流互动!
  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 小菲课堂|声学成像技术在局部放电监测中的应用(一)
    高压局部放电局部放电是电力设备绝缘在足够强的电场作用下局部范围内发生的放电,每一次局部放电对绝缘介质都会产生一些影响,使绝缘强度下降,造成高压电力设备绝缘损坏,甚至会造成人安全隐患。目前,预防性维护人员已经开始使用声学成像技术定位局部放电,甚至能在设备过热之前就发现设备特有的声音特征。与FLIR红外热像仪配合使用,像FLIR Si124之类的声学成像仪是必不可少的设备,可以有效地发现局部放电,避免出现设备故障、代价高昂的损坏和意外停机等问题。局部放电的过程与危害根据IEC 60270的正式描述,局部放电指“只是局部地桥接导线间绝缘体的局部放电现象,可能发生在导线附近,也可能发生在其他地方。通常,局部放电是局部电应力在绝缘体或绝缘体表面集中的结果,一般表现为持续时间远远小于1毫秒的脉冲。电流总是趁人不注意时试图逃逸、跳离导线、徒劳地尝试桥接附近的电极。在寻找逃逸路线时,它首先会从老化的绝缘体上的裂缝开始。如果是架空电线,则是从因多年积污的电线表面开始。也许是在高压电缆的纸绕组上戳一个小孔,也可能隐藏在老化的液体电介质中形成的气泡附近。在电压正弦波的每个波峰和波谷,它都会持续不断地尝试(局部放电)。电流就这样日复一日地试图穿越到相邻的导线上,肉眼却无法看到这类局部放电。受持续性高压应力影响,附近的绝缘材料会在某个时刻失效,丧失对电流的约束。最终,电流会分流进入另一导线。这种情况发生时,导线会完全失效。这会对线路上连接的电气设备、开关设备、机械或设施造成了极大的破坏,代价高昂。局部放电有可能损坏工厂设备或灼伤敏感的电子设备。严重时,局部放电可能导致社区停电数小时,闲置设备,浪费宝贵的生产力。声学成像仪是预防性维护的必要工具局部放电检测是状态监测(CBM)或预防性维护(PdM)计划切实发挥作用的必要条件。越早发现,局部放电对绝缘体的损坏就越少,设备故障和后续停机风险也就越低。追踪局部放电问题有着简单的经济动机:发现问题,安排停机,然后在局部放电现场修复和更换绝缘体及电气接头,其成本和破坏性要低得多。为了准确定位局部放电,电气承包商、检查人员和专业维护人员可以使用多种诊断技术。绝缘测试仪提供了绝缘体的有效性或电阻的数值读数。FLIR红外热像仪可以定位并识别电气设备产生的阻热,通过逐像素的温度读数在可视图像中精确定位问题所在。还可以将热成像技术与声学成像技术结合起来,确定局部放电的严重程度。温度升高和声学特征可以表明绝缘设备的完整性遭到破坏。FLIR Si124满足声像仪的所有需求作为整个诊断生态系统的一部分,FLIR在红外热像诊断方案以外,还推出了声学成像解决方案。FLIR Si124工业声学成像仪是一款基于声学原理的解决方案,它可以定位和分析工业故障、老化以及缺陷如局部放电等。研究发现,在元件发热到能被红外热像仪检测到之前,局部放电会导致声音异常。这就为我们额外提供了一层提示,帮助我们提前检测到潜在的故障。虽然我们经常能在电线附近听到嗡嗡声,但人耳通常是听不到局部放电的,因此局部放电人耳很难定位,尤其是在过于嘈杂的工作场所。借助手持式声学成像仪(FLIR Si124),用户可以扫描一整个区域,在被检组件的声像图上看到局部放电产生超声波的位置,即使人耳听不到、背景噪声很大也没关系。虽然在声学成像方面,电工有许多工具可选,但从便携性到精度,需要考虑多种因素。首先,虽然大多数声学成像工具都很轻便,但要选择便于换场作业的款式。选择一台简单易用、单手可握、携带方便,符合人体工学设计且便于瞄准的手持式成像仪。很显然,FLIR Si124工业声波成像仪很好地满足了以上所有要求!麦克风更多,检测速度快10倍科技领域有一条通用法则:越多越好。从这个意义上讲,声学成像仪中增加麦克风的数量对形成细节丰富的声学图像至关重要。同样在科技领域,对于麦克风本身而言,(体积)大不一定好,因此使用MEMS(微机电系统)类型的麦克风。这类麦克风的性能达到了良好的平衡,能在不同环境下稳定地工作,功耗低,支持小体积电池,续航时间长。另外,体积小意味着更容易把它们紧凑地布置在手持工具上。更多的麦克风,都有哪些优势呢?灵敏度:FLIR Si124声学成像仪搭载了由124个MEMS麦克风精心布成的阵列,这些麦克风相互配合,使灵敏度达到高水平。麦克风越多越可以降低“空间混叠”的可能,也就是降低图像上声源错位的可能。检测范围与访问:增加麦克风的另一个优势是可以扩大检测范围。声音在空气中的传播距离每增加一倍就会衰减6分贝(距离声源15米处听到的声音比30米处听到的声音强6分贝),中型局部放电的分贝值约为40分贝。为了检测范围更广,声学成像仪制造商通过增加麦克风的数量来扩大检测范围。FLIR Si124声学成像仪将麦克风增加三倍,从而使检测范围扩大一倍。出于安全考虑,许多电气设备周围都有栅栏,或者离地较高,很难接近访问。这种访问限制也可能与时间有关,比如需要客户联系人在场时才能进入。鉴于这些访问限制,远距离也能精确定位局部放电的工具就显得至关重要。处理能力:FLIR Si124会产生124个音频数据流,这些数据流经过处理后可转换为视觉图像。这款声像仪搭载了自动音频频率筛选功能,既不牺牲性能,也简化了操作过程。数据和图形处理能力的进步使得将如此大量的声学数据,瞬间整合成屏幕上易于理解的图像成为可能。如果用户选用搭载较少麦克风或老款处理器的成像仪,结果只能得到较低品质图像、较低的分辨率、以及较慢的刷新率。就生产效率而言,像FLIR Si124这样先进的声学成像仪在发现问题的速度方面比其它可用工具快10倍。配备124个麦克风的FLIR声学成像仪不仅检测速度快人一步麦克风频率还会影响检查效果想知道关于声学成像仪的更多理论知识持续关注我们
  • 应用故事 | 热质联用研究废旧锂电池极片在热解过程中的产气情况
    从2010年开始,随着新能源、3C电子和电动工具等领域的快速发展,对锂电池的需求量与日俱增,越来越多的企业投身于锂电池的生产制造,据统计,2015年我国动力电池装机总量为16.5GWh,2022年提高到296GWh。随着时间的推移,使用过程中电池的性能会逐渐衰减,直至报废,目前动力锂电池的平均使用寿命约为4-8年,因此从2018年开始,前期使用的锂电池已开始陆续退役,废旧电池的处理和回收规模后续将越来越大,据估计,2019-2025年我国退役动力电池装机总量预计将由0.2GWh上升至52.0GWh。对于废旧锂电池,目前主要有两种处理方法,一是梯次利用,即将退役电池用在储能等其他领域,这主要针对磷酸铁锂电池;二是拆解回收,即将退役电池进行放电和拆解,提炼原料,从而进行循环利用,有效节约生产成本,三元电池目前以拆解回收为主。回收的主要方法有火法冶金、湿法冶金和生物浸出等,其中湿法冶金回收率较高,日益成为锂电池回收的主要工艺方法。商用锂电池通常由塑料或金属外壳、正极(Al箔上的锂金属氧化物)、负极(Cu箔上的石墨)、电解液(LiPF6、DMC、EC、EMC等)、粘接剂(如PVDF)和隔膜组成,回收的主要目标是正极上的有价金属,如锂、钴、镍。但是,电池废料中的有毒物质在回收预处理过程中排放的废气和导致的潜在危险是一个需要考虑的严重问题。了解电池材料在热解过程中产生的废气种类,有助于选择合适的废气处理措施,降低相关的风险,优化回收工艺。本文以废旧三元电池为例,介绍热质联用方法分析拆解电池极片在热解过程中产生的逸出气体。先将废旧电池进行放电处理,然后在手套箱中拆解,拆出正极片,晾干后进行真空包装。测试仪器为STA-QMS,测试前在空气下打开包装,快速称量样品,放入坩埚,然后放入炉腔内,通入Ar吹扫,将炉腔内的气氛置换为纯净的惰性气氛,以10K/min从35℃升温到700℃,Ar气氛,质谱采用扫描模式,从1amu扫描到120amu。下图为正极片的失重及质谱信号(质谱信息较多,所以分成4张图显示),样品的失重过程主要分为3个阶段,失重量分别为3.62%、2.13%和3.09%。根据质谱的检测结果,第一个阶段的气体产物比较复杂,跟NIST谱库对照后,判断逸出气体可能为H2(m2)、H2O(m18)、HF(m19)、CxHy(m14、m15、m16、m26、m27、m29、m30、m42)、C2HF(m31、m44)、C2H2F(m44、m45、m46)、C3H4O3(m29、m43、m88)、POF3(m69、85、104),第二阶段产物相对简单,逸出气体可能为H2O(m18)、C2H6O(m15、29、45、46)和CO2(m44),第三阶段的逸出气体可能为O2(m16、m32)、CH3F(m33、m34)、CO2(m22、m44)和C2H2F(m44、m45、m46)。通过以上分析可知,200℃以下产生的含氟气体主要来源于电解液,除此以外还有溶剂挥发产生的烃类、酯类物质、及水(游离水或结合水)和氢气,200℃-380℃之间,气体产物主要为水(反应水)、溶剂分解产生的醚类气体和CO2,380℃-700℃间主要为PVDF分解的产物,气体产物为CO2及一些含氟气体,O2可能来源于正极活性物质的分解。利用热质联用可以对极片样品在整个热解过程中的气态产物进行连续检测,从而可以分析极片热解的演变过程,了解气体释出过程和气体类型,为电池回收工艺提供理论基础和指导。热质联用测试正极片分解1热质联用测试正极片分解2热质联用测试正极片分解3热质联用测试正极片分解4作者王荣耐驰仪器公司应用实验室
  • 产品应用|使用等温微量热法测试锂离子电池的质量和性能
    由寄生反应测量推动的研究突破过去十年中,在电池研究、开发和质量控制领域,已将原位和操作中等温微量热法(IMC)用作评估锂离子电池循环期间热流的主要方法。将电池循环至失效可能需要数月的时间,但新兴的诊断测试能够在几周内预测长期行为。此类新兴诊断方法之一是测量电池在循环过程中的寄生热。Krause等人概述了将寄生热事件与总热量生成进行分离的程序,以对寄生反应进行量化,然后利用寄生反应数据以实现:√ 判断电池质量√ 协助活性材料配方的研发√ 研究添加剂的影响√ 研究固体电解质界面(SEI)的形成和增长√ 协助循环和日历寿命预测模型的制定通过了解寄生反应 加强新电池配方的研发J. Krause等人和Jeff Dahn小组研究了不同石墨以及电极配方对电池性能的影响。他们使用TAM III微量热仪测量寄生能量并将其与活性锂损失或库仑效率相关联的早期创新者,“确认寄生能量的来源是锂化电极和电解质之间发生的反应热。”已经证明,他们的方法对研究新材料组合和预测电池寿命是有效的。先前的工作表明,从石墨锂离子软包电池的电解质中去除碳酸亚乙酯(EC)可延长循环寿命和高压运行寿命。S. L. Glazier 等人通过联用TAM III微热量仪和电池循环器测量在高压运行期间的寄生热流,研究了无EC电解质的性能。该团队测量了寄生反应的时间和电压依赖性,以表征电池中复杂的内部反应。他们发现,不含EC的电解质“在较低电压下产生更高的寄生热流,但在4.3 V以上时的表现优于含EC的电解质。”此外,不含EC的电解质在高压暴露后能够更好地恢复到较低的寄生热流。他们的工作证实,不含EC的电解质可提供出色的高性能操作,进一步的研究可帮助改善电池在低电位下的性能,以获得更成功的电池电解质配方。通过高压热流测量 评估新型电池材料L. Glazier等人还通过测量寄生热流和容量保持率对天然石墨和人造石墨电池进行了比较。事实证明,他们的TAM III微热量仪有助于“了解高压锂离子软包电池中寄生反应的电压和时间依赖性。”他们使用IMC在低电压范围内研究寄生反应,以探测电解质在负电极中的反应,然后在高电压范围内进行测试,以探测氧化的正/负相互作用。结果表明,含足够电解质添加剂负载的天然和人造石墨电极将产生相似量的寄生热,人造石墨产生的热量最少。电解质添加剂负载不足会产生更大的寄生热流,并且在高电压范围内的电化学性能显著恶化。长期循环行为表明,与人造石墨相比,天然石墨电池具有更快的容量衰减速度。该小组提出,在电解质负载不足的情况下,SEI层很薄,无法有效承受锂化过程中天然石墨颗粒的机械膨胀,并且由于新的SEI在暴露表面形成,会导致不可逆膨胀和更大的容量衰减率。通过评估寄生反应 为优化高镍NMC阴极制定基线C. D. Quilty等人在研究富镍锂镍锰钴氧化物(NMC)阴极电池的研究中也评估了新型锂离子电池材料。NMC提供了高能量密度,但受到潜在的容量衰减较高的影响,因此必须谨慎限制其容量。要最大限度地提高NMC电池的寿命和高容量,需要使用一套工具来测量容量衰减机制,包括操作中IMC实验。C. D. Quilty等人使用TAM IV微热量仪实时测量(去)锂化过程中的热量,以全面了解了电池退化过程。他们指出,IMC是一个“强大的非破坏性工具,能够以超高精度捕捉循环电池释放的瞬时热流”,为他们的研究提供了帮助。他们发现,在更高电压下,容量衰减率的增加可能由更大的热能浪费或更低的电化学效率引发。他们的结论为未来的NMC阴极优化设定了基准。评估预锂化 对新型锂离子电池加工技术的影响预锂化是一种新的锂离子电池化成方法,该方法在电池单元运行之前增加活性锂含量。预锂化可补偿形成循环中的锂损失,如果操作正确完成,有望获得高能量密度和更好的循环性能。然而,对预锂化可能产生的负面影响仍处于研究阶段。Linghong Zhang等人使用TAM III微热量仪评估了预锂化过程和相关的寄生反应。第一个循环期间,预锂化电池产生了额外的寄生反应,但在三个循环后,“在预锂化电池和对照电池中观察到类似的来自寄生事件的热信号,表明预锂化的稳定性,以及可能不存在长期的副作用。”该研究首次展示了应用等温微量热法评估预锂化,并提供了有关该程序的有前景的结果。他们得出结论,“操作中等温微量热法是表征锂离子电池预锂化应用的有力工具。”未来的研究可继续优化预锂化,监测预锂化添加剂对大规模安全形成电池的影响尤为重要。研究背后的技术上述研究均使用到TA仪器的TAM系列微量热仪,这是一款先进的分析工具,可在受控温度条件下测量样品的热行为。许多研究将TAM与恒电位仪或电池循环器配对使用,使它们能够测量电池运行期间的热流,以获得可靠的结果。TA仪器全新推出的电池循环微量热仪解决方案专为这一应用而构建。该方案将TAM IV微量热仪与BioLogic VSP-300恒电位仪搭配成一个集成系统,从而形成一个端到端的运行中(in-operando)测量工具,在灵活和直观的系统中实时揭示电池在用户定义的温度和电压曲线下的详细热-电化学特性。现在,各级研究人员和科学家都可以通过无缝系统控制和数据分析来测量操作中的电池热流,从而缩短测试时间、加快决策。电池循环器微型量热仪解决方案包括两个主要系统的无缝软件和硬件集成:TAM IV 微型量热仪——可在受控温度条件下测量样品热行为的最先进的分析工具BioLogic VSP-300 恒电位仪/循环器——用于探测材料电性能的研究级电化学分析工具高级集成√ 仅通过一个软件接口,即可提供无缝系统控制√ 实时汇总数据,无需等待漫长的实验完成即可查看初步结果√ TAM ASSISTANT软件可一键进行数据可视化分析,更快提供结果和新见解卓越生产率√ 可同时循环并测量多个电池单元和外形尺寸的寄生热量√ 无需处理或操纵电线,消除了对专项工程的需求以及与定制OEM产品相关的不安全操作风险灵敏可重复√ 温度范围扩展至4℃-150℃,更好模拟现实世界中的应用√ 无与伦比的自放电测量的灵敏度和温度稳定性
  • 国家电动汽车电池及充电系统产业计量测试中心落户光明科学城 光明照耀未来 “超充之城”建设再提速
    日前,记者来到位于光明科学城的国家电动汽车电池及充电系统产业计量测试中心,中心内一派繁忙而有序的工作景象映入眼帘。300台套计量测试装备,可开展500余项计量参数测试,这里集中了最尖端的仪器设备和专业技术人员,他们正致力于推动新能源汽车产业高质量发展。  步入其中,一个大型的环境模拟实验室映入眼帘,这里的温度、湿度甚至气压都可以根据需要精准调控到极寒酷暑等各种极限环境条件。一旁,一辆崭新的电动汽车正在严苛环境下接受考验,技术人员密切监控着车辆电池在高低温循环中的充放电性能表现,以及其对环境变化的响应速度和稳定性。而在另一侧的精密计量区域,一组工程师正利用高精度测量仪器对一块块锂电池模块进行细致入微的检测。  近日,国家市场监督管理总局批准成立国家电动汽车电池及充电系统产业计量测试中心。该中心选址深圳光明,是电动汽车电池及充电系统领域全国唯一的国家级产业计量中心。中心是光明科学城入驻的科研平台之一,在建设期间,围绕电动汽车电池及充电领域深入开展计量测试技术研究,承担国家、省级科研项目27项,制定了国家及地方标准35项,制定国家计量检定规程、规范6项。在电动汽车充电桩远程计量、充电站能耗计量测试、充电桩安全敏感参数计量测试等领域产出一批首创成果,填补行业空白。  落户光明促新能源产业高质量发展  计量测试是产业发展的重要技术基础,与产业变革和技术进步息息相关,作为鼓励类产业被列入国家科技服务业。  为充分发挥计量测试在服务和支撑电动汽车产业发展、提升电动汽车产业核心竞争力方面的作用,国家市场监督管理总局批准深圳市依托深圳市计量质量检测研究院正式成立国家电动汽车电池及充电系统产业计量测试中心(以下简称国家中心)。  为何落户深圳光明?深圳市计量质量检测研究院院长刘铁东告诉记者,国家中心的成立恰逢光明区加快建设世界一流科学城的大好时机,光明科学城是世界级大型开放原始创新策源地、引领高质量发展的中试验证和成果转化基地、深化科技创新体制机制改革前沿阵地,布局建设了一批重大科学基础设施和前沿交叉研究平台,其中包含了国家电动汽车电池及充电系统产业计量测试中心。  光明已成为大湾区重大科技创新载体布局最集中、创新动能汇聚最迅速、综合创新投入力度最大的区域。作为大湾区综合性国家科学中心先行启动区,科学城是光明区最闪亮的名片,2023年光明科学城规划布局的24个重大科技创新载体,在建和运营数达到20个。全社会研发投入首次突破100亿元,占GDP比重达到7.1%,创新动能愈加澎湃。  刘铁东表示,国家中心的成立不仅为光明增添了又一个国家级科技创新平台,也为光明区在新能源汽车、电化学储能、新型电池材料等领域提供国家级一站式的计量测试支撑,将有力促进光明区新能源产业的高质量发展,同时与光明区相关高校、企业、研究机构充分融合,因地制宜发展新质生产力,助推世界一流科学城的建设。  国家中心重点针对产业提质增效和可持续高质量发展中的计量测试难点和需求,构建完备的计量测试体系,提供“全溯源链、全产业链、全寿命周期”并具有前瞻性的计量测试技术服务,着力解决产业当中“测不了、测不全、测不准”的痛点、难点。  标准引领打造“超充服务”新标杆  4月1日起,深圳市正式实施《电动汽车超级充电设备分级评价规范》和《电动汽车集中式公共充电站设计规范》(以下统称“深圳超充标准”),这两项标准是全国首个超充设备分级评价和超级充电站设计的地方标准。  “深圳超充标准”在行业内率先提出“超级充电设备”“全液冷超充设备”等术语定义,并明确超充设备单枪额定功率不低于480kW。光明区发展改革局相关负责人表示,光明区抢抓这一标准带来的市场机遇,认真落实市政府关于建设世界一流 “超充之城”的工作部署,结合新能源汽车产业、超级快速充电技术发展趋势以及城市规划、人口分布等实际情况,重点围绕商业综合体、市政公园、大型景区、公共机构、高铁站、公交场站、高速服务(停车)区合理布局超充站点,满足市民充电需求,同时谋划打造若干光储充检和车网互动一体化示范项目,推动充电设施接入深圳市电力充储放一张网,助力深圳市打造坚强电网。  步入光明区长圳南北停车区的全液冷超充站,一种未来科技气息扑面而来。这处占地广阔的充电站坐落在繁忙的高速公路两侧,犹如一个新能源汽车的能量补给绿洲,镶嵌在快速流动的交通线之中。  这个超充站是全市首座高速服务区全液冷超充站,实现1秒1公里的超快速充电速率,创新的冷却方式确保了即便在高强度连续充电下,充电桩也能保持稳定高效的性能,大大减少了充电过程中的热损耗,为市民提供极速的充电服务,切实缓解市民旅程焦虑。  宽敞舒适的休息区内,司机们一边通过智能屏幕实时查看车辆充电进度,一边感受着这份便捷与科技带来的出行变革。司机陈先生告诉记者,光明科学城不仅追求硬件设施的卓越,更关注用户体验的极致,超充站配备先进的液冷快充技术,只需一杯咖啡的时间,就能让电动汽车“满血复活”。  打造“超充服务”新标杆,截至目前,光明区已建成超充站24座,在建及前期项目15个。2024年,光明区将继续围绕打造世界一流“超充之城”的工作目标,依托光明区停车场资源等,发动充电设施企业投资建设超充站,至2024年底累计达到73座超充站、新增8700个普通充电桩。  绿色发展 “超充之城”跑出加速度  在充满活力与创新精神的光明科学城,一幅描绘未来智慧生活的“超充之城”蓝图正在细腻绘就。  光明区以其前瞻性视野和坚定决心,积极投身于绿色产业的发展,并在此过程中扮演着“超充之城”建设的重要角色,二者相互赋能,共同描绘出一幅可持续发展的未来画卷。  光明区扎实推进超充设施建设,组织华为、星星充电、前海奥特迅、特来电等充电设施行业头部企业研究探讨超充站建设有关要点,形成《超级快速充电设施选址建设有关要求》,指导各街道、各部门完成两批次100余处超充初步选址;组织充电设施行业头部企业与各街道、各部门建立沟通联系渠道,政府部门会同充电设施企业开展选址踏勘、评估工作,促成一批项目合作;定期组织超充建设调度会,协调解决用地性质、租期、用电报装等问题,确保项目顺利推进。  光明区在推动“超充之城”建设的同时,也带动了相关产业的技术迭代升级和服务模式创新。目前已拥有新能源领域规上企业250余家,聚集了贝特瑞、欣旺达等一批行业龙头企业, 越来越多的优质绿色企业、产业纷至沓来。  去年,世界500强企业法国威立雅环境集团粤港澳大湾区总部,正式落户光明科学城。未来,光明科学城将凭借威立雅在减污降碳、资源回收、数字化能源管理等方面的专业技术和知识,助力粤港澳大湾区早日实现“双碳”目标,进一步推动城市智慧能源管理建设。  今年,国家电动汽车电池及充电系统产业计量测试中心落户光明,集聚了电动汽车计量测试领域领先的技术、人才、装备与资质,致力搭建开放、共享的公共技术平台,通过政产学研联动,在智能网联汽车、新型电池、新能源、测量人工智能、高端仪器仪表研发等领域协同创新,打造世界一流科学城的计量测试高地。  政策方面,光明区陆续出台“8+5”产业集群专项政策、 “1151”产业空间政策、行业发展和人才政策,光明区还将在深圳市出台的《支持电化学储能产业加快发展的若干措施》的基础上,制定出台区级电化学储能、光伏储能充电等新能源领域专项扶持政策,驱动绿色循环低碳发展。同时,在马田街道打造平方公里级的新能源新型产业社区,将光明科学城全域打造成为新能源新材料、新技术新产品的应用示范场景。  光明照耀未来。光明区还将继续发挥创新链、产业链、资金链和人才链“四链”融合发展优势,重点围绕新型储能、光伏、氢能等领域强势布局,朝着建设世界一流“超充之城”和新能源产业集聚区目标稳步迈进。
  • 什么是固态电池 ——迎接国际新一轮动力电池技术竞争
    固态电池是一种使用固态电解质替代传统液态电解质的电池,其电解质可以是聚合物、氧化物、硫化物等多种材料。固态电池的结构主要包括正极、负极、电解质和隔膜四部分。与液态电池相比,固态电池具有更高的安全性、更大的能量密度和更长的寿命。来源:《中国固态电池行业研究报告》,前瞻产业研究院固态电池的工作原理与液态电池类似,都是通过正负极之间的离子传递来实现电荷的存储与释放。在充电过程中,正极释放电子,负极吸收电子,同时离子从正极向负极移动,嵌入负极材料中;在放电过程中,电子从负极流向正极,离子从负极向正极移动,释放出储存的能量。工作原理上,固态锂电池和传统的锂电池并无区别。两者最主要的区别在于固态电池电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。而随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。另外,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。固态电池的优势安全性:固态电池采用固态电解质,可以有效防止电池内部短路和漏液,降低热失控风险。同时,固态电解质的化学稳定性较好,不易燃烧,因此在高温、撞击等极端条件下,固态电池的安全性明显优于液态电池。能量密度:固态电池具有较高的能量密度,一方面是因为固态电解质可以承受更高的电化学窗口,使得电池可以使用更高电压的正极材料;另一方面,固态电池可以采用更薄、更轻的隔膜和集流体,减轻电池重量,提高能量密度。寿命:固态电池的寿命较长,一方面是因为固态电解质可以有效抑制电池内部副反应,降低自放电速率;另一方面,固态电池的充放电循环稳定性较好,可以承受更多的充放电次数。来源:《全固态电池技术的研究现状与展望》,许晓雄固态电池的挑战1、固态电解质材料研究目前,固态电解质材料的研究尚不充分,需要进一步优化和筛选具有良好离子导电性、机械强度和化学稳定性的材料。此外,固态电解质与电极材料的界面问题也需要解决,以提高电池的性能。2、制造成本固态电池的制造成本较高,主要原因是固态电解质和电极材料的制备工艺复杂,且生产规模较小。此外,固态电池的生产设备和技术也与传统液态电池有所不同,需要投入大量资金进行研发和产业化。3、充放电速率固态电池的充放电速率相对较慢,主要受限于固态电解质的离子导电性。提高充放电速率需要进一步优化固态电解质材料,以及开发新型电极材料和结构。固态电池的国际竞争势态美国在固态电池领域具有较强的研发实力,拥有多家知名企业和研究机构,如QuantumScape、Solid Power、Ionic Materials等。美国政府也高度重视固态电池技术,将其列为国家战略项目,投入大量资金支持相关研究。欧洲在固态电池领域同样具有较强的竞争力,拥有多家知名企业和研究机构,如德国的Varta、比利时的Solvay等。欧洲联盟也推出了“欧洲电池联盟”计划,旨在推动固态电池技术的发展和产业化。日本在固态电池领域具有领先地位,拥有全球最大的固态电池制造商丰田和全球领先的电池材料供应商村田制作所。日本政府和企业对固态电池技术的研究投入巨大,力求保持在该领域的竞争优势。韩国在固态电池领域同样具有较强实力,拥有全球领先的电池制造商LG化学和三星SDI。韩国政府和企业也在积极推动固态电池技术的发展,以应对全球动力电池市场的竞争。固态电池的发展对于我国新能源汽车产业具有十分重要意义。通过加强固态电池的研发和应用,不仅可以提升我国新能源汽车的核心竞争力,还可以推动我国在全球动力电池市场中的地位提升。因此,我国应加大对固态电池技术的研发力度,加强与国际先进企业的合作与交流,共同推动固态电池技术的快速发展。固态电池的主要研究课题尽管固态电池有着巨大的潜力和商业价值,但目前仍存在很多技术难点需要研究和攻克。尤其是固态电解质离子传输动力学、固/固界面物理和化学接触问题。这其中,对于固态电池的电解质/电极材料的电导率、内部产气/压力、膨胀行为的评估依然是对电池材料、电池性能、生产工艺等的重要研究手段。电弛的解决方案固态电池中的固体电解质和电极界面并不是完全稳定,仍会存在一定程度的副反应。因此,对于固态电池产气、内部压力、膨胀行为等的研究依然受到高度关注。武汉电弛新能源有限公司自主研发的原位产气量测试系统,原位气体内压测试系统、原位电池膨胀力测试系统,可对多种电池种类和电池形态的电池进行产气量、内压、膨胀行为的测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池、软包电池、方壳电池、圆柱电池、电芯模组。系统高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。同时,可为不同形态电池提供定制化夹具,开展不同测试模式的研究。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制