当前位置: 仪器信息网 > 行业主题 > >

智能电压表温度检测器

仪器信息网智能电压表温度检测器专题为您提供2024年最新智能电压表温度检测器价格报价、厂家品牌的相关信息, 包括智能电压表温度检测器参数、型号等,不管是国产,还是进口品牌的智能电压表温度检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能电压表温度检测器相关的耗材配件、试剂标物,还有智能电压表温度检测器相关的最新资讯、资料,以及智能电压表温度检测器相关的解决方案。

智能电压表温度检测器相关的资讯

  • 德州仪器推出新的电芯监测器和电池包监测器
    近日,德州仪器推出全新的汽车电芯监测器和电池包监测器。这些监测器提供更高精度的测量功能,可更大程度地增加电动汽车 (EV) 行驶时间并实现更安全的运行。   随着电动汽车越来越受到欢迎,先进的电池管理系统 (BMS) 有助于克服阻止电动汽车广泛普及的关键障碍。TI 重点关注克服复杂的系统设计挑战,并为此提供了品类丰富且先进的 BMS器件系列,助力汽车制造商打造更安全、更可靠的驾驶体验并提高电动汽车普及率。   BQ79718-Q1 电芯监测器和 BQ79731-Q1电池包监测器是 TI 丰富的BMS系列中的全新产品。BQ79731-Q1和BQ79718-Q1在测量电池电压、电流和温度方面提供了出色的准确度和精度,可有效确定车辆的真实续航里程、延长电池包的整体寿命并提高其安全性。   "汽车制造商的目标是尽可能延长电动汽车的续航里程,而准确的荷电状态估算对于实现这一目标至关重要。"TI BMS 总经理 Sam Wong 表示:"我们的全新器件大幅提升了电压和电流的测量精度,可让汽车制造商对准确预估电动汽车的真实续航里程充满信心。"   TI 将在 CES 2023 展示其 BMS 技术,包括全新的 BQ79718-Q1 电芯监测器和 BQ79731-Q1电池包监测器。   凭借出色的测量精度,有效延长续航里程   随着消费者们转向购买电动汽车,电池电压的测量准确度和精度对消费者的驾驶体验至关重要。即使细微的温度变化也能对电动汽车的续航里程产生重大影响;特别是寒冷的天气,对电池电压范围影响的幅度可高达 40%。这些变化会为电池电压和预期的电动汽车续航里程造成相当大的不确定性。   借助 BQ79718-Q1电芯监测器,汽车制造商可以进行高性能的电池电压测量(精度可达 1mV),从而更大限度地延长电动汽车的真实续航里程;借助 BQ79731-Q1电池包监测器,电池包电流测量的精度可达 0.05%。这些创新可在单节电池和电池包中准确测量电池荷电状态和运行状况,有效地反映真实的剩余里程并提升对电动汽车电池寿命的信心。   通过电池包电压和电流同步,提升对荷电状态的估算   此外,出色的电压和电流同步功能 (64µs) 可提供电池运行状况的实时快照,实现对电池包电源的瞬时监测。这一级别的同步可支持电化学阻抗跟踪分析,让您深入了解电池内核温度、电池老化和电池荷电状态。阅读技术文章"如何为高级 EV 电池管理系统设计智能电池接线盒"了解更多。   借助丰富的BMS系列产品,实现更高的安全性和性能   BQ79718-Q1 电芯监测器与之前市面上的任何电芯监测器相比,可提供符合汽车安全完整性等级 (ASIL) 要求的更出色的测量精度(主要路径、冗余路径和残余误差查找),方便汽车制造商对车辆电池包进行充电和放电。   BQ79718-Q1 电芯监测器和 BQ79731-Q1 电池包监测器均属于 TI 的高精度电池监控器和均衡器产品系列。此外,该系列还包括 BQ79600-Q1 SPI/UART 通信桥接器件,可使用单独的通信协议实现快速稳定的菊花链通信。   新品进一步丰富了TI 的BMS 系列产品。TI 的BMS 系列产品还包括用于无线 BMS 的 CC2662R-Q1 无线微控制器 (MCU)、TPSI3050-Q1 隔离式开关驱动器和 TPSI2140-Q1 隔离式开关器件。TI 还提供 BMS 设计套件,其中包括参考板、仿真器和汽车开放系统架构复杂器件驱动器。   TI 始终致力于推动汽车电气化发展,帮助汽车制造商优化车辆性能、加快开发速度,并创建更安全、更可靠且性价比更高的电动汽车。
  • 并非只是呆萌摆件 智能植物检测器来了
    乍一看下图,可能会误以为是个迷宫图,亦或是个拼接摆件。没错,它是一个摆件,但它不是一个普通的摆件,它可以监测您家中的植物的生长环境。   并非只是呆萌摆件 智能植物检测器来了   Plant Friends 是一个植物环境监控系统。它能监测土壤湿度、空气温度和空气湿度,并将通过电子邮件和短信提醒你当你的植物口渴了。电池供电的系统,无线,Arduino和覆盆子基于APi和附带了一个Android应用程序。应用程序使您能够查看实时和历史数据(温度、湿度、土壤水分)在你的手机上。   植物伴侣有萌兔 、机器人、小恐龙等三种可爱的造型,内置土壤水分传感器系统的它们,可同时收集室内温度、湿度和土壤湿度 ,一旦土壤湿度低于某个数值,植物伴侣就会发送短信或邮件通知你及时浇水 。设计师甚至专门做了一个APP ,能在APP中实时监测当前数据及查看历史数据。
  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 上海通微推新品“一键智能反控”蒸发光散射检测器(ELSD-UM5000A)
    上海通微分析技术有限公司(以下简称:上海通微)是首台国产化蒸发光散射检测器的研发生产厂家,第一台国产蒸发光散射检测器UM3000作为“十五”国家科技攻关计划重大项目的研发成果,从诞生伊始就获得业内专家一致肯定,并于2007年10月获得BCEIA金奖。该仪器的性能指标媲美国际同类产品水平。 为了更好的服务于用户,上海通微一直密切关注客户使用情况,于2012年对UM 3000进行了技术和设计多方位升级,升级后的版本为UM5000,市场口碑和地位直线攀升。上海通微蒸发光散射检测器成为国内各专业使用者的首选产品,截止2013年7月,上海通微蒸发光散射检测器市场使用数量达到600多台。 随着分析技术不断向智能方向发展,上海通微于2013年11月再次对UM5000蒸发光散射检测器进行了升级,升级后的版本为UM 5000A。 UM 5000A蒸发光散射检测器不但外观变得时尚,更让人无法忽略的是它拥有更加灵活的控制方式,轻松实现“一键智能反控”,再续金奖风范。无论您正使用上海通微EasySep-1020液相色谱系统还是任何其他厂商生产的HPLC液相色谱系统,UM 5000A蒸发光散射检测器都能与其进行完美连接,带来操作与快捷的完美体验,是您进行药物分析检测、碳水化合物、类脂、脂肪酸和氨基酸、以及聚合物等的检测的有力武器。 蒸发光散射检测器是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。 了解更多上海通微蒸发光散射检测器UM5000A的性能、参数,请点击:http://www.instrument.com.cn/netshow/C192554.htm
  • 盘点那些年我们用过的检测器(二) ——细说示差检测器
    液相色谱检测器种类较多,如何选择合适的检测器?以及为什么这样选择?之前的推文中我们陆续盘点了UV、DAD、ELSD等检测器,今天再跟大家聊一聊示差检测器。盘点那些年我们用过的液相检测器(一)一、RI 示差折光检测器原理简介关注我们RID是一种偏转式或者斯涅尔式折射率检测器。斯涅尔定律指出,平行光束沿着一个大于零的入射角通过一个将两种具有不同折射率的介质分开的电介质界面时,其折射率将与两种介质的折射率差幅成函数关系。二、示差检测器结构关注我们示差折光检测器结构示意图1、钨灯 2、聚光透镜 3、狭缝 4、准直镜 5、狭缝 6、检测池 7、反光镜 8、零位玻璃 9、光敏接收元件低功率、长寿命的钨灯发射出的光线经过准直透镜和狭缝后,通过参比池(参照池)和样品池(样本池),经平面镜反射回来后,再次通过光学单元,最后通过透镜聚焦到一对光传感二极管上(光传感器)。在测试期间,参比池和样品池中充满流动相。参比池随后与流路隔开,流动相仅流过样品池。如果两个池中介质的折射率没有差异,光线在通过它们时将不会发生折射。1 光束2 样本池3 参照池4 光轴(NsNr)5 光轴(Ns=Nr)6(4)和(5)在光传感器处的间距7 光传感器Ns:样本池中流动相的折射率Nr:参照池中流动相的折射率光线照射到一对光电二极管上,其中每个光电二极管都将给出一个电信号。随后这些信号会被放大,从而测得两个信号之间的差异。如果是零折射,这些信号之间的差异应该为零伏。借助一个电控机械联动装置,用户可以通过光路中的折射透镜来优化光电二极管的零偏转输出。还可以通过额外电路轻松地将信号输出校正为电子零点。1 光传感器A2 光传感器B3 光束当流动相的折射率发生变化时,通过样品池和参比池之间界面的光将被折射,从而使一个光电二极管上的光强增大,另一个电二极管上的光强减小。这种差异产生具有振幅和极性的信号,此信号被放大后,可以驱动图表记录仪。三、应用举例关注我们示差折光检测器是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器,她的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。应用一:麦芽糖、果糖、葡萄糖、异麦芽糖、麦芽三糖色谱条件色谱柱:月旭Xtimate® NH2(4.6×300,5μm)。流动相:乙腈:水=75:25;检测器:RID;柱温:30℃;流速:1.0mL/min;进样量:50μL。色谱图应用二:磷酸果糖二钠、蔗糖、葡萄糖、果糖色谱条件色谱柱:月旭Xtimate® sugar-Ca(7.8×300mm,8μm)。流动相:纯水;检测器:RID;温度:柱温75℃,检测器40℃;流速:0.2mL/min;进样量:10μL。色谱图四、示差检测器维护关注我们要想获得良好的实验结果,使用RID的三大法宝:第一、脱气;第二、平衡好流动相;第三、保持恒温恒压。在实际工作中我们会遇到很多典型的问题,接下来我们一起来分析一下这些问题如何破。五、使用注意事项关注我们1、正确放置溶剂瓶和废液瓶。要把溶剂瓶放在比示差监测器和溶剂泵还要高的位置,检测器出口留足够长的废液管通到下方的废液瓶,这样可以使样品池有一定背压,有利于检测信号的稳定。2、循环使用流动相。建议循环使用流动相。在没有进行分析时,打开循环阀,让流动相进行循环,这样泵就可以连续运行不必停止,一直到进行下一个分析。这样操作不仅可以节省流动相,而且检测器可以连续稳定的运行,随时进行样品分析。3、示差折光检测器不能用做梯度洗脱。由于介质的改变和压力的波动都会影响基线的稳定性,所以使用示差折光检测器时不能进行梯度洗脱。4、保证检测器的温度恒定。光学系统和流动相的温度对基线的稳定性影响很大。示差折光检测器可在比室温高5℃到55℃的范围内控温。建议将温度设为比室温高5℃,并确保柱温箱的温度与检测器保持一致。温度不宜过高,因为介质的折光指数随温度升高而降低,温度过高会使灵敏度降低。5、不可让流通池承受过大的压力。示差折光检测器流通池的反压约为1000psi,如果还要在系统里连接其他检测器。即示差折光检测器在流路系统里必须放在最后,以防压力增大时损坏流通池。6、某些溶剂随长时间存放而改变会造成基线的漂移。例如乙腈/水的混合物中乙腈的含量会降低,四氢呋喃会变成过氧化物,在吸湿性有机溶剂中的水量会增加,而保存在参比流通池中的溶剂如四氢呋喃会产生气体。因此,流动相最好做到临用现配或在有效期内使用。对于含有有机溶剂的流动相一般有效期3天,对于不含有机溶剂的流动相如纯盐或者纯水则根据室温情况,可临用现配或是配置好4℃冷藏,取用前先放置至室温。7、避免流动相和特定的色谱柱反应。某些流动相和特定的色谱柱反应,会产生长时间的噪声,例如乙腈/水流动相和氨丙基键合固定相在一起会出现这一现象。要判断长时间的噪声是否是由流动相/色谱柱的反应而产生,应该使用限流毛细管代替色谱柱,考查示差折光检测器的性能。
  • 安捷伦科技推出独特的智能控制灵敏度 X 射线检测器
    安捷伦科技推出独特的智能控制灵敏度 X 射线检测器 新方法可探测其它检测器无法测量的衍射 2013 年 8 月 26 日,北京-安捷伦科技(NYSE 代码:A) 今日推出了一系列独特的智能控制灵敏度X 射线衍射 CCD 检测器。Eos S2、Atlas S2 和 Titan S2 CCD 检测器分别具有 92 mm、135 mm 和 165 mm 的感光面积,并能根据研究样品的衍射强度自动调整灵敏度。 &ldquo 智能控制灵敏度与数码摄影中调节 ISO 非常相似,&rdquo 安捷伦 XRD 总经理 Leigh Rees 说道,&ldquo 智能测量系统包括 SSC,并且可以立即切换到硬件 binning模式。这使得检测器能根据衍射强弱自动调整灵敏度和动态范围。通过这种独特的方法,我们能够测量其它检测器无法测量的衍射,并且能在更短的时间内获得高质量的数据。&rdquo 单晶 X 射线衍射系统不仅用于常规分析化学,甚至还可用于研究小分子和蛋白质衍射。安捷伦具有 20 年设计和生产专业级单晶 X 射线衍射检测器的历史,其最新的检测器是 S2 CCD。该检测器目前在英国华威大学,随后将在欧洲晶体会议上展示。有关会议的更多信息,请访问 www.ecm28.org。 关于安捷伦科技公司 安捷伦科技(NYSE 代码:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司的 20,500 名员工为 100 多个国家的客户提供服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com。
  • 安捷伦推出具有智能感光度控制的XRD检测器
    2013年8月26日,安捷伦公司宣布推出了一系列带有智能感光度控制、独特的X射线衍射系统(XRD CCD)检测器。Eos S2,、Atlas S2 和Titan S2 CCD检测器提供有效检测区域分别为92毫米、135毫米和165毫米,基于正在研究中样品的衍射强度自动调整以适应他们的感光度。   &ldquo 智能感光度控制与数码摄影中的ISO设置非常相似,&rdquo 安捷伦XRD总经理Leigh Rees说。 &ldquo SSC是我们的智能测量系统中的一部分,它包括能够即时切换的硬件分级模块,这使得检测器可以基于衍射强弱自动调整感光度和动态范围。这种独特的方式意味着,在较短的实验时间,并具有较高的整体数据质量情况下,我们可以测得以前检测器不到的衍射数据。&rdquo   单晶XRD系统用于常规分析化学和具有挑战性的小分子和蛋白质衍射研究。S2 CCD是安捷伦最新检测器,安捷伦具有20年用于单晶XRD专业检测器设计和制造的历史。(编译:杨娟)
  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • 请定期检查仪器噪声水平,需要时清洗检测器
    基线噪声高会对分析有影响吗?基线噪声在多少算高?基线噪声高不高,要和装机时做比较。例如您看到FID的基线噪声有50pA,如果从装机开始一直就这么高,那么就和载气纯度或者没有装捕集阱有关了。如果之前是只有十几pA的,现在变成50pA了,那么就是色谱故障啦。基线噪声太高会影响什么?基线噪声过高会影响灵敏度,因为灵敏度往往用信噪比(S/N)来直接或者间接的表征,噪声作为分母,分母越大自然信噪比越低,检测灵敏度就会跟着降低,甚至满足不了方法的检出限。基线噪声升高一定是检测器引起的吗?检测器污染会导致基线噪声升高,但是并不代表基线噪声升高一定是检测器的问题!载气和捕集阱如果捕集阱饱和,或者载气纯度不够,都会导致基线噪声升高色谱柱如果色谱柱污染,也会导致基线噪声升高如果色谱柱接口处有泄漏,TCD和ECD检测器基线会升高色谱柱安装不正确,伸入检测器过长也会有相同的问题隔垫进样口中的隔垫,隔垫流失严重的话也会会导致基线噪声升高如何排查基线噪声是由检测器引起的?隔离法:将色谱柱从检测器端取下来,然后用一个死堵将检测器入口堵上,然后等待半小时之后观察输出值。此时输出值只由检测器贡献半小时等待中...如果半小时后输出值明显下降了,那么就不是检测器的问题。如果输出值没有明显变化,那么就是检测器的问题。做出这个判断之后,我们也就不需要着急把色谱柱接回检测器,保持现状,直接执行检测器热清洗的步骤就可以了如何对检测器进行热清洗一般我们都会建议大家先做热清洗,实际上就是通过升高温度,使得一些高沸点物质挥发之后从检测器排出。什么算正常值呢?就是和您之前的数据相比,例如仪器状态良好的情况下,FID的基线噪声可以达到20pA以下,那么就以20pA为正常值。或者是,以满足灵敏度要求为准,例如ECD,ECD使用时间长了以后,本身因为放射源衰变的原因,基线噪声就是会逐渐提高,无法恢复到原来的状态,那么就以目标物的分析满足最低检出限的要求为标准来要求噪声水平就可以了还需要注意的是,FPD的最高温度只能到250度如果高温烘烤几个小时还是效果不明显的话,可能就得拆开清洗了是不是所有的检测器都可以拆开清洗?ECD和TCD是绝对不能拆开清洗的FPD不建议拆开清洗FID和NPD是可以拆开清洗的,但是NPD在拆卸的时候,一定!一定!一定!要注意不要损坏铷珠
  • 【热点应用】高级多检测器SEC表征腺相关病毒载体的方法
    #本文由马尔文帕纳科应用专家冯慧庆供稿# 基因治疗是生物制药行业中一个快速增长的领域,通过基因治疗可实现疾病的治疗或预防。其中,重组腺相关病毒(rAAV)是目前基因治疗领域研究较多的一类病毒载体。腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一,一般,研究中采用的重组腺相关病毒载体(Recombination adeno-associated virus, rAAV)是在非致病的野生型AAV基础上改造而成的基因载体,由于其种类多样、免疫原性极低、安全性高、宿主细胞范围广、扩散能力强、体内表达基因时间长等,rAAV被视为最有前途的基因研究和基因治疗载体之一。目前,rAAV的准确定量分析和表征的难度是阻碍基因治疗快速发展的关键因素。我们常常需要对rAAV进行综合全面表征,比如衣壳数量、实心率、颗粒尺寸、聚集体比例等。传统情况,rAAV滴度和病毒载量采用ELISA、ddPCR、AUC和EM等技术进行测量。但这些方法通常费时费力,而且精确度不高。本文通过GPC/SEC和多角度动态光散射(MADLS)两种分析技术分析rAAV5样品,展示了快速、准确和可靠地定量测量AAV的病毒滴度(AAV Titer)和实心率(% full AAV)的方法。 01仪器参数OMNISEC GPC/SEC多检测器系统非常适合于生物医药行业,可用于全面表征rAAV样品。OMNISEC包含一个示差折光检测器(RI),紫外线全波长阵列检测器(UV-Vis 190-900 nm)和光散射检测器,仅需一次进样,可精确测量绝对分子量、聚集体比例、病毒滴度和实心率。与传统HPLC不同,测量过程不依赖柱保留体积,也不需要一系列标样进行色谱柱校正。图1显示了使用OMNISEC测量的CQA关键质量参数。02检测方法我们采用Empty和Full rAAV5两个样品作为分析案例。Full rAAV5 载有已知分子量为785 kg/mol的PFB-GFP ssDNA。经qPCR和ELISA测量方式可知,该样本的病毒滴度为2.5x1013。采用色谱柱P4000和P3000串联,对rAAV样品的进行色谱分离。由OMNISEC软件采集分析测试结果,其中硬件系统包含OMNISEC RESOLVE(包含泵、自动进样器和柱温箱)和OMNISEC REVEAL(包含示差、UV/PDA和直角90°/小角7°光散射检测器)。样品经过分离洗脱后,使用共聚物分析方法确定样品两种不同组分的浓度和分子量。计算方法如下:其中,ConcCapsid是衣壳浓度(mg/mL),NA是阿伏伽德罗数,Mwcapsid是衣壳的分子量(g/mol),ConcDNA是DNA浓度(mg/mL),MwSeqDNA是来自序列的ssDNA的分子量。因此,通过计算出的颗粒浓度,可以很容易地得出样品实心率的百分比。 03检测结果案例一:图2显示了Empty rAAV5的三检测色谱图。RI信号由红色曲线表示,260 nm紫外信号由紫色曲线表示,直角光散射(RALS)信号由绿色曲线表示。样品包含四个部分:单体峰保留体积(RV)在12.5ml,碎片在16ml ,二聚体在10.5ml ,聚集体在8.5ml 。使用共聚物分析方法,可以得到表1结果。单体的分子量为3.84×106g/mol。衣壳的理论分子量为3.8×106g/mol,证实分析结果与预期相符。MW/Mn为分子量分布,描述了样品的分散性,单体和二聚体的值接近1,而聚集体和片段均显着高于1,表明在同一峰内有多个不同分子量的组分。Fraction of Sample表示样品组分百分含量,单体所占百分比为84.7%。Fraction of Protein显示了样品中衣壳的百分比,单体包含99.8%的衣壳。这证实了样本确实是Empty rAAV5。最后Empty rAAV5样品总滴度为5.91x1013Vp/ml。 案例二:第二个样品Full rAAV5的三检测器色谱图如图3所示。图中显示了与Empty rAAV5截然不同的色谱峰。分析色谱图可以看出,只包含两个不同的组分,其中单体峰,大概12.5ml RV处,包含Full 和Empty rAAV5的混合物,而聚集体出现在8ml RV处。测试结果见表2。对于主体的单体峰,计算出其混合物分子量为4.49×106g/mol,其中86%为衣壳。rAAV5的蛋白质组分的分子量为3.89×106g/mol,这与表1中Empty rAAV5 的数据一致。单体是总体的93.2%,样本的总滴度为7.48x1013VP/ml。其中单体包含78% Full rAAV5,22% Empty rAAV5。需要注意的是,这种分析方法假设样品要么是Full ,要么是Empty ,忽略部分装载或过度装载情况。Zetasizer Ultra纳米粒度及电位仪可以使用MADLS方式快速确定病毒滴度。从OMNISEC获得的数据与Zetasizer Ultra的粒子滴度进行了比较,两种技术之间有很好的相关性,见图4。另外,本文将Full rAAV5和Empty rAAV5以确定比例混合,来对Full rAAV5样品进行分析。表3显示了每个样品的预期值和实际值Full rAAV百分比。图5显示了期望值和实际值之间有很强的相关性,证实了OMNISEC确定样品实心率结果的可靠性。为了进一步评估OMNISEC对rAAV样品准确表征能力,我们进行了rAAV5样品的热应力稳定性研究,同时,基于ZS Ultra对聚集体的极高灵敏度,我们利用了ZS Ultra表征rAAV5聚集体的微小变化。测试条件是将rAAV5样品置于25oC到80oC之间进行测试。在不断加热过程中,在每个温度下测量rAAV5样品的粒径。在25oC和35oC之间,没有观察到粒径的变化。从35oC开始,可以观察到粒径开始增大,这表明样品开始发生变化(图6A)。30oC和45oC下的数据比较清楚地显示了这些样品之间的大小差异(图6B)。我们选择45oC条件,对OMNISEC进行进一步稳定性研究。将rAAV5样品在稳定在45oC,分别在2min 、5min、10min和15min后,取样品到OMNISEC上测试。图7色谱叠加图显示样品发生了明显的变化,聚集体百分含量增加,单体浓度含量降低。表4显示MW在此潜伏期内保持稳定,单体峰中的AAV百分比也保持稳定。结论:在这项研究中,我们展示了OMNISEC和Zetasizer Ultra在综合分析表征rAAV5样品的能力,以及将两者联合使用的应用价值。 OMNISEC多检测SEC系统将示差折光检测器、紫外全波长检测器、光散射检测器集成一体化设计,具有更高的灵敏度和准确度,通过一次进样分析,可提供各种血清型AAV样品的绝对分子量、衣壳大小、滴度、实心率、聚集体、片段和样品稳定性等关键质量属性。虽然这些参数中很多都可以使用传统的生物化学方法来确定,但OMNISEC提供了更为简单、可靠的方法,正逐渐成为一种表征分析AAV通用的技术工具。
  • 您真的选对适用于您样品的检测器了吗?
    您知道样品中存在多种化合物,同时也知道您的色谱运行条件已经最优化。但是您有想过检测方式是否正确吗?您确定能在馏分中找到所有对您来说很重要的东西吗? 今天,“小步”同学来给您介绍 UV、ELSD、MS、RI 和荧光这五种不同的检测器,讨论它们的优缺点,并就每种检测器最适合的化合物检测类型提供建议。之前我们已经介绍过关于检测器的文章(点击这里),主要集中 UV 检测、蒸发光散射检测器 (ELSD) 或 UV 和 ELSD 结合使用的优点和局限性上。如果您看过我们之前的文章,在这里我想唤起您回忆的同时,也向您介绍液相色谱中其他三种常用的检测方法。接下来,让我们从最熟悉的检测方法开始。1UV 检测器这是制备色谱中最常用的检测器。它的检测方法具有选择性,因为它只能用于检测紫外范围(200 至 400 nm)或可见范围(400 至 800 nm)的具有一定吸收的物质。您可以使用紫外检测器成功观察到具有生色团或助色团的样品分离情况,例如:芳香环两个共轭双键与具有一对电子的原子相邻的双键羰基溴、碘或硫紫外检测器通过测量穿过溶液的紫外光束强度的变化来进行判断,并将化学信号转换成为电信号呈现于软件中。光的吸收强度与光束通过溶液的浓度有关。这种关系可以通过朗伯-比尔定律描述:其中:E = 吸光强度ε = 吸光系数 [表示物质浓度为 1mol/L,液层厚度为 1cm 时溶液的吸光度]c = 溶液浓度 [mol/L]d = 光束通过溶液的路径长度 [cm]您使用的每种溶剂都有其特有的紫外吸收截止波长。在低于此值的波长处,溶剂本身会吸收所有光。使用紫外检测器时,您应该选择避开溶剂紫外吸收波长。否则,物质和溶剂的信号会重叠,导致馏分分析不正确。如果您不知道化合物的吸收光谱,我建议您同时使用多个波长,甚至使用二极管阵列检测器 (DAD),它可以记录整个紫外光谱。生成的图表将为用户提供更多信息:总结一下紫外检测器,其有独特的优缺点:优点在于紫外检测器易于使用、可靠、相对便宜、与溶剂梯度兼容、对样品无破坏性且相对灵敏和特异性。缺点则是对于无发色基团的化合物难以检测,并且受到溶剂UV截止波长的限制,尤其是在低 UV 波长下。2ELS 检测器蒸发光散射检测器通过检测被蒸发干燥的样品颗粒散射的光量来工作。该过程包括三个步骤:雾化、蒸发和检测。首先,雾化器将空气或氮气气流与色谱柱或滤芯流出物相结合,以产生微小液滴的气溶胶。其次,液滴进入漂移管,在此过程中,流动相蒸发并留下目标化合物的颗粒。最后,光线照射到离开漂移管的干燥颗粒上。光被散射,产生的光子被光电二极管检测到。描述 ELSD 受粒度控制方程:A = amb其中:A = 峰面积m = 溶质质量a 和 b 是常数,取决于多种因素,例如目标物质的粒径、浓度和类型、气体流速、流动相流速和漂移管的温度。如果您想纯化没有发色团的化合物,ELS 检测方法是理想的选择。没错,正是紫外检测器无法轻易检测到的化合物。这些类型的化合物包括碳水化合物、脂质、脂肪和聚合物等。ELS 检测器的方式不受流动相变化和梯度基线偏移的干扰。并且其检测灵敏度与化合物的理化性质无关,只受化合物绝对量的影响。由于 ELSD 是一种质量检测器,高信号强度表明有大量化合物正在洗脱。由于检测器是半定量的,因此您可以获得一些有价值的信息,比如样品中不同化合物的占比。ELSD 几乎可以检测所有化合物,除了高挥发性分析物,例如酒中的乙醇。通常,目标化合物或添加的改性剂的挥发性必须低于流动相。除此之外,ELSD也属于破坏性检测器,提供相应化合物信号的同时,也将破坏您的样品,因此您应该尽量减少样本进样量。流动相的沸点越低,溶剂越容易蒸发。像 DMF、甲苯或水等高沸点流动相则需要在高温下蒸发。然而,这种方法存在破坏目标化合物的风险。或者,溶剂可以雾化成极小的液滴,使其即使在室温下也可以蒸发。3质谱检测器(MS)质谱仪作为色谱检测器,可以根据每个化合物基于其独特的质谱表征来进行分析。LC-MS 通常具有以下工作流程。首先,分子化合物从色谱柱随洗脱液进入质谱检测器当中被离子源(APCI,ESI 等)转化成为带电或电离状态。之后进入到质量分析器(Q,TOF 或 QqQ,Q-TOF 等)当中进行分析,在这里通过调整电场强度或根据飞行时间不同,可以获得母离子或离子碎片的质荷比信息,最后将它们输出到接收器当中,在那里它们被识别并转换为数字信号输出。MS 检测方法的优点包括良好的灵敏度、选择性和获得结构信息的可能性。而缺点则是购买价格高且设备需要频繁维护。“小步”同学认为,MS 检测器固然非常好,但是在制备色谱领域,或者拥挤和繁忙的合成实验室中很难拥有较高的占有量。4示差折光检测器(RI)示差折光检测器检测原理是由介质在流经测量池时引起的光的折射变化而进行检测的。这种检测方法是非选择性的,因为它可以检测流过测量池的所有物质。RI 检测器根据以下公式进行测量:其中:Δn = 折射率之差nG = 溶解样品的折射率nL = 纯溶剂的折射率ni = 样品的折射率c = 样品浓度RI 检测器的优点包括:检测器的通用性良好的线性动态范围 - ~ 4个数量级易于操作 RI 检测器的缺点包括:不能使用梯度溶剂洗脱灵敏度低对温度和压力波动非常敏5荧光检测器当具有特定官能团的化合物被较短波长的能量激发时,它们会发出较高波长的辐射或荧光。荧光强度受激发波长和发射波长影响,从而能够选择性地检测某些特定成分。大约 15% 的化合物具有天然荧光。含有羰基的脂肪族和脂环族化合物及高度共轭双键的化合物都具有天然荧光。除此之外,具有共轭 π 电子的芳香族化合物可以发出最强的荧光活性。荧光检测器的优点包括:高灵敏度:荧光检测器的灵敏度是紫外检测器的 10 ~1000 倍高选择性通常对流量和温度变化不敏感荧光检测器的缺点包括:有限的线性度没有多少化合物是天然荧光的衍生方法复杂复杂的检测器使用:必须牢牢掌握化学和仪器变量 一些化学物质,如氧气,可以淬灭荧光,所以必须严格脱气好啦!以上就是对于液相色谱当中常用的五种检测器的简单介绍,相信通过这篇文章,您也大概了解到哪种检测器最适合应用于您的待测样品。今天和大家分享的就到这里,我是“小步”同学,我们下期再见!
  • 气相色谱检测器选择指南
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp strong 气相色谱检测器 /strong (Gas chromatographic detector)是检验色谱柱后流出物质的成分及浓度变化的装置,它可以将这种变化转化为电信号,是气相色谱分析中不可或缺的部分。经过检测器将各组分的成分及浓度转化为电信号并经由放大器放大,最终由记录仪或微处理机得到色谱图,就可以对被测试的组分进行定性和定量的分析了。气相色谱检测器相当于气相色谱的“眼睛”,选择合适的检测器对于应用气相色谱检测目标物质至关重要,仪器信息网编辑对气相色谱检测器相关的分类、性能指标以及常用检测器进行了整理,方便大家在选择检测器时进行参考。 /p p style=" line-height: 1.5em text-align: center " strong style=" text-align: center " span style=" font-size: 20px color: rgb(31, 73, 125) " 检测器分类 /span /strong /p p style=" line-height: 1.5em "   气相色谱检测器种类繁多,有多种分类: /p p style=" line-height: 1.5em "   1、根据对被检测样品的响应范围可以被分为: /p p style=" line-height: 1.5em "    strong 通用型检测器: /strong 对绝大多数检测无知均有响应,如:TCD、PID /p p style=" line-height: 1.5em "   strong  选择型检测器: /strong 对某一类物质有响应,对其他物质的无响应或很小,如:FPD。 /p p style=" line-height: 1.5em "   2、根据检测器的检测方式不同可以分为: /p p style=" line-height: 1.5em "    strong 浓度型检测器: /strong 测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如TCD、PID /p p style=" line-height: 1.5em "    strong 质量型检测器: /strong 测量载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的质量成正比。如FID、FPD。 /p p style=" line-height: 1.5em "   3、根据信号记录方式不同进行分类 /p p style=" line-height: 1.5em "   strong  微分型检测器: /strong 微分型检测器的响应与流出组分的浓度或质量成正比,绘出的色谱峰是一系列的峰。 /p p style=" line-height: 1.5em "    strong 积分型检测器: /strong 测量各组分积累的总和,响应值与组分的总质量成正比,色谱图为台阶形曲线,阶高代表组分的总量。 /p p style=" line-height: 1.5em "   4、根据样品是否被破坏可以分为: /p p style=" line-height: 1.5em "    strong 破坏性检测器: /strong 组分在检测过程中,其分子形式被破坏,例如:FID、NPD、FPD /p p style=" line-height: 1.5em "    strong 非破坏性检测器 /strong :组分在检测过程中,保持其分子结构,例如:TCD、PID、ECD。 span style=" text-align: center " & nbsp & nbsp /span /p p style=" line-height: 1.5em text-align: center " strong style=" color: rgb(31, 73, 125) text-align: center " span style=" font-size: 20px " 性能指标 /span /strong /p p style=" line-height: 1.5em "   & nbsp 气相色谱检测器一般需满足以下要求:通用性强,能检测多种化合物或选择性强,只对特定类别化合物或含有特殊基团的化合物有特别高的灵敏度。响应值与组分浓度间线性范围宽,即可做常量分析,又可做微量、痕量分析。稳定性好,色谱操作条件波动造成的影响小,表现为噪声低、漂移小。检测器体积小、响应时间快。 /p p style=" line-height: 1.5em "   根据以上要求,气相色谱检测器的主要性能指标有以下几个方面: /p p style=" line-height: 1.5em "    strong 1. 灵敏度 /strong /p p style=" line-height: 1.5em "   灵敏度是单位样品量(或浓度)通过检测器时所产生的相应(信号)值的大小,灵敏度高意味着对同样的样品量其检测器输出的响应值高,同一个检测器对不同组分,灵敏度是不同的,浓度型检测器与质量型检测器灵敏度的表示方法与计算方法亦各不相同。 /p p style=" line-height: 1.5em "    strong 2. 检出限 /strong /p p style=" line-height: 1.5em "   检出限为检测器的最小检测量,最小检测量是要使待测组分所产生的信号恰好能在色谱图上与噪声鉴别开来时,所需引入到色谱柱的最小物质量或最小浓度。因此,最小检测量与检测器的性能、柱效率和操作条件有关。如果峰形窄,样品浓度越集中,最小检测量就越小。 /p p style=" line-height: 1.5em "    strong 3. 线性范围 /strong /p p style=" line-height: 1.5em "   定量分析时要求检测器的输出信号与进样量之间呈线性关系,检测器的线性范围为在检测器呈线性时最大和最小进样量之比,或叫最大允许进样量(浓度)与最小检测量(浓度)之比。比值越大,表示线性范围越宽,越有利于准确定量。不同类型检测器的线性范围差别也很大。如氢焰检测器的线性范围可达107,热导检测器则在104左右。由于线性范围很宽,在绘制检测器线性范围图时一般采用双对数坐标纸。 /p p style=" line-height: 1.5em "    strong 4. 噪音和漂移 /strong /p p style=" line-height: 1.5em "   噪声就是零电位(又称基流)的波动,反映在色谱图上就是由于各种原因引起的基线波动,称基线噪声。噪声分为短期噪声和长期噪声两类,有时候短期噪声会重叠在长期噪音上。仪器的温度波动,电源电压波动,载气流速的变化等,都可能产生噪音。基线随时间单方向的缓慢变化,称基线漂移。 /p p style=" line-height: 1.5em "    strong 5. 响应时间 /strong /p p style=" line-height: 1.5em "   检测器的响应时间是指进入检测器的一个给定组分的输出信号达到其真值的90%时所需的时间。检测器的响应时间如果不够快,则色谱峰会失真,影响定量分析的准确性。但是,绝大多数检测器的响应时间不是一个限制因素,而系统的响应,特别是记录仪的局限性却是限制因素 。 /p p style=" line-height: 1.5em text-align: center " strong style=" color: rgb(31, 73, 125) font-size: 20px text-align: center " 常用检测器 /strong /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 在日常应用中,主要会用到的气相色谱检测器主要有FID、ECD、TCD、FPD、NPD、MSD等,针对这些检测器,梳理一下它们的优缺点和应用范围。 /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 20px " 常见气相色谱检测器汇总 /span /strong /span /p p style=" line-height: 1.5em " strong span style=" font-size: 20px color: rgb(79, 97, 40) " /span /strong /p table style=" border-collapse:collapse " data-sort=" sortDisabled" tbody tr class=" firstRow" td style=" border: 1px solid windowtext word-break: break-all " valign=" middle" rowspan=" 1" colspan=" 2" align=" center" p style=" line-height: 1.5em " 检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" rowspan=" 2" colspan=" 1" align=" center" p style=" line-height: 1.5em " 工作原理 /p /td td style=" border: 1px solid windowtext " width=" 145" valign=" middle" rowspan=" 2" colspan=" 1" align=" center" p style=" line-height: 1.5em " 应用范围 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 中文名称 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 英文缩写 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 火焰离子化检测器 br/ /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " FID /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 火焰电离 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 有机化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 电子俘获检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " ECD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 化学电离 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 电负性化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 热导检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " TCD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 热导系数差异 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 所有化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 火焰光度检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " FPD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 分子发射 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 磷、硫化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 氮磷检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " NPD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 热表面电离 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 氮、磷化合物 /p /td /tr /tbody /table p style=" line-height: 1.5em " span style=" font-size: 18px color: rgb(31, 73, 125) " strong FID——火焰离子化检测器 /strong /span br/   FID是多用途的破坏性质量型通用检测器,灵敏度高,线性范围宽,广泛应用于有机物的常量和微量检测。F其主要原理为,氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,生成比基流高几个数量级的离子,在电场作用下,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流,此离子流经放大器放大后,可被检测。 /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/noimg/e368385d-2632-45d8-9d34-f6dcefd84528.jpg" title=" 201506242255_551533_2984502_3.jpg" / /p p style=" text-align: left line-height: 1.5em "    span style=" color: rgb(0, 0, 0) " 火焰离子化检测对电离势低于H sub 2 /sub 的有机物产生响应,而对无机物、永久气体和水基本上无响应,所以 strong 火焰离子化检测器只能分析有机物 /strong (含碳化合物),不适于分析惰性气体、空气、水、CO、CO sub 2 /sub 、CS sub 2 /sub 、NO、SO sub 2 /sub 及H sub 2 /sub S等。 /span /p p style=" text-align: left line-height: 1.5em " span style=" color: rgb(0, 0, 0) " & nbsp & nbsp & nbsp & nbsp FID特别适合于 strong 有机化合物的常量到微量分析 /strong ,是目前环保领域中,空气和水中痕量有机化合物检测的最好手段。抗污染能力强,检测器寿命长,日常维护保养量也少,一般讲FID检测限操作在大于1× 10 sup -10 /sup g/s时,操作条件无须特别注意均能正常工作,也不会对检测器本身造成致命的损失。由于FID响应有一定的规律性,在复杂的混合物多组分的定量分析时,特别对于一般的常规分析,可以不用纯化合物校正,简化了操作,提高了工作效率。 /span /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " ECD——电子捕获检测器 /span /strong /span /p p style=" line-height: 1.5em "    span style=" color: rgb(0, 0, 0) " 电子捕获检测器是一种高选择性检测器,在分析痕量电负性有机化合物上有很好的应用。它仅对 strong 那些能俘获电子的化合物 /strong ,如卤代烃、含N、O和S等杂原子的化合物有响应。由于它灵敏度高、选择性好,多年来已广泛用于环境样品中痕量农药、多氯联苯等的分析。ECD是气相电离检测器之一,但它的信号不同于FID等其他电离检测器,FID等信号是基流的增加,ECD信号是高背景基流的减小。ECD的不足之处是 strong 线性范围较小 /strong ,通常仅102-104。 /span /p p style=" text-align: center line-height: 1.5em " & nbsp & nbsp & nbsp img src=" http://img1.17img.cn/17img/images/201807/noimg/4dcdf2d1-8cb9-4e96-b3f9-a09ced241d86.jpg" title=" 2015062422302130_01_2984502_3.jpg" style=" text-align: center " / /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " /span /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp ECD是浓度型选择性检测器,对电负性的组分能给出极显著的响应信号。用于分析卤素化合物、一些金属螯合物和甾族化合物。其主要原理为检测室内的放射源放出β-射线(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用下,分别向与自己极性相反的电极运动,形成基流,当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室内的电子,变成带负电荷的离子,由于电子被组分捕获,使得检测室基流减少,产生色谱峰信号。 /p p style=" line-height: 1.5em " & nbsp  由于ECD在常用的几种检测器中灵敏度最高,再加上ECD结构、供电方式和所有操作条件都对ECD主要性能产生影响。可以说,ECD选用在所有常用检测器中也是比较困难的,遇到使用中问题也最多。 br/ /p p style=" line-height: 1.5em "   选择性:从选择性看,ECD特别适合于环境监测和生物样品的复杂多组分和多干扰物分析,但有些干扰物和待定性定量分析的组分有着近似的灵敏度(几乎无选择性),特别做痕量分析时,还应对样品进行必要的预处理,或改善柱分离以防止出现定性错误。 /p p style=" line-height: 1.5em "   灵敏度:ECD分析对电负性样品具有较高的灵敏度,如四氯化碳最小检测量可达到1× 10 sup -15 /sup g。 /p p style=" line-height: 1.5em "   线性范围:传统的认为ECD线性范围较窄,但由于ECD的不断完善,线性范围已优于104,可基本满足分析的需求。同时,针对高浓度样品,可以通过稀释样品后再使用ECD进行分析。 /p p style=" line-height: 1.5em "   操作性:ECD几乎对所有操作条件敏感,其对干扰物和目标物都具有高灵敏度的特性使得ECD的操作难度较大,有很小浓度的敏感物就可能造成对分析的干扰。 /p p style=" line-height: 1.5em "   因此,在使用ECD进行样品分析时,应当了解被分析样品的特点和待定性定量的组分的物理性质,确定选用ECD是否分析合适。 /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " TCD——热导检测器 /span /strong /span /p p style=" line-height: 1.5em " span style=" font-size: 16px color: rgb(0, 0, 0) " & nbsp & nbsp & nbsp & nbsp 热导检测器是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,但因其灵敏度较低,故一般用于常量分析。其基于不同组分与载气有不同的热导率的原理而工作。热导检测器的热敏元件为热丝,如镀金钨丝、铂金丝等。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),热丝传向池壁的热量也发生变化,致使热丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出,记录该信号从而得到色谱峰。 /span /p p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px color: rgb(0, 0, 0) " img src=" http://img1.17img.cn/17img/images/201807/noimg/9cfa17ce-9f01-4263-b262-27853bbe7e3f.jpg" title=" 2015062422242303_01_2984502_3.jpg" / /span /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " /span /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp TCD通用性强,性能稳定,线性范围最大,定量精度高,操作维修简单,廉价易于推广普及, strong 适合常量和半微量分析 /strong ,特别适合 strong 永久气体 /strong 或组分少且比较纯净的样品分析。 /p p style=" line-height: 1.5em "   对于环境监测和食品农药残留等样品进行痕量分析,TCD适用性不强,其主要原因有:检测限大(常规& lt 10-6g/mL) 样品选择性差,即对非检测组分抗干扰能力差 虽然可在高灵敏度下运行,但易被污染,基线稳定性变差。 /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " FPD——火焰光度检测器 /span /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp FPD为质量型选择性检测器,主要用于测定含硫、磷化合物。使用中通入的氢气量必须多于通常燃烧所需要的氢气量,即在富氢情况下燃烧得到火焰。广泛应用于石油产品中微量硫化合物及农药中有机磷化合物的分析。其主要原理为组分在富氢火焰中燃烧时组分不同程度地变为碎片或分子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。如硫在火焰中产生350-430nm的光谱,磷产生480-600nm的光谱,其中394nm和526nm分别为含硫和含磷化合物的特征波长。 /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/noimg/76c52176-d151-497d-be84-393c102e715c.jpg" title=" 2015062422290693_01_2984502_3.jpg" / /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp FPD是一种高灵敏度、高选择性的检测器,对含P和S特别敏感,主要用于 strong 含P和S的有机化合物和气体硫化物中P和S的微量和痕量分析 /strong ,如有机磷农药、水质污染中的硫醇、天然气中含硫化物的气体等。 /p p style=" line-height: 1.5em "   FPD火焰是富氢焰,空气的供量只够与70%的氢燃烧反应,所以火焰温度较低以便生成激发态的P、S化合物碎片。FPD基线稳定,噪声也比较小,信噪比高。氮气(载气)、氢气和空气流速的变化直接影响FPD的灵敏度、信噪比、选择性和线性范围。氮气流速在一定范围变化时,对P的检测无影响。对S的检测,表现出峰高与峰面积随氮气流量增加而增大,继续增加时,峰高和峰面积逐渐下降。这是因为作为稀释剂的氮气流量增加时,火焰温度降低,有利于S的响应,超过最佳值后,则不利于S的响应。无论S还是P的测定,都有各自最佳的氮气和空气的比值,并随FPD的结构差异而不同,测P比测S需要更大的氢气流速。 /p p style=" line-height: 1.5em " strong span style=" font-size: 18px color: rgb(31, 73, 125) " NPD——氮磷检测器 /span /strong br/ /p p style=" line-height: 1.5em "    span style=" font-family: 宋体, SimSun font-size: 16px " NPD是一种质量型检测器。 /span span style=" font-family: 宋体, SimSun " NPD工作原理是将一种涂有碱金属盐如Na /span sub style=" font-family: 宋体, SimSun " 2 /sub span style=" font-family: 宋体, SimSun " SiO /span sub style=" font-family: 宋体, SimSun " 3 /sub span style=" font-family: 宋体, SimSun " 、Rb /span sub style=" font-family: 宋体, SimSun " 2 /sub span style=" font-family: 宋体, SimSun " SiO /span sub style=" font-family: 宋体, SimSun " 3 /sub span style=" font-family: 宋体, SimSun " 类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当氮、磷化合物先在气相边界层中热化学分解,产生电负性的基团。试样蒸气和氢气流通过碱金属盐表面时,该电负性基团再与气相的铷原子(Rb)进行化学电离反应,生成Rb+和负离子,负离子在收集极释放出一个电子,并与氢原子反应,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。 /span /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/noimg/4fe5acfc-2693-4772-8c2a-8d5c225f7ac7.jpg" title=" 2015062422312688_01_2984502_3.jpg" / /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp NPD结构简单,成本较低,灵敏度、选择性和线性范围均较好,对含N和P的化合物选择性好、灵敏度高,适合做样品中 strong 含N和P的微量和痕量分析 /strong 。NPD灵敏度大小和化合物的分子结构有关,如检测含N化合物时,对易分解成氰基(CN)的灵敏度最高,其它结构尤其是硝酸酯和酰胺类响应小。 /p p style=" line-height: 1.5em "   NPD铷珠的寿命不是无限的,在一般使用条件下,寿命可保证2年以上。但在操作中,铷珠的退化速度不是均匀的,通常使用初期退化快,后期退化慢。实验表明:前50 h灵敏度可能下降20%,而后1300h,每经过250 h,灵敏度下降20%左右。这也就是为什么新的铷珠开始使用前,为获得高稳定性,必须对其进行老化处理的原因,当做半定量,且灵敏度要求不高时,老化时间不宜太长。 /p p style=" line-height: 1.5em "   NPD的检测器控温和控温精度、气体的流量稳定性、待分析组分分子结构等因素,均对铷珠最佳工作状态有影响,即很难保证性能恒定不变。为保证选择性和灵敏度不变,根据情况需不定时的调整NPD各条件参数。 /p p style=" line-height: 1.5em " br/ /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于最佳状态。 br/ & nbsp & nbsp & nbsp & nbsp 建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于最佳状态。 br/ 通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。 br/ & nbsp & nbsp & nbsp & nbsp 一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。 /p p style=" line-height: 1.5em " br/ /p p br/ /p
  • 低温蒸发光散射检测器的技术规格包括哪些?
    低温蒸发光散射检测器是一种常用于液相色谱分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。 以上是常见的一些技术规格,不同型号和品牌的低温蒸发光散射检测器可能会有细微差别和附加功能,可根据具体需要选择符合实验要求和预算限制的型号。
  • 气相色谱仪检测器的常见问题,有没有戳到你?
    在气相色谱分析中,待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后采集记录数据得到色谱图,然后根据色谱图中出峰时间、峰面积或峰高,对待测组分进行定性和定量分析。因此,检测器是检测样品中待测组分含量的部件,是气相色谱的重要组成部分。如何选择合适的检测器?气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于zui佳状态。①检测器的正确选择和使用建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于zui佳状态。通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到zui佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。②其他条件的优化一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。如何提高FID的灵敏度?因为FID硬件方面对灵敏度的影响,在色谱仪出厂时已经基本确定,对于操作者而言,已经不能改变。下面主要从操作方面介绍如何提高FID检测器的灵敏度。①氮气/氢气(N2/H2)流量比N2/H2流量比将明显影响灵敏度,各生产厂家的结构设计不同,N2/H2比zui佳值也不同,可用实验来确定,一般情况下,N2流量比H2流量大些,一般N2∶H2是1∶1.5或1∶1为宜。若喷嘴孔径为φ0.4mm的,载气流量可在20-30mL/min之间;若喷嘴孔径为φ0.6mm以上的,流量可在40-50 mL/min左右为佳。其中,毛细管色谱的尾吹气,除了减少组分的柱后扩散效应外,另一个主要作用是保证zui佳N2/H2比,用来保证zui佳灵敏度。②空气流量空气流量小于200mL/min时,流量大小对灵敏度有一定影响,一般大于250mL/min条件下,空气流量对检测器灵敏度太大的影响。③放大器输入电阻与输出电路衰减值放大器输入电阻与输出电路衰减示意图,见下图。放大器输入电阻的大小决定放大器的电流放大倍数,影响FID灵敏度,输入电阻大,灵敏度高,但噪音会增大,在调节放大器输入电阻大小时,要兼顾仪器的信噪比。放大器的输出电路衰减值,有1/10、1/25、1/50,各生产厂家不同,内衰减比例也不同,改变或调节内衰减,也可改变FID灵敏度。如瓦里安公司的FID检测器的灵敏度,可设定为9、10、11、12。数字愈大代表灵敏度愈佳,数值差1代表讯号以10倍增减。当然,前提是要保证放大器基线稳定。④进样口、色谱柱、气路和FID喷嘴的清洁度进样口、气路或FID喷嘴污染,都会导致FID检测器的灵敏度下降,因此在使用过程中需要保持进样口、色谱柱、FID 喷嘴和气路的清洁,定期更换进样垫,衬管和石英棉,同时对FID检测器进行清洗。当FID被污染了应如何清洗?下面提供四种清洗FID检测器的方法,但在清洗检测器前,需仔细阅读所用气相色谱对应的说明书,以确保不会造成检测器损坏:①当喷嘴只是轻微被污染时,可以略微加大载气流量,同时增大检测器的温度,点火后,走基线,此时不要进样。因为FID检测器所检测的对象,大多为有机化合物,喷嘴上的残留以有机物为主,有机物可以通过燃烧生成水(气态)和二氧化碳(气体)被赶走。② 若喷嘴污染较严重,但还未完全堵住时,可以用专用工具小心拆下,置于预先盛有乙醇或丙酮的玻璃烧杯中(溶剂需浸没喷嘴),于超声波中超声清洗。如果超声清洗后还不行,可以用通针小心插入喷嘴孔中,轻轻抽拉,再用洗耳球将乙醇或丙酮从喷嘴的底座挤进去,让溶剂从喷嘴喷出(这会形成一定的压力,可以将喷嘴孔壁的附着物清除)。然后,再次重复上述超声波清洗操作,用超声波清洗。③当喷嘴表面积碳(一层黑色物质),这也会影响灵敏度。可用细砂纸轻轻打磨表面除去。然后按照上述②的方法将喷嘴进行清洗。④如果检测器是因为积水造成的污染,先升高检测器的温度,运行一段时间,看能否恢复正常;如果积水过多,则需要将检测器拆下,先用脱脂棉擦干,然后按照上述②的方法将检测器处理一边即可恢复使用。⑤清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气半小时,再点火升高检测室温度,zui好先在120℃保持几小时之后,再升至工作温度。TCD,如何确定物质相对校正因子?采用TCD作为检测器时,确定物质相对校正因子通常有下面几种方式:①从文献上查找相对校正因子对于常规组分,通常可以在色谱相关书籍或文献上查到,如李浩春编写的《分析化学手册(第5分册)气相色谱分析》。对热导检测器(TCD)而言,常用的标准物为苯,所用载气为氦气。②实验测定相对校正因子对于某些比较特殊,在文献上查不到相对校正因子的物质或者为了更准确的测定某一物质的校正因子,通常采用实验测定的方法获得。但在用实验法测定物质的相对校正因子时,要注意配置标样的准确性,否则会出现试验测得校正因子与文献值相差甚大的情况。一些分析者测得的相对校正因子之所以与文献值不符, 并非操作参数的变动引起,而是由于测量误差造成,如标准物纯度不够、制样方法不当、室温下组分挥发、峰面积测量不准、得到的峰很不对称或分离不完全等。对于易挥发组分的分析, 制样的影响尤为显著。③利用规律对校正因子进行估算目前能对校正因子进行估算的,只有气相色谱用的热导检测器和氢火焰离子化检测器。当从文献中查不到适当数据,又没有已知准确含量的样品进行测定时,可按相关参考书上介绍的方法进行估算,如同系物在热导检测器上的相对摩尔响应值(RMR)与其分子中的碳数或摩尔质量呈线性关系。但该方法在实际操作中应用不多。采用TCD,产生负峰的原因有哪些?采用TCD检测器进行样品分析时,如果色谱峰出现负峰,先查阅一下色谱载气与所测气体的的导热系数,如果样品导热系数大于载气导热系数,色谱峰就会呈现为负峰。这时需要做的是按照色谱说明书上的说明将TCD检测器的极性更换一下即可。如果所测多组分样品时色谱峰有正峰也有负峰,这是因为所测多组分中,部分物质的导热系数大于色谱载气的导热系数,部分组分的导热系数小于色谱载气的导热系数,这时如果更换TCD检测器的极性的话,原来的负峰变为正峰,原来的正峰变为了负峰,还是不能彻底解决问题。如果出现这种情况,并且确实需要对样品的全组分进行定量分析的话,就选择色谱工作站上数据处理中的“负峰处理”即可。FPD运行中出现熄火?信号异常?当出现FPD检测器在运行过程中出现火焰熄灭、信号过高或过低等异常现象时,应以检测样品、气路系统、检测器温度控制系统、仪器设置、FPD检测器为主要检查对象,逐步排查可能存在的问题24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 沈阳仪表院研制的711大变径漏磁检测器在土库曼斯坦成功收球
    9月18日,沈阳仪表院自主研制的711大变径漏磁检测器在土库曼斯坦天然气管道收球成功。该检测器是国内少有的高尖端技术成果。本次管道内检测工作成功告捷,有力推动了我院管道缺陷监测管理的整体水平,也为持续加快管道检测技术进步提供了有力保证,更为我院自主研制的管道检测器在天然气管道上应用的可靠性和准确性积累了宝贵的经验。   此次检测工作为《土库曼斯坦巴格德雷合同区AB区管道智能检测服务项目》的一部分,711漏磁检测器进行了其中别列克特利集气干线的检测。9月17日下午,检测器发球,运行期间速度相对稳定,信号良好。9月18日,检测器成功收球,外形完好,探头无破损;检测器数据完整,数据量充足,信号清晰,标志着本次711别列特克利集气干线管道检测任务圆满完成。   本次使用的711大变径漏磁检测器为沈阳仪表院汇博管道技术公司自主研制。该大变径漏磁内检测器具备常规高清漏磁检测器的全部功能,并可以适应不同口径管道,采用折叠型皮碗驱动,磁化节采用浮动式磁路,前后互补探头,可以保证磁路与探头对管壁的贴合。该项目的顺利实施,为后续验证该项检测技术对缺陷识别的准确率提供了数据基础,为管道检测技术的研发与应用提供了指导和方向。   711大变径漏磁检测器采用的折叠型皮碗还可更换为测径驱动节。通过挂载不同尺寸的测径驱动节,仅使用同一个漏磁节便可使检测器适用于多种口径管道的常规检测,可大大减少管道检测公司的设备投入。
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 黑龙江质监局拟采购4316万元分析仪器
    黑龙江省政府采购中心按照黑龙江省政府采购管理办公室下达的采购计划,依据《政府采购法》及相关法规,对黑龙江省质量技术监督局分析仪器采购及服务进行国内公开招标,现欢迎国内合格的供应商参加投标。   一、项目编号: SC[2012]1360   二、项目名称: 黑龙江省质量技术监督局分析仪器采购及服务   三、资金来源及构成: 预算内资金(20800000元) 自筹(619250元)万元   四、招标内容: 项目名称 数量 采购预算(元) SC[2012]1360B0001 合计 3626000 原子荧光光度计 37 台 3626000 SC[2012]1360B0002 合计 3827000 紫外分光光度计 25 台 475000 离心机 22 台 220000 旋转蒸发器 11 台 220000 电子天平 27 台 270000 电导率仪 13 台 26000 离子色谱仪 8 台 1200000 拍击式均质器 16 台 144000 均质器 2 台 18000 PH计 12 台 60000 恒温鼓风干燥箱 14 台 140000 真空干燥箱 6 台 30000 恒温振荡水浴锅 17 台 85000 马弗炉 13 台 208000 超声波清洗机 9 台 81000 微波消解仪 13 台 650000 SC[2012]1360B0003 合计 3698000 酶标仪 32 台 608000 超纯水设备 23 台 690000 生物安全柜 43 台 946000 霉菌培养箱 33 台 198000生化培养箱 38 台 380000 生物显微镜 30 台 180000 超净工作台 22 台 220000 高压灭菌器 23 台 460000 菌落计数器 16 台 16000 SC[2012]1360B0004 合计 2380000 定氮仪 29 台 522000 布拉班德粘度计 2 台 700000 白度仪 9 台 18000 浊度计 10 台 80000 烟点测试仪 4 台 40000 全自动脂肪测定仪 9 台 432000 二氧化碳测定仪 12 台 60000 调速多用振荡器 1 台 2000 石墨炉原子吸收冷却水循环装置 1 台 16000 谷物选筛 1 台 1000 磁性金属物测定仪 1 台 4000 石墨消解仪 1 台 35000 精密真空压力表标准装置 1 台 30000 验光机检定装置 1 台 20000 智能液体密度计 1 台 20000 荧光分子光谱仪 1 台 100000 紫外可见分光光度计 1 台 50000 GPC凝胶色谱净化系统 1 台 250000 SC[2012]1360B0007 合计 2292450 粉质仪 1 台 150000 旋光仪 1 台 10000 粘度计 1 台 8000 气相色谱升级色谱检测器(电子捕获ECD检测器) 1 台 30000 微机屏显电液伺服万能试验机 1 台 110000 水质分析仪 1 台 15000 面筋指数测定仪 2 台 11200 氮磷钙测定仪 1 台 20000 碘含量测定仪 1 台 20000冻融试验机 1 台 78000 定流仪 1 台 30000 超声波测厚仪 1 台 35000 千分之一电子天平 1 台 4000 百分之一电子天平 1 台 3500 温湿度测定仪 1 台 26000 管式电炉 1 台 18000 激光粒度仪 1 台 92000 小型精米机 1 台 5000 数字精密压力表 1 台 3750 液体比重天平 1 台 6000 自控型不锈钢电热蒸馏水器 1 台 3000 6合1蜂蜜快速检测仪 1 台 50000 全自动低温冻融试验机 1 台 38000 乳成分分析仪 1 台 50000 全自动滴定仪 2 台 22000 液体密度计 1 台 20000 EBC色度仪 1 台 10000 冰点仪 1 台 30000 万能压力试验机 1 台 200000 罗维朋比色计 2 台 6000 自动旋光仪 1 台 10000 啤酒浊度泡沫检测仪 1 台 30000 粘度计 1 台 4000 阿贝折射仪 1 台 6000 恒温电热板 1 台 6000 水泥胶砂搅拌机 1 台 3500 验光机客观式模拟眼 1 台 80000 万能材料试验机 1 台 150000 热能表检测仪 1 台 240000 焦度计 1 台 60000 检验光机(主观) 1 台 50000 验光镜片箱 1 台 10000 超声体模 1 台60000 心电图机检定仪 1 台 42000 声级计(噪声仪) 1 台 5000 光学经纬仪 1 台 12000 激光自动安平扫平仪 1 台 5500 电梯限速器测速仪 1 台 12000 激光自动安平垂准仪 1 台 10000 水准仪 1 台 2500 钢丝绳电脑探伤仪 1 台 40500 钳形电流表 1 台 2000 电梯导轨共面测试仪 1 台 10000 测速仪 1 台 10000 电梯加速度测试仪 1 台 32000 接地电阻测试仪 1 台 8000 经纬仪 1 台 10000 全站仪 1 台 35000 自动激光铅直仪 1 台 52000 X射线探伤仪 1 台 58000 管道防腐层检测仪 1 台 50000 埋地管线泄漏检测仪 1 台 30000 便携式金相仪 1 台 22000 导轨垂直度测量仪 1 台 30000 SC[2012]1360B0008 合计 2307440 罗维朋比色计 2 台 5880 谷物选筛仪 1 台 420 电动筛选器 1 台 2300 实验室砻谷机 1 台 430 实验室碾米机 1 台 880 洗眼器 1 台 1980 超高压压力源 1 台 13000 水介质压力源 1 台 12000 数字精密压力表(0-60Mpa) 2 台 7500 数字精密压力表(0-10Mpa) 2 台 7500 数字微欧计 1 台 2200 指针式接地电阻测试仪 1 台 1650 检衡设备 1 台 466600 氮吹仪 1 台 5000 电子容重器 1 台 4000 岩石切磨两用机 1 台 15000 岩石取芯机 1 台 12500 实验用颚式破碎机 1 台 10000 肖氏硬度D型 1 台 12000 蒸煮箱 1台 4800 碳化箱 1 台 32000 便携式红外线气体分析仪 1 台 20000 高压气体压力源 1 台 13800 数字接地电阻测试仪 1 台 4700 50L流量罐 1 台 6000 掌上型医用X射线诊断机无线检定装置 1 台 72000 B超检定装置 1 台 28800 门窗保温性能检测仪 1 台140000 门窗物理性能检测仪 3 台 360000 门窗机械性能检测仪 2 台 160000 塑料门窗角强度试验机 3 台 21000 屏显式液压万能试验机 1 台 65000 微机控制电子万能试验机 1 台 25000 塑料门窗冲击试验机 2 台 10000 量热仪 1 台 28000 自动工业分析仪 1 台 85000 微机定硫仪 1 台 26000 微电脑粘接指数测定仪 1 台 3000 微机胶质层测定仪 1 台 35000 自动标准振筛机 1 台 3000 颚式破碎机 1 台 3000 贵金属分析测定仪 1 台 198000 建材冻融试验台 1 台 85000 匀浆机 1 台 10000 振荡器 1 台 23000 压力机 1 台 96000 拉力机(电子2000N) 1 台 52000 导热系数测定仪 1 台 51000 氧指数检测仪 1 台 12000 可燃性能检测仪 1 台 18000 验粉筛 1 台 3300 磁力搅拌器 1 台 600 调速多用振荡器 1 台 2000 面筋仪 1 台 5600 磁性金属物检测器 1 台 1000 检红砖用蒸煮箱 1 台 3000 数显式200T压力试验机 1 台 20000 SC[2012]1360B0009 合计 1793860 恒温磁力搅拌器(液晶屏) 1 台 5000 自控型不锈钢电热蒸馏水器 1 台 2300 氮、氢、空发生器 1 台 26000 防腐加热板 1 台 5600 台式恒温振荡器 1 台 17000 降落数值测定仪 1 台 13000 往复式调速多用振荡器 1 台 1000 实验室粉碎磨 1 台 5000 高速粉碎机 1 台 1000 粮食快速测水仪 1 台 1800 红外水分测定仪 1 台 22000 落地式全温振荡器 1 台 30000 SPE固相萃取装置 1 台 12000 匀浆机 1 台 13500 超级恒温水浴 1 台 1650 阿贝折光仪 1 台 13000 氮气吹扫浓缩仪 1 台 4300 实验室高速粉碎机 1 台 1000 磁力搅拌器 1 台 210 磁性金属测定仪 1 台 2500验粉筛1 台 3700 谷物选筛 1 台 400 低温冰柜 1 台 5900 双三元梯度液相色谱 1 台 743000 全自动原子荧光光度计 1 台 373000 实时荧光定量PCR仪 1 台 490000 SC[2012]1360B0010 合计 1494500 多点温湿度测试仪主机 2 台 31200 多点温湿度测试仪配湿度传感器 5 台 20800 多点温湿度测试仪配电偶传感器(高温) 10 台 9100 热电偶热电阻测试仪 2 台 18200 标准铂电阻温度计 1 台 7200 特斯拉计检定装置 1 台 280000 标准铂铑10铂热电偶 2 台 16600 医用输液泵校准装置 1 台 127200 变比电桥检测装置 1 台 117000 智能环境测试仪 1 台 26000 照度计, 1 台 2800 声级计 1 台 5800 数字电压表 1 台 59800 数字液体流量计 1 台 35000 气体流量测量装置 1 台 67000 气溶胶发生器 1 台 60000 直流电源 1 台 3200 多齿分度台 1 台 45500 发动机转速表校准装置 1 台 30000 失真度测量仪 1 台 9800 转速频率计 1 台 27800 E2等级无磁不锈钢砝码 1 台 15900 尘埃粒子计数器校准装置(含标准粒子发生装置、基准粒子计数器、空气流量测试仪、空压机、空气干燥器) 1 台 478600 总计 21419250   投标截止时间:2012年11月19日,上午9时30分。   开标时间:2012年11月19日,上午9时30分。   此前,黑龙江省质监局还采购2175万元液相、气相、原吸等产品,在30日开标中,因实质性响应不足三家原因,根据《政府采购法》有关规定,本项目做废标处理。 项目名称 数量 采购预算(元) SC[2012]1252B0001 合计 4650000 气相色谱 31 台 4650000 SC[2012]1252B0002 合计 12300000 液相色谱 41 台 12300000 SC[2012]1252B0003 合计 4800000 原子吸收分光光度计 32 台 4800000 总计 21750000
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    为什么飞行时间质谱(tofms)是相对于四级杆质谱(qms)更理想的检测器?您是否想了解飞行时间质谱仪(tofms)和四极杆质谱仪(qms)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。tofms采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,tofms具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱tofms级杆质谱qms mass analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000hz全谱1000hz单个离子质量分辨率r = m/rm10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rm/m1000质量数时,4 ppm = 4 mth/th精确质量rm0.001 th at 300 th0.5 th质量范围1 th 到 10000 th通常为10 th 到 500 th四极杆和tof质量分析仪的工作原理?四极杆和飞行时间(tof)质量分析仪实现对不同质荷比(m/q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/q值的离子才能通过四极杆被后端检测器检测到。 第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频rf电场将离子聚焦在四级杆的轴心;叠加的直流dc电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频rf场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。 图1. 四级杆原理动画图。同一时间,只有特定m/q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(sim)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器tof分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在tof飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能e。更准确来说,离子获得的动能与其带电荷量q成正比。电荷量相同的离子,e/q近似完全一致。动能e跟质量和速度的方程式:e = ½ mv2这也就意味着:e/q = ½ m/q v2 约等于恒定。因此,质荷比m/q较小的离子会以更快的速度地通过tof区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。 每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 hz)秒或者更长时间段的谱图。举例来说:当tof以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代tof仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。tofms快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。tof同时检测所有离子的特质,相比于qms离子监测(sim)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用vocus 2r ptr-tof在4hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的vocs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图)。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用tofms实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个tofms质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而tofms对每个m/q的信号累积时间则为10秒。很明显,tofms将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。 tof瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式sim)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用tofwerk ei-tof以5谱每秒的采集频率测量的gc逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行sim。另一方面,图中最大的色谱峰中包含的ei谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与nist库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用sim的操作者必须非常确定他们对除样品目标物外的其他任何vocs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的tof数据,针对这些‘新’物种进行回溯分析。图4. ei-tof测得的gc气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在sim模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的nist ei谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的voc成分变化很快,就无法准确定量vocs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段vocus elf小精灵ptr-tof对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(icp-ms)。在非连续进样时,icp-ms需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。tofwerk的icptof (icp-ms搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icptof r检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有r=m/dm(fwhm)=3000-4000th/th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的ptr四极杆谱图与分辨力为r=5000 th/th的vocus s ptr-tof谱图进行了详细对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的vocus s ptr-tof的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 th/th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 th)或2-乙基呋喃(97.065 th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,tof分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,tof的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。 来源:tofwerk
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    您是否想了解飞行时间质谱仪(TOFMS)和四极杆质谱仪(QMS)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。TOFMS采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,TOFMS具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱TOFMS级杆质谱QMS Mass Analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000Hz全谱1000Hz单个离子质量分辨率R = M/rM10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rM/M1000质量数时,4 ppm = 4 mTh/Th精确质量rM0.001 Th at 300 Th0.5 Th质量范围1 Th 到 10000 Th通常为10 Th 到 500 Th四极杆和TOF质量分析仪的工作原理?四极杆和飞行时间(TOF)质量分析仪实现对不同质荷比(m/Q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/Q值的离子才能通过四极杆被后端检测器检测到。第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频RF电场将离子聚焦在四级杆的轴心;叠加的直流DC电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/Q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/Q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频RF场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。图1. 四级杆原理动画图。同一时间,只有特定m/Q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(SIM)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器TOF分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在TOF飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能E。更准确来说,离子获得的动能与其带电荷量Q成正比。电荷量相同的离子,E/Q近似完全一致。动能E跟质量和速度的方程式:E = &half mv2这也就意味着:E/Q = &half m/Q v2 约等于恒定。因此,质荷比m/Q较小的离子会以更快的速度地通过TOF区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在TOFWERK仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 Hz)秒或者更长时间段的谱图。举例来说:当TOF以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代TOF仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。TOFMS快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。TOF同时检测所有离子的特质,相比于QMS离子监测(SIM)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用Vocus 2R PTR-TOF在4Hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的VOCs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图))。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用TOFMS实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个TOFMS质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而TOFMS对每个m/Q的信号累积时间则为10秒。很明显,TOFMS将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。TOF瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式SIM)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用Tofwerk EI-TOF以5谱每秒的采集频率测量的GC逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行SIM。另一方面,图中最大的色谱峰中包含的EI谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与NIST库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用SIM的操作者必须非常确定他们对除样品目标物外的其他任何VOCs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的TOF数据,针对这些‘新’物种进行回溯分析。图4. EI-TOF测得的GC气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在SIM模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的NIST EI谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的VOC成分变化很快,就无法准确定量VOCs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段Vocus Elf小精灵PTR-TOF对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(ICP-MS)。在非连续进样时,ICP-MS需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百Hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。TOFWERK的icpTOF(ICP-MS搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icpTOF R检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有R=M/dM(FWHM)=3000-4000Th/Th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的PTR四极杆谱图与分辨力为R=5000 Th/Th的Vocus S PTR-TOF谱图进行了详细对比。图7. 质子转移反应QMS和TOF谱图对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的Vocus S PTR-TOF的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 Th/Th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 Th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 Th)或2-乙基呋喃(97.065 Th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,TOF分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,TOF的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。
  • 新品上市:月旭科技低温型蒸发光散射检测器
    待测样品物质没有生色基团,无法用紫外-可见光检测器检测该怎么办?别担心,这期小编给大家带来了月旭科技的低温型蒸发光散射检测器,无论物质是否具有生色基团都逃不过他的“眼睛”。下面就由小编给大家介绍一下月旭科技新推出的低温型蒸发光散射检测器吧!蒸发光散射检测器检测原理 仪器优点高灵敏度,优化了对非挥发性、热不稳定和半挥发性化合物的敏感性;专用的高效液相色谱雾化器和创新的流通池设计,使谱带展宽最小化;容易拆卸和安装的雾化器,流量范围涵盖200μl /min~2ml/min;通过自动增益调整,检测器可以自动调整增益设置;完全远程控制,气体、加热器、光电二极管、光源均可在分析结束之后自动关闭;可以为符合GLP和验证程序提供了完整的SOP方案;仪器寿命长,具备很高的可靠性和稳定性;低温蒸发,避免温度过高化合物分解导致的检测不准。Welch ELSD-5450可用工作站列表应用案例同步测定银杏中萜烯内酯和类黄酮:采用HPLC/ELSD法对四种萜烯内酯和三种黄酮类化合物进行了色谱分析。1 -银杏内酯,2 -银杏内酯C, 3 -银杏内酯A,4 -银杏内酯B,5 -槲皮素,6 -异鼠李皮素,7 -山奈酚
  • 中国医科大学附属第一医院240.00万元采购颗粒物监测仪,波散型XRF,流式细胞仪,色谱检测器,蠕动...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 颗粒物监测仪,波散型XRF,流式细胞仪,色谱检测器,蠕动泵,自动进样器 开标时间: 2021-10-21 09:30 采购金额: 240.00万元 采购单位: 中国医科大学附属第一医院 采购联系人: 王主任 采购联系方式: 立即查看招标代理机构: 辽宁承明招投标有限公司 代理联系人: 孙少伟 代理联系方式: 立即查看 详细信息 中国医科大学附属第一医院流式细胞仪(血液科)采购项目招标公告 辽宁省-沈阳市-皇姑区 状态:公告 更新时间: 2021-09-24 公告信息 公告信息 公告标题: 中国医科大学附属第一医院流式细胞仪(血液科)采购项目招标公告 有效期: 2021-09-24 至 2021-09-30 撰写单位: 辽宁承明招投标有限公司(中国医科大学附属第一医院流式细胞仪(血液科)采购项目)招标公告 项目概况 中国医科大学附属第一医院流式细胞仪(血液科)采购项目招标项目的潜在供应商应在辽宁政府采购网获取招标文件,并于2021年10月21日 09时30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:JH21-210000-46919 项目名称:中国医科大学附属第一医院流式细胞仪(血液科)采购项目 包组编号:001 预算金额(元):2,400,000.00 最高限价(元):2,400,000.00 采购需求: 品目1:流式细胞仪(血液科) 1台 国产 一、工作环境: 1.1、环境温度:15~ 28℃ 1.2、环境湿度:20%-85% 1.3、工作电压:100-240V,50/60 Hz, 10A 二、功能要求 用于细胞学和微颗粒分析使用,可检测细胞表面和细胞内抗原,细胞内DNA含量等。可对群体细胞在单细胞水平上进行分析,在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析。 三、 技术参数要求 ★1.配置3只固体激光器: 须配405nm、488nm、640nm三只固体激光器,所有激光器功率≥50mW;在检测池内形成三个独立光斑,所有激光器空间立体激发以避免共线干扰。 2.激光光束特征:采用平顶光斑技术,确保高速检测结果的稳定性。 3.散射光检测通道:1个488nm前向角检测通道;2个侧向角检测通道:405nm和488nm的侧向角检测通道;都需采用高性能半导体检测器。 ★4.荧光检测通道:总共不少于36个荧光检测通道,其中:405nm激光器检测模块配置15个通道;488nm激光器检测模块13个通道;640nm激光检测器模块配置8个通道,需要实现单管荧光检测能力≥22色荧光检测。 ★5.荧光检测器:采用雪崩式光电二极管(APD)检测器阵列来收集荧光信号。 ★6.荧光光谱记录:可以实现420-829nm范围内的荧光全光谱检测记录,可以检测由405nm、488nm、640nm激光器激发的全部染料,无需要更换滤光片。 7.前向和侧向检测器灵敏度:能检测区分开淋巴细胞、单核细胞、粒细胞;能够从噪音中检测到110nm微球。 8.荧光检测灵敏度:FITC≤40MEFL、PE≤15MEFL、APC≤15MEFL、Pacific Blue≤25MEFL。 ★9.细胞获取速度:≥33000细胞/秒。 10.液流驱动方式:采用真空负压泵驱动液流方式,避免使用注射泵、蠕动泵产生的额外费用。 11.具备绝对计数功能:可由上样体积精确计算每μL样本浓度;不需要绝对计数管以及因此产生的额外费用。 12.交叉污染率:样本间的交叉污染率 lt 0.1%,确保数据的准确性和可靠性。 13.信号处理:可自动调节窗口的数字化信号处理,22-bit 6.5 log对数检测范围,可根据任意参数或参数组合设置阈值。 14.光谱拆分技术:可以通过荧光染料光谱数据,实现多重标记荧光染料自动拆分,无需调节补偿。 ★15.自发荧光检测技术:支持检测细胞自发荧光光谱并将其作为独立的参数进行解析,可自动去除细胞自发荧光的影响。 16.可升级自动进样系统,至少兼容96孔板以及40管连续上样。 17.数据分析:专业的流式数据获取和分析软件,获取中实时解析数据,自带QC模式,原始格式和解析文件为FCS 3.1格式。 18.数据分析工作站:处理器≥3.0 GHZ,内存≥16GB,硬盘≥1TGB,显示器≥28英寸。 ★19.仪器需具备医疗器械临床注册证,可用于检测临床样本并出具检验报告。 四、配置要求 1.主机:全光谱流式细胞仪一台, 2.联机工作站一台, 3.全光谱流式细胞仪数据采集和分析处理软件:1套 合同履行期限:合同签订后1个月内到货。 需落实的政府采购政策内容:中小微企业(含监狱企业)的规定;对于促进残疾人就业政府采购政策的规定、对于节能产品、环境标志产品的相关规定等。 本项目(是/否)接受联合体投标:否 二、供应商的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.落实政府采购政策需满足的资格要求:无。 3.本项目的特定资格要求:设备属于医疗器械的,需提供医疗器械生产许可证(制造厂家提供)、医疗器械经营许可证(或备案凭证)、医疗器械注册证(有效期内),否则提供设备不属于医疗器械的情况说明。 三、政府采购供应商入库须知 参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。 四、获取招标文件 时间:2021年09月24日 08时30分至2021年09月30日 17时30分(北京时间,法定节假日除外) 地点:辽宁政府采购网 方式:线上 售价:免费 五、提交投标文件截止时间、开标时间和地点 2021年10月21日 09时30分(北京时间) 地点:辽宁承明招投标有限公司(沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室)。 六、公告期限 自本公告发布之日起5个工作日。 七、质疑与投诉 供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,向采购代理机构或采购人提出质疑。 1、接收质疑函方式:书面纸质质疑函 2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见辽宁政府采购网。 质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。 八、其他补充事宜1.本项目采用全流程电子招投标,参与本项目的供应商须自行办理好CA锁,供应商除在电子评审系统上传投标(响应)文件外,应在递交投标(响应)文件截止时间前提交按采购文件规定的介质形式(U盘)存储的可加密备份文件,并承诺备份文件与电子评审系统中上传的投标(响应)文件内容、格式一致,备系统突发故障使用。供应商仅提交备份文件的,投标(响应)无效。详见辽宁政府采购网《关于完善政府采购电子评审业务流程等有关事项的通知》 辽财采函{2021} 363号。2.供应商自行准备电子设备确保能够自行报价及解密。3.电子投标文件在辽宁政府采购网线上提交,备份文件提交至辽宁承明招投标有限公司。 九、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称: 中国医科大学附属第一医院 地 址: 沈阳市和平区南京北街155号 联系方式: 王主任、张老师 024-83283232 2.采购代理机构信息: 名 称: 辽宁承明招投标有限公司 地 址: 沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室 联系方式: 024-86803737 邮箱地址: liaoningshangyu@126.com 开户行: 光大银行沈阳皇姑支行 账户名称: 辽宁承明招投标有限公司 账号: 7581018800024251300007 3.项目联系方式 项目联系人: 孙少伟、郭晓川 电 话: 024-86803737 评分办法:最低评标价法 附件: 注:财政部门鼓励供应商采用保函的方式递交投标保证金,任何采购代理机构在政府采购活动中不得拒收供应商以保函方式递交的保证金。 申请电子保函 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide()}) 基本信息 关键内容:颗粒物监测仪,波散型XRF,流式细胞仪,色谱检测器,蠕动泵,自动进样器 开标时间:2021-10-21 09:30 预算金额:240.00万元 采购单位:中国医科大学附属第一医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:辽宁承明招投标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国医科大学附属第一医院流式细胞仪(血液科)采购项目招标公告 辽宁省-沈阳市-皇姑区 状态:公告 更新时间: 2021-09-24 公告信息 公告信息 公告标题: 中国医科大学附属第一医院流式细胞仪(血液科)采购项目招标公告有效期: 2021-09-24 至 2021-09-30 撰写单位: 辽宁承明招投标有限公司 (中国医科大学附属第一医院流式细胞仪(血液科)采购项目)招标公告 项目概况 中国医科大学附属第一医院流式细胞仪(血液科)采购项目招标项目的潜在供应商应在辽宁政府采购网获取招标文件,并于2021年10月21日 09时30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:JH21-210000-46919 项目名称:中国医科大学附属第一医院流式细胞仪(血液科)采购项目 包组编号:001 预算金额(元):2,400,000.00 最高限价(元):2,400,000.00 采购需求: 品目1:流式细胞仪(血液科) 1台 国产 一、工作环境: 1.1、环境温度:15~ 28℃ 1.2、环境湿度:20%-85% 1.3、工作电压:100-240V,50/60 Hz, 10A 二、功能要求 用于细胞学和微颗粒分析使用,可检测细胞表面和细胞内抗原,细胞内DNA含量等。可对群体细胞在单细胞水平上进行分析,在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析。 三、 技术参数要求 ★1.配置3只固体激光器: 须配405nm、488nm、640nm三只固体激光器,所有激光器功率≥50mW;在检测池内形成三个独立光斑,所有激光器空间立体激发以避免共线干扰。 2.激光光束特征:采用平顶光斑技术,确保高速检测结果的稳定性。 3.散射光检测通道:1个488nm前向角检测通道;2个侧向角检测通道:405nm和488nm的侧向角检测通道;都需采用高性能半导体检测器。 ★4.荧光检测通道:总共不少于36个荧光检测通道,其中:405nm激光器检测模块配置15个通道;488nm激光器检测模块13个通道;640nm激光检测器模块配置8个通道,需要实现单管荧光检测能力≥22色荧光检测。 ★5.荧光检测器:采用雪崩式光电二极管(APD)检测器阵列来收集荧光信号。 ★6.荧光光谱记录:可以实现420-829nm范围内的荧光全光谱检测记录,可以检测由405nm、488nm、640nm激光器激发的全部染料,无需要更换滤光片。 7.前向和侧向检测器灵敏度:能检测区分开淋巴细胞、单核细胞、粒细胞;能够从噪音中检测到110nm微球。 8.荧光检测灵敏度:FITC≤40MEFL、PE≤15MEFL、APC≤15MEFL、Pacific Blue≤25MEFL。 ★9.细胞获取速度:≥33000细胞/秒。 10.液流驱动方式:采用真空负压泵驱动液流方式,避免使用注射泵、蠕动泵产生的额外费用。 11.具备绝对计数功能:可由上样体积精确计算每μL样本浓度;不需要绝对计数管以及因此产生的额外费用。 12.交叉污染率:样本间的交叉污染率 lt 0.1%,确保数据的准确性和可靠性。 13.信号处理:可自动调节窗口的数字化信号处理,22-bit 6.5 log对数检测范围,可根据任意参数或参数组合设置阈值。 14.光谱拆分技术:可以通过荧光染料光谱数据,实现多重标记荧光染料自动拆分,无需调节补偿。 ★15.自发荧光检测技术:支持检测细胞自发荧光光谱并将其作为独立的参数进行解析,可自动去除细胞自发荧光的影响。 16.可升级自动进样系统,至少兼容96孔板以及40管连续上样。 17.数据分析:专业的流式数据获取和分析软件,获取中实时解析数据,自带QC模式,原始格式和解析文件为FCS 3.1格式。 18.数据分析工作站:处理器≥3.0 GHZ,内存≥16GB,硬盘≥1TGB,显示器≥28英寸。 ★19.仪器需具备医疗器械临床注册证,可用于检测临床样本并出具检验报告。 四、配置要求 1.主机:全光谱流式细胞仪一台, 2.联机工作站一台, 3.全光谱流式细胞仪数据采集和分析处理软件:1套 合同履行期限:合同签订后1个月内到货。 需落实的政府采购政策内容:中小微企业(含监狱企业)的规定;对于促进残疾人就业政府采购政策的规定、对于节能产品、环境标志产品的相关规定等。 本项目(是/否)接受联合体投标:否二、供应商的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定。 2.落实政府采购政策需满足的资格要求:无。 3.本项目的特定资格要求:设备属于医疗器械的,需提供医疗器械生产许可证(制造厂家提供)、医疗器械经营许可证(或备案凭证)、医疗器械注册证(有效期内),否则提供设备不属于医疗器械的情况说明。 三、政府采购供应商入库须知 参加辽宁省政府采购活动的供应商未进入辽宁省政府采购供应商库的,请详阅辽宁政府采购网 “首页—政策法规”中公布的“政府采购供应商入库”的相关规定,及时办理入库登记手续。填写单位名称、统一社会信用代码和联系人等简要信息,由系统自动开通账号后,即可参与政府采购活动。具体规定详见《关于进一步优化辽宁省政府采购供应商入库程序的通知》(辽财采函〔2020〕198号)。 四、获取招标文件 时间:2021年09月24日 08时30分至2021年09月30日 17时30分(北京时间,法定节假日除外) 地点:辽宁政府采购网 方式:线上 售价:免费 五、提交投标文件截止时间、开标时间和地点 2021年10月21日 09时30分(北京时间) 地点:辽宁承明招投标有限公司(沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室)。 六、公告期限 自本公告发布之日起5个工作日。 七、质疑与投诉 供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,向采购代理机构或采购人提出质疑。 1、接收质疑函方式:书面纸质质疑函 2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见辽宁政府采购网。 质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。 八、其他补充事宜 1.本项目采用全流程电子招投标,参与本项目的供应商须自行办理好CA锁,供应商除在电子评审系统上传投标(响应)文件外,应在递交投标(响应)文件截止时间前提交按采购文件规定的介质形式(U盘)存储的可加密备份文件,并承诺备份文件与电子评审系统中上传的投标(响应)文件内容、格式一致,备系统突发故障使用。供应商仅提交备份文件的,投标(响应)无效。详见辽宁政府采购网《关于完善政府采购电子评审业务流程等有关事项的通知》 辽财采函{2021} 363号。2.供应商自行准备电子设备确保能够自行报价及解密。3.电子投标文件在辽宁政府采购网线上提交,备份文件提交至辽宁承明招投标有限公司。 九、对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称: 中国医科大学附属第一医院 地 址: 沈阳市和平区南京北街155号 联系方式: 王主任、张老师 024-83283232 2.采购代理机构信息: 名 称: 辽宁承明招投标有限公司 地 址: 沈阳市皇姑区黄河南大街106号丽阳商务大厦A座16层1602室 联系方式: 024-86803737 邮箱地址: liaoningshangyu@126.com 开户行: 光大银行沈阳皇姑支行 账户名称: 辽宁承明招投标有限公司 账号: 7581018800024251300007 3.项目联系方式 项目联系人: 孙少伟、郭晓川电 话: 024-86803737 评分办法:最低评标价法 附件: 注:财政部门鼓励供应商采用保函的方式递交投标保证金,任何采购代理机构在政府采购活动中不得拒收供应商以保函方式递交的保证金。 申请电子保函
  • 通微发布UM5800Plus蒸发光散射检测器新品
    产品简介UM5800Plus是通微公司新推出的一款全面升级的通用型的蒸发光散射检测器:1.针对非紫外吸收物质的检测,可检测挥发性低于流动相的样品,不需要样品带有发色基团;2.同时具备数字信号输出与模拟信号输出,可与多种液相色谱系统联用(包括常规分析型液相系统、高压制备型液相系统以及Flash快速制备色谱等);3.新增7档信号增益调节功能,可根据样品浓度调节信号响应;4.提供100组分析方法存储,常见检测品种可直接调用已存储的方法。5.新增面板谱图显示功能,实时检测谱图采集。5.温度、流量、信号增益等参数,全面实现软件智能全反控,符合相关法规要求。创新力作 针对非紫外吸收物质的检测√更加人性化的设计l 同时具备数字信号输出与模拟信号输出(±2.4V),可兼容不同厂家的液相色谱仪使用。l 1-7档信号增益调节,可根据样品浓度调节信号响应。l 多达100组方法存储空间,对于药典品种,可直接调用已存储的方法。l 仪器面板含有谱图显示功能,可实时监测谱图采集,有利于预实验进行。√可靠性与安全性的全面提升l 仪器开机多项自检,同时具备出错修正控制,温度、压力及流量等实时监控报警且异常情况具备声音和灯光报警,多重安全保护设计,有效提升仪器维护方式方法,降低仪器维护成本,延长仪器使用寿命。l 待机及工作模式等多种模式自有切换,有效降低功耗。l 密码锁屏,防止误操作,显示错误日志,满足GLP要求。√适应新时代的智能化操作l 温度、流量、信号增益等仪器各项参数的控制,仪器实现全反控;状态参数实时反馈,及时有效反应仪器工作状态,切实保证实验顺利进行。√强大的技术与售后保障l 深耕蒸发光检测器领域数十载的上海通微分析技术有限公司,为用户提供完善的售前售后服务支持,专业的应用团队帮助用户进行方案开发及分析技术支持服务,另外还会不定期根据用户需求举办应用技术培训,此外还会长期优惠供应零配件及耗材试剂等。创新点:UM5800Plus是通微公司最新推出的一款全面升级的通用型的蒸发光散射检测器:1.针对非紫外吸收物质的检测,可检测挥发性低于流动相的样品,不需要样品带有发色基团;2.同时具备数字信号输出与模拟信号输出,可与多种液相色谱系统联用(包括常规分析型液相系统、高压制备型液相系统以及Flash快速制备色谱等);3.新增7档信号增益调节功能,可根据样品浓度调节信号响应;4.提供100组分析方法存储,常见检测品种,可直接调用已存储的方法。5.新增面板谱图显示功能,实时检测谱图采集。5.温度、流量、信号增益等参数,全面实现软件智能全反控,符合相关法规要求。 UM5800Plus蒸发光散射检测器
  • 制备型OEM检测器是一种按照客户需求定制生产的检测设备
    制备型OEM检测器是一种按照客户需求定制生产的检测设备。它通常由原始设备制造商根据客户的要求进行设计、制造和集成,并配备相应的传感器、控制电路和数据处理系统等组件。该仪器可以用于检测各种物质或参数,如气体浓度、温度、湿度、压力等。   制备型OEM检测器的工作原理通常基于传感器技术。传感器是检测器的核心组件,通过感知目标物质或参数的变化并将其转化为电信号,从而实现检测和测量。常见的传感器类型包括化学传感器、光学传感器、电化学传感器等,具体选择取决于所需检测的物质特性和应用环境。   该仪器具有许多优点和应用价值。首先,由于其可定制化的设计,可以满足不同领域和应用的特殊需求。客户可以根据自己的要求选择适当的传感器类型、测量范围、输出信号等参数,以实现精确和可靠的检测结果。   其次,制备型OEM检测器通常具有较小的体积和便携性,方便携带和使用。这使得它们广泛应用于移动检测、户外环境监测、个人安全保护等场景。例如,在环境保护领域,该仪器可以用于检测空气质量、水质污染等 在工业领域,可以用于监测生产过程中的气体浓度、温度等参数。   此外,该仪器还具有高度的可靠性和稳定性。由于其经过原始设备制造商的严格质量控制和测试,因此可以确保检测结果的准确性和一致性。这对于一些对检测结果要求较高的应用,如医疗诊断、生命科学研究等,尤为重要。   总结起来,制备型OEM检测器是一种定制化、高精度的检测设备,通过传感器技术实现对特定物质或参数的检测和测量。其具有可定制性强、体积小、便携性好、可靠性高等优点,广泛应用于环境监测、工业控制、医疗诊断等领域。随着科技的不断进步,制备型OEM检测器在更多领域的应用前景将会更加广阔。
  • 仪器小课堂之FPD检测器维护
    火焰光度检测器(FPD),是气相色谱仪检测器的一种,对含硫化合物、含磷化合物具有高选择性与高灵敏度。FPD检测器的构成FPD检测器主要由点火器、火焰喷嘴、遮光罩、石英片、滤光片、光电倍增管等构成,前三者负责氢焰产生与光发射,后三者负责光分析与光电转换。FPD检测器一般采用氢气与空气燃烧产生火焰,磷元素与硫元素在富氢火焰中燃烧时,会发射出独特波长的光,通过测定光波长与光强度来检测元素的类型与浓度。为了避免发光产生的大量水蒸气、燃烧产物和高温对光、电系统的影响,用石英窗和散热片将发光室和光电系统隔开。FPD不是将所有的光变成电信号,而是用滤光片选择硫、磷特征光。不同的元素在火焰中会发出不同的光,FPD就是利用这个原理,P产生的火焰是青绿色的,S是蓝紫色的。使用FPD注意事项1、保持FPD的正常性能FPD点火较FID困难些,如何保持FPD噪声不变大,灵敏度不下降,是使用中常遇到的问题。1)点火,通常富氢焰比富氧难点燃。如注意以下事项,并不难。FPD温度必须加热到120℃以上在原富氢焰流速时点火困难,可适当增大空气流速或降低氢流速,至接近FID富氧焰的O/H比,即可点燃。点燃后稍稳定几分钟,再将其变至FPD富氢焰的O/H比即可2)噪声,通常FPD的噪声在5×10-12~5×10-11,如果过大应寻找原因排除噪声。3)灵敏度,除如前所述漏光、漏空气,使灵敏度降低外,常因如下几方面原因,使FPD灵敏度下降。滤光片透光度下降玻璃套管脏石英窗透光度下降喷嘴脏或有沉积物PMT损坏2、安全1)防氢气泄露,FPD同FID一样要用氢作燃气,使用中切勿让氢气漏入柱恒温箱内,以防爆炸。注意:未接色谱柱前勿通氢气,卸柱前先关氢气,两套FPD仅用一套时,务必将另一套用螺帽堵死。2)防烫伤,FPD外壳十分热,切勿触及表面,以防烫伤。高麦 成立于1935年,在中国、美国、日本、韩国等多个国家设有技术、研发中心,生产、组装工厂、客户运营中心,逐步形成以北京为总部,在武汉、杭州,日照,台湾等地分别设立技术研发和客户运营中心的生态网络,全方位的为中国乃至全球客户 打造专属的气体行业解决方案。The Cornerstone of Technology,Since 1935. 关注高麦,洞见真知。
  • “最黑”材料制成高精度激光功率检测器
    据美国科学促进会网站8月18日报道,美国国家标准技术研究院利用世界最黑材料——森林状多壁碳纳米管作涂层,研制出一种激光功率检测器,可用于光通讯、激光制造、太阳能转换以及工业和卫星运载传感器等先进技术领域的高精度激光功率测量。研究论文发表在最新的《纳米快报》上。   这种新型检测器几乎不会反射可见光。在波长从400纳米的深紫,到4微米的近红外线波段,反射少于0.1%,在4微米—14微米的红外光谱中,反射少于1%。这和伦斯勒理工学院2008年报告的超黑材料相似。2009年一个日本团队也有类似研究。   正是受到伦斯勒理工学院的研究论文《世界最黑人造材料》的启发,国家标准技术研究院的科研人员对精细碳纳米管进行了较为稀疏的排列,把它作为一种热检测器的涂层,制成了用于测量激光功率的设备。碳纳米管是热的良导体,提供了一种理想的热量检测器涂层。虽然镍磷合金在某些波段能反射更少的光,但不能导热。   纽约石溪大学的合作研究人员在一种热电材料钽酸锂上,生长出了碳纳米管涂层,涂层吸收激光转换成热量,温度上升产生了电流,通过测量电流大小能确定激光的功率。涂层越黑,光吸收的效果越好,测量结果就越精确。其独特之处在于,纳米管是生长在热电材料上,而其它研究中是生长在硅材料上。   国家标准技术研究院用过各种各样的材料来做检测器涂层,包括扁平状的单壁纳米管。最新的涂层是一种竖直的森林状多壁纳米管,每根细管直径小于10纳米,长约160微米,深管有助于吸收随机散射光和任何方向的反射光。   由于技术上要求检测器能测量的反射光谱更加广泛,国家标准技术研究院用了5种不同的方法花了数百小时来测量越来越弱的反射光,结果精确度都能达到要求。研究人员计划将设备的刻度运行范围扩展到50微米甚至100微米波长,这或许可为太赫兹射线功率测量提供一种标准。
  • 水质检测器也能3D打印?这个科研团队脑洞有点大
    p   饮用水安全如何保障,如何实时监测水质的安全可能是全球最为关注的问题。近日,加拿大英属哥伦比亚大学奥肯那根校区的科研团队就攻克了这个难题,借助3D打印技术研发了水质检测器,用以检测饮用水的品质。 /p p   据了解,该研发团队是由英属哥伦比亚大学工程学院院长MinaHoorfar教授亲自带领,研发的3D打印水质检测器可对任何水域地点的水源进行实时监测,以降低如大肠埃希氏菌的感染的水源性疾病对人类健康的威胁。 /p p   “现在的水质监测只能采取定期手动检测的方式,这样测试结果就受制于采样频率,并且有极大地疾病爆发可能性。因为传统的水质监测探测器造价极高并且稳定性不足,所以不能实时部署于整个水域来进行检测。”据MinaHoorfar教授介绍,“而采用3D打印技术研发的水质监测器不仅可以实时监测,而且极大降低了制作成本。 /p p   “因此,这项3D打印水质检测器的研发,对于未来水质检测方面解决现有的那些需要通过人力手动定期检测而不能实时监控的检测方式具有重要意义。 /p center img alt=" 水质检测器也能3D打印?这个科研团队脑洞有点大" src=" http://images.ofweek.com/Upload/News/2017-07/26/nick/1501033799337003375.jpg" width=" 500" height=" 331" / /center p   据悉,整个3D打印水质探测器的制作过程是在英属哥伦比亚大学的高新热流体实验室中制作完成,探测器被设计为无线操作模式,并且可以在任何水压及温度下来读取水质信息。除此之外,每一个探测器都可以进行独立工作,这样就可以保证水域里任何一个探测器出现问题却不影响其它探测器的正常工作。 /p p   此外,与传统的定时采样方式相比,现在这款3D打印水质探测器工作方式的连续性极大提高了水质安全监测的水平。并且这款探测器因其制造简单体积小的特点,不仅仅是在开放性水域,甚至在家庭用水系统当中都可以安装,从方方面面来提升安全生活品质。 /p
  • 低温蒸发光散射检测器的技术规格包括以下几个方面
    低温蒸发光散射检测器的技术规格包括以下几个方面低温蒸发光散射检测器(LowTemperatureEvaporativeLightScatteringDetector,LT-ELSD)是一种常用于液相色谱(LiquidChromatography,LC)分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。
  • 中国首台全内置式高温三检测器GPC顺利安装
    中国第一台真正意义上的高温全内置三检测器(示差折光指数检测器RI/毛细管粘度检测器DV/光散射检测器LS)联用凝胶渗透色谱仪PL-GPC220在中国顺利完成安装验收工作,该用户为著名石化企业中石油的合资石化公司,仪器的温度稳定性、流速精度及进样进度均完全满足多检测器联用的要求;对高密度聚乙烯和聚丙烯的样品进行了实验,实验结果完全优于美国国家标准ASTM6474的要求,有极好的数据重现性;同时对低密度聚乙烯的长链支化进行了研究,取得了很好的研究结果。这标志着Polymer laboratories公司的三检测器高温凝胶渗透色谱仪开始逐步进入中国市场,相信会为中国的石化企业在生产质控及研发上提供丰富可靠的数据。
  • 抛却传统检测器,ELSD充分简化HPLC药物分析!
    在药品质控、研究、临床应用及生产中,药物的质量分析评估是尤为重要的一步。 HPLC 法是常用的分析方法之一。HPLC分析检测仪器仪器特点光学检测器鉴于有些药物缺少适宜的光化学结构,因此不能用常用的光学检测器如紫外、荧光等检测;红外检测器灵敏度较低,不适用于梯度洗脱时应用;质谱检测器价格过高,又限制了它的应用;蒸发光散射检测器( ELSD )价格适中,功能相对全面,是较为理想的选择。ELSD应用领域ELSD能分析任何挥发性低于流动相化合物。因此,ELSD可被应用在以下领域:碳水化合物 / 药物 / 脂类 / 甘油三脂 / 未衍生的脂肪酸和氨基酸 / 聚合物 / 表面活化剂 / 营养滋补品 / 组合分子库… … ELSD优势1通用性2响应因子只与物性有关3与梯度洗脱相容… … 因而,ELSD被广泛应用于药物的分析测定中。尤其是利用结构相似、含量已知的物质作对照标定新的药品基准,是药物分析的一大发展。案例分享 案例主要介绍了Waters2424ELSD 在中药材中皂苷类成分检测中所展示的优越性。2424蒸发光散射( ELS )检测器色谱条件色谱柱:ODS 5um(4.6mm*200mm);流动相:甲醇:水=50:50;柱温:30°C;流速:1.0ml/min 。Waters2424蒸发光检测器(ELSD)的增益为100;喷雾器加热级别为90%;气体压力为20psi;漂移管温度为80°C。RESULT外标法 使用外标法绘制标准曲线,获得5~ 500mg/L的宽线性范围。三个浓度(10、50和200 mg/L)准品的保留时间和峰面积的RSD(n=5)分别在0.04~0.11 %和0.69~7.14 %之间,仪器精密度良好。2424蒸发光散射检测器结构紧凑,在雾化阶段和蒸发阶段均可控制温度,保低扩散性能以获得可靠 HPLC / ELSD 结果。每次运行时用户能够获得更多的峰信息以及 LC 的可靠性和重现性结果。2424蒸发光散射检测器可以作为 Breeze 系统的一部分在 Breeze 或者Empower 或软件的直接控制下使用,或者作为独立的 ELS 单元使用。随着医药工业的发展及竞争加剧,对药物成分、代谢产生、降解物与杂质的定性、定量提出了更高的要求。在符合标准要求的前提下,Waters2424蒸发光散射检测器(ELSD)能够使复杂的药物分析变得简单化,并提供更灵敏、更稳定、更可靠的数据结果,为药物分析保驾护航。参考文献:[1] 黄永焯,王宁生,HPLC_ELSD在天然药物分析中的应用,广州中医药大学临床药理研究所;[2] 田洁,蒸发光散射检测器简化了药物HPLC分析的应用;[3] 刘超,蒸发光散射法与紫外法用于中药材中皂苷类及糖类成分检测的比较研究,山东中医药大学。
  • 揭秘ELSD检测器使用的那些事儿
    月旭科技ELSD5450蒸发光散射检测器ELSD检测器作为一种通用型检测器,对于无紫外吸收的样品,应用非常广泛,如碳水化合物、脂类、表面活性剂以及合成聚合物等,几乎所有的液相色谱实验室中都会标配几台ELSD,使用ELSD时要注意哪些问题你知道吗?一起来了解下吧。1用于ELSD的流动相都有哪些所有在 LC/MS 中使用的挥发性溶剂均可在 ELSD 中使用。其中包括:酸(甲酸,乙酸,三氟乙酸等),碱(氨,三乙胺等),缓冲剂(甲酸铵,乙酸铵,碳酸铵等),离子对试剂(五氟丙酸,七氟丁酸等),这些化合物可以方便地修饰流动相以分离复杂样品。而非挥发性添加剂(如磷酸钠或磷酸钾或硫酸钾)与 ELSD 不相容,不可使用。它们可能会污染甚至严重损坏探测器的某些部分,这些添加剂可以容易地被相应的挥发性添加剂替代。2ELSD 使用的气体是什么ELSD 可以使用空气或氮气。但是,出于安全原因,建议使用氮气。因为将空气(含氧气)与可燃溶剂混合会产生高度易燃和可能的爆炸性混合物。气体典型的消耗量小于3L/min。气体不需要高纯度。气体标准工作压力调至3.5bar(以月旭科技ELSD5450为例)。3ELSD的参数如何优化蒸发温度是ELSDzui重要的参数。温度依据流动相的沸点。对于非挥发性化合物,选择高蒸发温度(例如50-60°C)以完全蒸发流动相,从而zui小化基线噪音并获得zui高灵敏度,月旭科技ELSD5450为低温型ELSD,蒸发温度zui高可达100℃。ELSD检测器在蒸发温度上不断进行改进,低温蒸发型ELSD优势使半挥发性和热不稳定化合物具有更高的灵敏度。实际上,仅将温度设定在25-30℃范围内也可为这些化合物提供较高信号,同时不会影响流动相的蒸发。4蒸发光散射检测器使用中的注意事项1、洗脱液需要雾化,雾化气体的纯度和压力会影响检测器的信噪比。2、流动相要蒸发掉,所以不能使用不易挥发的物质来调节流动相的pH值。可以通过蒸发温度的调节来使比被测物质沸点低的组分蒸发。在不使被测物质蒸发的前提下,温度越高,流动相蒸发越完全,色谱图基线越好、信号越高。如果被测物质沸点接近或低于流动相的蒸发温度,则无法检测。由于流动相和溶剂都蒸发了,使用ELSD检测器收集的色谱图一般没有溶剂峰。 3、ELSD的检测方法消除了传统HPLC的检测方法中的难点,它的响应不依赖于样品的特性,ELSD的响应值与样品的质量成正比,因而能用于测定样品的纯度或者检测未知物。4、检测光散射变化,所有进入到散射池的物质都可被检测,而且响应值只与物质的量也就是物质的质量有关。5、浓度跟峰面积不成线性,分别取自然对数后成线性。5蒸发光散射检测器基线不稳的原因有哪些蒸发光散射检测器基线不稳可能有以下几个原因:1、流动相,难挥发性有机物的比例建议不要过高,无机盐类建议不使用。2、柱子中的污染物,使用前可先用流动相冲洗柱子后再使用。3、气体流速和温度不稳定。4、注意废液的及时排出,避免影响基线稳定性。6ELSD 的日常维护注意事项有哪些1、ELSD比较重要的组件是喷雾器,它应该保持良好状态。只需简单的预防性维护即可保持其性能并延长其使用寿命。2、确保雾化器玻璃腔的虹吸管始终充满,液面稳定且两侧相等。ELSD使用前要先通气,再升温,zui后再进流动相,使用后要先停流动相,再降温,zui后停气。3、实验结束后,可以选择高温,通气的条件进行清洗系统,冲洗的流动相可以选择水、甲醇或异丙醇,直到基线平稳。ELSD5450可以匹配国内外多家品牌的工作站实现远程控制关机等操作,具体工作站版本信息如下。ELSD5450可返控工作站版本信息
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制