当前位置: 仪器信息网 > 行业主题 > >

智能型回路电阻测试仪

仪器信息网智能型回路电阻测试仪专题为您提供2024年最新智能型回路电阻测试仪价格报价、厂家品牌的相关信息, 包括智能型回路电阻测试仪参数、型号等,不管是国产,还是进口品牌的智能型回路电阻测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能型回路电阻测试仪相关的耗材配件、试剂标物,还有智能型回路电阻测试仪相关的最新资讯、资料,以及智能型回路电阻测试仪相关的解决方案。

智能型回路电阻测试仪相关的资讯

  • 磁电阻特性测试仪
    成果名称 磁电阻特性测试仪(EL MR系列) 单位名称 北京科大分析检验中心有限公司 联系人 王立锦 联系邮箱 13260325821@163.com 成果成熟度 □研发阶段 □原理样机 □通过小试 &radic 通过中试 &radic 可以量产 合作方式 □技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介: 本仪器专门为材料磁电阻特性测试而设计的,采用流行的USB接口将高精度的数据采集器与计算机相连,数据采集迅速准确;用户界面直观友好,极大地方便了用户的使用。 MR-150型采用电磁铁产生强磁场,高精度名牌仪表采集数据,精度高稳定性好适合科研中各类样品的磁电阻特性测试。 MR-4型采用亥姆霍兹线圈产生磁场,无剩磁。采用高精度名牌仪表采集数据,精度高稳定性好适合科研中AMR、GMR、TMR各类样品的磁电阻特性测试。 MR-2型采用集成化主机和多通道USB接口数据采集卡采集数据,稳定性好适合科研教学中性能较好的磁电阻样品测试。 MR-1型采用手动调节磁场和人工读数,适合与大中专院校本科生研究生的专业实验中使用。 主要技术参数: 一、系统控制主机:内含可1路可调恒流源(0.3mA~50mA)、2路4 1/2数字电压表和1块USB接口24bit数据采集卡;功耗50W。 二、自动扫描电源:0~± 5A,扫描周期8~80s。 三、亥姆霍兹线圈:0~± 160Gs。 四、测量专用检波与放大电路技术参数:输入信号动态范围为± 30 dB;输出电平灵敏度为30mV / dB;,输出电流为8mA;转换速率为25 V /&mu s;相位测量范围为0~180° ;相位输出时转换速率为30MHz;响应时间为40 ns~500 ns;测量夹头间隔10mm。 五、计算机为PC兼容机,Windows XP或Windows 7操作系统。 六、数据采集软件在Windows XP和Windows 7操作系统均兼容。 应用前景: 本仪器可用于金属、合金及半导体材料的电阻变温测量。适合于高校科研院所科研测试及开设专业实验。目前该仪器已经应用在北京科技大学材料学院及哈尔滨工业大学深圳研究生院的研究生实验教学及课题组科研测量中,取得良好的成效。 知识产权及项目获奖情况: 本仪器拥有完全自主知识产权和核心技术,曾在全国高校自制实验仪器设备评选活动中获得优秀奖。
  • 材料变温电阻特性测试仪
    成果名称 材料变温电阻特性测试仪(EL RT-800) 单位名称 北京科大分析检验中心有限公司 联系人 王立锦 联系邮箱 13260325821@163.com 成果成熟度 □研发阶段 □原理样机 □通过小试 &radic 通过中试 &radic 可以量产 合作方式 □技术转让 &radic 技术入股 &radic 合作开发 □其他 成果简介: 本仪器专门为材料电阻特性变温测试而设计,采用专用高精度电阻和温度测量仪以及四端测量法减小接触电阻对测量的影响从而提高测量精度,样品采用氮气保护可连续测量-100℃~500 ℃条件下样品电阻随温度的变化。采用流行的USB接口将高精度的数据采集器与计算机相连,数据采集迅速准确;用户界面直观友好,能极大方便用户的使用。 主要技术参数: 一、信号源模式:大电流模式;小电流模式;脉冲电流模式。 二、电阻测量范围: 1&mu &Omega ~3M&Omega 。 三、电阻测量精度: ± 0.1%FS。 四、变温范围:液氮温度~900 ℃。 五、温度测量精度:热电阻0.1%± 0.1℃;热电偶0.5%± 0.5℃。 六、供电电源:220 VAC。 七、额定功率:500W。 八、数据采集软件在Windows XP、Windows 7操作系统均兼容。 应用前景: 本仪器可用于金属、合金及半导体材料的电阻变温测量。适合于高校科研院所科研测试及开设专业实验。 知识产权及项目获奖情况: 本仪器拥有完全自主知识产权和核心技术,曾在全国高校自制实验仪器设备评选活动中获得优秀奖。
  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到 智能全自动薄膜阻隔性测试仪
  • 追求用户体验--思克WVTR水蒸气透过率测试仪人工智能产品介绍
    思克WVTR系列水蒸气透过率测试仪 济南思克测试技术有限公司生产的WVTR系列水蒸气透过率测试仪应用范围非常广,小编列举了我们最经常接触的两个行业:一方面是食品包装行业会应用到,比如饼干、薯片,酸奶、纯牛奶等固体液体的包装袋,还有就是盒装酸奶,纯牛奶用的包装盒;另一方面就是药品包装用的铝塑板,泡罩包装等,瓶装药品用的塑料瓶等外包装材料都可以用到思克WVTR系列水蒸气透过率测试仪。 为什么食品要控制水分含量呢?我们大家都知道,像是饼干薯片等食品,如果暴露在空气中的时间久了,空气中充满了大量的水蒸气,空气中的水汽就会进入饼干里面导致饼干发绵发软,吃的时候就会觉得不脆不香了,很影响口感。所以饼干薯片等食品在出厂前都会对其进行水分含量的测定,如果水分含量过高就会影响口感。 为什么要测试食品包装的水蒸气透过率呢?测试水蒸气透过率的目的大概是三方面,一是水蒸气透过率过大的话会影响产品的货架期,直接给厂家带来严重的损失;另一方面就是控制成本,如果一层包装的水蒸气透过量过大,有的工厂会在外面再加一层包装,多层包装的成本就高了。还有最重要的一方面,近年来国家相关部门严查食品安全问题,如果包材水蒸气透过量过大,就会导致食品里面的细菌生长从而导致食品变质,从而直接影响消费者的身体健康 为什么要购买思克WVTR系列水蒸气透过率测试仪呢?首先我们先看一下操作系统,思克WVTR系列水蒸气透过率测试仪将AI人工智能技术应用于水蒸气透过率测试仪等阻隔系列检测仪器,以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性。在对塑料薄膜、薄片、复合膜等软包装材料进行气体透过率测试时,测试过程高度自动化,无需人工干预,测量结果更准确。 其次我们就来看一下思克WVTR系列水蒸气透过率测试仪的技术参数薄膜测试容器测试(选购)测量范围:0.001~52g/m224h(常规) 0.01~1100 g/m224h(可选)0.0001~0.3g/pkg.d分 辨 率:0.001 g/m224h0.00001g/pkg.d控温范围:5℃~95℃另购控温精度:±0.1℃湿腔湿度:0%RH、35%RH~90%RH、百分之一百RH,标准90%RH (标配)控湿精度:±1%RH 试样数量:1 件测试面积:48cm2/试样尺寸:150 mm×94mm更大:Φ180mm*400mm试样厚度:≤3mm/载 气:99.999%高纯氮气 (气源用户自备)载气压力:≥0.16MPa 控温方式:水浴控温载气流量:0~200ml/min气源接口:1/8英寸金属管电 源:AC 220V 50Hz主机尺寸:330mm(L)×600mm(B)×330mm(H)主机净重:28kg 技术参数是衡量仪器的综合能力的重要指标之一,思克WVTR系列水蒸气透过率测试仪无论是从控温范围上还是从控温方式上,都把测试精度提高了一大截。 经过小编的介绍,大家是不是对思克WVTR水蒸气透过率测试仪有一定的了解了,如果各位老板需要更加深入的了解我们的产品,抓紧联系我们吧
  • 智能型卡尔费休库仑微量水分测定仪KF106隆重上市
    高精度智能化库仑法微量测定仪由于技术上问题,一直由国外产品掌控国内微量水分测定仪的市场,由于其价格相对于其它常用的水分测定仪,价格一直居高不下,从而限制其产品广泛使用。 针对国内产品对微量水分测定仪的测试精度和智能化程度越来越高,经过多年水分测定仪的销售和生产的经验,通过我公司技术人员共同努力,研发出最新智能型卡尔费休库仑微量水分测定仪KF106,其精度和相对误差均与国外同类产品相媲美,其销售价格则为同类进口产品的一半。同时根据国内的用户的操作习惯,研发最新的操模式,其操作的便利性和智能性完全满足日常的微量水分测定的要求,受到广大用户的欢迎。 KF106型微量水分测定仪采用经典理论&mdash &mdash 卡尔&bull 菲休微库仑电量法;依据电解定律反应的水分子数同电荷数成正比,仪器检测参加反应电荷数(库仑)自动换算成对应的水分子数,因此此方法测试精度极高,测试成本极低,具有其他测试方法不可替代的优势;能可靠的对液体、气体、固体样品进行微量水分的测定。该仪器以棒图形式显示测量电极信号,直观指示电解液的含水量,实时描绘电解速度对时间的变化曲线。具有高灵敏度、高精度、高再现性,低功耗节能设计等特点,可内置蓄电池用于便携测量,广泛适用于石油、化工、电力、制药、商检、科研、环保等领域。 可检测物质种类包括: 1.汽油,水压油、绝缘油、变压器油、透平油、抗燃油。 2. 戊烷、己烷、二甲基丁烷、辛烷、十二烷、二十碳烷、二十八烷、环十二烷、癸基环己烷、甲基丁二烯、苯、甲苯、二甲苯、乙基甲苯、二甲基苯乙烯、十四烯、石油醚、环己胺、甲基环己胺、环庚 烷、乙烯环己胺、二环戊二烯、二甲基萘、三甲基苯乙烯、苯、二氢苊、芴、亚甲基菲、异甲基异丙基苯等。 3.酚类 苯酚、甲酚、氟苯酚、氯酚、二氯苯酚、硝基酚等。 4.醚类 二乙醚、二甘醇单甲醚、二甘醇二乙醚、聚乙二醚、苯甲醚、氟苯甲醚、碘苯甲醚、二癸醚、二庚醚。 5.全部醇类、全部卤代烃类、全部脂类等。 仪器特点 320× 240点阵图形液晶显示屏,触摸屏操作; 实时描绘电解速度对时间的变化曲线; 以棒图形式显示测量电极信号,直观指示电解液的含水量; 使用空白电流补偿、平衡点漂移补偿来修正测量结果; 独创开关恒流电解技术,降低整机功耗; 带时间标记的历史记录,最多存储255个; 具有电极开路、短路自检报警功能; 内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能; 内置蓄电池(选配),充满电后,可连续使用6小时以上; 配有标准RC232接口,可与计算机连接,便于处理试验数据; 具有屏幕保护功能,延长液晶使用寿命; 技术参数 测量范围:1ug~100mg 精 度:测试水量在3ug~1000ug之间误差小于± 2ug 测试水量大于1000ug误差小于± 0.2% 分 辨 率:0.1ug 电解电流:0~400mA 待机功耗:6W 最大功耗:35W 电源电压:AC220V± 20% 50HZ± 10% 适用环境温度: 5℃~40℃ 适用环境湿度: &le 85% RH 外形尺寸:350× 260× 180(mm)
  • 智能型氦液化回收系统落户中科院物理所,有望实现75L/日实验室液氦回收效率
    同样作为不可再生资源,氦这个字眼往往很少出现在人们日常的生活中,事实上,氦被广泛应用于航空航天、医疗、物理材料以及近年大热的量子信息技术等领域。随着科学技术的不断发展,人们对氦的需求与日俱增,然而在过去的十年里氦的全球产量确并没有得到显著提升。 封锁卡塔尔重创全球氦供应2012年后,美国将氦气作为战略储备资源,大幅削减了氦气的出口订单,但随后卡塔尔弥补了这个空缺,因此目前全球氦气市场主要依赖美国和卡塔尔两个主要氦气产地。而我国氦气仍主要依赖于进口,原产自美国和卡塔尔的氦气各占到国内氦气市场的一半。2017年下半年,由于卡塔尔断交事件和其他政治因素影响,卡塔尔的氦气出口骤减直接导致2018年国内氦供应价格上浮了约40%。这无疑导致国内对氦依赖较大的医疗、科研机构产生了巨大的成本负担。Quantum Design公司30多年来一直致力于低温系统的研发和制造,积累了大量的技术和经验,由于制造工厂测试超导磁体以及低温测量系统对液氦的需求较大,因此Quantum Design从自身需求出发在2013年研发了ATL智能型氦液化器。该氦液化器设计集小型、智能、高效于一身,是市面上支持10PSI高压氦液化的高效氦液化器。也正是因为其操作简单易用,占地面积小,单冷头液化效率高等特点,受到国内诸多中小低温科研实验中心的青睐。 中国科学院物理研究所拥有多套低温实验设备,出于实验成本等因素的考虑,许多用户老师也倾向于将液氦回收再利用以减少实际开销。近日我们成功在中科院物理所安装了一套由3台ATL160智能型氦液化器和2台ATP30智能型纯化器组成的液氦高压回收系统,该套氦液化回收系统将能够实现每日75L的液氦回收量(约56m3常压氦气)。得益于其便捷式设计,每台氦液化器杜瓦均能够随时断开压缩机推至用户设备旁进行液氦传输,免去了二次传输的操作并避免了额外损耗,大程度地节省液氦产能。单冷头式的液氦杜瓦设计也能够大地规避由于冷头维修造成的整体停机,风险分散化的设计能够让用户的液氦回收效率更有保障。整套系统采用全电制冷,并可通过网络由手机、平板或者电脑等进行实时远程监控,并且得益于ATP30智能纯化器的冷头式制冷纯化设计,也免去了传动氦液化回收装置需要定期加注液氮的烦恼。智能型氦液化器ATL视频介绍: 截止目前,ATL智能型氦液化器的用户已经遍布全球,全球装机量已经达到了150余套,其智能和高效的设计正在使越来越多的低温液氦用户受益。Quantum Design也会继续致力于为广大科学家们的实验平台提供可靠以及灵活的液氦解决方案,尽大可能为用户节省液氦开支。
  • 国内领先LABVO智能型实验室-力扬企业于BCEIA 2019引进展出
    2019 年 10 月 23 – 26 日,2019北京分析测试学术报告会暨展览会 (BCEIA 2019) 在北京国家会议中心举行。力扬企业在会上正式展出了旗下子公司 LABVO TECH 首度推出的智能型实验室。技术人员在展台上通过实时操作展示了此款集创新、智能化和人性化于一体的智能型实验室,吸引了众多观展用户到场围观。 BCEIA 大会创办于 1985 年,至今已成为中国分析测试领域规模最大、最具影响力的国际性学术会议及展览会,为推动我国分析测试科学和仪器制造技术的发展起到了重要作用。国家 “十三五” 生物产业发展规划中明确指出,要加快制药装备的升级换代,提升装备的自动化、数字化和智能化水平,实验室科学仪器设备革新已蓄势待发。BCEIA 2019 云集了诸多知名的科学家、仪器厂商以及国内外分析测试领域大咖,为响应我国科学仪器设备自主创新发展积攒能量。 力扬企业引领中国科研实验室变革 如今大部分实验室的设计仍旧沿用几十年前的模式,然而常规和高端的实验室仪器在过去几十年里已有了翻天覆地的变化,如功能的多样性及仪器的精准度,这要求实验室的整体规模要更加个性化和先进化。面对实验步骤的复杂程度一再提升,样品量规模的持续上涨,不难发现市场的需求在不断改变和升级,移动通讯方式也在迅速发展,实验室智能化不再是片刻的需求,而是长远的规划。此次力扬企业展出的LABVO智能型实验室,结合AI、云计算、智能设备以及混合现实技术等,把智能型实验室这一概念落地,现场为大家演示了智能管理系统SmartAssistant,这个系统由SmartGuide、SmartLogistic、AutoStep、SmartMatch、SuperVision这五大重要功能单元组成。LABVO智能型实验室是全国首家集合了以上五大元素且成功运行的智能化实验室平台。 将国际上先进的科学理念、技术及性能引进国内,并与中国的传统文化及元素相结合,助力中国企业在科研领域的快速发展是力扬一直以来的追求。力扬企业行政总裁黄凯扬先生表示:“从仪器设备代理商到提供实验室自动化解决方案,再到如今 LABVO智能型实验室的诞生,我们要做的很简单,就是迎合时代发展,响应政策纲要,革新中国科研实验室。” LABVO智能型实验室模型 实验室开启 “智能化” 革新之旅 LABVO智能型实验室能够帮助实验人员更好的实现人机互动。无论是多项目多终端同时进行,还是突发状况应急响应,智能管理系统SmartAssistant都能保证各项目顺畅进行。SmartGuide充分利用了混合现实技术快速指导实验。SmartLogistic根据资源前置期遇到的问题进行自动化采购,保证实验顺利进行。AutoStep是通过智能运算,进行互斥资源的最优排程。SmartMatch则通过统计拟合等方法,对现有数据进行多维度分析,以达到对下一步实验数据进行推演和预测模拟。SuperVision实现了让实验人员以第一人称视角远程参与实验,并且协助问题解决。力扬研究员正在进行TCM中药提取实验(左)QueChERS农产品检测实验(右) 力扬研究员正在进行DNA检测实验力扬企业的三位研发人员现场在SmartAssistant系统的帮助下进行了三个不同的实验项目,在同一平台上,同时进行,并且有效互动,真正实现了资源共享,且高效优质的完成了各自的实验成果。力扬企业仍在不断拓展和升级 LABVO 智能型实验室的应用及技术。“相信在不久的未来,我们能看到 LABVO 智能型实验室与国际水平接轨,并为中国越来越多的企业带来可观的效益”,黄凯扬先生补充道。 力扬企业技术副总裁卢富荣(左)、力扬企业CEO黄凯扬(中)、力扬企业项目经理安守星(右)LABVO 智能型实验室应用广泛,未来可期 LABVO 智能型实验室的应用领域十分广泛,生物样品前处理毋庸置疑优先享受到了 “智能化” 所带来的益处。现场演示过程中力扬将高通量高产出的瑞士 Chemspeed 自动化模块工具应用在 LABVO 智能型实验室当中,并且结合了机械臂标准化和规范化的操作流程提取样品,使得实验结果更加精准高效。 随着越来越多利好政策的出台,我国也在持续加大对科研实验室的建设力度,引进更智能化的软硬件设备已经成为一种趋势,但基于多方面综合因素考虑,一个全智能化和数字化实验室的落成是一个漫长的过程,力扬企业则抢先一步,推出了 LABVO智能型实验室。“今天我们所看到的智能型实验室只是一个概念雏形,面对5G和人工智能快速发展的时代,智能型实验室的发展必将拥有无限可能。未来,希望有更多的伙伴可以加入我们,让这段漫长的革新旅程不再孤单。” 历经二十余年发展的力扬企业服务过各个领域,包括医药、石油化工、食品领域的质量控制和研发实验、政府部门及大学研究所等。如今我们看到了 LABVO智能型实验室在样品前处理的应用前景广阔,未来,期待随着 LABVO 智能型实验室的不断完善和成熟,为更多不同领域的中国企业带来效益。
  • 崂应发布崂应3012H-C型 自动烟尘/气测试仪新品
    崂应3012H-C型 自动烟尘/气测试仪 一、产品概述 本仪器应用皮托管平行等速采样法采集固定污染源排气中的颗粒物,用过滤称重法测定烟尘质量,应用定电位电解法定性定量测定烟气成份,全新升级的控制系统提高了仪器性能,保证了仪器的可靠性,提高了系统的稳定性,增强了控制的准确性,应用于各种锅炉、烟道、工业炉窑等固定污染源颗粒物的排放浓度、折算浓度、排放总量的测定及设备除尘脱硫效率的测定;自动测量烟气动压、烟气静压、流速、流量计前压力、流量计前温度、烟气温度、含湿量、O2、SO2、CO、NO、NO2、CO2浓度等参数。产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑,以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。二、执行标准n GB/T 16157-1996 固定污染源排气中颗粒物和气态污染物采样方法n HJ/T 48-1999 烟尘采样器技术条件n HJ 57-2017 固定污染源废气 二氧化硫的测定 定电位电解法n HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法n HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法n HJ 870-2017 固定污染源废气 二氧化碳的测定 非分散红外吸收法n JJG 680-2007 烟尘采样器检定规程n JJG 968-2002 烟气分析仪检定规程n DB13/T 2375-2016 固定污染源废气低浓度颗粒物的测定 重量法三、产品特点 控制系统n 采用工业级嵌入式控制器设计,抗静电能力强n 5.0寸触摸屏,高亮显示,强光下可视,宽可视角;加厚电阻式触摸板,抗干扰性好,环境适应能力强;操作界面简单友好,数据呈现直观n 带有中文输入法,方便用户输入采样地点等信息n 丰富的人机接口:具备RS232、USB等接口,支持数据通信,U盘数据转存输出n 提供USB接口,可将采样数据文件导出,同时支持仪器软件升级n 选用蓝牙高速低噪音微型热敏打印机,支持无线蓝牙和有线打印双模式,轻松掌握实时数据n 实时记录设备工作状态数据,具有采样过程停电记忆功能n 含湿量检测多模式:兼容干湿球法和阻容法两种测量模式n 具有烟尘采样和烟气测量同步运行功能n 具备故障自检功能,可对仪器功能进行检测并提示故障,方便用户的维护、使用n 具备气密性自动检测功能,可自动诊断气路的气密性,并在文件中记录动力系统n 高效采样泵,耐腐蚀,连续运转免维护,适应各种工况,具有过载保护功能n 微电脑控制等速跟踪采样,专有调节方式,响应时间快;精密压力传感器搭配稳定的流量控制,可实现超低流速的稳定跟踪n 仪器内置弹性气容,提高采样流量稳定性n 具有防倒吸功能,可防止采样结束后采集的烟尘被倒吸出来,保证采样数据的准确性n 精确电子流量计控制,实时监测计温、计压,并对流量做了温度补偿,保证流量的准确度其他n 支持烟尘采样与烟尘直读双功能(选配)n 高性能5系气体传感器,性能更稳定可靠n 一体化电化学传感器模块,可根据需要自主选配进口传感器,最多可同时测量6种气体n 气体传感器修正补偿技术:烟气测量具有气体交叉干扰自动修正算法,最大限度地避免了交叉干扰对测量结果的影响,保证了测量精度n 选配锂电池组电源,可同时给主机和低浓度烟尘多功能取样管或阻容法含湿量检测器供电,具有电池和交流电双工作模式n 工况测量前置,减少管路及线路连接,简化现场仪器连接n 工况测量支持有线和无线双通信模式,更好的满足复杂的现场需求n 选配空白样取样支架,具有同步采集全程序空白样并自动形成空白样报告功能n 预留物联网模块接口,可拓展联网功能n 仪器内置电子标签,可与仪器出入库管理平台软件配合实现仪器智能化管理n 采样文件支持二维码展示功能,通过专用软件扫一扫即可实现文件获取并转存 说 明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符, 请以实机为准,本内容仅供参考。 创新点:1、超小体积,主机仅重3.4kg 2、支持烟尘采样与烟尘直读(选配)双功能 3、具有烟尘采样和烟气测量同步运行功能 4、工况测量支持有线和无线双通信模式,更好的满足复杂的现场需求 5、含湿量检测多模式:兼容干湿球法和阻容法两种测量模式 6、高性能6系气体传感器,性能更稳定可靠 7、预留物联网模块接口,可拓展联网功能 8、仪器内置电子标签,可与仪器出入库管理平台软件配合实现仪器智能化管理 9、采样文件支持二维码展示功能,通过专用软件扫一扫即可实现文件获取并转存 崂应3012H-C型 自动烟尘/气测试仪
  • “雷磁”智能型实验室pH计广受西班牙用户欢迎
    上海仪电科学仪器股份有限公司智能型实验室pH计出口西班牙的势头依然看好,最近一批数量较大的智能型实验室pH计出口西班牙市场,受到该国经销商的欢迎。 据了解,西班牙的经销商多年来经销仪电科学仪器股份公司的&ldquo 雷磁&rdquo pH实验室仪器,而且对不断改进外观、质量和增加测试、分析功能的&ldquo 雷磁&rdquo PH实验室仪器一直予以赞赏和信任,即使在该国经济不够景气的情况下依然看好中国上海&ldquo 雷磁&rdquo pH实验室仪器,继续进口加以经销,而且今年1-8月进口数量比去年增加了10%左右。 上海仪电科学仪器股份公司生产的智能型实验室pH计,是一种采用电极法测量水溶液的pH值,能直接反映其酸碱程度的中高端仪器;配上专用的离子电极可测量相对应离子的电极电位mV值。这种实验室仪器,可广泛应用于环境保护、水质分析、医疗卫生、食品安全、科研机构、高等院校和生物农林等领域。 图为上海仪电科学仪器股份公司今夏出口西班牙的一批&ldquo 雷磁&rdquo 智能型实验室pH计
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 国瑞力恒发布自动烟尘/气测试仪新品
    GR-3100型自动烟尘/气测试仪产品简介 GR3100型自动烟尘/气测试仪是依据国家检定规程JJG680-2007《烟尘采样器检定规程》JJG968-2002《烟气分析仪检定规程》,吸取国内外同类仪器之优点,由我公司研发人员精心研制的新一代智能型烟尘烟气测试仪,该机技术性能指标符合国家环保局颁布的烟尘烟气采样仪的有关规定,实现烟尘、烟气同机采样及检测,大大缩短现场工作时间。适用于各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定和各种锅炉、工业炉窑的SO2、NO、NO2、CO、CO2、H2S等有害气体的排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定主要特点l 主机内集成差压、微压传感器、微处理器、直流旋片泵,基于皮托管平行法等速采样原理,自动测量跟踪烟气流速等速采集烟尘。l 主机内集成温度传感器、压力传感器。能测量计算包括动压、静压、全压、烟气流速、干、湿球温度、含湿量、烟气排放量等在内的所有参数。l 选用进口贴片器件,可靠性高,故障率极低,仪器体积大大减小,携带方便。l 电化学传感器随同线路板一起设计,用户升级、更换简捷方便。l 自动选择存储监测数据,供查询、打印,信息量大。l 自动记忆上次输入的监测目标工况参数,下次开机自动采用。l 320×240点阵STN型液晶显示,自动背光照明。中文菜单显示人机对话方式,图文并茂,简单明了。用户可以凭借仪器丰富的在线操作提示,直接操作。液晶屏幕可前后0~180度自由旋转。l 通过键盘即可对仪器测量的各项参数进行标定。l 烟尘采样过程中,如果烟道负压较大,或取样孔开孔位置在水平烟道顶部时采样结束后滤筒中采集的烟尘易被倒吸出来,造成数据严重偏差。该仪器有特殊的功能来防止倒吸发生。l 烟尘烟气监测数据繁多,不同顾客不同测试目的对数据要求各异,该机具备选择打印项功能,顾客可以根据需求来选择要打印的数据。l 进行参数校正时您必须输入密码,以保证仪器内存数据安全。l 选配油烟取样管后,可满足GB18483-2001《饮食业油烟排放标准》中对油烟进行采样的要求。技术指标 参数范围分辨率误差采样流量5~ 80 L/min0.1 L/min≤±5%流量控制稳定性-30.00 ~+30.00 kPa0.01 kPa≤±4 %流量计前压力-40.00 ~0 .00kPa0.01 kPa≤±2.5 %流量计前温度-30.0 ~ 150.0℃0.1℃≤±2℃烟气温度0 ~ 500℃1℃≤±3℃大气压(60~130)kPa0.1 kPa≤±2.5 %含湿量(0~60)%0.1%≤±1.5%O2 (可选)(0 ~ 30)%0.1%示值误差:≤±5 %;重复性: ≤2 %;响应时间:≤60s; 传感器寿命:除CO2外空气中2年 SO2 (可选)(0~5700 )mg/m31 mg/m3 NO(可选)(0~1340) mg/m31 mg/m3NO2 (可选) (0~200 )mg/m3CO (可选)(0~5000)mg/m3H2S (可选)(0~300)mg/mCO2 (可选)(0~20)%采样泵负载能力≥30 L/min (阻力为-20kPa时)最da采样体积999999 .9 L0.1 L≤±5%外型尺寸310×170×310 mm仪器噪声功 耗100 W 创新点:GR3100型自动烟尘/气测试仪,实现烟尘、烟气同机采样及检测,大大缩短现场工作时间;选用进口贴片器件,可靠性高,故障率极低,仪器体积大大减小,携带方便;自动选择存储监测数据,供查询、打印,信息量大 烟尘采样过程中,如果烟道负压较大,或取样孔开孔位置在水平烟道顶部时采样结束后滤筒中采集的烟尘易被倒吸出来,造成数据严重偏差。该仪器有特殊的功能来防止倒吸发生. 自动烟尘/气测试仪
  • 智能型水质分析仪器硅酸根分析仪全新上市
    在日常水质分析、事故应急处置、环保抽查等不同场景下,都需要快速、准确地获得水体组成信息。然而,现有便携式水质检测设备存在参数单一、操作复杂、检测时间长、准确性不足等问题,无法满足市场需求。为了满足现代市场需求,我公司研发了一款硅酸根分析仪。下面跟随小编来详细的了解一下吧!B1040硅酸根分析仪是一款智能型仪器,该仪器采用人性化设计,图形菜单,操作直观易懂,具有中英文可选,光源采用单色冷光源,测量准确可靠,可用于电厂、化工、冶金、环保、制药、生化、食品和自来水等溶液在实验室的测量与存储。技术参数显 示: 480X272 彩色触摸屏;测量范围:0—200 ug/L (大量程可选0-2000)示值误差: ±2%F.S;分 辨 率: 0. 1 ug/L;重 复 性: ≤1%;水样温度:(5~60)℃;环境温度:(5~45)℃; 供电电源: AC220V 50Hz;功 率: <15W;外型尺寸:420×390mm×230mm;(主机)重 量:5kg;仪器特点1、5.0寸彩色触摸屏,显示美观,控制简单2、图形化菜单简单易懂3、中英文语言可选,适应不同用户创新点:1、仪器可带自检功能,方便检测故障。2、仪器有打印功能,可实时打印数据或打印存储数据。3、仪器带本底补偿功能,使测量更准确。4、仪器具备通讯功能,可将数据上传。5、温度偏差提示功能,方便用户及时校准。
  • 喷涂涂层回路控制技术Coating AI
    喷涂涂层回路控制新技术Coating AI,实现人工智能涂装,大数据提升涂装质量水平喷涂涂层回路控制新技术,利用人工智能实现自动化涂层过程,提升涂装质量水平和喷涂效率。了解喷涂涂层回路控制技术Coating AI在这个视频里你可以看到,在涂装生产线上使用Coating AI喷涂涂层回路控制新技术实现人工智能涂装,通过大数据优势提升涂装质量水平。使用Coating AI人工智能涂装系统的好处:解决劳动力短缺问题:Coating AI人工智能涂装系统提供了一个专家顾问工具,可以用来定义最佳喷涂参数,节省成本:通过人工智能学习,显著降低粉末消耗,废品率和劳动强度提高喷涂质量Coating AI 可以实现稳定的喷涂质量,即使是不同人不同时间操作也能保证最后的喷涂质量重点解决的问题:喷涂过程非常复杂,控制影响喷涂过程的不同参数非常困难,需要经验丰富的工人,世界范围内缺乏有经验的喷涂工人,这可能带来的后果是喷涂过量,或者使用太多的粉末,导致次品或者废品,以此同时客户追求更高的涂层质量。Coating AI人工智能涂装技术可以解决问题,喷涂涂层回路控制技术Coating AI可以自己学习和理解喷涂过程,能够找到正确的最佳的喷涂参数,使企业能够实时优化喷涂工艺,操作简单,任何人都能够很容易地使用Coating AI调整喷涂生产线。人们可以通过任何的方法轻松访问CoatingAI,CoatingAI可以集成到生产线上,在云端运行,用户可以通过任何设备访问云端数据。操作流程:工人按照之前的操作在工件上喷涂,使用涂魔师涂层测厚仪进行涂层厚度测量,将测量结果传输到co-pilot上,然后使用该测量值优化生产线,co-pilot可以优化生产线质量,获得相同的涂层厚度,提高生产效率,喷涂效率或生产线速度。参数定义CoatingAI 人工智能涂装喷涂回路自动控制系统能够定义实现高质量涂层结果的最佳机器参数,完全独立于生产线操作员的经验闭环回路控制CoatingAI 是第一个为涂层生产线带来闭环回路控制的解决方案。与涂魔师非接触测厚的关系CoatingAI与涂魔师是合作关系,CoatingAI从涂魔师丰富的涂层测厚数据进行训练学习。点击了解更多关于涂魔师非接触无损测厚仪产品信息如果您对CoatingAI人工智能喷涂涂层回路控制技术感兴趣,欢迎联系翁开尔。
  • R&S推出全新LCX测试仪,强化高性能阻抗测量产品组合
    R&S LCX系列的LCR表能够用于传统的阻抗测量以及针对特定元件类型的专门测量,并提供研发所需的高精度以及生产测试和质量保证所需的高速度。用于高精度阻抗测量的R&S LCX LCR测量仪。   罗德与施瓦茨推出的新款高性能通用阻抗测试仪系列能够覆盖广泛的应用领域。R&S LCX支持的频率范围为4Hz至10 MHz,不仅适用于大多数传统家用电源的50或60 Hz频率以及飞机电源的400 Hz频率,还适用于从低频震动传感器到工作在几兆赫的高功率通信电路的所有设备。   对于选择合适的电容、电感、电阻和模拟滤波器来匹配设备应用的工程师来说,R&S LCX提供了市场领先的高精度阻抗测量。与此同时,LCX还支持以生产使用精度进行更高速度的质量控制和监控测量。测试方案包含生产环境所需的所有基本软件和硬件,包括远程控制和结果记录,仪器的机架安装,以及用于全系列测试的夹具。   R&S LCX使用的自动平衡电桥技术通过测量被测设备的交流电压和电流(包括相移)来支持传统的阻抗测量。然后用该数据来计算任何给定工作点的复阻抗。作为一种通用LCR测量仪,R&S LCX涵盖了许多应用,如测量电解电容和直流连接电容的等效串联电阻(ESR)和等效串联电感(ESL)。   此外,除了全方位的阻抗测量之外,用户还可以测试变压器及测量直流电阻。为了研究元件的阻抗值在不同频率和电平下的变化,选配装置R&S LCX-K106能支持以频率、电压或电流作为扫描参数,进行动态阻抗测量。   R&S LCX系列推出两个型号:R&S LCX100的频率范围为4 Hz至300 kHz,R&S LCX200的基本配置频率范围为4 Hz至500 kHz,可选配覆盖高达 10 MHz 所有频率的选件。两种型号均配备出色的测量速度、精度和多种测量功能。包括:配备大型电容式触摸屏和虚拟键盘,支持所有主要测量工作的点击测试操作。   用户也可以使用旋钮设置电压、电流和频率值。不常用的功能则可以使用菜单操作。设置、结果和统计数据可以显示在屏幕上,还能导出以便进行自动后处理。用户最多可选择四个测量值并绘制成时间曲线,将最大值和最小值显示在屏幕上,一目了然地进行通过/失败分析。   罗德与施瓦茨的子公司Zurich Instruments AG生产的MFIA阻抗分析仪作为R&S LCX的完美补充,能够支持更多材料的阻抗研究。通过MFIA,研究人员可以表征半导体或进行材料研究,范围包括绝缘体、压电材料、陶瓷和复合材料,组织阻抗分析、细胞生长、食品研究、微流体和可穿戴传感器。
  • 聚焦新品,创新升级丨连华科技5B-3B(V11)智能型多参数水质测定仪正式上市
    2021年2月1日,连华科技正式推出5B-3B(V11)智能型多参数水质测定仪,相较于前代产品,5B-3B(V11)在触控屏幕、检测项目、内置曲线、标准配件等方面进行了全新升级。新产品性能更加完善,实现简易操作和检测项目量的进一步提升,大幅提升水质检测效率,专注优化用户体验。5B-3B(V11)智能型多参数水质测定仪适用于污水处理工程企业、环境监察部门、应急检测部门及对下属部门监察、工业废水排放检测单位或科研院校等,进一步满足不同领域的水质检测需求。为了更好的展示新品5B-3B(V11)智能型多参数水质测定仪在实际场景的应用优势,下面将从产品配置、检测项目、功能特点、适用领域等方面进行介绍说明与深度解读。 产品配置 优化升级5B-3B(V11)智能型多参数水质测定仪采用5.6吋彩色触控屏,界面更加清晰美观,操作设置一目了然,标配5B-1B(V8)30孔双温区多参数消解仪,可同时消解两种不同温度水样,新产品仪器内置打印机,检测数据实时打印,新增1套1cm比色皿、1套3cm比色皿,多重升级进一步提升工作效率,优化用户使用体验。 (产品实拍图) 检测项目 全面增加5B-3B(V11)智能型多参数水质测定仪作为连华科技多参数水质测定仪系列的明星产品,可直接测定化学需氧量(COD)、氨氮、总磷、总氮、悬浮物、色度(铂钴色系)、浊度、重金属、有机污染物和无机污染物等多项指标,浓度直读。新产品增加6项测量项目:水杨酸方法高低量程、总磷高量程、二氧化氯方法1.2、臭氧,总计可测定50余项参数,一机多用大幅减少用户成本投入,提升水质检测效率。 功能完善 品质出众5B-3B(V11)智能型多参数水质测定仪不仅在水质检测项目量上建树颇丰,其产品细节也十分令人惊艳。仪器内存228条曲线,其中165条标准曲线和63条回归曲线,可根据需要调用相应的曲线,自备校准功能,可根据标准样品计算并存储曲线,无需手动制作曲线。精确存储1.2万个测定数据,每条数据信息包含检测日期、检测时间、检测时仪器参数、检测结果,可向计算机传输当前数据和所有存储的历史数据,支持USB传输、红外无线传输(可选)。标配5B-1B(V8)30孔双温区多参数消解仪消解功率随负载数量自动调整,实现智能恒温控制,具有延时保护功能。新产品从软硬件层面都进行了更新升级,连华科技始终践行“简单、快速、智能、精确”的研发设计理念,力求打造出让用户用的舒心、放心、安心的满意产品。 符合国标 应用广泛5B-3B(V11)智能型多参数水质测定仪完全按照国家新标准《HJ 924-2017 COD光度法快速测定仪技术要求及检测方法》原理设计制造,所有检测项目符合国家行业标准:COD-《HJ/T399-2007》、氨氮-《HJ535-2009》、总磷-《GB11893-89》,适用于各种生活用水和工业废水的检测需求。 此次新产品5B-3B(V11)智能型多参数水质测定仪的发布,让连华科技在水质检测领域的道路上再次迈进了一大步。未来,连华科技将会继续响应国家政策号召,紧跟水质检测行业所需,着力研发新型产品,用更加贴近用户需求的产品和完善的服务体系,助力水质检测行业的发展和创新。 企业简介连华科技是一家创新型实体,总部位于北京,在全国16个地区设立分公司及办事处。在近40年的研发与发展过程中,连华科技始终保持水质分析测试领域的核心竞争力,研发出多参数、COD、氨氮、BOD、总磷、总氮、重金属等水质分析仪二十余系列及丰富的专业化配件、试剂,可测定百余项水质指标,已发展成为一家集研发、生产、销售、解决方案服务为一体的复合型企业。连华科技致力于解决当今人类生存环境所面临的一些重大挑战,同时十分注重用户的需要,积累了环保监测、科研院所、石油化工、食品酿造、医药卫生、纺织印染、电镀电力等不同行业的模型与数据,产出更富效率与价值的解决方案,与20余万家的客户和机构共同发展。连华科技已于2017年入驻京东、天猫等线上商城,满足不同用户的多样化体验。我们始终牢记我们的使命:让人类环境更加美好。
  • 上海今森发布氧指数测定仪数显智能型KS-653BH新品
    一、设备概述KS-653BH氧指数测定仪智能款是依据国家标准: GB/T5454—1997《纺织批品燃烧性能测定 氧指数测定法》、GB/T2406.2—2009《塑料 用氧指数指数法测定燃烧行为 第2部分室温试验》设计生产,用于测定各种纺织品包括机织、针织、无纺织物等的燃烧性能,KS-653BH氧指数测定仪智能款也可用于塑料、橡胶、纸张等的燃烧性能测定。遵循标准:GB/T2406.2-2009.用氧指数法测定燃烧行为第二部分:室温试验GB/T5454-1997《纺织品燃烧性能测定-氧指数测定法》GB/T10707-2008橡胶燃烧性能的测定GB/T8924-2005纤维增强塑料燃烧性能试验方法氧指数法GB/T2406-93《塑料燃烧性能试验方法-氧指数法》GB/T10707-2008《橡胶燃烧性能的测定氧指数法》GB/T8924-2005《纤维增强塑料燃烧性能试验方法氧指数法》GB/T23864《防火封堵材料》TB/T3237-2010动车组用内装材料阻燃技术条件二、设备特点智能氧指数测定仪机箱及部分结构: 1. 控制箱:采用数控机床加工成型,冷板喷涂,美观、防锈防腐。 2. 燃烧筒:耐高温优质石英玻璃管(内径¢100mm,长470mm) 3. 出口内径:φ100mm 4. 温度控制:具有加热及控温功能,含加热底座和石英加热保温玻璃筒,准确控温。 5. 试样夹具:自撑式夹具,并能竖直地夹住试样;(可选配非自撑式式样架) 6.主机尺寸:长*宽*高 1120mm × 深 520mm × 高 1250mm 三、智能氧指数测定仪系统组成: 智能氧指数测定仪由氧气、氮气调节系统、试样上端点火自动控制系统、PC 端操作软件及运算系统和信号处理系统组成。 1. 氧气、氮气调节系统 采用气体质量流量控制器配合PLC 逻辑控制器,实现氧气流量、氮气流量的全自动控制,流量调整精度高、速度快、稳定性好。气体质量流量控制器集成了流量控制、执行和反馈单元,真正的模块化结构,组态灵活、功能强大、调节精度高、速度快。PLC 逻辑控制器具有数模转换和模数转换功能,通过对气体质量流量控制器模拟量信号的控制,具有较高的精度,工作稳定性也有很高的提升,同时还具备RS485 通讯端口,可以直接与PC 端操作软件实现通讯。质量流量控制器的调节电压为0V~ +5V ,对应量程0L/min ~ 12 /min ,PLC 控制器的模拟量输出-10 V ~ +10 V ,对应控制值-2000 ~+ 2000。根据GB/T5454-1997 中附录B 氧浓度与氧气、氮气流量的关系,查表可知氧浓度对应的氧气、氮气流量值,通过计算流量对应的电压值,电压值对应的控制值,即可实现对氧浓度的调节。例如:所需氧浓度为30.0% ,经查表对应氧气流量为3.42 L/min ,氮气流量为7.98 L/min ,操作软件利用通讯将氧气控制值285 和氮气控制值665 发送至PLC ,PLC 控制质量流量控制器实现对氧浓度的调节。调节换算机制:所需氧浓度为30.0% ,氧气调节流量3.42L/min,调节电压1.425 V ,控制值285 ;氮气调节流量7.98 L/min ,调节电压3.325 V ,控制值665 。 2、试样上端点火自动控制系统 实现试样上端点火自动控制,针对标准要求的点火时间,做到准确控制,避免人工点火造成的误差,配合上下运动装置和左右运动装置实现试样上边沿均匀点燃。在保证点火时间的同时,点火器部分能够实现旋转,以便测量火焰长度,点火上下运动过程平稳。 3、PC 端操作软件及运算系统 使用WEINVIEW触摸屏PC 端操作软件,软件界面简洁明了,操作功能强大,易上手,以引 导试验过程的思想设计。对氧气氮气流量的计算方法科学合理,保证氧浓度数值的准确性。 通过对采集信号的运算得出实际的氧浓度数值,研究开发一套合理高效的运算规则,直接决定了试验结果的准确性。通过反复试验研究,总结气体流量和反馈信号之间的基本规律,有效缩小或规避仪表本身的测量误差,通过合理的算法确定准确的氧浓度数值。根据仪器自动化运行的特点,设计PLC 专用梯形图程序。4、信号处理系统 模拟量信号处理的合理与否直接决定了信号采集的准确性。气体质量流量控制器和PLC 之间的通讯模拟量信号为0V~5 VDC ,由于电压信号的抗干扰能力较差,所以采用必要、合理的抗干扰措施必不可少。PLC 控制应用系统中的干扰是一个十分复杂的问题,因此在系统的抗干扰设计中应综合考虑各方面的因素,根据实际应用中分析出干扰产生的原因,从而合理有效地采取抑制干扰措施,使PLC 应用系统可靠地工作。信号滤波是测量系统不可或缺的环节,从传感器拾取的信号中,不可避免地混杂有噪声和干扰,为了保证测量的正确性,必须采取抗干扰和抑制噪声的措施,信号滤波是抑制噪声的主要方法,在保证有用信号正常传递的情况下,将噪声对测量的影响减小到所允许的范围。本设计采用LC无源滤波器,特点是损耗小、噪声低、灵敏度低。 创新点:根据市场现有产品存在的问题,我司结合标准要求,重新规划设计思路,通过自动调节氧气和氮气的压力流量,达到要求的混合气体氧浓度,同时配合自动点燃装置,均匀点燃布样上边缘,利用操作软件实现试验过程自动化。通讯将上位机的流量设定值发送给流量控制器和执行器,用模拟量信号完成对氧气、氮气流量的设定,同时将执行器的信号反馈给上位机进行优化运算,保证了数据的准确性。自动点燃装置应用步进电机实现精准控制,点燃过程平稳准确。这种调节方法完全超越了手动调节的方式,弥补了手动调节氧指数测定仪的不足,实现流量调节准确度高、测试结果数据准确、稳定性高、调节过程快速,节省氧气和氮气消耗,缩短了整体试验的过程,大大提升了试验工作效率。 氧指数测定仪数显智能型KS-653BH
  • 泰林全新一代智能型隔离器全球首发!
    第49届春季药机展将于5月17-20日在青岛举办,本届展会最大的亮点当属“泰林全新一代智能型隔离器全球首发“活动。本次发布的智能型隔离器是泰林科技的第四代隔离器产品,也是国内目前智能化程度最高的隔离器产品,代表着中国在隔离器行业的最高研发及制造水平。 泰林科技早在2002年就开始研发隔离器产品,并成功制造出国内首台隔离器,至今累计销售超过300台,占据了国内隔离器70%以上的市场份额。 但泰林人并没有就此满足,他们不断进行创新,历经将近3年的时间,无数个日日夜夜的研究探索,攻克了一个又一个难题,成功研发出全新一代智能型隔离器,这是继泰林科技实行重大战略改革后的首款新产品,无论是从产品外观,还是从产品技术上都进行了全面的升级,系统功能更加强大,在保证检测质量的同时,大幅提升工作效率:一、模块化设计泰林全新一代智能型隔离器采用人性化设计,各部件为模块一体化,不再担心安装空间限制;二、全球领先无菌检测管理系统系统提供实验品管理、隔离器运行、视频记录系统三大功能模块,让每个检测环节都可追溯,确保无菌检查数据的完整性,保证检测质量;三、过氧化氢快速灭菌技术新隔离器与气闸室实现无缝对接,新供试品只需经过气闸室快递灭菌后即可快速进入隔离器,缩短了灭菌等待时间,满足大批量多批次连续检测需求;四、双废弃物出料系统新隔离器还配备了全球首创研制出的双废弃物出料系统,实现交差不间断的废弃物排放,大幅提升实验效率,让无菌检测变得更加简单。更多人性化设计,敬请莅临体验科技带来的非一般感觉,5月17日上午10:00,S2-15展台,拭目以待!
  • 全新便携式双通道多参数测试仪上市
    我们很高兴在此隆重宣布:恒奇公司所代理的梅特勒-托利多全新便携式双通道多参数测试仪系列产品于2009年3月正式上市。   全新便携式双通道多参数测试仪系列产品包含三款仪表,可用于测量pH、电导率、溶解氧   和离子浓度。   全新的便携式双通道多参数测试仪系列产品可广泛应用于制药、生物技术、食品饮料、化   妆品、环境、教育、化工、石化、电力等各行各业,其全新的设计概念和更便捷的操作将   大大增加梅特勒-托利多pH产品在便携式仪表市场的竞争力。   我们坚信,全新便携式双通道多参数测试仪系列产品的上市必将为我们赢得更多的用户!   让我们共同努力开创崭新的局面!   仪器说明:   SevenGo Duo (SG23)   • 单通道或双通道快速、简单的测量   • 可同时测量和显示pH/mV和电导率/TDS/电阻率/盐度   • 坚固耐用的IP67防尘防水仪表,适合苛刻环境中使用   • 高分辨率的显示和超大字体,保证操作无比轻松   • 自动、手动终点模式,确保测量的重复性   • 99组数据存储   • ISM® 智能电极管理,保证使用最新的校准数据   • 丰富的附件,包括双电极夹、橡胶护套、户外便携箱SevenGo Duo pro(SG78/SG68)   • 可同时测量和显示pH/mV/离子和电导率/TDS/电阻率/盐度或pH/mV/离子和溶解氧   • 直观友好的操作界面,包括中文在内的10种菜单语言   • 背光功能,可在光线不足的环境下使用   • 现代化的仪器安全性保证,包括普通与专家模式、校准提醒、密码保护、限值监测   • 支持GLP格式,可存储500组数据   • 红外线无线通讯,连接电脑或打印机   • 自动、手动、定时3种终点模式,适合不同样品测量,确保测量的重复性   • 更丰富的ISM® 智能电极管理,可直接读取电极的序列号、ID、最近5次校准数据
  • 三思纵横上海分公司成功研发专用扩展型应力应变测试仪
    为了解决客户在试验机使用过程中不方便使用引伸计而必须粘贴应变电阻片(应变计)进行应变测试的问题,近日,三思纵横上海公司成功研发了DSCC-5000K专用扩展型应力应变测试仪。   应力应变测试仪DSCC-5000K是与试验机配套的高速静态应变数据采集仪,同步采样频率60Hz,最小应变分辨率0.1&mu m,广泛应用于拉伸、压缩或弯曲等试验,能够精确测量材料变形,绘制力-变形、变形-时间、变形-变形等曲线。   该设备既可用于液压试验机,也可用于电子试验机,并可满足多通道应变采集与试验机加载力值采集同步。   三思纵横上海分公司研制成功的应力应变测试仪已经成功地应用于多家建筑工程质检公司。   更多新品资讯,请咨询三思纵横驻各地办事处销售人员或服务热线:400-882-3499。
  • HORIBA新款智能型倒置显微拉曼光谱仪
    HORIBA Scientific在智能型显微拉曼光谱仪XploRA广受赞誉的基础上,发布了新的智能型倒置显微拉曼光谱仪XploRA INV 。 XploRA INV 继承了XploRA 高自动化和结构紧凑占地面积小的优势,同时还具有倒置显微镜独有的分析功能,对于难度大、要求高的生物样品研究具有特别重要的意义,例如细胞研究、癌症探测、细胞内药物活性的表征、微反应器监控等。此外,XploRA INV 系统能够方便的和AFM联用,进行Raman-AFM联合分析以及TERS(针尖增强拉曼光谱)分析,使得超高空间分辨率的结构分析以及样品表面形貌分析得以同时实现。 XploRA INV 的开放性结构确保了倒置显微镜的所有附件或其它附加装置,如微型操控器、光镊以及细胞研究所需要的特定附件都能自由添加以及使用。XploRA INV 系统还拥有一些特有的模块和技术可以选择性集成。例如HORIBA拥有的DuoScan扫描技术,该技术拥有多种工作模式,可以快速进行拉曼和荧光光谱成像;又如新型的3D共焦快速荧光成像模块,可以进行超快速激光扫描成像,快速得到样品成分分布,并迅速对感兴趣的区域进行定位。 XploRA INV 可配置多至3个内置半导体激光器,如532 nm, 640 nm, 785 nm, 还可以选择外置的其他激发波长,从而实现共振拉曼或用户其它特殊需求。 点击此处,获得有关XploRA INV 的展示视频
  • 捷锐智能型供气系统服务于实验室
    上海2012年6月4日&mdash 在第十届中国国际科学仪器及实验室装备展览会(CISILE 2012)召开之际,捷锐接受了来自仪器信息网的采访,就实验室供气系统的合理布局规划、管理与使用,提出了见解。 捷锐智能型供气系统,包含不锈钢供气系统和监控报警系统。捷锐不锈钢供气系统,由减压器、阀门、接头和管路等组成,不锈钢系列产品采用优质原材料,进口数控加工中心,国际检验标准等,优质、稳定的零配件产品,支撑系统的有效运行。同时配置监控报警系统,在管路压力、流量,使用环境等发生变化时,能得到及时掌控,是保证实验室环境的有效措施。目前,已有众多实验室使用此智能型供气系统,受到使用者的青睐。 视频链接:http://www.instrument.com.cn/news/20120530/078606.shtml 关于捷锐 捷锐企业(上海)有限公司成立于1993年,专精研发制造高洁净之集中供气系统及流体控制相关零件、组件、系统设备、焊割器具、仪器仪表等。产品主要应用在半导体、气体、化工、生物科技、核电、航天、食品等行业。厂区内配备欧美最先进的高科技生产设备,并设置中央实验室、检测室及Class 10/100/1000无尘室。GENTEC® 捷锐荣获ISO 9001,ISO13485,API SPEC Q1等国际质量体系认证,并获权使用美国UL及欧盟CE标志。 GENTEC® 拥有全球40余年的市场、研发及制造经验,提供流体系统整体解决方案,遍布全球的行销服务网络,赢得全球用户的信赖。 媒体联络人: 销售联系人: 部门:市场部 部门:工业行销部 联系人:汪蓉蓉 联系人:曹永年 电话:021-67727123-116 电话:13701757351
  • 总预算2580万元!广西特检院招标采购364台/套仪器
    近日,广西壮族自治区特种设备检验研究院进行2022年技术机构设备更新,连发两条招标公告,总预算达2580万元,采购X射线机、工业内窥镜、超声波探伤仪、电子天平、气体泄漏检测仪、测厚仪、气相色谱仪、电感耦合等离子体质谱仪、微波消解仪、氦质谱检漏仪等共364台/套仪器设备。其中,招标公告一分为4个标项,预算金额分别为364.67万元、524.66万元、482.16万元、529万元,采购仪器数量分别为74台/套、22台/套、17台/套、46台/套;招标公告二分为2个标项,预算金额分别为334.2万元、345.02万元,采购仪器数量分别为106台/套、99台/套。详情如下:招标公告一(一)项目名称:2022年技术机构设备更新采购(二)项目编号:GXZC2022-G1-001073-GXGL(三)预算总金额:1900.49万元(四)采购需求:标项一预算金额:364.67万元数量:74台/套需求:多功能电梯能效检测仪4台、扶梯多功能测量尺5把、电梯导轨垂直度检测仪2台、电梯安全回路检测仪1台、轿厢意外移动检测仪1台、检验报告制作输出系统1套、一体化电梯限速器测试仪1台、全站仪1台、激光测距仪3台、无损检测仿真软件超声模块(CIVA-UT)1套、相控阵工装(HSPA20-Ae(Bolt))1套、安全阀定压校验台1台、全自动闭口闪点测定仪1台、电子分析天平1台、便携式电导率仪2台、便携式光学溶氧分析仪1台、电热恒温鼓风干燥箱1台、密封制样粉碎机1台、湿煤破碎机1台、行星球磨机1台、智能型便携式金相仪1台、气体泄漏检测仪2台、手持式可燃气体泄漏检测仪5台、超声波测厚仪2台、汽车自动操作力计1套、机动车方向盘转向力转向角检测仪1台、便携式制动性能测试仪1台、三向加速度测试仪器1台、综合气象仪5台、制动下滑测试仪3台、数字风速仪4台、无线会议话筒1套、高拍仪2台、图像扫描仪2台、不锈钢相控阵超声检测套装1套、充电式多功能磁探仪3台、超声波探伤仪2台、超声波测厚仪3台、手持式X射线合金分析仪1台、无线动态应力应变测试分析系统1台。标项二预算金额:524.66万元数量:22台/套需求:高温红外烟气分析仪1台、烟气预处理器1台、颗粒物测量系统1台、废气盐酸雾硫酸雾氟化物采样装置1台、沥青烟采样管1台、环境空气颗粒物综合采样器(恒温型)4台、高负压环境空气颗粒物采样器4台、污染源真空箱气袋采样器1台、双路VOCs采样器(配烟气预处理器)1台、超声波蒸汽流量计1台、高精度电能分析仪1台、气相色谱质谱联用仪1台、气相色谱仪(FID)1台、气相色谱仪(FID+ECD)含自动进样器1台、顶空自动进样器(16位)1台、热脱附仪(50位)1台。标项三预算金额:482.16万元数量:17台/套需求:全自动固相萃取系统1台、全自动高通量真空平行浓缩仪1台、微波消解/萃取仪1台、电感耦合等离子体质谱仪ICPMS 1台、汞分析仪液体分析附件1套、灰熔点测试仪1台、便携式总有机碳分析仪1台、烘干恒重自动称量系统1套、便携式甲醛检测仪2台、BOD5检测仪1台、BOD快速检测仪1台、紫外分光光度计1台、工业分析仪(水灰+挥发分)1台、库伦测硫仪1台、全自动卡氏水分滴定仪1台、通用切割研磨机1台。 标项四预算金额:529万元数量:46台/套需求:真空度测试仪2台、超声波测厚仪5台、数字式超声波探伤仪1台、磁粉探伤机1台、工业内窥镜1台、静电电阻测量仪2台、液面计校验装置1台、紧急泄放装置校验装置1套、装车软管试验台1套、真空减压阀校验装置1套、抽真空机组(含真空规管和真空计)1套、液位计检查装置1套、天然气瓶喷漆烘干设备1套、气瓶翻转顶升装置(喷漆上下料)1套、氧含量分析仪2台、氦质谱检漏仪(配套标定用标准漏孔)1套、静态蒸发率测试仪1套、气瓶报废设备1台、防静电装置1台、气密性试验台1套、低温移动罐车抽真空设备1套、电动单梁起重机1套、工业阀门试验台1套、工业阀门试验台1套、工业阀门试验台1套、工业阀门试验台1套、蝶阀阀门试验台1套、内外置式安全阀定压校验台1套、安全阀定压校验台1套、安全阀定压校验台1套、安全阀定压校验台1套、紧急切断阀校验装置1套、安全阀在线校验仪1台、安全阀动态研磨机1台、阀门研磨机1台、光纤激光打标机1台、电动叉车(托盘堆垛车)1台、电动搬运车2台。(五)获取招标文件:时间:2022年5月16日至2022年5月23日 ,每天上午8:30至12:00 ,下午15:00至18:00。地点(网址):“政采云”平台(https://www.zcygov.cn) 。方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 。(六)联系方式:1. 采购人名称:广西壮族自治区特种设备检验研究院地址:广西南宁市邕宁区仁信路25号项目联系人:黄工项目联系方式:0771-53152992. 采购代理机构名称:广西国力招标有限公司地址:广西南宁市白沙大道53号松宇时代13楼 项目联系人:覃阳项目联系方式:0771-4915199 招标公告二(一)项目名称:2022年技术机构设备更新采购(二)项目编号:GXZC2022-G1-001090-KWZB (三)预算总金额:679.22万元(四)采购需求:标项一预算金额:334.2万元数量:106台/套需求:便携式金相仪1台、充电式抛磨机1台、X射线机2台、手持北斗智能终端1台、多功能数据记录仪2台、参比电极2台、PE管焊缝切边器3台、LED工业观片灯3台、呼吸阀定压校验台1台、多功能电梯能效检测仪12台、超声波探伤仪3台、检验终端(平板电脑)46台、激光测距仪8台、通风柜1台、打标机1台、电磁超声高温腐蚀检测仪1台、防水型充电式旋转磁探仪1台、现场金相打磨抛光机1台、工业内窥镜2台、电梯限速器测试仪2台、X射线荧光分析仪1台、铁素体测试仪1台、钳形接地电阻测试仪5台、呼吸阀定压校验台1台、透涂层测厚仪1台、平衡系数测试仪1台、工具箱1套、电子称1台。 标项二预算金额:345.02万元数量:99台/套需求:电梯曳引性能检测仪2台、IPL瞬时电位记录仪1台、牺牲阳极阴保护电源卫星断流器2台、小管径管环焊缝检测探头套装1套 、中管径管环焊缝及长输管道焊缝检测探头套装1套、声发射腐蚀探头15台、涂层测厚仪(穿透 20mm)2台 、3吨内燃平衡重式叉车2台、电子天平1台、测烟望远镜1台、烟尘浓度测试仪1套、烟气分析仪1台、粉碎机1台、无线动态应力应变测试分析系统1套、起重机1台、呼吸阀综合检测设备1台、便携式烟度计1台、液化石油气气瓶充装模拟机1台、恒磁小一体旋转磁探仪7台、不锈钢检测工装1台、小型射线机1台、接地电阻测试仪3台、电子天平1台、钳形接地电阻测试仪4台、便携式液压测试仪1台、恒磁小一体磁轭探伤仪5 台、呼吸阀综合检测设备1套、汽车自动操作力计4台、机动车方向盘转向力转向角检测仪4台、便携式制动性能测试仪4 台、照度计6台、无线叉车下滑量和门架倾角检测仪1台、电磁测厚仪2台、便携式超声成像检测仪1台、气体泄漏检测仪1台、电梯轿厢意外移动检测仪1台、扶梯同步率测试仪1 台、厂车电池间隙测试仪1台、钳型电流表3 台、脉冲反射法超声检测仪1台、土壤电阻率测试仪1台、手持型GPS定位仪1台、埋地管道泄漏检测仪1台、方向盘转向力-转向角检测仪1台、便携式踏板力手刹力计1台、激光经纬仪1台、机电类检验工具箱2套、力矩扳手1台。(五)获取招标文件 :时间:2022年5月17日至2022年5月24日 ,每天上午00:00至12:00 ,下午12:00至23:59。地点(网址):“政采云”平台(http://www.zcygov.cn) 。方式:网上下载。本项目不发放纸质文件,供应商应自行在“政采云”平台(http://www.zcygov.cn)下载招标文件(操作路径:登录“政采云”平台-项目采购-获取采购文件-找到本项目-点击“申请获取采购文件”),电子投标文件制作需要基于“政采云”平台获取的招标文件编制 。(六)联系方式1. 采购人名称:广西壮族自治区特种设备检验研究院 地址:广西南宁市邕宁区仁信路25号 项目联系人:王工 项目联系方式:0771-5312880 2. 采购代理机构名称:广西科文招标有限公司地址:广西南宁市民族大道141号中鼎万象东方D区5楼项目联系人:李婷项目联系方式:0771-2023873
  • SPECIM IQ | 开创性小型手持智能型高光谱相机如何精准进行植物表型鉴定和病害检测?
    导读 高光谱成像传感器是近几年研究用于监测不同环境中农作物和植被的有效工具。植物的生理学,形态学或生物化学信息可以通过非接触的方式以及不同尺度下评估。例如,利用高光谱传感器用于植物表型分析或农业中的生理胁迫研究。截至目前,市面上有各种非成像和成像高光谱传感器可供选择,这些仪器进行测量的过程相当复杂。因此,现代化检测及研究中对易于用户操作的高光谱传感器的需求日益增加。芬兰新发布的一款新型小型手持式智能型高光谱相机——SPECIM IQ,就是基于用户的现代化便携操作而设计的。SPECIM IQ的机身小巧轻便,只有1.3kg,实现轻松手持操作;同时在相机中直接集成了操作控制系统,通过相机自带的触摸屏就可实时实现基本数据的采集和分析过程(如预处理和分类例程),实现智能化操作。便携手持、现场实时快速检测、全自动智能分析、高质量数据,相信 SPECIM IQ 如此多的现代化特征会让您的高光谱研究更加得心应手!以下我们将SPECIM IQ采集的高光谱数据与已经十分成熟高光谱成像仪技术SPECIM V10E 进行定性对比,发现SPECIM IQ便携手持的设计并未影响到相机的数据准确性,一致地获得了高质量高光谱数据。同时,手持智能型SPECIM IQ还可以实现对植物表型的鉴定以及病害研究检测等,在植物科学研究及其他领域具有无限可能。1、手持智能型高光谱相机SPECIM IQ与SPECIM V10E的定性对比 通过与性能的SPECIM V10E相机对比,我们评估了新型SPECIM IQ的成像质量。SPECIM V10E在推扫式高光谱相机领域是一款具有代表性且广受好评的产品,与SPECIM IQ具有相同的光谱范围(400-1000nm)。在实验过程中,通过采用4倍的光谱合并,达到与SPECIM IQ相似的光谱采集,共有211个波段,每行数据具有1600个像素。研究人员利用两款设备分别在室内(卤素灯光源)和室外(自然光光源)对具有不同颜色的样本:纸片和聚乙烯胶片,进行了高光谱数据采集和对比。 图1 智能型高光谱相机SPECIM IQ(207mm*91mm*74mm) 经过对比,得到如图2所示结果。对相同样本,两款设备采集的光谱形状高度重合:实验室的平均值是0.009,室外平均值为0.043。SPECIM IQ和SPECIM V10E的平均标准偏差分别为室内(0.017和0.021)和室外相同(0.029和0.029),但SPECIM IQ更为均,SPECIM V10E在光谱边界处具有更高的噪声水平(400 -450nm和400-450nm)900-1000nm,见图2)。研究表明,除了925-970nm范围内的大气水汽吸收带之外,周围光谱的原始信号较弱,导致反射信号的快速增加。 图2 平均光谱包含绿色纸片(A)和紫色聚乙烯片(B)的标准差,C表示室内测试的不同颜色的样本 图3 室外数据的光谱对比(A-D):绿色纸片、暗黄色纸片、紫色聚乙烯胶片以及蓝色聚乙烯胶片 2、手持智能型高光谱相机SPECIM IQ对拟南芥的生理胁迫研究 通过植被指数可评估不同状态下植被的生理结构和功能特性,包括生物量、冠层结构、叶面积指数、叶绿素含量以及植物冠层的光利用效率等。研究人员利用SPECIM IQ对拟南芥的两个变种在胁迫状态下的生理状态分别进行了研究。由于缺乏PsbS蛋白质和紫黄质脱环氧化酶,拟南芥的变种样本对光能量利用能力减弱(非光化学淬灭),但在室温条件下可正常发育,在高光照条件下,突变体可能受光损伤,这些都是肉眼无法察觉的。利用SPECIM IQ对18个样本进行数据采集,并对所采集的数据进行植被指数计算,在此基础上,对样本的叶绿素含量和类胡萝卜素转化的敏感程度进行了评估(图4)。 图4 在非胁迫适应(NSA)和胁迫适应(SA)拟南芥野生型(Col-0)和PQ缺陷突变体(npq1和npq4)之间观察到的差异。 左侧面板显示选定感兴趣区域的假彩色图像(A) NDVI(C) REIP(E) 和由SPECIM IQ采集数据计算的PRI(G)。 右侧面板显示计算出的平均值和标准差(B) NDVI(D) REIP(F) 和PRI(H)从三个单的植物随机分布在成像框架,不同的字母表示基于LSD的显着差异(a = 0.05)。 研究表明,SPECIM IQ可用于拟南芥中叶绿素(NDVI)和叶黄素(PRI)的含量的检测,并能评估植株样本的状态。通过验证具有代表性的植被指数,可为其它植被指数的评估计算提供样例,并为在植被研究领域获得更多生理信息奠定了基础。 3、手持智能型高光谱相机SPECIM IQ对大麦白粉病的研究 高光谱成像作为非接触式的测量传感器,在植物疾病严重程度与宿主植物对特定植物病原体的易感性的评估方面有很大的应用。本研究利用SPECIM IQ评估了不同大麦品种在冠层尺度上的白粉病严重程度,并对品种Milford和Tocada进行了4个和7个不同的白粉病易感性等的比较。研究准确地检测了两个品种的白粉病症状,并通过高光谱成像结合数据分析方法评估品种的不同疾病严重程度。研究人员利用SPECIM IQ对在温室中培养的360个大麦植物样本(稳定的漫射光条件下培养)进行检测,并使用的白色参考板(见图5)和SPECIM IQ的内置功能对高光谱数据进行归一化。研究人员利用SPECIM IQ Studio的光谱角匹配方法(SAM)进行感染检测并与支持向量机分类(SVM)方法进行对比,检测到上部叶中具有类似病状的区域。 图5 使用光谱角匹配(SAM)和支持向量机(SVM)对白粉病进行分类,图像左侧包含白色参考面板研究表明,大麦白粉病的样本检测到的疾病症状分别为所有植物像素的25.8%和4.4%,而健康部分只有2.0%和2.2%。现有的错误分类主要是白色参考边界处(看起来像叶面上的白色菌丝体)混合像素的影响。为了消除这种系统偏差,通过减去错误分类像素量来确定疾病严重程度,预测分析的品种的2.2%至23.7%的强烈差异。因此,SPECIM IQ可用来测量评估复杂冠层的疾病严重性,控制光源照明条件保证高信号质量,此项研究也证明SPECIM IQ空间分辨率足以确定大麦叶片上的单一症状。4、总结 手持智能型SPECIM IQ相机在植物生理和病害检测中具有巨大潜力。通过SPECIM IQ与SPECIM V10E室内和室外环境中对不同材质色卡辐射测量评估,得到两者的光谱特性高度一致性。根据植被指数分析得到的结果表明手持智能型SPECIM IQ在植物研究和表型分型策略的背景下的应用潜力:对于白粉病的评估,表明SPECIM IQ具有足够的测量能力,并且与SVM相结合,在量化中对视觉评估的高度一致性。作为新智能型的高光谱相机设备,手持式SPECIM IQ除具有高精度的数据质量外,其设备本身具有高紧凑性、可移动性强和快速集成处理能力,为科技新领域的应用创造了有利条件。手持智能型SPECIM IQ的发布让高光谱传感器技术以实验室设备的质量水平传输到温室和现场,而无需任何载体平台或控制和存储设备,因此,该款设备的诞生无疑可以支持各个场景下的不同应用,并推动现代高光谱技术在更多领域的发展和影响。 相关产品及其链接1、手持智能型高光谱相机SPECIM IQ:http://www.instrument.com.cn/netshow/C282348.htm 2、芬兰SPECIM高光谱航空遥感成像系统:http://www.instrument.com.cn/netshow/C160539.htm 3、芬兰SPECIM 工业高光谱相机FX系列:http://www.instrument.com.cn/netshow/C265811.htm
  • 美国福禄克推出全新超级精密电阻测温仪
    美国福禄克公司近日推出了由HART部门研发的全新1594A/1595A超级精密电阻测温仪,该仪器集准确度、价值和创新性于一身,可用于标准铂电阻(SPRT)、铂电阻(PRT)以及热敏电阻的检定和校准。   Fluke1594A/1595A超级精密电阻测温仪具有足够的准确度,满足基标准实验室所需。其准确度高达0.06ppm(0.000015°C),而其价格却经济实惠,完全可以满足二级实验室的预算需求。计量校准人员使用该超级精密电阻测温仪进行的所有测量都符合预期要求,方便随时验证,完全值得信赖。其领先于市场的特性包括:电阻比率自校准适用于所有测量,值得信赖;校准内部参考电阻,快速而简便;低测量噪声;快速的测量速度。
  • 开启液氦回收新时代:智能型氦液化器ATL在昆明理工大学和中国科学院物理研究所相继顺利安装
    在液氦资源日益紧张的今天,越来越多的实验室开始考虑使用氦液化器来进行循环回收使用液氦,这样既省去了来回采购使用液氦的麻烦,又节省了不少液氦的消耗费用。尤其在一些偏远的地方,购置液氦本身就非常困难。近期,Quantum Design中国工程师相继完成了昆明理工大学和中国科学院物理研究所智能型氦液化器ATL的安装调试。在中国科学院物理研究所的液氦回收测试中,单台冷头峰值液氦回收率达到近40L/天,得到了客户的高度认可,这充分体现了智能型氦液化器ATL的高效回收。 图1:Quantum Design智能型氦液化器ATL系统实物图(多套联用) Quantum Design公司30多年来一直致力于低温系统的研发与设计,积累了大量的技术和经验,从用户的使用角度出发,设计研发出的智能型氦液化器ATL,可针对不同客户需求,实现多种液氦回收方案。ATL具有单冷头液化效率高(>25L/天)、智能型操作与监控、方便移动输送液氦以及扩展灵活等特点,在传统型的氦液化器基础上有了非常大的改进。 图2:智能型氦液化器ATL工作原理 截止到目前为止,Quantum Design中国已成功为中国科学院生物物理研究所、南京大学、上海高压先进科研中心、华中科技大学、河南大学、复旦大学、中国科学技术大学、北京理工大学、昆明理工大学、中国科学院物理研究所等国内多个高校和科研院所顺利安装了智能型氦液化器ATL。多台设备的平稳运行将持续为中国的低温超导科研提供新的助力。相关产品及链接:智能型氦液化器ATL:https://www.instrument.com.cn/netshow/C167860.htm
  • 150万!复旦大学智能型X射线衍射仪采购项目
    项目编号:0705-224002028234项目名称:复旦大学智能型X射线衍射仪采购国际招标项目预算金额:150.0000000 万元(人民币)最高限价(如有):147.0000000 万元(人民币)采购需求:招标项目编号:0705-224002028234招标项目名称:智能型X射线衍射仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1智能型X射线衍射仪1套测角仪半径:≥300mm预算金额:人民币150万元 最高限价:人民币147万元 合同履行期限:签订合同后8个月内合同履行期限:签订合同后8个月内本项目( 不接受 )联合体投标。
  • 把“智能型实验室”概念落地——视频访力扬企业CEO黄凯扬
    p    strong 仪器信息网讯 /strong 2019年10月23日-26日,第十八届北京分析测试学术报告会暨展览会(BCEIA2019)在北京国家会议中心召开。 /p p   会议期间,仪器信息网特别采访力扬企业CEO黄凯扬,请其介绍公司2019年发展情况,以及本次展会上带来的LABVO智能型实验室。 /p p   详情点击视频查看: /p script src=" https://p.bokecc.com/player?vid=046AF6CDC6E8595C9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p br/ /p
  • 智能型水质采样器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 智能型水质采样器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 北京市水科学技术研究院 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 张书函 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" bjzhangshuhan@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp √通过中试& nbsp & nbsp □可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp □合作开发& nbsp & nbsp & nbsp □其他 /span /p /td /tr tr style=" height:47px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 47" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/cc8b8d5b-49ad-430a-8c6e-580c730cb141.jpg" title=" 14.jpg" style=" width: 400px height: 533px " width=" 400" vspace=" 0" hspace=" 0" height=" 533" border=" 0" / /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 针对雨水采集时间、雨量等不确定性的特点,单纯依靠人工采集会造成大量的人力物力消耗,为此我们研制出一款智能型水质采样器。其采用自主研发的雨量与水位双控制传感器触发启动技术,用户可根据降雨量大小、水位或水头差控制仪器按照设定的采样间隔采集24瓶样品。同时仪器还可利用短接插头将传感器触发启动模式屏蔽,而用于地表水、企业排放水等排放口的自动采样。无论是用于雨水采样还是排放口取样,仪器都具有时间控制采样量和流量计控制采样量两种模式,并且这两种模式下采样间隔都可根据用户需要任意设置。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 雨量和水位传感器主要原理是通过浮球液位开关,根据雨量的大小和水位高低控制仪器的启动。雨量和水位传感器配合使用不仅可以避免雨水口偷排污水或溢流等外因触发水位传感器启动,而且还可以防止雨量传感器因进水或其他不可控人为因素而触发启动。同时仪器具有每采集一瓶样品后的管路自动排空功能。这两项技术既保证了雨水样品的准确性又确保了所采水样具有代表性。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 为满足城市初期雨水流量大、聚集时间短、水质变化快等特点,仪器的采样间隔设置以秒为单位,每个样品之间可任意设置时间间隔,方便用户研究初期雨水水质状况及规律。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 仪器功耗低,内置24V直流高容量可充电锂电池,采用晶体硅太阳能供电方式。使用中无需铺设线缆、无需交流供电,无需人员值守,安全环保可靠性强,完全满足连续雨水样品的采集。不仅节省了大量的人力和能源,还不产生电费。同时仪器还配有220V交流电充电插孔,充一次电完全满足临时采样要求。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 触发启动方式:雨量、水位单一或共同启动模式。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 显示方式:5.4英寸液晶触摸屏,人性化程序设定,操作简便快捷。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 采样间隔:1-9999s可调。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 样品瓶个数:24 瓶(一次采样量)。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 样品瓶容量:100-1000mL可调。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 垂直吸程:6米(配增压装置)。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 水平吸程:10米。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自记忆采样时间:每组数据记录采样泵启动及停止的年、月、日、时、分、秒,用户可通过内存卡将数据导出、查阅。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 工作电压:24VDC。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 外形尺寸:430*430*570 mm。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 重量:约30kg。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 手机远程遥控一键开关,控制仪器的启动与停止。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 用户可选取雨量、水位传感器控制仪器的开启模式。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 可采用时间或流量编程采样量分装样品。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 配置220V交流电和24V太阳能直流电充电接口,满足市内及野外采样。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 内部时钟自记忆采样过程,用户可通过内存卡读取数据。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 配有远程监控摄像头,通过手机可方便地实时监控采样器周围环境。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 不仅适用于雨水井、雨水口、道路雨水径流等采样,还适用于工业污染源排放口、江、河、湖、海等水样的自动采集。 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 目前国内雨水采集基本靠人工采样,人身安全危险性大。而传统的水质采样器无法满足雨水采样的要求。我单位推出的智能型自动采样器避免了降雨时间、降雨量等不确定因素,利用雨量及水位双控制传感器自启动采样,极大地减少了人力物力的投入,并保证了采样的精确性。市场上现有的仪器用途都较单一,并且都是市电供电方式,地域局限性大。智能型水质采样器充电方式采用内置24V充电式锂电池不仅适合临时采样,同时还可与太阳能板连接适合于野外无电源场所,使用范围广。而且仪器还可用于地表水和污水采样、对水源进行监测、开展污染源调查及总量控制,可谓是一机多用,市场空间大。 /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 目前智能型水质采样器已获得国家专利,专利号:ZL201720745546.9。 /span /p /td /tr /tbody /table p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制