奥特光学显微镜

仪器信息网奥特光学显微镜专题为您提供2024年最新奥特光学显微镜价格报价、厂家品牌的相关信息, 包括奥特光学显微镜参数、型号等,不管是国产,还是进口品牌的奥特光学显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合奥特光学显微镜相关的耗材配件、试剂标物,还有奥特光学显微镜相关的最新资讯、资料,以及奥特光学显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

奥特光学显微镜相关的厂商

  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

奥特光学显微镜相关的仪器

  • 奥林巴斯MX50专为6及8寸晶圆及大面板LCD/TFT产业开发设计。无远限度光学系统,并提供高达26.5mm的超宽视野。对光路中的耀斑有很好的抑制,可以实现很高的图象对比度 一,光学系统UIS2光学系统(无限远校正光学系统) 二,显微镜镜体2个引导此轮和齿条的结构 三,观察镜筒超宽视野正像可倾斜三目观察镜筒U-SWETTR 四,载物台MX-SIC1412 五,物镜转换盘U-D5BDRE(带微分干涉衬比法棱镜滑槽) 六,电源供电部件 七,Z轴同轴粗微调焦,载物台行程范围:32mm(从焦面上行30mm,焦面下行2mm) 八,照明系统BX-RLA2明暗视场照明器BX-URA2万能照明器 九,观察方式转换明暗视场滑块转换发分光镜组换镜旋座
    留言咨询
  • B302 生物显微镜适用于医疗化验、实验室研究、大学教学 ● 集合国内外优势资源,研发制造的具备国际先进水平的全新一代产品 ● 采用“一体式”设计理念,巧妙的豚越海面动态瞬间,外形完美融合 性能特点 ● 使用OTICS无限远色差校正光学系统,观察更加平展舒适 ● 100×水浸物镜取代传统油镜 ● 独创低倍减光物镜,从高倍转换到低倍时,不需调节亮度 人机工程学设计 ● 手臂可置于桌面操作,不易疲劳 ● 手臂可置于桌面操作,不易疲劳 ● 后部观察窗,也可看到物镜倍率变化● X轴不突出载物台,避免传统平台隐患 参数及配套 名 称 规 格 配置 主机 OTICS无限远色差校正光学系统 ● 目镜 10×大视野、高眼点平场目镜,Φ20mm ● 16×平场目镜/Φ13mm ○ 无限远平场 消色差物镜 EPLAN 4×(减光物镜) ● EPLAN 10×(减光物镜) ● EPLAN 40×(S) ● EPLAN 100×(S,Oil) ● PLAN 4×(减光物镜) ○ PLAN 10×(减光物镜) ○ PLAN 20×(S) ○ PLAN 40×(S) ○ PLAN 60×(S) ○ PLAN 100×(S,Oil) ○ PLAN 100×(S,Water) ○ 观察筒 铰链式双目镜组,30°倾斜,360°旋转,瞳距可调 ● 铰链式三目镜组,30°倾斜,360°旋转,瞳距可调 ○ 转换器 内倾式内定位四孔转换器 ● 载物台 机械移动载物台,进口三角导轨,双片夹结构 ● 聚光镜 阿贝式聚光镜,N.A.1.25,带可变光栏 ● 调焦系统 粗微同轴调焦,粗调带松紧调节,有调焦上限位装置 ● 照明系统 LED非球面冷光源,宽电压输入 ● 暗场环板 适用于干式暗场观察 ○ 偏光装置 起偏器,检偏器 ○ 摄像接口 1×摄像接筒(适用于数码相机) ○ 0.5×摄像接筒(适用于摄像系统) ○ 数码相机接口 CANON / NIKON / OLYMPUS等数码相机适用 ○ 注:“●”为必备件,“○”为选购件
    留言咨询
  • SZ650 连续变倍体视显微镜适用于学校教学、医疗化验、工厂检测......SZ650BP双目体视显微镜 SZ650B2L双目体视显微镜性能特点● 优秀的人机工程学设计采用40°观察角,利于长期坐姿观察330mm×300mm大底座,高稳定性、适合各种标本解剖● 优秀的光学、结构设计整机采用格临诺式结构体系,整体内藏式转轴变倍机构左右光路12°体视角,立体视觉感强烈;大视野、高变倍比 ● 精良的制造工艺与品质光学系统高分辨率、大景深范围;色彩还原逼真、对比度锐利操作手感舒适(高精度机械制造、精密装配工艺)材质高端稳定(PC树脂外壳,铝合金、铜合金结构零件、奥氏体不锈钢传动零件) ● 国际水准的产品造型设计外观造型优雅,国际品牌风范太空舱式一体化主机外观设计性能参数产品系列参数物镜变倍范围0.7×-4.5×变倍比1 : 6.5像方视场直径 (mm)Φ22前工作距离 (mm)110体视角 ( °)12观察角 ( °)40眼瞳距范围 (mm)50-75圆立柱支架对焦行程(mm)115方立柱支架对焦行程(mm)80目镜测量系统
    留言咨询

奥特光学显微镜相关的资讯

  • 引领显微光学技术革命-奥林巴斯推出光学数码显微镜
    2012年1月11日,奥林巴斯在全球同步推出了引领显微光学技术革命的DSX系列光学数码显微镜。 奥林巴斯以高端的光学技术著称,而且数码技术也是屈指可数的。现在,利用两项卓越技术的完美融合,我们创造出了新型的光电数字显微镜,使我们在工业显微镜领域取得了巨大的领先。只有奥林巴斯的显微镜才能够使任何使用者满怀信心的进行操作,同时实现高清晰度的视频显示并且实现超高精确度的测量,这些方面我们都走在时代的前沿,并将引领工业显微镜行业的新标准。 &rlm DSX系列光学数码显微镜,是一个全新的产品。通过先进的光学数码技术颠覆了传统显微镜的定义,从以下几个方面,DSX 系列为用户在检测效率上提供了很大的帮助。 &rlm 1. 操作的舒适性 ‣ DSX 是由显微镜、数码相机及软件组成的一个整体系统。 它能够实现前所未有的简单操作性和便捷性。 ‣ DSX 能够为客户实现最佳的观察方案。 &rlm 2. 更高的可靠性 ‣ DSX 将先进的光学技术与可靠的测量方法完美的整合成在一起。 ‣ DSX 能够为客户改善可靠性提高帮助 有关DSX光学数码显微镜的详细信息,请访问 DSX光学数码显微镜专用网址:http://www.olympus-ims.com/zh/microscope/opto-digital/ 奥林巴斯仪器信息网网址: http://olympus.instrument.com.cn 2012年2月-3月,奥林巴斯(中国)有限公司将会陆续在上海、成都、广州、北京等城市举办大型新产品发布会,届时欢迎业内人士和媒体朋友莅临指导! 活动联系: 胡翠兰 奥林巴斯(中国)有限公司 电话:(86)21-51706110 传真:(86)21-51706236 地址:上海市徐汇区淮海中路1010号嘉华中心10F 邮编:200031 E-mail:cuilan_hu@olympus.com.cn
  • 奥林巴斯DSX系列光学数码显微镜获得2013年"iF设计奖"
    奥林巴斯DSX系列光学数码显微镜获得了全球著名的德国"iF设计奖"(2013年iF产品设计奖)。 奥林巴斯光学数码显微镜DSX系列工业显微镜依靠直观的可操作性,简单的触摸面板操作等工业显微镜领域中的新颖设计脱颖而出。而光学显微镜领域中第一台具有触摸屏功能的数码显微镜就是来自于奥林巴斯的DSX系列显微镜。 兼具数码显微镜的操作性和普通显微镜的可靠性。 奥林巴斯光学数码显微镜使显微镜能以高分辨率观察样品的细微结构,在简单的操作中获取、观察超越数码显微镜的高画质影像,执行高精度测量并生成报告。 DSX系列光学数码显微镜适用于各种材料分析,如电子元件,测量和观察等。 关于"iF设计奖" : 德国的"iF设计奖"是全球最重要,最富盛名的工业产品设计之一。iF设计自1953年成立以来,象征优质设计的iF设计奖已成为国际公认的商标,企业与设计公司将iF标志延用到他们的宣传活动上,做为彰显产品与服务质量的视觉符号,对于以设计为导向的产品之采购主而言,iF标志为全球市场购买决策之重要依据。 德国iF设计金奖是IF所有奖项中含金量最高的奖项。"德国iF设计金奖"的获得,不仅仅代表某产品的杰出设计品质在国际范围内得到确认,还意味着该产品获得了设计与商业范围内最大程度的认可。
  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。

奥特光学显微镜相关的方案

奥特光学显微镜相关的资料

奥特光学显微镜相关的试剂

奥特光学显微镜相关的论坛

  • 【转帖】奥科学家开发出氦原子显微镜

    新华网维也纳1月10日电 奥地利新闻社日前报道说,奥地利格拉茨技术大学科学家开发出一种利用氦原子束作为显微光源的显微镜,它能够克服普通电子显微镜的部分缺点。 科学家的研究发现,无论如何完善光学显微镜的透镜和结构,其放大倍数和分辨率只能被限定在1000多倍和几百纳米的水平。由于光学显微镜的分辨率最多也只能是其所使用光源的半波长大小,所以光学显微镜分辨率存在极限。 电子显微镜利用电子束和电子透镜代替光束和光学透镜,分辨本领远胜于光学显微镜,其最大放大倍率超过300万倍,所以通过电子显微镜能观察到某些重金属的原子和晶体中排列整齐的原子点阵。 但电子显微镜也有缺点。格拉茨技术大学的科学家博迪尔霍尔斯特介绍说,电子显微镜需要在真空条件下工作,所以很难观察活的生物,带电电子束的照射也会使生物样品受到辐射损伤。氦原子束能量很低,而且作为一种惰性气体,氦的化学性质非常稳定,这些因素使氦原子显微镜在观察纤细柔弱的生物组织结构等方面具有明显优势。 不过,奥地利科学家开发出的氦原子显微镜分辨率目前还很低,甚至不及高质量的光学显微镜。据报道,科学家正在努力进一步提高氦原子显微镜的分辨率。

  • 【原创】奥林巴斯显微镜金相显微镜特点

    奥林巴斯显微镜金相显微镜特点 BX51奥林巴斯金相显微镜以其紧凑的设计风格源于与格里诺光学系统的融合,这种系统能提供卓越的平场度、丰富的景深,以及同样优质的清晰度、图像细节和准确的色彩,把变形的可能降至最低。今天,在完成范围日益扩大的生物显微镜观察中,可靠的品质和高性能的光学部件时获得一致、精确的观察结果的关键----也是缩短工作时间、简化工作条件、体现人机工程学特点的关键。 BX51所确立的标准可以称之为一个新起点。其圆润平滑的外表、设计新颖的“ComfortView”目镜与随手可及、反应灵敏的控制旋钮,让操作变得比以往更加简便和省力。

  • 光学显微镜概述

    早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。 1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。 17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。 1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。 目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。国内厂家主要有:江南、麦克奥迪等。

奥特光学显微镜相关的耗材

  • 光学显微镜灯泡大全 其他金相耗材
    PHILIPS飞利浦卤素灯 型号  规格  通用代码  主要应用  产地 7387  6V10W米泡 ESA/FHD  显微镜  欧洲进口 7388  6V20W米泡  ESB  光学设备  欧洲进口 5761  6V30W米泡      欧洲进口 7027  12V50W米泡  BRL/BCD  内窥镜  欧洲进口 7023  12V100W米泡  FCR  投影仪  欧洲进口 6834  12V100W杯泡    显微镜         欧洲进口 Zeiss蔡司荧光显微镜灯泡 灯泡型号: HBO50W/3HBO50W/ACHBO100W/2HBO103W/2HBO200W/2HBO200W/4 HBO200W XBO75W/2XBO75W/2OFRXBO150W/1XBO150W/1OFRXBO450WOFR OLYMPUS奥林巴斯显微镜灯泡 灯泡机型 LS156V15WBHCBHMBHMJVM-LSG.STM LS306V30WBHABHBIMT 6V10WCHACHB 6V20WCHK2CHSCH20CH30CK2 6V30WBX41BX40CX40CX2IX50BHTCK30/40 12V100WBX12BX50BX60BHS 220V20WSBCHK HBO50WCHCXCX2CK40 HBO100WBX2BXBH2 HBO200W 型号: HBO50W/ACHBO100W/2HBO200W XBO75W/2XBO150W/1OFRBHF Leica莱卡显微镜灯泡 型号: HBO50W/ACHBO1000W/2HBO200WHBO200W/2HBO200W/DCHBO200W/4 XBO75W/2XBO75W/2XBO100WOFRXBO150W/1XBO450WOFR OSRAM荧光显微镜灯泡HBO100W/2HBO100W/2 OLYMPUS倒置显微镜灯泡LS-30 NIKON显微镜灯杯6V20WJCRM6V20W OLYMPUS显微镜灯GB-4GB-4 Leica/Leitz显微镜灯泡仪器型号如下,灯泡型号: ZEISS灯泡39-01-536V25W ZEISS灯泡38-01-776V15W Zeiss荧光显微镜灯泡如表 BAUSCH&LOMB灯泡71-71-506V25W LEICA手术显微镜灯泡38464312V50W OSRAM荧光显微镜灯泡HBO103W/2HBO103W/2 Zeiss显微镜灯泡38-01-776V15W OSRAM荧光显微镜灯泡HBO50WACHBO50W/AC NARVA灯泡551476V25W Nikon荧光显微镜灯泡见表 ZEISS显微镜灯泡6V15W 各品牌显微镜灯泡OLYMPUS/Storz/Zeiss/Leitz/Nicon/Wolf ZEISS定位机灯泡38-61-07SL1206V OLYMPUS倒置显微镜灯泡LS-15 OLYMPUS显微镜灯泡TB-16V5A6V5ATB-1 OLYMPUS荧光显微镜灯泡见表 手术显微镜灯泡12V60W ZEISS灯泡39-01-766V15W 220V30W奥林巴斯灯泡 380018-252012V60W Standard014-380018-1740.6V15W StandardWL-380018-1730.6V15W 380018-2520Zeiss12V60W XTL-3100(E,F)连续变倍体视显微镜灯泡:卤素灯泡12V10W XTJ-4000D体视显微镜灯泡:卤素灯泡12V10W XTX-3C体视显微镜灯泡:卤素灯泡12V10W XTD-6分档变倍体视显微镜灯泡:卤素灯泡12V20W --------------------------------------------- MMDS-SP倒置金相显微镜灯泡:卤素灯泡6V30W D5000透反射倒置金相显微镜灯泡:卤素灯泡6V30W BDS系列(BDS200-FL,BDS200,BDS200-PH)倒置显微镜灯泡:卤素灯泡12V20W -------------------------------------------- MDJ系列金相显微镜灯泡:卤素灯泡6V/20W MIT100反射金相显微镜灯泡:6V20W卤素灯 MC006-6XB正置三目金相显微镜灯泡:卤素灯泡6V20W MPC-850金相显微镜灯泡:卤素灯泡6V20W MC006-5XB正置双目金相显微镜灯泡:卤素灯泡6V20W 6XB-PC型金相显微镜灯泡:卤素灯泡6V20W MDS-SP金相显微镜灯泡:卤素灯泡6V/30W, MDS系列实验室倒置金相显微镜6V/30W ------------------------------------------- SMZ-B2双目体式显微镜灯泡:卤素杯灯12V/15W XTD-406B体视显微镜灯泡:卤素灯泡12V10W XTD-406C体视显微镜灯泡:卤素灯泡12V10W XTJ-4400体视显微镜灯泡:卤素灯泡12V10W XTL3400体视显微镜灯泡:卤素灯泡12V10W XTL-2600体视显微镜灯泡:卤素灯泡12V10W XTL-2400体视显微镜灯泡:卤素灯泡12V10W XTJ4600体视显微镜灯泡:卤素灯泡12V10W --------------------------------------------- XLE-1大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE-2大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE—3大平台金相检测显微镜灯泡:卤素灯泡12V/50W ---------------------------------------------- BK-POL偏光显微镜灯泡:卤钨灯泡12V50W BK-POLR偏光显微镜灯泡:卤钨灯泡12V50W XPT-7单目偏光显微镜灯泡:卤钨灯泡灯泡:6V15W XP400D型偏光显微镜灯泡:卤钨灯泡6V20W XP400B型偏光显微镜灯泡:卤钨灯泡6V20W XP400C型偏光显微镜灯泡:卤钨灯泡6V20W POL-280偏光显微镜灯泡:卤钨灯泡12V20W XP500C偏光显微镜灯泡:6V15W XP1D实验室透射偏光显微镜灯泡:卤钨灯泡6V15W 59X普及偏光显微镜灯泡:卤钨灯泡12V30W ---------------------------------------------- BK-FL24荧光显微镜泡:卤素灯泡6V20W BK-FL4荧光显微镜泡:卤素灯泡6V20W 奥林巴斯BX51-FL荧光显微灯泡:卤素灯泡12V100W ------------------------------------------------ XSP-15C生物倒置显微镜灯泡:卤素灯泡12V50W SMART系列生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX21生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX41/CX31系列生物显微镜灯泡:卤素灯泡6V30W XDS1C电脑型倒置生物显微镜灯泡:卤素灯泡12V50W XDS1D数码型倒置生物显微镜灯泡:卤素灯泡12V50W. 万能研究级正置奥林巴斯BX41生物显微镜灯泡:卤素灯泡6V30W L1100型生物显微镜灯泡:卤素灯泡6V20W
  • 病理显微镜配件
    病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级标准,进口病理显微镜高端具有无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像.病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级别新标准,进口病理显微镜高端无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像,而且还把Infinitive ICO2 Plan 物镜列为标准配件供用户使用。双目病理切片显微镜是我们奥地利生命科学显微镜中病理切片显微镜的一种,秉承欧洲精密光学高端设计和制造优势, 具有绝佳的光学性能和性价比,非常适合 各种医院,医学院校和研究所以及各种医疗机构的使用。病理切片显微镜显配件特色:3年保质期 Pure ICO2 Plan infinity optics 4/10/40物镜先进的LED光源系统人体工程学免疲劳观察镜筒智能感应节能系统,自动熄灯聚焦自动停止功能适合佩戴眼镜工作者使用,不需要额外眼罩非机架式载物台进口病理显微镜高科技紧凑设计多系统聚光病理切片显微镜配件参数镜体: MCX51型镜体 203x145mm 带有LED 照明系统, 适合电源为110-220VAC,50/60HZ. 具有智能感应系统,15分钟不用就自动关闭照明系统,全面节能。四孔转角物镜转盘:显微镜聚焦:具有低位聚焦(low position), 粗调聚焦(coaxial coarse )以及校准的微调聚焦功能,总体聚焦范围20mm, 具有安全自动聚焦停止功能和装置。观察镜筒: ARCTYPE型双目型, 头部30度倾斜, 360度可旋转,瞳距48-75mm可调,固定于镜体上。载物台:非机架式双层机械载物台,150x133mm尺寸,行程范围:76x30mm (X-Y), 载物台可上下移动20mm,单手操作样品架 (specimen holder) ,固定于显微镜镜体上。多系统聚光器(Multisystem-Condenser): Abbe明视场聚光器孔径虹膜N.A 1.25, 快速使用技术,对于不同物镜快速达到最佳照明状态。目镜 (Eyepieces, 2pcs): 3WF 10x18Widefield, 适合戴眼镜用户使用,不需要额外的眼罩。无限远光学矫正技术ICO2 Plan 4/0.10, WD 23.5mm, CC 0.17ICO2 Plan 10/0.25, WD 10.0 mm, CC 0.17ICO2 Plan 40/0.65, WD 0.54 mm, CC 0.17病理切片显微镜可选附件---相衬配件Brightfield and Phase Contrast 10/40Brightfield, Darkfield and Phase Contrast 10/40进口病理显微镜加热台我们针对特殊样品(如活细胞)需要稳定的温度,我们特意设计了显微镜的加热台或显微镜温控台,与我们的显微镜精密匹配。病理切片显微镜配件显著的产品优势:先进的LED光学光源系统:我们的进口病理显微镜采用具有世界一流水平的全新LED光照系统,确保以超低功耗高亮度均匀照明整个目标样品. 这种LED光源节能,以更低能耗提供更高亮度的照明,而且照明的均匀度大幅度提高。 ARC型镜筒:这个系列的病理切片显微镜创立了“输入工作”的新标准,使用双目Arctype tube技术,从而为目镜提供两个不同的位置,全面照顾到身高不同的用户,实现人体工程学姿势长时间工作而不感到劳累。 瞳距48-75mm可调,屈光度可调,每个用户都能找到自己最佳的使用状态; 目镜设计适合佩戴眼镜的用户,不需要佩戴额外的眼罩即可使用。 智能感应(smart sense)技术--节能利器:病理切片显微镜具有全新超高灵敏度智能感应系统, 安装于显微镜底座的前部,15分钟没有使用,该感应系统将自动光比显微镜照明光源,全面节能并提高照明效率。 四孔物镜转换器 Quadruple nosepiece: 采用转角物镜转换器,转为4个物镜的使用而设计,并具有后视功能,为载物台上提供更多空间,观测样品视场大大优化,操作更为舒服而简单。病理显微镜载物台-stage: 独具奥地利专利技术的“玻璃覆盖”技术,采用可更换,超硬,防划,耐腐蚀的玻璃覆盖载物台,保护载物台免受刻划、磨损、腐蚀。病理显微镜多系统聚光器-Multisystem-Condenser: 采用Abbe明视场聚光器,孔径虹膜NA 1.25.,对于不同数值的物镜,确保快速呈现最佳观测结果,并且支持显微镜升级到各种暗视场/明视场,明视场/相衬等配置。进口病理显微镜零部件固定设计: 这是显著以特色之一,为显微镜各个部件提供了保安系统,观察镜筒,物镜,目镜,载物台,聚光器固定到显微镜镜体上,确保所有零部件不分离而丢失. 抗真菌处理--适合恶劣工作环境: 可以再温度较高,湿度较大的气候或环境中工作,采用特殊的抗真菌处理,确保光学系统不受损坏,图片保持明亮而清晰。进口病理显微镜便携实用: 采用了“节省空间“的理念设计, 适合小空间工作实用。而超轻的重量又适合运输、携带和存储。
  • 显微镜载物台
    显微镜载物台由中国领先的进口精密仪器和实验室仪器旗舰型服务商-孚光精仪进口销售!孚光精仪精通光学,服务科学,欢迎垂询!显微镜载物台能够完美地解决现有显微镜载物台的尺寸与实验要求不符的问题显微镜载物台适合所有商用显微镜载物台适配器显微镜载物台使用方便显微镜载物台操作简单显微镜载物台精度高显微镜载物台具有多种不同的类型供选择显微镜载物台轴整体式设计,结构紧凑显微镜载物台高品质滚珠螺杆驱动显微镜载物台重复性高,动力稳且大手动载物台运动舒适显微镜载物台 徕卡Leica DMIRB 型 显微镜载物台适合奥林巴斯IMT2,IX50,IX70,IX71,IX81型号 显微镜载物台适合ZeissIM35,Axiovert (Zeiss part451740)同时适合Ludl, Prior, ASI品牌显微镜载物台和欧洲进口的显微镜载物台,能够完美地解决现有显微镜载物台的尺寸与实验要求不符的问题。我们提供适合所有商用显微镜载物台适
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制