当前位置: 仪器信息网 > 行业主题 > >

色谱质谱由进样至分析

仪器信息网色谱质谱由进样至分析专题为您提供2024年最新色谱质谱由进样至分析价格报价、厂家品牌的相关信息, 包括色谱质谱由进样至分析参数、型号等,不管是国产,还是进口品牌的色谱质谱由进样至分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱质谱由进样至分析相关的耗材配件、试剂标物,还有色谱质谱由进样至分析相关的最新资讯、资料,以及色谱质谱由进样至分析相关的解决方案。

色谱质谱由进样至分析相关的论坛

  • 实验室分析仪器--色谱质谱联用仪进样系统

    如下图是色谱质谱联用仪的接口与色谱仪组成的进样系统示意图。样品由色谱进样器引入色谱仪,经色谱柱分离的各个组分依次通过接口进入质谱仪的离子源。最常用的是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱(GC/MS)和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱(LC/MS)两种进样模式。该进样系统的关键部分是接口,应满足以下三个条件:[img=48ee648290cf0d2c445f899c1d26b6e.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643177994667223.jpg[/img]GC/MS进样器①接口不破坏离子源的真空,也不影响色谱柱分离的柱效(不增加色谱系统的死时间)。②接口应能使色谱分离的各组分尽可能多地进入质谱仪离子源,而使色谱流动相尽可能不进入。③接口的存在不改变色谱分离的各组分的组成和结构。GC/MS进样系统主要用于气体有机物的同位素测定,由GC分离的有机物,经燃烧炉焚烧后转变为C、H、O的氧化物,如二氧化碳和水,供质谱仪测定其同位素比和组成。

  • 实验分析仪器--有机质谱仪进样系统的直接进样

    质谱仪作为一种高灵敏度、高通量的分析仪器,其主要部件需工作于高真空环境2而常见的待测样品基本存在于常压环境下因此在早期质谱仪器中需要一些专用装置实现样品从常压环境到真空环境的引入。在现代质谱技术中,常压下的离子源[如电喷雾离子化技术(ES)]的发展,使得样品可以在大气压环境中被电离后以离子的形式通过质谱离子传输系统进入质谱。质谱还常与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url](GC)、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](LC)等分离仪器联用,而这些仪器也就成为了一种特殊的质谱进样系统,在最新的一些研究中微流控芯片也与质谱联用,实现了质谱前处理的微型化和多功能化。传统的直接进样系统是利用一个推杆(或称探头, probe)将样品送到离子源的电离盒样品口,然后使样品汽化的进样系统,主要用于固体与高沸点液体样品进样直接进样系统要由推杆、样品管(也称作样品坩埚)、闸阀、预抽室等组成。[img=Compress_1.jpg,800,]https://i2.antpedia.com/attachments/att/image/20220126/1643166891558540.jpg[/img]图1传统直接进样装置1离子源;2一样品管;3一样品推杆;4闸阀;5预抽室;6接真空泵;7真空密封样品管一般为石英或黄金制成的毛细管。使用中,将取好样品的样品管置于推杆顶端,利用推杆将样品管送入离子源。电离过程中样品利用率受样品管与电离盒样品口之间的相对位置影响,这里列出了三种情况,(a)、(b)的样品利用率很高,如果推杆头或样品管与进样口密封得好,样品利用率可达100%;(c)的样品利用率则低得多由于离子源处于高真空状态,当推杆推入或拉出离子源时为了不破坏源的真空,必须在离子源和直接进样系统之间安装一个高真空闸阀。闸阀关闭时,真空系统对预抽室抽真空,待真空达到一定要求时,闸阀打开,推杆便可推入,将样品送入离子源:测试完后,将推杆拉至预抽室,关闭闸阀,然后将预抽室放空,再拔出推杆,更换样品管。有些仪器的直接进样推杆还可以通水或液氮冷却,以防止样品在预抽真空时挥发掉,因此这种推杆也能适合于沸点较低的液态样品进样3该进样装置在现代质谱中使用相对较少。[img=Compress_2.jpg,800,]https://i2.antpedia.com/attachments/att/image/20220126/1643166895560663.jpg[/img]图2推杆头与电离盒的相对位置1推杆头;2一样品;3样品管;4一电离盒入口在最新质谱技术中,常压敞开式离子化技术是离子化技术的一个新兴领域,其特点是在无需样品预处理或简单预处理下,将样品中待测组分在大气压条件下进行电离,然后进入质谱质量分析器进行检测

  • 炼厂气气相色谱进样分析辅助进样

    炼厂气气相色谱进样分析辅助进样

    目前,气体取样主要是用气袋或者气胆来取样。样品采集回来后,主要是通过人工挤压的方式使样品进入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行分析。这样会造成A. 进样压力不稳定,影响色谱分析的重复性和准确性B. 样品易泄漏,对人体造成伤害C. 工作效率低,劳动强度大D. 采样气袋易损坏,使用成本高气袋自动进样器用于将气态样品批量自动进样至气体分析仪。进样点位数量高度定制化,可加挂最多16个采样气袋。样品气被一台真空泵由气袋输送至分析仪中的气体进样阀中。• 多位选择阀,可进行2位-16位气袋进样。• 能够通过各品牌分析仪进行自动进样控制,提高分析效率。支持的品牌包括但不限于安捷伦、美国热电、PE、岛津等。• 进样口为标准1/4”穿板卡套接头,更可根据用户需求定制• 使用真空隔膜泵进样,确保极佳的进样重复性。• 使用外径为1/16”的样品管路连接至分析仪的气体进样阀。可根据用户需求配置钝化管路,用以分析硫化物等组分。• 具备反吹功能,减少交叉污染只要有自动进样阀和远程控制端口的色谱仪均可适配![img=,690,1472]https://ng1.17img.cn/bbsfiles/images/2020/06/202006030921204031_6226_3999003_3.jpg!w690x1472.jpg[/img]如果感兴趣可回帖留下问题及建议,我将在第一时间回复!

  • 气相色谱-质谱在药物分析中的应用

    [em26] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱在药物分析中的应用(一) 气-质联用技术是药物分析学科领域中主要和基本的研究手段和方法,发展十分迅速。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(Gas chromatography,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url])是近年来应用日趋广泛的分析技术,特别适用于具有挥发性的复杂组分的分离、分析,由于是以气体作为流动相,所以传质速度快,一般的样品分析可在20-30s左右完成,具有分离效能高,灵敏度高的特点,在有对照品的条件下,可作定性、定量分析,但对重大事件或有争议的样品不能做出肯定鉴定报告,必须连接如质谱的检测器。另外对于不能气化的样品则需要作衍生化处理后再分析。 质谱(Mass Spectrnum,MS)是强有力的结构解析工具,能为结构定性提供较多的信息,是理想的色谱检测器。气-质联用([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS)法对药物分析的发展起到很大促进作用,尤其是在含量测定,有关物质检查、质量标准制定、成分分析以及药物动力学研究的代谢物分析、药物及代谢物的体内浓度分布等试验中,成为有力的分析工具。由于利用了色谱的高分离能力和质谱的高鉴别特性,可对复杂的混合样品进行分离、定性、定量分析的一次完成,是一种完美的现代分析方法。文章综述了近年来气-质联用在以上领域的应用实例。一、含量测定和有关物质检查 2005年,同济大学的林淑芳等采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法,分析比较大蒜中的挥发油以及大蒜精油的化学成分。实验仪器:Agilent HP6890/5973MSD联用仪,配NIST98谱库检索系统HP-5MS毛细管柱(30m× 0.25 mm ×0.25μm),载气:氦气(纯度99.99%),有机相针式滤器(13 mmX 0.45 μm)。色谱条件:进样口温度250℃ ;分流比为1:50;总流速50ml/min ;初始温度设定4O℃,以5℃/min 升温至8O℃,再以1O℃/min 升温至220℃;流速1.0 mL/min,恒流速;接口温度230℃;质谱质量扫描范围为10-500 amu,扫描速度1O次/S。用化学计量学方法(非负矩阵因子分解(NMF))解析解析两个色谱图中重叠峰,通过NIST谱库检索,确定了大蒜萃取液中的37种化学成分,大蒜精油中的32种化学成分,其中含硫化合物分别为34和28种。并用峰面积百分比法计算各化学成分的峰面积相对百分含量。 2005年广州市胸科医院的钟洪兰等采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法检测大青叶、板兰根、连翘、岗梅根的有机磷农药的残留。仪器:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS连用仪,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]:6890系列;检测器:MS 5973系列;色谱柱:HP一5MS,30 m×0.25 mm×0.25μm;气化室温度为250℃,载气:氮气,1 mL/min,恒流;进样方式:1μL;进样口温度230℃;接口温度280℃;柱升温程序:100℃保持2 min。6℃/min升至140℃,保持1min,8℃/min升至180℃,保持1min,15℃/min,升至280℃,保持2min,质量扫描范围30~450nm;溶剂延迟:2min。实验中[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]部分对微量的有机磷农药具有很强的分离能力,毛细管柱能在比较短的时间里很好地把几种有机磷农药分离开来,而质谱鉴别有机磷农药灵敏度高,准确性好。 2005年四川省人民医院药剂科余继英等首次采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法测定复方薄荷脑滴鼻液中薄荷脑及樟脑含量。仪器:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS-QP5050A,日本岛津);DM-5弹性石英毛细管柱(0.25mm×30m,Dikma公司)。色谱条件:进样口温度:200℃;接口温度:250℃;载气:氦气;流速:1.0ml/min;柱前压:67kPa;分流比:20:1;升温程度:柱温80℃恒温2min,以5℃/min的速率升温至150℃,维持3min后结束。质谱条件:EI源(70ev);在SIM 模式下,于8.50min~8.84min时选择碎片离子95对樟脑进行检测,8.84min~9.15min选择碎片离子71对薄荷脑进行检测,13.00min~14.50min选择碎片离子144对乙萘酚进行检测。实验利用谱库检索帮助定性和SIM方式定量可排除杂质干扰,增加灵敏度。 2003年三峡大学化学与生命科学学院的李瑞萍等采用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS法测定苯丙醇胶丸中苯丙醇含量及其杂质苯丙酮的含量。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]:Thermo Quest Trace [url=https://insevent.instrument.com.cn/t/Mp]gc[/url];质谱仪:Finnigan Trace MS,EI电离源。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件:色谱柱为RTX-5MS(15m×0.25 mm×0.25µ m),载气为高纯氦气,恒流速1.5mL/min,进样口温度250℃ ;柱温:40℃ 保持1min,以l0℃ /min 速率升温至130℃ ,再以30℃/min 速率升至250℃ ,保持3min;分流模式进样,分流速度10mL/min;接口温度200℃。质谱条件:EI电离源,电子能量70eV;离子源温度200℃ ;发射电流250A,检测器电压200V,全扫描,质量范围:35-80amu,对采集到的质谱图利用NIST谱库进行检索。。中国药典所载醋酐-吡啶乙酰化法属经典测定方法,测定结果准确,但操作复杂,费时,且主要试剂吡啶对人类身体健康有害。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS法操作简便、快速、准确,适于进行大批量生产的例行分析及药物放置过程中的质量监控。

  • 气相色谱质谱联用仪(GC-MS)进样后灯丝自动关闭

    [size=20px][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪(G[/size][size=20px]C-[/size][size=20px]MS)进样后灯丝自动关闭[/size] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪8860-5977B([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])在进样过程中出现的灯丝自动关闭问题,通过([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])系统的工作原理、故障诊断流程和数据分析,确定了导致灯丝自动关闭的主要因素。 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪是一个高性能分析仪器仪器,用于分离、检测和鉴定化合物的组成。系统主要由样本引入系统、色谱柱、接口、质谱仪和数据处理系统等部分组成。灯丝位于质谱仪部分,是产生离子的关键组件,其稳定性对实验结果的准确性有着直接的影响。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])是一种广泛应用于化学分析领域,它结合了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url](GC)分离化合物的能力和质谱(MS)检测化合物特性的敏感性。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])一直以高性能和高可靠性著称。 其实所有精密设备都一样,([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])在持续运行过程中也可能出现各种技术问题,其中之一就是在进样后灯丝自动关闭的现象,这会直接影响仪器的稳定性与分析结果的准确性。灯丝在([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])系统中是个至关重要的角色。它负责将样品分子转化为离子,进而使得质谱仪能够进行检测。灯丝的正常运作对整个分析过程至关重要。灯丝自动关闭的问题可能由多种因素引起,包括电子控制系统的异常、电流供应的不稳定性以及机械结构的微小变形等。 在进样后的操作过程中,偶尔会遇到灯丝自动关闭的问题。这一故障的发生似乎与特定的操作条件有关,例进样速度、样品的种类和浓度等,灯丝自动关闭发生时,仪器通常会显示错误代码,并立即中断分析过程,导致数据丢失和实验延误。为了系统地研究灯丝自动关闭的问题,并监测灯丝的行为。数据收集工作主要依赖于仪器自带的软件和外部测量工具,以确保获取准确的实时数据。 在实际操作过程中呢,也是需要注意以下几点的 1. 确保仪器的工作环境稳定,避免温度、湿度等环境因素对仪器的影响。 2. 严格按照操作规程进行操作,避免因操作不当导致的故障。 3. 定期对仪器进行维护和检查,确保各部件正常工作。 4. 对于出现的问题,及时进行分析和处理,避免问题的累积和扩大。 5. 在使用仪器时,尽量保持稳定的进样速度和样品浓度,以减少灯丝自动关闭的可能性。 总之,通过对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])的工作原理、故障诊断流程和数据分析的深入理解,我们可以有效地解决灯丝自动关闭的问题,提高仪器的稳定性和分析结果的准确性。同时,我们也需要注意仪器的日常维护和使用注意事项,以确保仪器的正常运行。

  • 【分享】大体积进样技术在气相色谱-质谱法测定二噁英类化合物中的应用

    [B]大体积进样技术在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法测定二噁英类化合物中的应用[/B]摘要:利用大体积进样技术(1arge volume injection,LVI),结合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一质潜方法对二 英的测定效果进行了研究。同时与传统分流/不分流进样技术进行丁对比。对进样体积为1,5,10,25,50和100 L的色谱图进,彳了分析:研究表明使用大体积进样方式,在不影响色谱分离度的同时,大幅度提高了分析灵敏度。通过对土壤样品的检测,证明该方法可以用于环境样品的实际测定。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一质谱法;大体积进样;二嗯英;环境样品[~189456~]

  • 请教关于气相质谱色谱分析仪选择的问题

    我们课题组打算在将来做燃烧过程分析,主要就是在一个燃烧室里,点燃气体,然后进行探针采样获取气体成分定性和定量分析。但不知道该如何选择仪器,想请各位前辈指点一下。1、质谱色谱联用的分析是不是只能分析稳定的物质,而不能分析反应的中间产物比如OH自由基这些?2、一般的分析仪是否会配备或者定制采样设备,比如安装在燃烧室壁面上的探针。3、分析仪体积的大小一般在什么规格?我看有的分析仪跟橱柜一样,有的跟电脑机箱一样,我们需要的可能是小巧一点的。4、像我需要的这种能够分析多种燃烧产物的(含碳数一般在5以下)分析仪,我应该选择什么样的分析仪?一般是什么价位?由于时间紧急,所以问得也比较小白一些,还希望各位前辈不吝赐教。

  • 【原创大赛】【生活中的分析】“月饼香精等成分的气相色谱质谱联用分析探讨(2)

    【原创大赛】【生活中的分析】“月饼香精等成分的气相色谱质谱联用分析探讨(2)

    俗话说:“八月十五月正圆,中秋月饼香又甜”。中秋佳节来临,月饼是必吃之佳品。大家也许关心月饼里面到底有什么成分,实际测定会怎么样呢?也许要问月饼里面的香气和香味哪里来的? 是那些化合物呢?上次和大家分享玫瑰月饼的香气测定,这次和大家分享一下一款凤梨味月饼里面的香精等成分的GCMS测定的结果。这次的香精含量要高,明显。月饼含较多的面粉、糖、油脂等,一般香气都很淡,个别月饼添加的香精,但添加量极少,又是固体,无法直接进行GCMS分析,必须选择合适的方法来提取里面的香精或香气成分,然后用GCMS分析。本文采用吸附搅拌子(SBSE)提取月饼的香气香味成,大体积冷却进样口PTV热脱附TDU气相色谱质谱法分析鉴定凤梨味月饼的香精成分和部分看氧化剂防腐剂成分;利用Amdis质谱解卷积软件识别拆分共流出色谱峰,得到更纯净的质谱图,更利于下一步质谱检索的工作;并结合保留指数校正使质谱检索结果更为准确。1试验部分1.1 仪器与装置美国安捷伦7890A/5975C气相色谱-质谱联用仪,带有德国Gerstel的MPS TX多功能自动进样系统,德国Gerstel的CIS4大体积分流/不分流进样口和TDU热脱附单元,整合FID检测器,同时带德国Gerstel毛细管柱分流装置。吸附搅拌子(PDMS, 0.10mmX10mm,Gerstel)。1.2样品和标样样品:凤梨月饼,购于上海某超市。实物图片:http://ng1.17img.cn/bbsfiles/images/2015/09/201509171629_566473_1615838_3.jpg香气香味化合物标准品均来自Sigma-Aldrich等主要试剂公司,少数为实验室内部精制标样。C6-C30正构烷混合标准物来自安谱公司。1.3GC/MS条件1.3.1 色谱条件:色谱柱:安捷伦VF-Waxms (30m×0. 25 mm ( i.d.)×0.25μm)毛细管柱;升温程序:40℃保持2 min,以3 ℃/min升至230℃,保持30 min;载气(He, 纯度99.999%以上)流速1.8 mL/min;进样口:PTV大体积冷进样口,温度10℃-250℃,15℃/S;TDU:25-200℃, 100℃/min, 不分流,传输线温度:260℃检测器:FID,氢气:30ml/min, 空气:350ml/min, 尾吹:30ml/min N2, 温度:270℃。1.3.2质谱条件: 电子轰击(EI)离子源;电子能量70eV;传输线温度280℃;离子源温度230℃;四级杆温度150℃。SCAN扫描范围:29-400。1.4样品的提取处理及分析方法样品的提取处理:月饼配料表有面粉、植物油、水、糖、鸡蛋、凤梨原浆、食用香精、食品添加剂(碳酸钾、碳酸钠、脱氢乙酸钠、柠檬酸)等。凤梨月饼的香气香味主要来源于馅料,皮只是一些烘烤的香气,所以主要分析馅料的香精成分。取出里面的馅捣碎,精确称取1g左右月饼样品,加适当内标物(本实验加入187ppb的内标物。内标物暂不公布),加3g超纯水,放入磁力搅拌子,提取1小时。用超纯水冲洗干净,用干净的餐巾纸吸干,放入热脱附的小管,运行序列。在分析样品前,和样品分析完全相同的条件下,用0.05%的C6-C30的正构烷标样注射到GCMS,获得正构烷的保留时间,用于计算保留指数。分析样品后,用软件计算样品各个组分的保留指数,并和标样的保留指数对比来,结合质谱来定性。事先也用同样方法测定标样的保留指数备用。

  • 【原创大赛】气相色谱-质谱联用分析芥末油天然真假性

    【原创大赛】气相色谱-质谱联用分析芥末油天然真假性

    前 言芥末油是一种很好调味品。它是由十字花科植物芥末籽经过粉碎,加水水解,蒸馏而得。其主要成分是异硫氰酸烯丙酯,有强烈的刺激辣味,可刺激唾液和胃液的分泌,有开胃、杀菌消炎等作用,还能增强食欲,另外还有解毒、美容养颜等功效。芥末油有由芥末籽生产纯粹天然品,也有添加人工合成异硫氰酸烯丙酯冒充天然品的。本文用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法分析鉴定某一芥末籽油的天然真伪。并与纯天然芥末籽油对比进一步确认真伪。用Amdis质谱数据解卷积处理质谱数据,并结合保留指数校正使质谱检索结果更为准确。使用动态范围宽的FID来定量。[b]1试验部分[/b]1.1 仪器与装置安捷伦6890N/5973I[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪,带FID检测器,双进样口分别接两根毛细管柱及MS和FID。1.2样品样品: 待测芥末籽油由某供应商提供,标品由某天然油公司提供。所有香气化合物标准品均来自Sigma-Aldrich等主要试剂公司,少数为原料精制标样。C6-C30正构烷混合标准物来自AccuStandard。1.3 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS条件1.3.1 色谱条件:色谱柱(质谱鉴定):安捷伦HP-Innowax(60m×0. 25 mm ( i.d.)×0.25μm)毛细管柱,连接MS定性;升温程序: 60℃,以3 ℃/min升至250℃,保持28 min;色谱柱(FID定量):安捷伦HP-Innowax (60m×0. 25 mm ( i.d.)×0.25μm)毛细管柱,连接FID定量;升温程序: 60℃,以3℃/min升至250℃,保持28 min;载气:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS, He,纯度99.999%以上,流速1.8 mL/min [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-FID, He, 纯度99.999%以,流速1.8mL/min;进样口温度250℃,分流进样,分流比100:1 进样量:1μl。检测器:FID, 氢气:30ml/min, 空气:350ml/min, 尾吹:N2,30ml/min, 温度:270℃。1.3.2质谱条件: 电子轰击(EI)离子源;电子能量70eV;传输线温度250℃;离子源温度230℃;四级杆温度150℃。SCAN扫描范围:29-400。EMV:1560V。溶剂延迟时间:3.8min.[b]1.4样品处理及分析方法[/b]样品用特丁基甲醚5倍稀释,进样1微升进行[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS/FID分析。在分析样品前,和样品分析完全相同的条件下,用0.05%的C6-C30的正构烷标样注射到[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS,获得正构烷的保留时间,用于计算保留指数。分析样品后,用软件计算样品各个组分的保留指数,并和标样的保留指数对比来,结合质谱来定性。事先也用同样方法测定标样的保留指数备用。[b]2 结果与讨论[/b]2.1 实验结果待测芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)如下:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010929318112_6403_1615838_3.jpg!w690x387.jpg[/img][align=center]图 1待测芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)[/align]***********************************************************************从图1看出此待测样品的纯度较高,杂质少。为了便于判断是否为天然,也同时和天然品对照。标准天然品芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)如下:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010929512682_8708_1615838_3.jpg!w690x387.jpg[/img][align=center]图 2 标准天然品芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)[/align]**********************************************************************对比两张色谱图,标准天然品比待测样品的杂峰要多一些,纯度可以比待测样品低。两者对比图如下:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010930118444_855_1615838_3.jpg!w690x387.jpg[/img][align=center]图3 待测样品和标准品色谱图对照[/align]***************************************************************************2.2数据处理:2.2.1先用Amdis质谱数据解卷积处理质谱数据,减少本底干扰,对共流出峰拆分,提取出大峰下面的峰或隐藏在里面的色谱峰。同时用Amdis的MSL质谱数据库和工作站的PBM(L)质谱数据库检索,并结合保留指数来鉴定峰。所有保留指数均由标准样品测定。极少数没有保留指数的化合物,参照其它资料和以往的经验,在保证良好匹配度的情况下确认。由于FID的动态线性范围很宽,定量结果稳定,复杂的多挥发性组分一般用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]FID来定量,而不用质谱总离子(TIC)来定量。本篇用FID检测器的面积归一化法来计算芥末籽油挥发性组分的含量。2.2.2 Amdis处理举例Amdis质谱数据解卷积处理天然标品数据后在主峰异硫氰酸烯丙酯和硫氰酸烯丙酯的台阶上面发现BUTYL ISOTHIOCYANATE和2-methylbutyl-Isothiocyanat组分。这在一般的检索情况下是无法发现到的。如下图:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010930409409_2260_1615838_3.jpg!w690x387.jpg[/img][align=center]图4 Amdis处理举例[/align]*********************************************************************2.2.3 特殊峰形积分由于芥末籽油的主成分异硫氰酸烯丙酯和硫氰酸烯丙酯的峰形比较特殊,在两者之间也有少许物质。积分采用面积加合,撇线处理和扣除结合的方法。积分方法请参考:[b][b]一个较难积分的例子[/b][url]https://bbs.instrument.com.cn/topic/7270600[/url][/b][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010930567232_9060_1615838_3.jpg!w690x387.jpg[/img][align=center]图5 主峰积分方法[/align]***********************************************************************2.3芥末籽油挥发性成分[align=center]表 芥末籽油挥发性成分表[/align] [table=568][tr][td][/td][td][/td][td][/td][td]天然样品[/td][td][img=,1,17]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] [table][tr][td]待测样品[/td][/tr][/table] [/td][/tr][tr][td][/td][td][/td][td][/td][td]Std[/td][td]unknown[/td][/tr][tr][td]No[/td][td]RT(min)[/td][td]Name 成分名称[/td][td] [/td][td] [/td][/tr][tr][td]1[/td][td]4.01[/td][td]2-Propenal 2-丙烯醛[/td][td]0.000[/td][td]0.014[/td][/tr][tr][td]2[/td][td]4.22[/td][td]ALLYLMERCAPTANE 丙烯硫醇[/td][td]0.006[/td][td]0.005[/td][/tr][tr][td]3[/td][td]4.49[/td][td]DIALLYL ETHER 烯丙醚[/td][td]0.000[/td][td]0.000[/td][/tr][tr][td]4[/td][td]4.63[/td][td]BENZENE 苯[/td][td]0.000[/td][td]0.005[/td][/tr][tr][td]5[/td][td]5.70[/td][td]1,2-dichloro-Propane 1,2-二氯-丙烷[/td][td]0.000[/td][td]0.017[/td][/tr][tr][td]6[/td][td]6.69[/td][td]ALLYL ALCOHOL 烯丙醇[/td][td]0.000[/td][td]0.026[/td][/tr][tr][td]7[/td][td]7.64[/td][td]DIALLYL SULPHIDE 二丙烯基硫醚[/td][td]0.011[/td][td]0.000[/td][/tr][tr][td]8[/td][td]7.85[/td][td]3-Butenenitrile 3-丁烯腈[/td][td]0.001[/td][td]0.000[/td][/tr][tr][td]9[/td][td]8.22[/td][td]2-Butenenitrile 2 -丁烯腈[/td][td]0.868[/td][td]0.000[/td][/tr][tr][td]10[/td][td]9.32[/td][td]THIAZOLE 噻唑[/td][td]0.000[/td][td]0.031[/td][/tr][tr][td]11[/td][td]10.88[/td][td]BUTYL ISOTHIO CYANATE, 2- 异硫氰酸2-丁酯[/td][td]0.138[/td][td]0.000[/td][/tr][tr][td]12[/td][td]12.47[/td][td]BUTYL ISOTHIOCYANATE, ISO- 异硫氰酸异丁酯[/td][td]0.012[/td][td]0.000[/td][/tr][tr][td]13[/td][td]13.89[/td][td]ALLINATE /ALLYL ISOTHIOCYANATE 异硫氰酸烯丙酯[/td][td]92.245[/td][td]94.296[/td][/tr][tr][td]14[/td][td]14.80[/td][td]BUTYL ISOTHIOCYANATE 异硫氰酸丁酯[/td][td]0.006[/td][td]0.000[/td][/tr][tr][td]15[/td][td]16.18[/td][td]Isothiocyanat, 2-methylbutyl- 异硫氰酸2-甲基丁酯[/td][td]0.026[/td][td]0.000[/td][/tr][tr][td]16[/td][td]17.07[/td][td]ALLYL THIOCYANATE 硫氰酸烯丙酯[/td][td]5.879[/td][td]5.392[/td][/tr][tr][td]17[/td][td]17.23[/td][td]3-BUTENYL ISOTHIOCYANATE 异硫氰酸3-甲基丁酯[/td][td]0.692[/td][td]0.000[/td][/tr][tr][td]18[/td][td]18.50[/td][td]AMYL ISOTHIOCYANATE 异硫氰酸戊酯[/td][td]0.006[/td][td]0.000[/td][/tr][tr][td]19[/td][td]20.35[/td][td]PENTENYL ISOTHIOCYANATE, 4- 异硫氰酸戊烯-4-酯[/td][td]0.024[/td][td]0.000[/td][/tr][tr][td]20[/td][td]36.26[/td][td]METHYLTHIOPROPYL ISOTHIOCYANATE 异硫氰酸甲基硫代丙酯[/td][td]0.020[/td][td]0.000[/td][/tr][tr][td]21[/td][td]43.60[/td][td]m/z 87,57,115 unknown 未知物[/td][td]0.000[/td][td]0.182[/td][/tr][tr][td]22[/td][td]43.69[/td][td]2-PHENYLETHYL ISOTHIOCYANATE 异硫氰酸2-苯乙酯[/td][td]0.053[/td][td]0.000[/td][/tr][tr][td]*[/td][td]SUM[/td][td]总计[/td][td]99.99[/td][td]99.97[/td][/tr][/table]从上述结果来看,从芥末籽油里面一共鉴定测定了22个挥发性组分。主要成分是异硫氰酸烯丙酯,其次是硫氰酸烯丙酯。从待测样品发现有苯,1,2-二氯丙烷,而天然品里面并没有,显然是由于化学合成提纯时候带来的。另外2-丙烯醛,烯丙醇等也是在天然品里面没有看到。在天然品里面具有的,硫醚,丁烯腈,二丙烯基硫醚,异硫氰酸的丁酯异构体,异硫氰酸戊酯异构体,异硫氰酸苯乙酯等在待测样品里面也没有看到。所以判断该号称天然芥末籽油的样品并不是天然来源,是化学合成而来。即使待测样品的异硫氰酸烯丙酯的含量高,为94.3%,比天然品还高2%,但并非是天然的。

  • 脂肪酸甲酯气相色谱质谱分析

    [color=#444444]本人买了37中脂肪酸甲酯标样,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱分析先做分离条件的探讨,可是谱图如下,分别探讨的3种不同条件,经谱库检索,用的谱库是安捷伦NTST14,可是检索要嘛显示无相匹配化合物,要嘛不是目标物,为什么,哪里出问题了,求高手指点![/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2018/0825/w133h1487809_1535176905_528.png[/img][/color]

  • 离子色谱-质谱联用技术在饮用水分析中的应用

    [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]-质谱联用技术在饮用水分析中的应用刘勇建 牟世芬(中国科学院生态环境研究中心,Dionex 中国有限公司应用研究中心,北京100085)[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url](IC)作为一种分析离子的有效工具,已在环境分析中得到了广泛的应用,如美国EPA标准方法300.1,341.2,317.0,32.18,国际标准化组织标准方法15601等都选用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]作为分析工具。随着对环境问题研究的深入,复杂基体中痕量、超痕量有害离子(如高氯酸盐)的分析成为一个热门的研究领域。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]常用的检测手段有电导检测器,紫外检测器和安培检测器。这些检测方法虽能满足测定的要求,但定性、定量手段单一,检测灵敏度较低。质谱(MS)作为一种高灵敏度的定性、定量技术已在环境分析中得到了广泛的应用。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]与质谱联用成为解决复杂基体中超痕量有害离子分析的有效工具。一、IC-MS测定工业废水中痕量高氯酸高氯酸盐(ClO4-)是环境中的一种有害离子,其主要存在于地下水、地面水及饮用水水源中。由于其可引起人体甲状腺病变,影响人体正常的新陈代谢。因此对于水中ClO4-的研究引起了环境科学家的关注。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法测定复杂基体中痕量高氯酸盐时,有时由于基体中干扰离子浓度过高,使得样品中高氯酸盐难以准确地定性、定量。在回收的市政废水中,由于高浓度干扰离子的影响,高氯酸根难以测定。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]-电喷雾质谱联用技术可有效的消除市政废水样品中高浓度干扰离子的影响,样品中痕量的高氯酸盐可准确的定性、定量。进样量为250µ L时,该方法对高氯酸根的检出限为0.3µ g/L.[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]—质谱联用测定市政废水中的痕量ClO4-色谱柱:IonPac AS16 (2mm) + IonPac AG16 (2mm) 淋洗液:65mmol/L NaOH流速:0.3mL/min 进样量:250µ L检测方式:(a)抑制电导(ASRS-ULTRA, 300mA,外加水模式)(b) 电喷雾质谱(探针:300℃,-2.5kV,CID电压:10V,m/z=101,99)二、IC-MS测定饮用水中溴酸根溴酸盐(BrO3-)是饮用水用臭氧消毒的副产物,因其对人体具有潜在的致癌作用,对饮用水中痕量、超痕量的分析成为一个热门的研究领域。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]测定饮用水中痕量BrO3-的主要方法有抑制电导检测法和柱后衍生法。由于定性手段单一、检测器选择性较差,BrO3-易受到样品基体的干扰,在含有高氯的样品中,采用电导检测器时,BrO3-的定量比较困难,且方法的灵敏度都不是很高。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]—质谱联用可有效地消除高浓度氯离子的干扰,BrO3-可准确的定性、定量;同时该方法灵敏度高,对BrO3-的检出限为0.46µ g/L,可满足痕量和超痕量BrO3-分析的要求.[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]-电喷雾质谱联用测定饮用水中BrO3-色谱柱:IonPac AG9HC+IonPac AS9HC 淋洗液:9mM Na2CO3流速:0.25mL/min 进样量:50µ L检测方式:(a) 抑制电导检测, ASRS-ULTRA抑制器,外加水模式,抑制电流100mA(b) 电喷雾质谱,电喷雾探针275℃, -2.5kV,源CID电压: 10V, m/z=127

  • 【原创大赛】岛津气相色谱-质谱分析方法的建立过程

    【原创大赛】岛津气相色谱-质谱分析方法的建立过程

    岛津气相色谱-质谱分析方法的建立过程  为帮助初学者学会建立岛津气相色谱-质谱的分析方法,特撰写本文。首先,打开工作站在线分析窗口(这个应该不用我多讲了吧。),如下图。下图中黄色(背景色)窗口部分为信号采集窗口,点右键可以根据个人的喜爱更改背景颜色,以及显示或取消显示虚线网格。此窗口右下角有两个图标,分别为“+”(放大谱图显示)和“-”(缩小信号显示),点击这两个图标可分别放大和缩小显示的谱图。此外,还可以在窗口内拖拉鼠标左键以放大显示某个区域,点右键选择返回上一步或回到原始显示大小。  黄色窗口下还有一个质谱信号窗口,可以更改信号显示窗口和质谱信号窗口的相对大小,本图根据我的爱好,不显示质谱信号窗口。  再下面就是色谱/质谱条件设置窗口了。http://ng1.17img.cn/bbsfiles/images/2011/11/201111291032_333816_1604317_3.jpg下图设置GC 参数http://ng1.17img.cn/bbsfiles/images/2011/11/201111291034_333817_1604317_3.jpg下图设置MS 参数下图是就绪检查。http://ng1.17img.cn/bbsfiles/images/2011/11/201111291036_333818_1604317_3.jpg下图显示色谱柱信息的输入http://ng1.17img.cn/bbsfiles/images/2011/11/201111291036_333819_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291037_333820_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291038_333821_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291039_333822_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291039_333823_1604317_3.jpg下图显示设置MS 参数。http://ng1.17img.cn/bbsfiles/images/2011/11/201111291041_333825_1604317_3.jpgSIM 和Scan 模式的切换。http://ng1.17img.cn/bbsfiles/images/2011/11/201111291042_333826_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291043_333827_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291043_333828_1604317_3.jpg设置完成后,保存或另存方法。http://ng1.17img.cn/bbsfiles/images/2011/11/201111291044_333829_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291045_333830_1604317_3.jpg加载方法参数。http://ng1.17img.cn/bbsfiles/images/2011/11/201111291046_333831_1604317_3.jpg正在加载中…….http://ng1.17img.cn/bbsfiles/images/2011/11/201111291047_333832_1604317_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/11/201111291047_333834_1604317_3.jpg谢谢!

  • 气相色谱- 质谱/质谱联用仪进行亚硝胺分析(二)

    [b]SRM 方法建立[/b]我们使用了Thermo Scientific TSQTM 8000 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS 软件套件中的AutoSRM 软件进行了三重四极杆质谱方法的建立,且并未对AutoSRM 生成的方法进行任何手动修改。一个装有待分析亚硝胺化合物标准品溶液的自动进样器样品瓶专供AutoSRM 程序使用。AutoSRM 程序自动进行以下三个步骤:1. 首先对标准品溶液进行全扫描分析(图1.)。从全扫中得到的信号最强的离子将被作为一级离子。2. 对上一步确定的一级离子(母离子)进行二级离子(子离子)谱图获取(可以根据分析需求设定一级离子的个数)。找出每个一级离子产生的信号最强的二级离子(可以手动选择最感兴趣的一级离子进行进一步优化)。[img=,1009,623]https://i5.antpedia.com/attachments/att/image/20200518/1589800505412622.jpg[/img]表1. AutoSRM 生成的SRM 方法设置3. 对所有化合物的选定的母离子/ 子离子对进行碰撞能的优化,以获得最大化合物响应及最佳方法灵敏度(图2)。AutoSRM 程序能够根据需要从一个标准品样品瓶启动,完成所需的进样次数。表1 就是由AutoSRM 自动生成的SRM 离子对表格。该表同时还显示了TSQ8000 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS 在Timed-SRM 模式下、在化合物洗脱时间左右用一个60 秒的短采集窗口进行采集的SRM 采集方法。无需对扫描时段进行任何其他的设置,或者说如果需要在某化合物的洗脱时间之外对其进行监测,则需要手动添加该化合物。[b]样品测定[/b]在大量各种可能的亚硝胺化合物之中,本方法涵盖了那些被报道与发芽麦芽干燥的过程相关的亚硝胺化合物。被分析的样品包括未添加标样的麦芽啤酒样品,以及作为空白样的4%乙醇。如需对其他食物基质进行分析,其它化合物可以随时参照前述AutoSRM 方法建立的步骤添加至本方法中。[b]实验结果[/b]本方法中包含的亚硝胺类化合物的色谱呈现了较快的流出,从7.87 的NDMA 到12.47 分,能够实现较短的循环时间并提高样品通量。图3 显示了用校准曲线中的最低浓度--1 ppb 的样品得到的峰强度。从图中可见NDMA 检测的信噪比依然很好。[img]https://i5.antpedia.com/attachments/att/image/20200518/1589800506229376.jpg[/img]图1. AutoSRM 对NDMA 从EI 全扫谱图中进行一级离子选择[img]https://i5.antpedia.com/attachments/att/image/20200518/1589800506329379.jpg[/img]图2. AutoSRM 对所有亚硝胺一级离子进行碰撞能优化[img=,611,468]https://i5.antpedia.com/attachments/att/image/20200518/1589800507403482.jpg[/img]图 3. 浓度为1ppb 的标准品混合物的色谱图

  • 热重红外气相色谱质谱联用技术分析未知水性样

    [font=微软雅黑][font=微软雅黑]实验室经常需要分析未知混合物确定其主要成分、获取其中的添加剂或污染物种类以及含量[/font] [font=微软雅黑]等信息。这些信息在某些应用场合是至关重要的,例如,剖析竞争对手产品配方或者评价产[/font] [font=微软雅黑]品的指标是否遵循行业规范等等。光谱分析技术在研究预分离纯组分的样品方面已经建立了[/font] [font=微软雅黑]大量较为成熟的方法,分离和离析过程可以借助热重分析仪、傅立叶变换红外光谱仪和气[/font] [font=微软雅黑]相色谱仪等完成。而对于复杂混合物样品体系,将这些常规技术进行联用则是更为有效的[/font] [font=微软雅黑]检测分析手段。珀金埃尔默公司可提供全套成熟的联用解决方案,在本案例中,通过使用[/font] [font=微软雅黑]TL-9000型传输管线有效的将使用产品TG-IR-GC/MS 热重-红外-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱联用进行联用,可用于分析复杂 样品体系。三联机解决方案如图1所示。[/font][/font][font=微软雅黑][font=微软雅黑]  本文选取了近期典型的案例:分析实验室对一组染色的[/font] [font=微软雅黑]水性样品进行了系统分析。由于水对光谱分析有强烈干扰,所以样品均在在室温预[/font] [font=微软雅黑]先进行干燥处理。当干燥过程完成后,将所得到的薄膜[/font] [font=微软雅黑]从烘干盘上剥下,然后置于干燥空气流中进行短暂加[/font] [font=微软雅黑]热。从所得薄膜上取部分样品放入与红外光谱仪联机[/font] [font=微软雅黑]的热重分析仪当中。样品重量为[/font][font=微软雅黑]20毫克,在氮气气氛 下以20o C/min的速度从20度加热到850度。在加热过程 中,样品所释放的气体通过TL-8000型加热传输管线和 接口被导入红外光谱仪的气体样品池。因此,在热重分 析过程中,可以同时对样品所释放出的气体进行实时红 外光谱分析。图2所示为热失重与温度的关系曲线。[/font][/font][font=微软雅黑][font=微软雅黑]  在[/font][font=微软雅黑]20o C到150o C之间对应样品中残余水分1.38%的失重 过程。在200o C到410o C之间,存在一个归属于挥发性 组分挥发的显著失重台阶,在该温度区间同时还伴随着 聚合物的初始分解过程。聚合物部分主要分解过程发生 在410o C到510o C的温度范围内。[/font][/font][font=微软雅黑][font=微软雅黑]  在热重分析仪的热分离过程中,样品所释放的气体被实[/font] [font=微软雅黑]时输送到傅立叶变换红外光谱仪中进行红外数据采集。[/font] [font=微软雅黑]热重[/font][font=微软雅黑]-红外数据包含了每间隔约8秒采集一次所得到的一 系列的谱图。标准的红外数据显示格式为吸收率对波数 曲线,样品逸出气体的红外光谱图采集密度大约为每升 温2度采集一组谱图。热重-红外联用的Time-Base软件 还可以辅助绘制三维坐标图谱,可同时显示叠加的红 外曲线随时间或者温度以及波数的关系,用户可以非常 直观的了解样品在整个温度平台中的热重-红外数据变 化情况(如图3示)。这有助于阐述样品分解过程的动 力学,确定选取哪个温度区间展开精细分析。此外,分 析人员还可以查看任何特定波长对应的吸收与时间的谱 图,以跟踪所关心的分解产物浓度对时间,乃至温度的 关系。[/font][/font][font=微软雅黑][font=微软雅黑]  通过观察图[/font][font=微软雅黑]3的数据,作者观察到逸出气体中包含一种未 知物质,在280o C处该物质的逸出速率达到大。选择该 温度下的谱图进行数据库比对分析。从这个数据库搜索 发现这种未知物质属于三乙二醇二苯甲酸酯-或者结构类 似的物质。图4显示的是未知样的红外谱图以及搜索到的 匹配物质的红外谱图。图5列出了其他匹配物质,一起 列出的还有每个匹配物的相关统计匹配程度。[/font][/font][font=微软雅黑][font=微软雅黑]  然后,[/font][font=微软雅黑]TL-9000接口被用来进行后续分析,以证实样品 中的未知物质的鉴定准确度。选取该物质红外吸收浓 度达大值时进行分析,将红外气体池中的气体样品 送到[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱仪中。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]数据如图6所示。[/font][/font][font=微软雅黑][font=微软雅黑]280°C时从热重分析仪逸出的物质,进一步用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]色 谱解析,然后用质谱分析仪评估,由此未知分子结构被 打碎成为组分离子,根据它们在磁场中飞行响应的不同 加以鉴别。结果与已建质谱数据库的数据作比较。 国家科学技术研究院(NIST)的质谱数据库搜索未知物质 形成的输出结果如图7示。[/font][/font][font=微软雅黑][font=微软雅黑]  未知物质经证实为二乙二醇二苯甲酸酯,化学结构与[/font] [font=微软雅黑]红外分析确定的物质非常相似,这两种物质红外谱图[/font] [font=微软雅黑]不能进行有效鉴别。[/font] [font=微软雅黑]在文献中搜索二乙二醇二苯甲酸酯的化学特性显示该[/font] [font=微软雅黑]物质属于一种化学性质稳定、具有较高沸点的清澈液[/font] [font=微软雅黑]体。该物质微溶于水,与聚合物材料相容性较好。尤[/font] [font=微软雅黑]其是与聚乙烯醇和聚氯乙烯能够极好的相容,因此常[/font] [font=微软雅黑]被用于聚乙烯醇均聚物和共聚物乳液的增塑剂。此[/font] [font=微软雅黑]外,它也被用做聚氯乙烯涂层、食品包装粘结剂和涂[/font] [font=微软雅黑]料,以及化妆品工业的增塑剂等等。由于在老鼠活体[/font] [font=微软雅黑]实验中显示该物质具有表观毒性,因此将其作为增塑[/font] [font=微软雅黑]剂使用和如何妥善处理含有这种物质的废弃物时需要[/font] [font=微软雅黑]法规加以监管。[/font][/font][font=微软雅黑][font=微软雅黑]  热重[/font][font=微软雅黑]-红外的进一步分析显示在300到400°C之间样品 中的聚合物分解释放出醋酸,如下图示;因此,样品 中的聚合物极有可能是聚醋酸乙烯酯:[/font][/font][font=微软雅黑][font=微软雅黑]  小结:将多套分离分析仪器联机进行测试的[/font][font=微软雅黑]“联用技术”, 如TG-IR-GC/MS 热重-红外-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱联用技术,配合强 大的搜索软件以及完善的谱图数据库,赋予分析人员 能够对未知水性混合物进行有效全面的分析,其中添 加的各种组分得以鉴别。[/font][/font][font=Calibri] [/font]

  • 【原创大赛】电热蚊香液的气相色谱-质谱联用仪分析

    【原创大赛】电热蚊香液的气相色谱-质谱联用仪分析

    电热蚊香液的气相色谱-质谱联用仪分析 蚊子(mosquito),属于昆虫纲双翅目蚊科,全球约有3000种。是一种具有刺吸式口器的纤小飞虫。通常雌性以血液作为食物,而雌性则吸食植物的叶汁。吸血的雌蚊是登革热、疟疾、黄热病、丝虫病、日本脑炎等其他病原体的中间寄主。除南极洲外各大陆皆有蚊子的分布。其中,以按蚊属、伊蚊属和库蚊属最为著名。液体蚊香的主要是一种叫做拟除虫菊酯类的化学成分,此外还会加入一些氯仿、苯、乙醚等作为溶剂,这些化学成分可以通过消化道、呼吸道吸收,并有一定的毒性,如果长期过量接触会有致癌、致畸作用。而一些劣质蚊香,含有对人体危害极大的药品,如滴滴畏等农药。用气相色谱-质谱联用仪分析液体蚊香的可挥发成分,初步探讨里面的有毒成分是否超标。1 实验部分1.1 材料和方法。从天津超市购买一款品牌电热蚊香液。除去外包装的图片如下(样品为无色透明液体,由于本人技术太渣,照成了浅黄色)http://ng1.17img.cn/bbsfiles/images/2016/09/201609291656_612635_2651621_3.jpg溶解性实验;取少量电热蚊香分别加入水、酒精、丙酮、正己烷等观察互溶情况。结果显示:1.电热蚊香液与水完全不容,有清晰的界面。2.与酒精混合出现乳白色絮状物。3.与丙酮、正己烷均能完全溶解。进样后洗针用丙酮或正己烷。1.2 仪器和实验条件 仪器:气相色谱-质谱联用仪,型号:6890-5975(美国安捷伦公司,带7683B自动进样装置) 色谱条件:HP-5毛细管柱,(60m*0.25um*0.25nm,Agilent公司)以氦气为载气,恒流流速1.0mL/min,进样口250℃,分流比100:1,进样量0.2uL,升温程序:50℃保持5分钟,以3℃/min升到180℃,然后以15℃/min升至260℃。最后280℃保持10分钟。 质谱条件:接口温度280℃,电离方式EI,电子轰击能量70eV,离子源温度230℃,四级杆温度150℃溶剂延迟4min,全扫描范围33-330amu,NIST11谱图与自建谱库检索。2 结果与讨论2.1 分析结果 不敢贸然直接进样,先让同事用气相(FID检测器)分析了一下,没看到有奇怪的峰。直接进样了,按上述仪器条件对电热蚊香液进行GC-MS分析,经计算机检索NIST11标准谱库与自建谱库,也结合人工解析和查对相关资料,鉴定了其中11个成分,http://simg.instrument.com.cn/bbs/images/default/em09501.gif用面积归一化法计算出各成分的相对含量,结果见表1.表1 电热蚊香液的化学成分和相对含量 序号保留时间名称含量%118.061D-柠烯0.018218.1921,8桉叶素0.007321.719芳樟醇0.029422.17015932-80-60.007524.409薄荷酮0.023625.367薄荷脑0.023738.047己二醇二异丙酯约7.2840.502BHT约0.6949.317己基桂醛0.0441053.045佳乐麝香0.0331153.437吐纳麝香0.008 图2:电热蚊香液的TIC图http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612665_2651621_3.jpg2.2 讨论从表1中看出,电热蚊香液中大部分物质是烷烃,大概在C13-C17的范围内。由于其支链较多,没有挨着个的鉴定。统一归结为烷烃。香原料太少,约0.5%,BHT约占0.6%,己二醇二异丙酯占7.2%,其余的烷烃占了近91%。由于没有前处理导致香料数目少的可怜,如果采用SPME或者旋转搅拌子吸附萃取做前处理,可能效果会好些。从谱图上没有看到氯仿和苯,采用了溶剂延迟,乙醚的是否出峰已经看不到。也没有看到拟除虫菊酯类化合物,也许用本方法无法检测出来,还带后续的进一步改进。本方法采用面积归一法作为定量方法,显然存在很大的误差。以后会慢慢补充。希望大家多提意见。

  • [资料]有机质谱分析方法通则

    MV_RR_CNJ_0003有机质谱分析方法通则1. 有机质谱分析方法通则说明编号JY/T 003—1996名称(中文) 有机质谱分析方法通则(英文) General principles for organic mass spectrometry归口单位国家教育委员会起草单位国家教育委员会主要起草人郑思定批准日期1997年1月22日实施日期1997年4月1日替代规程号无适用范围本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。本通则规定了四极质谱法分析方法,适用于带有计算机数据处理及控制的四极质谱及与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相色谱联机仪器。应具备进样器,色谱与质谱联用所需的接口,离子源,质量分析器,检测器,计算机控制与数据处理系统,真空系统等。本通则适用于仪器规定质量范围的有机化合物定性和定量分析。本通则规定了有机质谱法对离子阱质谱仪的要求和分析方法,本通则适用于仪器规定质量范围内的有机化合物定性和定量分析。主要技术要求1. 定义2. 方法原理3. 试剂和材料4. 仪器5. 样品6. 操作步骤7. 分析结果的表述是否分级无检定周期(年)附录数目无出版单位科学技术文献出版社检定用标准物质相关技术文件备注2. 有机质谱分析方法通则的摘要本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。3 定义本通则采用下列定义3.1 原子质量单位 Atomic Mass Unit定义C原子质量的1/12为一个质量单位,简写为amu或u。3.2 毫原子质量单位 Milli Mass Unit千分之一的原子质量单位,简写为 mmu,lmmu=1/1000u。3.3 质荷比 Mass to Charge Ratio离子的质量和所带电荷的比值,简写为m/z。3.4 质谱图 Mass Spectrum质谱分析中以质荷比为横坐标,离子的相对强度为纵坐标所作的谱图。3.5 分子离子 Molecular Ion试样分子失去或得到一个电子而形成的离子。它在正离子场合下表示为M+。它的质荷比即表明试样分子所对应的分子量数值。在分子中含不同同位素时,以天然丰度最大者作分子离子。3.6 亚稳离子 Metastable Ion是指离子在质谱仪的离子源中产生,在达到检测器前分解的离子。其表观质量记为m※。3.7 母离子 Parent Ion是指产生某一碎片的前体离子,母离子不一定是分子离子。3.8 子离子 Daughter Ion是指由母子离子裂解后形成的离子。3.9 碎片离子 Fragment Ion分子离子经过裂解后形成的离子。3.10 重排离子 Rearrangement Ion是指质谱过程中产生的与前体离子中原子排列不同的离子。3.11 电子轰击电离 Electron Impact Ionization试样分子在离子源内经电子流轰击电离成离子的方法,简写为EI。3.12 化学电离 Chemical Ionization在离子源内电子流首先使反应气如 甲烷、异丁烷、氨等离子化,然后再与试样分子发生分子离子反应,使试样分子离子化,这种方法称化学电离,简写为CI。3.13 解吸电离 Desorption Ionization通以电流使涂在金属线圈上的试样分子迅速解吸下发生电子电离或化学电离,简写为DEI或DCI。3.14 场致电离和场解吸电离 Field Ionization and Field Desorption Ionization经过活化处理的发射丝,尖端的曲率半径可达微米级,加上高电压后,其附近的场强可达108V/cm,高场强使挥发性的试样分子产生离子化称为场致电离,简写为FI;而把试样涂在发射丝上并通以加热电流在高场强下使样品离子化称为场解吸电离,简写为FD。3.15 快原子轰击电离和二次离子质谱 Fast Atom Bombardment and Secondary Ion Mass Spectrometry快速Ar原子(或Xe原子)轰击涂敷有某种底物靶面上的试样,使试样分子离子化,这种方法称为快原子轰击电离,简写FAB;如用高能量的一次离子如Xe+、Ar+、Cs+来轰击涂敷在靶面上的试样而溅射出试样分子的二次离子来进行质谱分析,称为二次离子质谱法,简写SIMS。3.16 磁式质谱仪 Magnetic Sector Mass Spectrometer是一种使试样分子电离成离子,并通过扫描磁场,使它们按质荷比不同进行分离,并依次检测它们的强度,对它们进行定性和定量分析的一种仪器。3.17 双聚焦质谱仪 Double Focussing Mass Spectrometer是由静电场(E)和磁场(H)所组成的质量和能量分析器的有机磁质谱仪。如静电场排列在前,称为正置式(EH)双聚焦质谱仪,反之,如磁场排列在前,称为反置式(HE)双聚焦质谱仪。3.18 联动扫描 Linked Scanning是在双聚焦磁质谱仪中,加速电压(V)固定,将磁场强度H和静电场强度E的比值保持不变,来扫描不同质荷比的离子,由母离子来找到各种子离子的测定方法以及将H2/E的比值保持不变来扫描,由于离子来找母离子的测定方法,皆称为联动扫描。3.19 碰撞诱导解离或碰撞诱导活化 Collision Induced Dissociation & Collision Induced Activation在电场和磁场中间的无场区,具有较高动能的离子与中性原子或分子(一般为惰性气体如N2,He)发生非弹性碰撞,离子的一部分动能转化为内能,结果导致离子的解离,这种由离子与中性原子或分子碰撞而引起的解离称为碰撞诱导解离或碰撞诱导活化,简写为CID或CIA。3.20 色质联机 Chromatography Mass Spectrometer由色谱仪与质谱仪通过接口构成为整体的一种联用仪器。3.21 色质联用法 Chromatography Mass Spectrometry通过色质联机对物质进行分析的方法,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与质谱联用分析简写为GC/MS,液相色谱与质谱联用分析简写为LC/MS。3.22 质谱/质谱联用法 Mass Spectrometry/Mass Spectrometry在第一质谱仪中进行离子的质量分离,选择感兴趣的离子在碰撞室中进行解离,得到所选离子的各种裂解碎片谱图。这一过程等于获得一个质谱中某一离子的质谱,称为质谱/质谱法,此类仪器称为串联质谱仪,简写为MS/MS。3.23 总离子流色谱图 Total Ion Chromatogram是未经质量分离的各种质荷比离子,所产生的总电流强度信号与时间相对应的关系图。在色质联用分析时,TIC与色谱分析时各种检测器所得到的色谱图相对应,各峰的面积可作为GC/MS定量分析的依据,简写为TIC。

  • 进样时水分对气相色谱谱图及质谱的影响

    [color=#444444]进样时如果水分含量较高,对色谱图有什么影响?在一份资料中看到水分较高时保留时间小的物质响应值变小,这是什么原理?[/color][color=#444444]另外在使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用时,如果进样水分含量较高,对质谱部分会产生影响吗?求助各位大神。[/color]

  • 【原创大赛】气相色谱-质谱法 分析康酿克油的芳香性成分

    【原创大赛】气相色谱-质谱法 分析康酿克油的芳香性成分

    气相色谱-质谱法分析康酿克油的芳香性成分摘要:采用水蒸气蒸馏法从葡萄酒压榨渣中蒸馏提取得到精油。其气味芳香宜人。我们首次利用气相色谱-质谱联用分析其芳香性成分,通过NIST谱库检索,结合自建谱库,鉴定了其中38个组分,采用峰面积归一化法确定了各组分的质量分数,占色谱总流出峰面积的96.1%。芳香性成分主要为酸类,酯类。占总成分的99%左右。本项研究为康酿克油的开发利用奠定了基础。关键词:康酿克油 气相色谱-质谱Abstract: By steam distillation from the Wine squeezing slag extractedessential oil distillation. The smell fragrant. We first analysis the aromaconstituents using gas chromatography-mass spectrometry(GC-MS).Basedon the spectra search function of GC-MS with the aid of gas chromatographicretention rules,38 constituents were identified successfully. The relativecontent of the compounds were determined with peak area normalization method.The identified compounds constitute more than 96.1% of the total ion current.Esters are major constituents in the essential oil, representing 99%of thetotal contents. The basis for further developing the Cognac oil had been provided. Keywords: Cognac Oil, GC-MS 葡萄酒是用新鲜的葡萄或葡萄汁经过发酵酿成的酒精饮料。通常分红葡萄酒和白葡萄酒,气泡酒,三种。前者是红葡萄带皮浸渍发酵而成;后者是葡萄汁发酵而成的. 法国最古老的超一级酒庄是吕萨吕斯酒堡。我国葡萄酒的酿造起步较晚,但是进步很快。天津王朝葡萄酿酒有限公司就是一家很具规模的中法合资公司。天然康酿克油为制造葡萄酒时,在酒泥或压榨渣中提取的一种副产物,经过精馏可以得到纯度很高的精油。本实验首次对天然康酿克油的芳香性成分进行系统分析,为康酿克油的开发利用奠定了基础。1 实验部分1.1 材料和方法取天津王朝葡萄酿酒有限公司生产基地酿酒后的葡萄压榨渣1000g,进行水蒸气蒸馏。所得油层和水层用乙醚萃取3次,合并乙醚萃取液,用无水硫酸钠进行干燥,挥发掉乙醚后得到黄绿色蜜甜香且有葡萄酒香气味的精油,得油率约为0.08%(w/w)。1.2 仪器和实验条件仪器:气相色谱-质谱联用仪,型号:6890-5975(美国安捷伦公司,带自动进样装置)色谱条件:HP-5毛细管柱,(60m*0.25um*0.25nm,Agilent公司)以氦气为载气,恒流流速1.0mL/min,进样口250℃,分流比100:1,进样量0.2uL,升温程序:50℃保持5分钟,以3℃/min升到180℃,然后以15℃/min升至260℃。最后280℃保持10分钟质谱条件:接口温度280℃,电离方式EI,电子轰击能量70eV,离子源温度230℃,四级杆温度150℃。溶剂延迟4min,全扫描范围33-330amu,NIST05谱图与自建谱库检索。2 结果与讨论2.1 分析结果按上述条件对康酿克油进行GC-MS分析,经计算机检索NIST05标准谱库与自建谱库,也结合人工解析和查对先关资料 ,鉴定了其中38个成分,用面积归一化法计算出各成分的相对含量,结果见表1.表1 康酿克油的化学成分和相对含量 序号 保留时间/min 成分名称 分子式 相对含量 % 1 5.050 3-甲基丁醇 Isoamyl alcohol C5H12O 0.384 2 5.587 丁酸 Butyric acid C4H8O2 0.010 3 5.816 丁酸乙酯 Butyric acid ethyl ester C6H12O2 0.241 4 6.084 乳酸乙酯 Ethyl lactate [align=

  • 高效气相色谱仪热裂解进样分析技术特点及应用

    高效气相色谱仪热裂解进样分析是在一定条件下,高分子有机物遵循一定的裂解规律,即特定的样品能够产生特定的裂解产物和产物分布,采用高效气相色谱分析和鉴定裂解产物,可据此对原样品进行表征。一、基本原理: 将高分子样品置于裂解器中,在严格控制的操作条件下,使之迅速高温热裂解,生成可挥发的小分子产物,然后将裂解产物送入气相色谱仪中进行分离分析。因为裂解碎片的组成和相对含量与待测高分子的结构密切相关,每种高分子的裂解色谱图都有其特征,故裂解色谱图又称热裂解指纹色谱图。二、对裂解器的要求: 1、由于裂解温度不同,裂解产物不同,裂解温度控制要精确,可重复进行。 2、不同的物质需要不同的裂解温度,裂解温度要可调。 3、裂解器热容量大,升温速度快。 4、裂解器与接口的体积小,以减小死体积,防止色谱峰展宽。 5、对裂解反应无催化反应,防止歧化反应和二次反应。三、裂解器类型: 1、管式炉裂解器: 管式炉裂解器通常由一个外壁加热的石英管制成,采用电热丝加热,裂解温度在300~1000℃,恒温精度高。当炉温达到设定温度时,将样品置于铂金小舟内,用推杆将铂金小舟送人裂解炉,样品不与管壁接触。管式炉裂解器结构简单,可定量进样,操作方便,裂解温度连续可调。但升温速率不可调,死体积大,容易产生二次反应。 2、热丝裂解器: 热丝裂解器通常由直径0.2~0.5mm、长50mm左右的铂丝或镍铬丝绕成螺旋状而成,样品涂在金属热丝上,热丝用稳定电压加热到所需温度,可使样品裂解。热丝裂解器结构简单,加热时间短,二次反应少。但不易定量进样,一般只用于定性分析。 3、居里点裂解器: 居里点裂解器是一种高频感应加热裂解器,采用铁磁性材料作加热元件。将它置于高频电场中,会吸收射频能量而迅速升温,当达到居里点温度时,铁磁质变为顺磁质,不再吸收射频能量,温度稳定在居里点温度。当切断高频电源后温度下降,铁磁性又恢复。将样品附着在加热元件上,样品可在居里点温度裂解。不同铁磁质的居里点温度不同,通过调节铁磁质合金的组成可获得所需温度的加热元件。 4、激光裂解器。这是一种新型裂解器,随着技术的突破将逐步得到广泛应用。四、特点: 1、分离效率高: 热裂解气相色谱仪大都使用毛细管色谱柱,可以对复杂的裂解产物进行有效的分离,尤其是高分子有机物之间的微小差异,聚合物材料中的微量组分,都能在裂解色谱图上灵敏地反映出来,找到相应的特征。 2、灵敏度高: 热裂解气相色谱仪一般采用氢火焰离子化检测器,灵敏度很高。 3、样品用量少: 样品用量一般为μg至mg量级,对只能获得微量样品的检测很有利。 4、分析速度快: 典型的分析周期为30min。当裂解产物很复杂时,1~2h可以完成一次分析。 5、信息量大: 可以进行定性和定量分析,还可以进行裂解条件与裂解产物的关系、样品结构与裂解产物的关系、裂解机理和反应动力学的研究。 6、应用范围广: 适用于各种形态样品,不需要预处理,无论是粘稠液体、粉沫、纤维和弹性体等,还是固化的树脂、涂料和硫化橡胶等都可以直接进样分析。 7、易于普及: 裂解进样器结构简单,与气相色谱仪组合在一起就可以进行分离分析。 8、可以和各种光谱仪器在线联接: 凡是可以和气相色谱仪在线联接的光谱仪器,都可以和热裂解气相色谱仪在线联接。五、应用: 适用于分子量较大、结构复杂、难挥发和难溶解物质的分离分析。在药物分析中,可采用闪蒸技术分析中草药中的可挥发性成分。所谓闪蒸是指在样品裂解前,用较低的温度(低于样品的裂解温度)对样品快速加热,将挥发性成分蒸发出来,得到一张色谱图。然后在高温下对样品进行裂解,得到裂解色谱图。这样可获得样品中挥发性成分的重要信息,在样品定性鉴定中非常有用。

  • 【资料】质谱介绍及质谱图的解析

    质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。一、 进样系统和接口技术将样品导入质谱仪可分为直接进样和通过接口两种方式实现。1. 直接进样在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。2. 电喷雾接口带有样品的色谱流动相通过一个带有数千伏高压的针尖喷口喷出,生成带电液滴,经干燥气除去溶剂后,带电离子通过毛细管或者小孔直接进入质量分析器。传统的电喷雾接口只适用于流动相流速为1~5μl/min的体系,因此电喷雾接口主要适用于微柱液相色谱。同时由于离子可以带多电荷,使得高分子物质的质荷比落入大多数四极杆或磁质量分析器的分析范围(质荷比小于4000),从而可分析分子量高达几十万道尔顿(Da)的物质。3. 热喷雾接口存在于挥发性缓冲液流动相(如乙酸铵溶液)中的待测物,由细径管导入离子源,同时加热,溶剂在细径管中除去,待测物进入[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]。其中性分子可以通过与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的缓冲液离子(如NH4+)反应,以化学电离的方式离子化,再被导入质量分析器。热喷雾接口适用的液体流量可达2ml/min,并适合于含有大量水的流动相,可用于测定各种极性化合物。由于在溶剂挥发时需要利用较高温度加热,因此待测物有可能受热分解。4. 离子喷雾接口在电喷雾接口基础上,利用气体辅助进行喷雾,可提高流动相流速达到1ml/min。电喷雾和离子喷雾技术中使用的流动相体系含有的缓冲液必须是挥发性的。5. 粒子束接口将色谱流出物转化为气溶胶,于脱溶剂室脱去溶剂,得到的中性待测物分子导入离子源,使用电子轰击或者化学电离的方式将其离子化,获得的质谱为经典的电子轰击电离或者化学电离质谱图,其中前者含有丰富的样品分子结构信息。但粒子束接口对样品的极性,热稳定性和分子质量有一定限制,最适用于分子量在1000Da以下的有机小分子测定。6. 解吸附技术将微柱液相色谱与粒子诱导解吸技术(快原子轰击,液相二次粒子质谱)结合,一般使用的流速在1~10μl/min之间,流动相须加入微量难挥发液体(如甘油)。混合液体通过一根毛细管流到置于离子源中的金属靶上,经溶剂挥发后形成的液膜被高能原子或者离子轰击而离子化。得到的质谱图与快原子轰击或者液相二次离子质谱的质谱图类似,但是本底却大大降低。

  • 急求色谱、质谱分析的相关问题

    [color=#444444]我想分析水溶液中溶解的有机物和固体表面吸附的有机物的成分,请问单独采用(气或液相)色谱分析或质谱分析是否可以实现,还是必须要[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url],有关色谱柱这个怎么选取,都是自己制备的吗?如何制备啊?请大家帮帮忙啊,谢谢啦[/color]

  • 【质谱比较】质谱的进样方式与进样接口的区别

    LCMS、GCMS、ICPMS的进样方式各不相同,这也决定了仪器进样接口的种种设计。单GCMS就有液体和固体进样之分,目前质谱进样系统发展较快的是LCMS的接口技术。本期主题:质谱的进样方式与进样接口的区别讨论内容:1、质谱进样接口的分类与使用2、各种质谱是如何选择进样方式的?3、你觉得什么样的进样接口最微妙?...................等等相关的讨论筒子们,赶快参与吧,让新手也好对质谱有个全面了解~~~==========质=谱=比=较=帖=子=汇=总==========1、无机质谱与有机质谱的离子体形成区别http://bbs.instrument.com.cn/shtml/20120503/4012287/2、气质与液质的离子源区别http://bbs.instrument.com.cn/shtml/20120505/4016562/3、ICPMS、GCMS、LCMS气体的选择与使用http://bbs.instrument.com.cn/shtml/20120507/4019049/4、质谱的进样方式与进样接口的区别http://bbs.instrument.com.cn/shtml/20120510/4025193/5、质谱质量分析器的类型、区别及特点http://bbs.instrument.com.cn/shtml/20120519/4042099/6、高分辨质谱与低分辨质谱的区别http://bbs.instrument.com.cn/shtml/20120525/4053208/

  • 【分享】质谱介绍及质谱图的解析

    质谱介绍及质谱图的解析质谱法是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。质谱仪一般由四部分组成:进样系统——按电离方式的需要,将样品送入离子源的适当部位;离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束;质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;检测器——用来接受、检测和记录被分离后的离子信号。一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。一、 进样系统和接口技术将样品导入质谱仪可分为直接进样和通过接口两种方式实现。1. 直接进样在室温和常压下,气态或液态样品可通过一个可调喷口装置以中性流的形式导入离子源。吸附在固体上或溶解在液体中的挥发性物质可通过顶空分析器进行富集,利用吸附柱捕集,再采用程序升温的方式使之解吸,经毛细管导入质谱仪。对于固体样品,常用进样杆直接导入。将样品置于进样杆顶部的小坩埚中,通过在离子源附近的真空环境中加热的方式导入样品,或者可通过在离子化室中将样品从一可迅速加热的金属丝上解吸或者使用激光辅助解吸的方式进行。这种方法可与电子轰击电离、化学电离以及场电离结合,适用于热稳定性差或者难挥发物的分析。目前质谱进样系统发展较快的是多种液相色谱/质谱联用的接口技术,用以将色谱流出物导入质谱,经离子化后供质谱分析。主要技术包括各种喷雾技术(电喷雾,热喷雾和离子喷雾);传送装置(粒子束)和粒子诱导解吸(快原子轰击)等。2. 电喷雾接口带有样品的色谱流动相通过一个带有数千伏高压的针尖喷口喷出,生成带电液滴,经干燥气除去溶剂后,带电离子通过毛细管或者小孔直接进入质量分析器。传统的电喷雾接口只适用于流动相流速为1~5μl/min的体系,因此电喷雾接口主要适用于微柱液相色谱。同时由于离子可以带多电荷,使得高分子物质的质荷比落入大多数四极杆或磁质量分析器的分析范围(质荷比小于4000),从而可分析分子量高达几十万道尔顿(Da)的物质。3. 热喷雾接口存在于挥发性缓冲液流动相(如乙酸铵溶液)中的待测物,由细径管导入离子源,同时加热,溶剂在细径管中除去,待测物进入[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]。其中性分子可以通过与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的缓冲液离子(如NH4+)反应,以化学电离的方式离子化,再被导入质量分析器。热喷雾接口适用的液体流量可达2ml/min,并适合于含有大量水的流动相,可用于测定各种极性化合物。由于在溶剂挥发时需要利用较高温度加热,因此待测物有可能受热分解。4. 离子喷雾接口在电喷雾接口基础上,利用气体辅助进行喷雾,可提高流动相流速达到1ml/min。电喷雾和离子喷雾技术中使用的流动相体系含有的缓冲液必须是挥发性的。5. 粒子束接口将色谱流出物转化为气溶胶,于脱溶剂室脱去溶剂,得到的中性待测物分子导入离子源,使用电子轰击或者化学电离的方式将其离子化,获得的质谱为经典的电子轰击电离或者化学电离质谱图,其中前者含有丰富的样品分子结构信息。但粒子束接口对样品的极性,热稳定性和分子质量有一定限制,最适用于分子量在1000Da以下的有机小分子测定。6. 解吸附技术将微柱液相色谱与粒子诱导解吸技术(快原子轰击,液相二次粒子质谱)结合,一般使用的流速在1~10μl/min之间,流动相须加入微量难挥发液体(如甘油)。混合液体通过一根毛细管流到置于离子源中的金属靶上,经溶剂挥发后形成的液膜被高能原子或者离子轰击而离子化。得到的质谱图与快原子轰击或者液相二次离子质谱的质谱图类似,但是本底却大大降低。

  • 【原创大赛】热分析/质谱联用的数据分析方法之理论基础

    【原创大赛】热分析/质谱联用的数据分析方法之理论基础

    [b]作者:[/b][font=&]丁延伟,[/font][font=&][color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color][/font] 1. 热分析联用简介 联用技术是近年来分析仪器的一个发展趋势,许多常规的分析仪器如色谱、X射线衍射、各类光谱仪等都已实现了与其他分析技术的联用,热分析仪当然也不例外。早在两千多年前,我国战国时期的楚国诗人、政治家屈原在《楚辞• 卜居》中就已指出“尺有所短,寸有所长。物有所不足,智有所不明”。这告诉我们每种分析技术均有其独特的优势,但我们也应清醒地认识到它们自身也会存在着一定的不足。只有在实际应用中对每种分析技术扬长避短,充分发挥其优势,才可以达到事半功倍的效果。其实,在许多中文版本的文献资料中,对联用技术的描述通常使用“联用”而不是“连用”来表述,这也充分表明联用技术不是简单地将两种或多种技术连接或拼接在一起,而是要在实际上有机地、合理地将其组合在一起。也就是说,对于由多种技术的联用仪而言,其不仅仅满足于可以达到1+1+…+1 = N的效果,而且应达到1+1+…+1 N的效果。当然,对于一些不成功的联用技术而言,有时达到的效果可能为1+1+…+1 N,甚至等于0。 由常规的热分析可以得到在热分析实验过程中所研究的对象在一定的气氛和程序控制温度下由于其结构、成分变化而引起的质量、热效应、尺寸等性质的变化信息。通过将热分析技术与常规的分析技术如红外光谱技术、质谱、色谱、显微技术、拉曼光谱、X射线衍射等联用,可以得到在物质的性质发生发生变化的过程中产物的结构、成分、形貌、物相等的变化信息。通过这些信息,可以使我们了解到物质在一定的气氛和程序控制温度下所发生的各种变化的更深层次的一些信息,对于过程中的反应机理、动力学信息有更深刻的认识。热分析联用技术的特点和优势可以概括为实时、全面、高效,但我们也应清醒地认识到对于一些高温分解产生的气体分析时在传输过程中的冷凝现象的影响,一些高温产物在传输管线中的冷凝会导致由红外光谱、色谱和/或质谱进行气体分析时丢失一部分气体产物的信息。当前应用最为广泛的热分析联用技术主要有:(1)热重-差热分析、热重-差示扫描量热法以及显微热分析等,这属于同时联用的范畴;(2)热分析与红外光谱技术、质谱的联用,这属于串接式联用的范畴;(3)热分析与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等技术的联用,由于与热分析联用的这类技术自身在分析时需要一定的时间,因此通常称该类技术为间歇式联用技术。其实,这类技术也属于串接式联用的范畴。 2. 热分析/质谱联用技术简介TA/MS联用技术是在程序控制温度和一定气氛下,通过质谱仪在线监测由热分析(主要为热重仪、热重-差热分析仪以及热重-差示扫描量热仪)中由试样逸出的气体的信息的一种热分析联用技术,常见的联用形式有TG/MS、TG-DTA/MS以及TG-DSC/MS等技术。 质谱法(Mass Spectrometry,简称MS)是一种检测和鉴别微量气体物质的非常灵敏的方法,通过这种技术可以得到化合物的化学和结构的信息(官能团和侧链)。质谱法即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。 由于对MS的详细描述内容已经超出了本文的范围,因此在本部分内容中我们仅讨论在应用时所必需的一些与MS相关的背景知识。 在联用的质谱中,样品分子通过一个离子源进入质谱,在离子源中样品分子被高能电子束(通常为~70 eV)轰击。这个能量比有机物的离子化势能和键强度大,该能量实际上足够从分子上移动一个或更多的电子,形成正电荷分子离子。另外,电子束的能量还能够引起分子发生大量的碎裂,通过复杂的裂解途径形成许多不同的正电荷碎片离子,形成的这种碎片离子与所研究的分子结构密切相关。 3. 热分析/质谱联用技术的工作原理 TA-MS主要包括一台热分析仪(主要为TG、TG-DTA、DIL)、一台质谱仪以及将两者联合的接口。为了获得释放气体分析的最佳结果,热分析仪和接口一定要设计成保证释放气体有足够量转移到质谱仪,同时质谱仪要设计成能快速扫描和长周期稳定操作。由于质谱在高真空条件下工作,从热分析仪逸出的气体只有约1%通过质谱仪(否则会失去真空条件 )。如此低的逸出气体对于高灵敏度的质谱来说足够了。热分析仪和MS之间的联用需要通过特殊设计的接口来进行,这是因为热分析仪在1个大气压下正常工作,而MS则需要在大约10-6 mbar的真空条件下进行工作。通过可以加热的陶瓷(惰性)毛细管或内衬涂层的金属管将由热分析仪逸出的一小部分气体带入至MS仪中实现联用。实验时,主要使用He作为载气,但也可以使用诸如空气或O2等之类的气体。热分析和/或质谱设备的制造商提供了用于联用的接口和软件,使得MS可以在线监测由热分析仪逸出的气体(如图1所示)。一些MS设备的制造商已经扩展了它们的应用范围,现在已经有专门的MS设备可以通过更加方便的方式与热分析设备进行联用。[align=center][img=,690,331]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310934470794_5318_3224499_3.jpg!w690x331.jpg[/img][/align][align=center]图1 热重/质谱联用仪工作原理示意图[/align] 质谱仪提供的定性信息是靠气体分子和原子的离子比,再将所得到的离子比按它们的质量电荷比分开,每种气体物质在离子化过程中分裂产生一个特征离子模型,可与已知物质的模型辨别比较。进入MS的气体在电离室中被电子轰击,气体分子被分解成阳离子,根据这些阳离子的质量/电荷将其分离。通过测量离子的电流,可以获得如图5所示的强度为质荷比函数的谱图。[align=center][img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310934599640_9061_3224499_3.jpg!w690x342.jpg[/img][/align][align=center]图2. 强度作为质量/电荷比的函数的MS谱图[/align] 在图2中给出了一个瞬时扫描的MS谱图。由于在整个TG实验期间连续扫描,因此可以(用适当的软件)合并得到的每张所有瞬时扫描谱图中相同质量/电荷比的数据,还可以针对每个质量/电荷比获得强度随时间或温度的曲线。在图3中所列举的例子中,给出了在空气气氛中加热Nd2(SO4)3· 5H2O过程中的质量/电荷比为18(H2O +)、32(O2+)和64(SO2+)的强度随温度和时间变化的曲线。[align=center][img=,504,329]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310935098720_2749_3224499_3.jpg!w504x329.jpg[/img][/align][align=center]图3. MS信号强度作为温度的函数[/align] 借助相应的谱图库,可以将获得的碎片的实验结果与谱图库进行比较,以便识别出在离子化之前的原始气体分子的信息。

  • 【分享】茶籽油中脂肪酸成分的气相色谱/质谱分析

    建立茶籽油中脂肪酸的气相色谱/质谱(GC/MS)测定方法。茶籽油经正己烷提取和三氟化硼衍生,用HP-5MS毛细管柱分离。用所建立的方法比较茶籽油、橄榄油和其它植物油中的脂肪酸含量。并分析茶籽油、茶籽及加工副产物中的脂肪酸水平。

  • 气相色谱- 质谱/质谱联用仪进行亚硝胺分析(一)

    Alex Chen1, Hans-Joachim Huebschmann2, Li Fangyan3, Chew Yai Foong3 and Chan Sheot Harn31Alpha Analytical Pte. Ltd., Singapore 2Thermo Fisher Scientific, Singapore, 3Health SciencesAuthority, HSA Singapore[b]关键词[/b]亚硝胺,食品安全,啤酒,TSQ 8000,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]- 质谱/ 质谱,定量分析,确认,自动SRM,TraceFinder[b]简介[/b]亚硝胺是N- 亚硝基烷基胺一类化合物的通用名。已知的含有不同烷基基团的这类化合物有很多。最简单的N- 亚硝基烷基胺含有两个甲基,即N- 亚硝基二甲基胺(NDMA)。亚硝胺是常见的剧毒化合物,对人和动物都有强致癌性,高剂量的摄入会导致严重的肝损伤和内出血。食物中的亚硝胺主要是由亚硝酸生成的。亚硝酸通常作为防腐剂被添加到肉及肉制品中,以避免肉毒杆菌造成的中毒。维生素等有抗氧化作用的添加剂能抑制亚硝酸向亚硝胺的转化。亚硝胺的另一个来源是由氮的氧化物与生物碱(alkaloids)反应产生,这一反应在啤酒生产时干燥已萌发的麦芽的过程中已有报道。由于麦芽和啤酒中的亚硝胺水平在发酵过程中已大幅降低,需要更好的分析表现才能胜任此检测任务。而除了其它各项日常食品的常规控制项目之外,啤酒中麦芽的低剂量亚硝胺检测也是必须的。已采用多年的“经典”亚硝胺检测方法是利用串接热能分析仪(TEA)检测器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进行分析的。选择特殊的TEA 检测器是由于该检测器能够从亚硝胺生成NO,NO又能与臭氧进行特异性的化学发光反应,从而实现特异性的亚硝胺检测。而如今,随着对检测方法的灵敏度的要求不断增加,TEA 的检出限及其复杂的操作程序,已无法满足目前的低检出限和高样品通量要求。质谱仪已在不断取代TEA。由Munch 和 Bassett 于2004 年建立的EPA 方法521 提供了一个适应当时要求的、基于化学电离(CI)和带有内部离子化功能的离子阱质谱仪的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]检测方法,而不是标准的带有外部离子源的四极杆或离子阱质谱仪。如今随着技术的发展,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url] 三重四极杆也可以在低分子量区域提供高灵敏度和高选择性的分析,使得非常低浓度的亚硝胺检测,甚至是在复杂样品中的低浓度检测,成为可能。这一可能性源于使用更为简便的、利用常规的电子轰击源(EI)的标准技术,来建立低浓度亚硝胺检测的便捷方法。本应用说明文章描述了一套完整的、使用 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS 进行食品中亚硝胺类化合物常规检测和定量的方法。本工作中的食品基质包括多种不同的麦芽啤酒产品以及作为最终食品产物销售的啤酒本身。在方法开发过程中,我们特别注意优化,以在达到对亚硝胺化合物检测所需的高灵敏度的同时,提供一种迅速、易于实现的常规检测方法。样品处理方法基于AOAC 官方方法 (2000), 982.11 并略有改动。我们建立了一种使用Celite 硅藻土柱并用DCM 洗脱的固相萃取方法来从啤酒样品中分离亚硝胺。[b]实验条件[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS [/b]仪器[img]https://i2.antpedia.com/attachments/att/image/20200518/1589800467101440.jpg[/img][img]https://i2.antpedia.com/attachments/att/image/20200518/1589800468477298.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制