当前位置: 仪器信息网 > 行业主题 > >

质谱低通量甲基化检测

仪器信息网质谱低通量甲基化检测专题为您提供2024年最新质谱低通量甲基化检测价格报价、厂家品牌的相关信息, 包括质谱低通量甲基化检测参数、型号等,不管是国产,还是进口品牌的质谱低通量甲基化检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱低通量甲基化检测相关的耗材配件、试剂标物,还有质谱低通量甲基化检测相关的最新资讯、资料,以及质谱低通量甲基化检测相关的解决方案。

质谱低通量甲基化检测相关的论坛

  • 【求助】如何用质谱检测RNA甲基化

    我准备分离小RNA,然后用核酸酶将其切成单个核苷酸,ESI质谱,首先先来检测是否有甲基化修饰的核酸,不知道这样行不行。如果行的话,对样品的纯度浓度有什么要求,希望各位有经验的大侠多多指点。先谢过了

  • 高效液相色谱质谱联用测全基因组甲基化水平

    [color=#444444]我自己接手一个新的实验项目,是用高效液相色谱质谱联用技术测人群的全基因组甲基化水平,想问问有没有哪个大神有做过这个类似的实验么,好多问题都不懂。DNA是之前用试剂盒提取了的,用了蛋白酶K把蛋白质消解了,这种情况下进一步水解DNA还需不需要进一步超滤去蛋白呢(哪个超滤好像好贵,成本好高);测的时候是不是也需要同时30 毫摩尔每升、pH为6.8的乙酸钠,30毫摩尔每升、pH 为7.8的乙酸钠溶液,具体怎么配啊,能用乙酸调么?谢谢[/color]

  • 葡萄糖甲苷2位甲基化和3位甲基化在弱极性气相色谱柱中的出峰顺序

    请问各位老师葡萄糖甲苷2位甲基化和3位甲基化在弱极性[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱中的出峰顺序,最近在DB-17MS柱分析葡萄糖甲苷的甲基化样品时,有两个峰可以确定是葡萄糖甲苷2位甲基化和3位甲基化,但是由于质谱图很类似,碎片离子相同,只是个别丰度不同;所以无法归属。不知各位老师有没有做过这方面的研究,谢谢赐教。

  • 葡萄糖甲苷2位甲基化和3位甲基化在弱极性气相色谱柱中的出峰顺序

    请问各位老师葡萄糖甲苷2位甲基化和3位甲基化在弱极性[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱中的出峰顺序,最近在DB-17MS柱分析葡萄糖甲苷的甲基化样品时,有两个峰可以确定是葡萄糖甲苷2位甲基化和3位甲基化,但是由于质谱图很类似,碎片离子相同,只是个别丰度不同;所以无法归属。不知各位老师有没有做过这方面的研究,谢谢赐教。

  • 请教:甲基化的作用

    看一篇关于一种除草剂(灭草松)的农残检测方法,其中前处理说到要用重氮甲烷进行甲基化以后才能进GC—ECD检测,想请教大家的是甲基化的作用是什么?为什么一定要甲基化这个步骤?

  • 甲基化的试剂怎么选择?

    我最近想做两种带羧基的化合物GC/MS检测,需要进行甲基化衍生。但我不想使用三氟化硼甲醇试剂,我查了一下,使用三氟甲基磺酸甲酯、N,N-二甲基二甲缩醛、硫酸二甲酯等也可以进行甲基化衍生,有没有高人推荐一下,使用哪个比较好啊?

  • 【原创大赛】DNA甲基化

    [size=20px]1 DNA[/size][size=20px]甲基化[/size][size=16px]DNA[/size][size=16px]甲基化是指在[/size][size=16px]DNA[/size][size=16px]甲基转移酶([/size][size=16px]DNA methyltransferase[/size][size=16px],[/size][size=16px]DNMT[/size][size=16px])的催化作用下,[/size][size=16px]DNA[/size][size=16px]双螺旋的胞嘧啶核苷酸嘧啶环的第[/size][size=16px]5[/size][size=16px]位碳原子甲基化,并与其[/size][size=16px]3[/size][font='等线'][size=16px]'[/size][/font][size=16px]端鸟嘌呤形成甲基化的胞嘧啶[/size][size=16px]-[/size][size=16px]鸟嘌呤二核苷酸[/size][size=16px](Cytosine -phosphoric acid-Guanine, CpG)[/size][size=16px]。[/size][size=16px]DNA[/size][size=16px]低甲基[/size][size=16px]化增加[/size][size=16px]染色体不稳定性[/size][size=16px],[/size][size=16px]启动子[/size][size=16px]CpG[/size][size=16px]岛局部高甲基化可使其下游基因[/size][size=16px]([/size][size=16px]包括抑癌基因[/size][size=16px])[/size][size=16px]失活从而发挥致癌作用。与[/size][size=16px]TCGA (The Cancer Genome Atlas)[/size][size=16px]数据库中其他癌种相比,[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]启动子甲基化水平是最高的[/size][font='times new roman'][size=16px][1][/size][/font][size=16px],它与[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性关系密切,影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1.1 DNA[/size][size=20px]甲基化定义[/size][size=20px]SCLC[/size][size=20px]不同亚型且影响[/size][size=20px]SCLC[/size][size=20px]神经内分泌特性[/size][size=16px]Poirier[/size][size=16px]等[/size][font='times new roman'][size=16px][1][/size][/font][size=16px]发现甲基化与基因表达相关并能区分原发性[/size][size=16px]SCLC[/size][size=16px]亚型。[/size][size=16px]M1[/size][size=16px]、[/size][size=16px]M2[/size][size=16px]和[/size][size=16px]SQ-P[/size][size=16px]是[/size][size=16px]SCLC[/size][size=16px]三个亚型,它们具有不同的甲基化模式和基因表达,[/size][size=16px]SQ-P[/size][size=16px]甲基化频率明显低于[/size][size=16px]M1[/size][size=16px]和[/size][size=16px]M2[/size][size=16px]。但这种分型与[/size][size=16px]SCLC[/size][size=16px]临床预后无关。随后,[/size][size=16px]Saito Yuichi [/size][font='times new roman'][size=16px][2][/size][/font][size=16px]等发现了甲基化模式和预后均不同的两种[/size][size=16px]SCLC[/size][size=16px]类型[/size][size=16px]:[/size][size=16px]一类是[/size][size=16px]CpG[/size][size=16px]岛甲基化表型[/size][size=16px](CpG island methylator phenotype, CIMP)[/size][size=16px]整体高而预后差的聚类[/size][size=16px]1 (SCLC CIMP)[/size][size=16px],另一类是[/size][size=16px]CIMP[/size][size=16px]低而预后较好的聚类[/size][size=16px]2 (non-CIMP)[/size][size=16px]。他们证明了甲基化水平的升高与预后不良有关,[/size][size=16px]SCLC CIMP[/size][size=16px]可能是手术治疗的预后指标。因此,我们可以利用[/size][size=16px]DNA[/size][size=16px]甲基化及基因表达分析定义[/size][size=16px]SCLC[/size][size=16px]亚型并进一步预测[/size][size=16px]SCLC[/size][size=16px]临床预后。[/size][size=16px]SCLC[/size][size=16px]起源于肺神经内分泌细胞。[/size][size=16px]Kalari[/size][size=16px]等[/size][font='times new roman'][size=16px][3][/size][/font][size=16px]发现[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化图谱提示神经内分泌细胞存在分化缺陷,甲基化基因作为转录因子在神经元分化过程中显著富集。他们推测[/size][size=16px]SCLC[/size][size=16px]的起源可能有两种机制:一是启动子甲基化导致细胞分化过程中关键转录因子的缺失;二是[/size][size=16px]DNA[/size][size=16px]甲基化导致相应结合位点区域的功能失活使起源细胞向恶性状态发展。二者共同促进神经内分泌细胞分化缺陷,增强肿瘤干细胞向其转化的能力。由此可见,[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化通过[/size][size=16px]影响[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性来影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1[/size][size=20px].2 [/size][size=20px]DNA[/size][size=20px]甲基化可筛选早期[/size][size=20px]SCLC[/size][size=16px]肺癌的发展是一个多步骤的过程,其中包括[/size][size=16px]DNA[/size][size=16px]状态的改变。肿瘤相关基因启动子高甲基化是一种常见的改变,常与抑癌基因失活相关,由于其稳定性好,易于在组织和体液中检测,可作为癌症检测和监测的候选生物标志物[/size][font='times new roman'][size=16px][4][/size][/font][size=16px]。有研究者利用[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化板通过[/size][size=16px]血液活检的方式对肺癌男性患者进行早期筛选,发现[/size][size=16px] RAS[/size][size=16px]相关区域家族[/size][size=16px]1A[/size][size=16px]基因[/size][size=16px](Ras association domain family 1A gene, RASSF1A)[/size][size=16px]对[/size][size=16px]SCLC[/size][size=16px]的敏感性为[/size][size=16px]75%[/size][size=16px],特异性为[/size][size=16px]88%[/size][size=16px]。基于此,异常的[/size][size=16px]DNA[/size][size=16px]启动子甲基[/size][size=16px]化可能[/size][size=16px]是一个有价值的早期[/size][size=16px]SCLC[/size][size=16px]微创检测方法,可以提高患者的依从性、降低医疗成本并有助于癌症分型和预后[/size][font='times new roman'][size=16px][5][/size][/font][size=16px]。但这项研究只针对男性,研究成果是否可以应用于所有人群仍需进一步验证[/size][size=20px]1.3 [/size][size=20px]DNA[/size][size=20px]甲基化与[/size][size=20px]SCLC[/size][size=20px]耐药相关[/size][size=16px]H3[/size][size=16px]赖氨酸[/size][size=16px]27[/size][size=16px]三[/size][size=16px]甲基化[/size][size=16px](H3K27me3) [/size][size=16px]与多药耐药有关,它由[/size][size=16px]ZEST[/size][size=16px]同源增强子[/size][size=16px]2(EZH2)[/size][size=16px]催化,二者在[/size][size=16px]SCLC[/size][size=16px]组织和多药耐药的[/size][size=16px]SCLC[/size][size=16px]细胞中的表达水平明显升高。长链非编码[/size][size=16px]RNA (lncRNA) HOX[/size][size=16px]转录本反义[/size][size=16px]RNA (HOTAIR)[/size][size=16px]可以预测肿瘤进展。[/size][size=16px]HOTAIR[/size][size=16px]通过下调耐药[/size][size=16px]SCLC[/size][size=16px]中[/size][size=16px]DNMT1[/size][size=16px]和[/size][size=16px]DNMT3b[/size][size=16px]的表达来调节[/size][size=16px]HOXA1[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化。研究表明,在[/size][size=16px]SCLC[/size][size=16px]细胞系中,敲除[/size][size=16px]HOTAIR[/size][size=16px]基因可显著降低[/size][size=16px]H3K27me3[/size][size=16px]和[/size][size=16px]EZH2[/size][size=16px]水平,且二者通过[/size][size=16px]HOTAIR[/size][size=16px]来影响[/size][size=16px]HOXA1 DNA[/size][size=16px]甲基化,[/size][size=16px]H3K27me3[/size][size=16px]很可能是[/size][size=16px]SCLC[/size][size=16px]化疗耐药的潜在治疗靶点[/size][font='times new roman'][size=16px][6][/size][/font][size=16px]。位于人端粒酶逆转录酶[/size][size=16px](HTERT)[/size][size=16px]启动子区的表观遗传学改变是癌症中最常见的非编码基因组修饰之一。[/size][size=16px]HTERT[/size][size=16px]上调可促进[/size][size=16px]SCLC[/size][size=16px]细胞系的增殖和迁移,其启动子区经辐射诱导后的高度甲基化可上调其下游效应因子[/size][size=16px]EZH2[/size][size=16px]的表达从而使[/size][size=16px]SCLC[/size][size=16px]具有放射抗性[/size][font='times new roman'][size=16px][7][/size][/font][size=16px]。胞质三核苷酸修复外切酶[/size][size=16px]1(TREX1)[/size][size=16px]是一种高效的[/size][size=16px]3[/size][size=16px]’[/size][size=16px]→[/size][size=16px] 5[/size][size=16px]’[/size][size=16px]胞质外切酶,能迅速降解双链和单链[/size][size=16px]DNA([/size][size=16px]双链和单链[/size][size=16px]DNA)[/size][font='times new roman'][size=16px][8][/size][/font][size=16px]。[/size][size=16px]SCLC[/size][size=16px]细胞系在[/size][size=16px]CCLE[/size][size=16px]中具有最高的[/size][size=16px]TREX1[/size][size=16px]甲基化和最低的[/size][size=16px]TREX1[/size][size=16px]表达,低[/size][size=16px]TREX1[/size][size=16px]可增加[/size][size=16px]SCLC[/size][size=16px]对[/size][size=16px]Aurora[/size][size=16px]激酶抑制剂治疗的敏感性,可作为[/size][size=16px]SCLC[/size][size=16px]新的分子标记或靶点[/size][font='times new roman'][size=16px][9][/size][/font][size=16px]。[/size][size=16px]Y[/size][size=16px]样染色体基因([/size][size=16px]Chromo-domain Y like[/size][size=16px],[/size][size=16px]CDYL[/size][size=16px])是一种新型表观遗传因子,调控神经系统的神经元发育。[/size][size=16px]CDYL[/size][size=16px]通过调控[/size][size=16px]CDKN1C[/size][size=16px]启动子[/size][size=16px]H3K27[/size][size=16px]三[/size][size=16px]甲基化来促进[/size][size=16px]SCLC[/size][size=16px]化疗耐药,且其表达水平与患者临床分期相关,可用于预测[/size][size=16px]SCLC[/size][size=16px]患者的疾病进展和预后,为[/size][size=16px]SCLC[/size][size=16px]临床诊治提供了一个新的分子靶点[/size][font='times new roman'][size=16px][10][/size][/font][size=16px]。[/size][size=16px]综上,[/size][size=16px]DNA[/size][size=16px]甲基化在[/size][size=16px]SCLC[/size][size=16px]中水平较高,甲基化分析可以区分[/size][size=16px]SCLC[/size][size=16px]亚型,阐明[/size][size=16px]SCLC[/size][size=16px]发病及耐药机制,发现癌症的特异性生物标志物,有助于[/size][size=16px]SCLC[/size][size=16px]早期诊断及判断预后。[/size]

  • DNA甲基化及其影响

    [size=20px]DNA[/size][size=20px]甲基化[/size][size=20px]及其影响[/size][size=16px]DNA[/size][size=16px]甲基化是指在[/size][size=16px]DNA[/size][size=16px]甲基转移酶([/size][size=16px]DNA methyltransferase[/size][size=16px],[/size][size=16px]DNMT[/size][size=16px])的催化作用下,[/size][size=16px]DNA[/size][size=16px]双螺旋的胞嘧啶核苷酸嘧啶环的第[/size][size=16px]5[/size][size=16px]位碳原子甲基化,并与其[/size][size=16px]3[/size][font='等线'][size=16px]'[/size][/font][size=16px]端鸟嘌呤形成甲基化的胞嘧啶[/size][size=16px]-[/size][size=16px]鸟嘌呤二核苷酸[/size][size=16px](Cytosine -phosphoric acid-Guanine, CpG)[/size][size=16px]。[/size][size=16px]DNA[/size][size=16px]低甲基[/size][size=16px]化增加[/size][size=16px]染色体不稳定性[/size][size=16px],[/size][size=16px]启动子[/size][size=16px]CpG[/size][size=16px]岛局部高甲基化可使其下游基因[/size][size=16px]([/size][size=16px]包括抑癌基因[/size][size=16px])[/size][size=16px]失活从而发挥致癌作用。与[/size][size=16px]TCGA (The Cancer Genome Atlas)[/size][size=16px]数据库中其他癌种相比,[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]启动子甲基化水平是最高的[/size][font='times new roman'][sup][size=16px][1][/size][/sup][/font][size=16px],它与[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性关系密切,影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1.1 DNA[/size][size=20px]甲基化定义[/size][size=20px]SCLC[/size][size=20px]不同亚型且影响[/size][size=20px]SCLC[/size][size=20px]神经内分泌特性[/size][size=16px]Poirier[/size][size=16px]等[/size][font='times new roman'][sup][size=16px][1][/size][/sup][/font][size=16px]发现甲基化与基因表达相关并能区分原发性[/size][size=16px]SCLC[/size][size=16px]亚型。[/size][size=16px]M1[/size][size=16px]、[/size][size=16px]M2[/size][size=16px]和[/size][size=16px]SQ-P[/size][size=16px]是[/size][size=16px]SCLC[/size][size=16px]三个亚型,它们具有不同的甲基化模式和基因表达,[/size][size=16px]SQ-P[/size][size=16px]甲基化频率明显低于[/size][size=16px]M1[/size][size=16px]和[/size][size=16px]M2[/size][size=16px]。但这种分型与[/size][size=16px]SCLC[/size][size=16px]临床预后无关。随后,[/size][size=16px]Saito Yuichi [/size][font='times new roman'][sup][size=16px][2][/size][/sup][/font][size=16px]等发现了甲基化模式和预后均不同的两种[/size][size=16px]SCLC[/size][size=16px]类型[/size][size=16px]:[/size][size=16px]一类是[/size][size=16px]CpG[/size][size=16px]岛甲基化表型[/size][size=16px](CpG island methylator phenotype, CIMP)[/size][size=16px]整体高而预后差的聚类[/size][size=16px]1 (SCLC CIMP)[/size][size=16px],另一类是[/size][size=16px]CIMP[/size][size=16px]低而预后较好的聚类[/size][size=16px]2 (non-CIMP)[/size][size=16px]。他们证明了甲基化水平的升高与预后不良有关,[/size][size=16px]SCLC CIMP[/size][size=16px]可能是手术治疗的预后指标。因此,我们可以利用[/size][size=16px]DNA[/size][size=16px]甲基化及基因表达分析定义[/size][size=16px]SCLC[/size][size=16px]亚型并进一步预测[/size][size=16px]SCLC[/size][size=16px]临床预后。[/size][size=16px]SCLC[/size][size=16px]起源于肺神经内分泌细胞。[/size][size=16px]Kalari[/size][size=16px]等[/size][font='times new roman'][sup][size=16px][3][/size][/sup][/font][size=16px]发现[/size][size=16px]SCLC[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化图谱提示神经内分泌细胞存在分化缺陷,甲基化基因作为转录因子在神经元分化过程中显著富集。他们推测[/size][size=16px]SCLC[/size][size=16px]的起源可能有两种机制:一是启动子甲基化导致细胞分化过程中关键转录因子的缺失;二是[/size][size=16px]DNA[/size][size=16px]甲基化导致相应结合位点区域的功能失活使起源细胞向恶性状态发展。二者共同促进神经内分泌细胞分化缺陷,增强肿瘤干细胞向其转化的能力。由此可见,[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化通过[/size][size=16px]影响[/size][size=16px]SCLC[/size][size=16px]神经内分泌特性来影响[/size][size=16px]SCLC[/size][size=16px]发生发展。[/size][size=20px]1[/size][size=20px].2 [/size][size=20px]DNA[/size][size=20px]甲基化可筛选早期[/size][size=20px]SCLC[/size][size=16px]肺癌的发展是一个多步骤的过程,其中包括[/size][size=16px]DNA[/size][size=16px]状态的改变。肿瘤相关基因启动子高甲基化是一种常见的改变,常与抑癌基因失活相关,由于其稳定性好,易于在组织和体液中检测,可作为癌症检测和监测的候选生物标志物[/size][font='times new roman'][sup][size=16px][4][/size][/sup][/font][size=16px]。有研究者利用[/size][size=16px]DNA[/size][size=16px]甲基[/size][size=16px]化板通过[/size][size=16px]血液活检的方式对肺癌男性患者进行早期筛选,发现[/size][size=16px] RAS[/size][size=16px]相关区域家族[/size][size=16px]1A[/size][size=16px]基因[/size][size=16px](Ras association domain family 1A gene, RASSF1A)[/size][size=16px]对[/size][size=16px]SCLC[/size][size=16px]的敏感性为[/size][size=16px]75%[/size][size=16px],特异性为[/size][size=16px]88%[/size][size=16px]。基于此,异常的[/size][size=16px]DNA[/size][size=16px]启动子甲基[/size][size=16px]化可能[/size][size=16px]是一个有价值的早期[/size][size=16px]SCLC[/size][size=16px]微创检测方法,可以提高患者的依从性、降低医疗成本并有助于癌症分型和预后[/size][font='times new roman'][sup][size=16px][5][/size][/sup][/font][size=16px]。但这项研究只针对男性,研究成果是否可以应用于所有人群仍需进一步验证[/size][size=20px]1.3 [/size][size=20px]DNA[/size][size=20px]甲基化与[/size][size=20px]SCLC[/size][size=20px]耐药相关[/size][size=16px]H3[/size][size=16px]赖氨酸[/size][size=16px]27[/size][size=16px]三[/size][size=16px]甲基化[/size][size=16px](H3K27me3) [/size][size=16px]与多药耐药有关,它由[/size][size=16px]ZEST[/size][size=16px]同源增强子[/size][size=16px]2(EZH2)[/size][size=16px]催化,二者在[/size][size=16px]SCLC[/size][size=16px]组织和多药耐药的[/size][size=16px]SCLC[/size][size=16px]细胞中的表达水平明显升高。长链非编码[/size][size=16px]RNA (lncRNA) HOX[/size][size=16px]转录本反义[/size][size=16px]RNA (HOTAIR)[/size][size=16px]可以预测肿瘤进展。[/size][size=16px]HOTAIR[/size][size=16px]通过下调耐药[/size][size=16px]SCLC[/size][size=16px]中[/size][size=16px]DNMT1[/size][size=16px]和[/size][size=16px]DNMT3b[/size][size=16px]的表达来调节[/size][size=16px]HOXA1[/size][size=16px]的[/size][size=16px]DNA[/size][size=16px]甲基化。研究表明,在[/size][size=16px]SCLC[/size][size=16px]细胞系中,敲除[/size][size=16px]HOTAIR[/size][size=16px]基因可显著降低[/size][size=16px]H3K27me3[/size][size=16px]和[/size][size=16px]EZH2[/size][size=16px]水平,且二者通过[/size][size=16px]HOTAIR[/size][size=16px]来影响[/size][size=16px]HOXA1 DNA[/size][size=16px]甲基化,[/size][size=16px]H3K27me3[/size][size=16px]很可能是[/size][size=16px]SCLC[/size][size=16px]化疗耐药的潜在治疗靶点[/size][font='times new roman'][sup][size=16px][6][/size][/sup][/font][size=16px]。位于人端粒酶逆转录酶[/size][size=16px](HTERT)[/size][size=16px]启动子区的表观遗传学改变是癌症中最常见的非编码基因组修饰之一。[/size][size=16px]HTERT[/size][size=16px]上调可促进[/size][size=16px]SCLC[/size][size=16px]细胞系的增殖和迁移,其启动子区经辐射诱导后的高度甲基化可上调其下游效应因子[/size][size=16px]EZH2[/size][size=16px]的表达从而使[/size][size=16px]SCLC[/size][size=16px]具有放射抗性[/size][font='times new roman'][sup][size=16px][7][/size][/sup][/font][size=16px]。胞质三核苷酸修复外切酶[/size][size=16px]1(TREX1)[/size][size=16px]是一种高效的[/size][size=16px]3[/size][size=16px]’[/size][size=16px]→[/size][size=16px] 5[/size][size=16px]’[/size][size=16px]胞质外切酶,能迅速降解双链和单链[/size][size=16px]DNA([/size][size=16px]双链和单链[/size][size=16px]DNA)[/size][font='times new roman'][sup][size=16px][8][/size][/sup][/font][size=16px]。[/size][size=16px]SCLC[/size][size=16px]细胞系在[/size][size=16px]CCLE[/size][size=16px]中具有最高的[/size][size=16px]TREX1[/size][size=16px]甲基化和最低的[/size][size=16px]TREX1[/size][size=16px]表达,低[/size][size=16px]TREX1[/size][size=16px]可增加[/size][size=16px]SCLC[/size][size=16px]对[/size][size=16px]Aurora[/size][size=16px]激酶抑制剂治疗的敏感性,可作为[/size][size=16px]SCLC[/size][size=16px]新的分子标记或靶点[/size][font='times new roman'][sup][size=16px][9][/size][/sup][/font][size=16px]。[/size][size=16px]Y[/size][size=16px]样染色体基因([/size][size=16px]Chromo-domain Y like[/size][size=16px],[/size][size=16px]CDYL[/size][size=16px])是一种新型表观遗传因子,调控神经系统的神经元发育。[/size][size=16px]CDYL[/size][size=16px]通过调控[/size][size=16px]CDKN1C[/size][size=16px]启动子[/size][size=16px]H3K27[/size][size=16px]三[/size][size=16px]甲基化来促进[/size][size=16px]SCLC[/size][size=16px]化疗耐药,且其表达水平与患者临床分期相关,可用于预测[/size][size=16px]SCLC[/size][size=16px]患者的疾病进展和预后,为[/size][size=16px]SCLC[/size][size=16px]临床诊治提供了一个新的分子靶点[/size][font='times new roman'][sup][size=16px][10][/size][/sup][/font][size=16px]。[/size][size=16px]综上,[/size][size=16px]DNA[/size][size=16px]甲基化在[/size][size=16px]SCLC[/size][size=16px]中水平较高,甲基化分析可以区分[/size][size=16px]SCLC[/size][size=16px]亚型,阐明[/size][size=16px]SCLC[/size][size=16px]发病及耐药机制,发现癌症的特异性生物标志物,有助于[/size][size=16px]SCLC[/size][size=16px]早期诊断及判断预后。[/size]

  • LightCycler通过实时荧光PCR技术进行DNA甲基化分析

    DNA甲基化是表观遗传学的重要研究内容之一,它可以在转录水平抑制基因的表达。具体的过程是在胞嘧啶-鸟嘧啶(CpG二核苷酸)的5位碳原子上添加了一个额外的甲基团,形成5-甲基胞嘧啶。CpG二核苷酸密度较高的区域在人体基因组中呈非随机分布于,优先分布于基因的启动子区,并被称为CpG岛 。对于癌症,其基因组的甲基化分布发生变化 。正常状态下应甲基化的区域未甲基化,而症状状态下非甲基化区域出现甲基化,例如CpG岛相关启动子呈超甲基化。这可导致受累基因座的染色质结构发生变化,致使基因沉默。启动子超甲基化可导致有关肿瘤演进的重要基因再次沉默,例如那些有关DNA修复、细胞周期调控和凋亡的基因。因此,可以认为DNA甲基化与肿瘤研究密切相关。肿瘤中某些基因的DNA甲基化状态的变化通过其生物学特征反映出来。因此,评估DNA甲基化的快速高通量方法对研究者和临床医生在诊断、治疗和预后都非常有实用价值 。当前对于DNA甲基化研究,普遍使用的方法有甲基化特异性PCR,变性高效液相色谱法(DHPLC),联合亚硫酸氢钠限制性内切酶分析法(COBRA)等,这些方法各有优势,但是均存在诸如实验设计复杂,易产生假阴性或假阳性等问题,提示科学家寻找更加容易且准确的分析手段。甲基化敏感性高分辨熔解分析(MS-HRM)是近年兴起的一种适用于评估特定基因DNA甲基化的新技术。它基于当前实时荧光PCR仪器的前沿应用 – 高分辨率熔解曲线分析(HRM),使用既可扩增甲基化序列也可扩增非甲基化序列的引物对来自经重亚硫酸盐修饰的DNA的相关区进行PCR扩增。重亚硫酸盐修饰DNA,让非甲基化的胞嘧啶转换为尿嘧啶,而5-甲基胞嘧啶保持不变,随后通过PCR扩增检测感兴趣区域的甲基化状态。在MS-HRM中,在饱和的DNA结合染料存在的情况下进行PCR反应,在扩增后进行高分辨熔解曲线分析,HRM分析的特点为可以区分扩增产物中少至1个碱基变化的序列差异,从而通过尿嘧啶/胞嘧啶的差异判断扩增子来源于甲基化还是非甲基化的初始模板变异体。MS-HRM可评估引物之间整条扩增子的甲基化状态。由于它是一种闭管方法,可初步快速评估甲基化。相比于传统的方法,它的成本低廉,分辨率高,通量灵活(最多一次筛查384个样本,最少几个样本),并且准确率大大提升。结合标准品的特征熔解曲线,还可以对样本中存在的甲基化DNA比率进行基本的定量。更多有关特定CpG位点的甲基化的详细信息,可采用重亚硫酸氢盐修饰后测序分析。http://www.biomart.cn/upload/asset/2010/07/30/1280471779.jpgLightCycler主要应用:实时荧光PCR技术进行快速准确的DNA甲基化分析我们使用罗氏诊断公司的LightCycler®480高分辨熔解扩增试剂盒在LightCycler®480实时荧光PCR仪上,通过MS-HRM测定法对两种已知的经过启动子(FANCE和MGMT)甲基化的DNA修复基因的检测性能。材料和方法将多种细胞株的DNA样本作为检测模板。每μg的每种DNA样本都经过重亚硫酸盐修饰。通过在正常DNA(经过重亚硫酸盐修饰)池中按50%、25%、10%、5%和1%稀释100%的甲基化对照DNA(经过重亚硫酸盐修饰)以创建甲基化标准品。MS-HRM引物按Wojdacz和Hansen描述的方法设计。使用LightCycler®480高分辨熔解扩增试剂盒在96孔LightCycler®480仪器中执行扩增和熔解反应。http://www.biomart.cn/upload/asset/2010/07/30/1280471781.jpg图1:(a)含100%甲基化和非甲基化质控品和50%、25%、10%、5%和1%的甲基化标准品的FANCE MS-HRM测定法。使用“Tm Calling”和“HRM基因扫描”软件模块分析的数据。(b)含100%甲基化和非甲基化质控品和50%、25%、10%、5%和1%的甲基化标准品的MGMT MS-HRM测定法。使用“Tm Calling”和“HRM基因扫描”软件模块分析的数据。

  • 【求助】(已应助)用高效液相色谱测定DNA甲基化水平

    我现在想探讨鱼类胚胎发育和总基因组DNA甲基化之间的关系,因此想用高效液相色谱测定总基因组DNA甲基化水平,即总基因组5甲基孢嘧啶含量,急需这方面的文献 请大虾们帮一下[color=red]楼主,在本版面发帖前请您仔细的看看置顶中的规定!!![/color]

  • 【第三届原创参赛】气相色谱-质谱法检测基围虾中的甲基汞

    【第三届原创参赛】气相色谱-质谱法检测基围虾中的甲基汞

    维权声明:本文为caufisher原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为,我们将追究法律责任。气相色谱-质谱法检测基围虾中的甲基汞摘要:建立了气相色谱-质谱法(GC-MS)测定基围虾中甲基汞的方法,样品经盐酸浸提,甲苯萃取后L-半胱氨酸反萃取,NaBPh4衍生化后用正己烷萃取得到的苯化甲基汞(MeHgPh)进样。苯化甲基汞在0.05~1 g/mL的范围内线性良好。添加的三个水平浓度分别是0.05ug/kg、0.1ug/kg、0.5 ug/kg,回收率分别是109%、89.9%、102%,相对标准偏差均小于20%,检出限为0.4 ng/kg。关键词:甲基汞;气相色谱-质谱;基围虾Determination of Methylmercury in Shrimps Using Gas Chromatography-Mass SpectrometryAbstract:To establish a gas chromatography-mass spectrometry(GC-MS) for determination of methylmercury in Shrimps. Methylmercury has been determined after Hydrochloride digestion,extracted by toluene,back-extracted by cysteine aqueous solution,and employs a novel NaBPh4 derivatization method.Good linear were obtained ranging 0.05~1 g/mL,The evaluation of the quality of measurements was carried out by analyzing samples fortified standard solution.The concentration fortified were 0.05ug/kg,0.1 ug/kg,0.5 ug/kg.Average recoveries of methylmercury at three fortified levels were 109%,89.9%,102% respectively.The limit of detection of methylmercury was 0.4 ug/kg.Key words: methylmercury;gas chromatography-mass spectrometry; Shrimps近期以基围虾为代表的海产品中甲基汞的高毒性引起人们的注意,因为甲基汞的毒性是其他形态汞化合物的几十至几百倍。环境中排放的无机汞在一定条件下发生甲基化生成毒性更大的甲基汞,并通过鱼贝类从水中浓缩并富集可至数万倍,进入人体后绝大部分也被富集。在日本和伊拉克发生

  • 关于异亮氨酸甲基化修饰位置的分析

    大家好,我们在进行蛋白质修饰鉴定过程中,发现有异亮氨酸甲基化的修饰(采用二级CID碎裂模式),分析软件(BioPharmaView)中给定的修饰中也含有异亮氨酸,为了确定甲基化修饰的机理,我们推测,甲基化修饰在了异亮氨酸形成的肽键N上,对此我们使用etHCD碎裂模式进行二级碎裂,结果显示,甲基化并非修饰在肽键N上,我们查询文献并没有相关的报道,想问下各位大神,有知道蛋白中异亮氨酸发生甲基化是发生在哪个位置么?如果有文献支持就更好了。

  • 【求助】请问什么是甲基化酒精?

    各位前辈,请问什么是甲基化酒精?怎样才能制备?国内有哪家厂家在生产?甲基化酒精是不是也称为甲乙醚?一下子问这么多问题是因为真的很急,非常感谢大家!!

  • 质谱可以检测病毒吗?

    提到现在主流的病毒检测手段,首推本次疫情期间大放异彩的荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]为主,具备快速、灵敏的特点;传统细胞培养分离法,虽然操作繁琐,但仍旧是病毒分离鉴定金标准,如本次新型冠状病毒, 在初期是通过将呼吸道分泌物置于人呼吸道上皮细胞培养传代,通过透射电镜和培养上清液的全基因组测序得到最终确认;而基于抗原和抗体反应的血清学检测,操作简单、结果快速,但易产生交叉反应,可以与核酸检测配合使用进行诊断确认,或用于大规模人员排查。这些方法各有优势,但同时也存在操作复杂、检测周期长或特异性低等的特点。  自上世纪MALDI-TOF MS开始作为微生物检测工具开始,其高通量、成本低、简易操作的特点,一直吸引着科学家们在病毒检测领域进行探索,虽不及细菌学、真菌学诊断领域应用成熟而广泛,但迄今为止,MALDI-TOF MS已经成功应用于各类呼吸道病毒(流感病毒、冠状病毒、腺病毒等)、肝炎病毒、人乳头瘤病毒(HPV)、人肠病毒以及某些动物病毒等的检测,覆盖病毒鉴定、突变分析、分型、和抗病毒药物耐药性分析等各个应用方向。  这些病毒检测功能,主要依赖于MALDI-TOF MS能够准确检测多肽、蛋白质、核酸、多糖等生物大分子的分子质量和纯度,围绕不同检测目标,开发多种针对性检测方案:[b][color=#0070c0]01 基于细胞培养呼吸道病毒质谱鉴定[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267262][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740491.jpg[/img][/url][/align][b][color=#0070c0]02 基于MALDI-TOF MS的冠状病毒筛查[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267263][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740521.jpg[/img][/url][/align][b][color=#0070c0]03 抗体-磁性纳米粒子法对流感病毒分型[/color][color=#0070c0][url=https://www.antpedia.com/batch.download.php?aid=267264][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740551.jpg[/img][/url][/color][color=#0070c0]04 质谱检测乙肝病毒YMDD耐药突变[/color][/b][align=center][url=https://www.antpedia.com/batch.download.php?aid=267265][img]https://i2.antpedia.com/attachments/2020/02/189382_202002211740581.jpg[/img][/url][/align]  众多研究已经表明,基于不同方向MALDI-TOF MS 可以鉴定不同种类、来源的病毒,结果可媲美现有各类分子检测方法,且具有通量高、速度快,人工、试剂成本低、结果判读简单的优势,基于质谱核酸检测,可用于直接样本检测的同时,高通量的特点支持多位点多靶向检测,而其基于蛋白的检测则有助于早期监测确认、疫苗开发等。同时基于MALDI-TOF MS 系统的多种现有解决方案,支持同时鉴定和诊断多种类型的病原体感染,在不增加实验室成本的情况下,减少多重感染样本的误诊和治疗延误。  但质谱对病毒的检测,同时也受到了一些制约,如实例1中基于蛋白分析的病毒检测方法,前期需依赖于细胞培养,病毒的培养富集对实验室安全级别要求较高(BSL-3级以上),限制了该方法在常规实验室开展。而基于核酸的病毒检测方法如实例2,虽然前期依靠[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]扩增可以进行样本的直接检测,但却受制于缺乏广泛的参考数据库或差异性遗传标志序列,同时受到质谱核酸检测的灵敏度和稳定性限制,此外该方法还有对专业要求相对较高,标准化方案少,自动化方案成本较高等的缺陷。[b][color=#0070c0]总结[/color][/b]  MALDI-TOF MS 在临床病毒学检测中的应用已经取得一定的发展成果,但若要成为常规应用工具,还需依赖对流程进行进一步的优化、数据库的更新,以形成更多完整成熟的解决方案。但相信随着各领域科学技术的不断升级更新,必然会推动MALDI-TOF MS在病毒检测中发挥更重要的作用,成为病毒检测领域的主力军

  • 人血清中多种农兽药及其代谢物的高分辨、高通量检测技术与方法学研究

    [align=center][size=16px]人血清中[/size][size=16px]多[/size][size=16px]种农兽药及其代谢物的高分辨、高通量检测技术与方法学研究[/size][/align][size=16px]通过制备具有[/size][size=16px]多功能化超大比表面积[/size][size=16px]的[/size][size=16px]CMPs[/size][size=16px]和桥连硅烷化试剂修饰磁性纳米富集净化材料,并将其制备成萃取分离装置,构建集样品富集浓缩、高效净化的集成化前处理平台。进一步利用[/size][size=16px]LC-QTOF-MS[/size][size=16px]和[/size][size=16px]LC-Q Exactive Orbitrap-MS/MS[/size][size=16px]高分辨质谱,建立[/size][size=16px]300[/size][size=16px]种以上农兽药及其主要代谢物的标准质谱匹配信息库和保留时间数据库,并初步用于京津冀地区人血清样本中农兽药及代谢物的全面筛查,构建不同检测技术下农兽药化学污染物在人体内蓄积水平数据库,实现农兽药残留数据获取、污染等级判定、多维度表达及分析的自动化,为后续规模化样品分析和农兽药残留与疾病的关联性分析提供技术支撑。[/size][size=16px]2.1 [/size][size=16px]研究内容[/size][size=16px]([/size][size=16px]1[/size][size=16px])人血清中农兽药及代谢物高效净化技术研究[/size][size=16px]针对[/size][size=16px]人血清中农兽药及代谢物[/size][size=16px]残留水平低、结构特性多样等特征[/size][size=16px],以多粒径磁性纳米粒子为基质,制备具有超大比表面积的[/size][size=16px]桥连硅烷化试剂修饰材料和[/size][size=16px]共轭微孔聚合物材料,提高农兽药及[/size][size=16px]其代谢物的富集效率;通过修饰引入多羟基、磺酸基、卤代烃等多功能化基团,实现[/size][size=16px]不同结构特征[/size][size=16px]农兽药及其代谢物的高通量富集;将研制的富集净化材料进一步制备成萃取分离装置,构建集样品富集浓缩、高效净化的集成化前处理平台,实现人血清中农兽药及代谢物的高通量靶向[/size][size=16px]/[/size][size=16px]非靶向富集净化。[/size][size=16px]([/size][size=16px]2[/size][size=16px])人[/size][size=16px]血清中农兽药及代谢物的高通量筛查与定量分析方法研究[/size][size=16px]针对人血清中农兽药代谢复杂、残留水平较低的特点,利用[/size][size=16px]LC-QTOF-MS[/size][size=16px]和[/size][size=16px]LC-Q Exactive Orbitrap-MS/MS[/size][size=16px]高分辨质谱,建立[/size][size=16px]300[/size][size=16px]种以上农兽药及主要代谢物的标准质谱匹配信息库和保留时间数据库;结合课题开发的高通量农兽药残留分离富集前处理技术,建立覆盖[/size][size=16px]300[/size][size=16px]种以上农兽药及代谢物的血清样品高通量非靶向高分辨质谱检测技术,实现人血清农兽药残留由靶向检测向非靶向筛查的跨跃式发展;对所建立的方法进行方法学验证评价,形成方法标准操作规程。[/size][size=16px]([/size][size=16px]3[/size][size=16px])人血清样本中农兽药及代谢物全面筛查与数据库构建[/size][size=16px]基于所研发的人血清中[/size][size=16px]300[/size][size=16px]种农兽药及代谢物高通量非靶向高分辨质谱检测技术,开展京津冀地区人血清样本中农兽药及代谢物的初步筛查,构建不同检测技术下农兽药化学污染物在人体内蓄积的数据库,实现农兽药残留数据获取、污染等级判定、多维度表达及分析的自动化[/size][size=16px],[/size][size=16px]为后续规模化样品分析和农兽药残留与疾病的关联性分析提供技术支撑。[/size][size=16px]2.2 [/size][size=16px]研究目标[/size][size=16px]([/size][size=16px]1[/size][size=16px])针对人血清基质复杂,农兽药及代谢物残留浓度低、形态多样化等特点,筛选并制备出[/size][size=16px]多功能化超大比表面积磁性纳米材料[/size][size=16px],[/size][size=16px]实现不同结构特征的农兽药及其代谢物的[/size][size=16px]高效、[/size][size=16px]高通量富集[/size][size=16px]。[/size][size=16px]([/size][size=16px]2[/size][size=16px])[/size][size=16px]建立人血清中农兽药及其代谢物的高通量非靶向高分辨质谱检测技术,实现农兽药及其代谢物的快速筛查与精准定量分析。[/size][size=16px]([/size][size=16px]3[/size][size=16px])通过结合开发的高通量非靶向检测技术,初步用于京津冀地区人血清[/size][size=16px]中[/size][size=16px]农兽药的高通量非靶向高分辨质谱检测,构建人血清中农兽药残留蓄积形态数据库,筛查出高残留的农兽药及其代谢物。[/size][size=16px]([/size][size=16px]1[/size][size=16px])[/size][size=16px]通过设计开发[/size][size=16px]多功能化超大比表面积磁性纳米材料[/size][size=16px],实现[/size][size=16px]复杂[/size][size=16px]的人[/size][size=16px]血清[/size][size=16px]样本中[/size][size=16px]结构特征[/size][size=16px]多样[/size][size=16px]的农兽药及其代谢物[/size][size=16px]高效富集和净化。[/size][size=16px]([/size][size=16px]2[/size][size=16px])针对农兽药及代谢物种类繁多、性质各异限制其高通量非靶向筛查的问题,通过建立[/size][size=16px]300[/size][size=16px]种以上农兽药及代谢物的标准质谱匹配信息库和保留时间数据库,为农兽药高通量非靶向筛查方法的研发奠定基础。[/size]

  • 液质质谱联用仪_中药农残质谱检测方案

    API 3200? LC/MS/MS系统高能高通量更高价值API 3200? LC/MS/MS系统值得信赖的结果、重现性和可靠性。凭借独有的技术创新和可靠性,API 3200?三重四极杆系统可同时提供优异的性能、通量和价值。更长运行时间、更高重现性、最大仪器使用效率设计紧凑且性能优异的API 3200?系统专为进行小分子定量分析的高通量实验室而设计,满足环境、食品安全、临床医学、药物开发等领域中所有类型及不同浓度的样品测定,提供业界卓越的可靠性和重复性质谱数据。和我们公司所有的三重四极杆和QTRAP系统一样,作为行业领导者,API3200?系统配备特色的即插即用离子源,满足更宽的液相色谱流速范围,分析更广泛的化合物。专利气帘CurtainGas?接口和LINAC碰撞池技术为您最严格的定量分析试验提供了出众的稳定性和选择性。功能强大的软件、先进的自动化特性、坚实的工艺设计和制造提高实验室工作效率,每天可分析数百个样品。? 高效电离 创新的Turbo V?离子源促使化合物高效电离,并且有效消除交叉污染,即使是大体积进样、高灵敏度定量分析及很宽范围的流速下测定时,也能消除交叉污染。? 卓越的MS/MS性能 专利LINAC碰撞池技术已得到世界公认,该技术提供更快扫描速度,可在单次运行时分析更多化合物,而不损失灵敏度或者影响图谱质量。?最长运行时间 独有的气帘Curtain Gas?接口保护了接口和四极杆分析器免受污染,大大地减少了日常维护的需要,保证了最大的工作效率。? 高通量 高效的软件应用包括自动方法建立使得仪器能够进行无人值守运行,每天可例行分析数百个样品。? 操作简便 即使您是初学者也一样可以获得专业级的测定结果。先进的数据采集和处理软件使设定和分析完全自动化。? 值得信赖的结果、系统与技术支持 API 3200?系统拥有系统专业的服务与技术支持。我们承诺让您的实验室保持最佳分析测试结果与最高仪器使用效率。建立在业界领先技术基础上的台式分析平台API 3200? LC/MS/MS系统充分采用了多项AB SCIEX公司所独有的质谱创新技术,以一流的性能来满足各行各业的要求。气帘Curtain Gas?接口独有气帘CurtainGas?接口,保护接口部分和四极杆分析器免受污染,减少了日常维护,保证了仪器的最大运行时间。LINAC高压碰撞池专利LINAC高压碰撞池确保MS/MS模式下离子从接口到检测器的最大传输率,有效消除交叉污染,允许同时进行多组分分析,检测更多的化合物和MRM离子对,而不损失灵敏度。LINAC高压碰撞池技术还能够在所有质谱扫描方式包括子离子扫描、母离子扫描、中性丢失扫描等中提高扫描速度而不降低性能。便利的“即插即用”离子源可靠耐用、易于互换、可方便使用的离子源,适合更广泛的应用范围和流速范围,满足您不同的分析需要。快速的离子源切换使系统停止采集数据的时间降至最短,大大简化日常维护工作。离子源工程设计的优化,使所有的温度、气体、电子等连接部件全部一体化固定在离子源的基座上,无需额外管线,不浪费时间。创新的TurboV?离子源促使化合物高效电离,即使在大体积进样及高流速分析时也能有效消除交叉污染。嵌入式陶瓷加热技术和改良的气体动力学设计提高了系统的最低检测限,能够在LC流速高达3mL/min的流速范围内进行高灵敏度的定量分析。ESI和APCI探针更换简便、迅速,在几秒钟内即可实现电离模式的快速转换。DuoSpray?离子源包含了可容纳ESI和APCI两套装置,您可以在单次LC进样中针对每个化合物优化离子源条件,是快速方法建立的理想工具,同时提升了分析通量和数据质量。PhotoSpray离子源 用于大气压光电离,大大拓展了可分析的化合物范围,某些化合物尤其是极性较弱的化合物的灵敏度远远高于ESI或APCI。PhotoSpray电离源可以使多种不易被ESI或APCI电离的化合物(例如低极性的多环芳烃(PAH))有效离子化。NanoSpray II 离子源 采用雾化气体辅助MicroIonSpray离子源,提供了不连续的纳升喷雾(nanospray)、纳升流速(nano?ow)HPLC多种功能,用于需要进行低流速的工作如蛋白质和肽类分析。新改进设计的接口使得离子更有效地从NanoSpray离子源传输到分析系统,大大提高了接口的耐用性和分析灵敏度。实验结果更可靠、更可信新一代的工业标准Analyst软件可以配置仪器、调谐参数、采集数据、处理数据和进行定量分析,即使是复杂基质样品分析,也保证高置信度的结果。可自动建立多组分检测的优化方法,快速建立新的定量方法,分析和比较分析结果。Analyst软件的另一个重要特性是适用于GLP实验室,全面符合21 CFR Part 11要求。它建立了一个易于管理的、完整的安全模式,满足您的实验室的需要,增加您的数据的安全性和可靠性。功能强大且完全自动化的附加应用功能(如信息关联采集 IDA)进一步扩充了系统的数据采集和处理能力。卓越的日内和日间定量性能氰乃净(cyanazine),一种三嗪除草剂的标准曲线如图所示,每个浓度重复进样5次,展示了出色的动态线性范围。极高的精密度和准确度证明了API 3200?系统可连续为您提供高质量定量结果。API 3200?系统的标定曲线的稳定性和重现性以及定量能力可通过除草剂莠去津样品每个重复进样3次所得的标定曲线得到证实。在连续4天的运行中,每个浓度重复进样9次,精密度和准确度远远优于一般微量定量分析的要求,证明了API 3200?系统卓越的稳定性和重复性。优异的日内和日间精密度能使您快速完成定量方法确证。简便的交叉平台方法转移许多实验室在日常工作中使用多种ABSCIEX三重四极杆和QTRAPLC/MS/MS系统。因为所有这些平台都采用相同的Analyst软件和TurboV?离子源,方法转移非常快速、简便,复制离子源的参数,调整化合物相关仪器参数,开始运行即可。通过这种方式,可以在API3200?系统上开发方法,然后转移到ABSCIEX其它平台上,忙碌的实验室能够得到最大效率。

  • 三重四极杆质谱仪MRM(多反应检测)技术的特点

    [font=宋体]一、灵敏度高:通过两级离子选择,排除大量干扰离子,使质谱的背景噪声降低,目标检测物的信噪比显著提高,从而实现检测的高灵敏度。 二、重现性好:在[/font]MRM[font=宋体]技术选择性的质谱信号采集中,避免[/font][font=宋体]了[/font][font=宋体]待测分子的离子化、质谱信号的抑制及源内碰撞碎裂过程[/font][font=宋体]造成[/font][font=宋体]的影响,因此重现性也相应提高。 三、准确度高:利用[/font]MRM[font=宋体]技术的特异性,进行连续增强的离子扫描分析,得到高分辨的串联质谱碎片数据,与全扫描和中性丢失质朴扫描模式相比降低了分析过程中定性结果的假阳性率,保证分析结果的准确度较高。 四、通量高:在三重四极杆分析器工作过程中,[/font]MRM[font=宋体]模式每个工作循环能处理多达[/font]300[font=宋体]对离子对,这种特点为研究多种蛋白质的多种修饰和丰度变化提供了机会,能满足蛋白质组学的研究需求。[/font] [font=宋体]因此,三重四极杆质谱仪在保留单杆质谱仪原有定量分析能力强的基础上,通过碰撞池提供了串极功能,加强了质谱的定性分析能力。[/font]

  • 【汇总贴】液质联用在高通量多残留检测中应用

    现将液质联用在高通量多残留检测中应用的文献汇总如下,并持续更新中 1、UPLC_Q_TOF_MS法高通量筛查儿童化妆品中139种非法添加化学药物 https://bbs.instrument.com.cn/topic/8416983 2、超高效液相色谱_线性离子阱/静电场轨道阱高分辨质谱法快速检测化妆品中22种功效成分 https://bbs.instrument.com.cn/topic/8416969 3、液相色谱_三重四级杆质谱法测定化妆品中 51种抗组胺类药物的含量 https://bbs.instrument.com.cn/topic/8416962 4、UPLC_MS / MS 法同时测定化妆品中地氯雷他定等 35 种抗组胺类成分 https://bbs.instrument.com.cn/topic/8416960 5、超高效液相色谱?串联质谱法快速测定化妆品中 87 种禁用原料 https://bbs.instrument.com.cn/topic/8416958 6、超高效液相色谱?串联质谱法同时测定化妆品中 83 种糖皮质激素 https://bbs.instrument.com.cn/topic/8416830 7、液相色谱_串联质谱法测定婴幼儿化妆品中的56种激素 https://bbs.instrument.com.cn/topic/8416811 8、超高效液相色谱-串联质谱法测定化妆品中36种兴奋剂 https://bbs.instrument.com.cn/topic/8416736

  • 质谱技术在临床微量元素检测中的应用共识

    质谱(MS)是利用各种离子化技术将化合物转化为离子,按其质核比的差异进行分离测定,从而进行物质结构和成分分析的方法。近年来,质谱技术凭借其高通量、高特异性、高灵敏度的特点,在医学检验领域飞速发展,在临床生化检验、临床微生物检验、免疫检验等方面都成为了不可或缺的重要技术。微量元素在生物体生长发育及代谢过程中起着重要的作用,同时它们也可以作为人体内某些疾病的检测指标。质谱法可以实现多元素同时检测,且灵敏度高、检测限低、动态范围宽、分析速度快,可以直接对血液样品进行检测。其中,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱[/color][/url]法([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]) ,已成为临床最为推荐的微量元素检测方法之一。与国外发展水平相比,我国质谱技术的临床应用还非常有限,很多相关部分还需要进一步完善,例如:质谱检测数据的判断标准、技术方法的掌握与人员培训、质量控制体系的建立等等。其中,方法学和质量管理体系是检测结果和应用的关键。在中国医师协会检验医师分会临床质谱检验医学专业委员会的指导下,首都医科大学北京妇产医院检验科质谱中心携手国内顶尖临床质谱应用专家,结合目前已公布的质谱技术标准、相关指南、文献及实际操作经验,制定本共识,重点阐述质谱技术在临床微量元素检测应用中对人员、环境、仪器、试剂、耗材、检测规程、方法性能评估及质量控制的要求,为临床实验室采用质谱技术开展微量元素检测提供基本指导。

  • 生物质谱技术及其在RNA 检测中的应用

    引 言在过去的30 年里,质谱技术尤其是测定生物大分子的生物质谱技术有飞速的发展,电喷雾离子化(ESI) 和基质辅助激光解吸电离(MALDI)离子化技术的发现为质谱的生物应用奠定基础;质谱的分辨率、灵敏度、准确度也达到很高的水平,生物质谱在蛋白、多肽领域得到广泛地应用,在核酸研究领域,质谱也逐渐发挥越来越重要的作用。下面分别介绍质谱技术、核酸的质谱检测方法以及质谱在核酸领域的应用。1 质谱技术简介质谱是测定物质分子量的工具,简单地说,质谱的操作部件由软件和硬件两部分组成。硬件主要包括三个核心硬件,分别为样品离子化、质量分析器(M/Z) 和离子检测器;软件部分包括机器的控制和质谱数据的分析处理。样品离子化有多种方法,在过去的20 多年,质谱领域的重大进展之一就是ESI 和MALDI 离子化方法的发现,可以在比较温和的条件下产生离子,这大大促进质谱在生物领域的应用。ESI 和 MALDI 离子化的原理在文献 中已经详细的介绍,这里不再详述。电喷雾离子化的特点是产生多电荷离子,使质量电荷比(m/z)降低到多数质量分析仪器都可以检测的范围,因而大大扩展分子量的分析范围。电喷雾离子化根据喷射源液体流量的大小,可分为纳升、微升、电喷和涡轮离子喷射。 MALDI 是通过气化的带电基质和样品之间发生碰撞,把激光的能量传递给样品,从而导致样品的离子化。它也是一种软电离技术,适用于混合物及生物大分子的测定。质量分析器是质谱的核心,目前质谱的质量分析器有四类:离子阱(Ion Trap)、飞行时间(Time of Flight,TOF)、四极杆(Quadrupole) 和傅立叶变换离子回旋共振。它们在设计和构造上各有不同,因而各有优缺点。质量分析器决定整个机器的分辨率、质量准确性、敏感性和质量检测范围。离子阱质量分析器使用频率分离离子,具有中等的质量准确度,且测量的质量范围有限。傅立叶变换离子回旋质谱使用频率分离离子,具有很高的质量准确度和分辨率,但傅立叶变换离子回旋质谱价格昂贵、仪器操作复杂。飞行时间分析器使用时间和距离分离离子,具有较高的质量准确度和分辨率,测量的质量范围大。四极杆质量分析器使用频率分离离子,具有较低的质量准确度和分辨率,且测量的质量范围有限。这些质量分析器的发明促进质谱的应用。近10 年来,质谱的重要进展体现在两个方面:(1)质谱技术的第一个重要进展就是开发串联质谱,就是对上述质量分析装置进行不同的组合,以达到特异性的目标;(2)质谱另一个重要进展不是在于技术层面上,而是在仪器化方面,商业化的仪器推动质谱在应用领域里的快速发展。各厂家为满足客户的需要,尤其是生命科学领域的需要,组合不同的特殊电离技术以及各种质量检测器,生产出超高分辨率、高灵敏度、宽质量范围的质谱仪;把质谱与气相色谱、高效液相色谱系统联用,大大拓宽质谱应用范围。下面主要介绍一些有代表性的质谱仪。傅立叶变换- 离子回旋共振质谱(Fourier Transform ion Cyclotron Resonance Mass Spectrometer, FT-ICR-MS) 具有超高质谱分辨率、高质量测量准确度、回旋池内现场反应等显著优点。生产傅立叶变换- 离子回旋共振质谱的主要厂家有 Thermo Fisher 和Bruker。Thermo Fisher 的LTQ-FT 是串联线性离子阱 FT-ICR,而Bruker 的APEX-Qe 是三级四极杆和FT-MS 的结合; FT-ICR-MS 质量准确度达1~2ppm, 分辨率超过105。静电场轨道阱(Orbitrap) 质量分析器,是第一个在静电场中进行离子捕获的高性能质量分析器,基于这一分析器,开发LTQ orbitrap 质谱仪。该机器使用线性离子阱实现离子分离、裂解以及多级质谱功能。它在质量准确度、分辨率、动态范围、灵敏度以及多级质谱能力等方面具有明显优势,具有高达30 万的分辨率。它与LTQ FT 线性离子阱回旋共振质谱仪有相近的工作原理,但仪器运行时无需消耗大量制冷剂,能够在降低运行成本的同时得到高分辨率的数据结果。MALDI - TOF 质谱采用一系列的新技术, 如提供二阶无网离子反射器,延长离子在飞行管中的飞行距离, 飞行路径可达3m ;创新的使用LIFTTM 技术来提升能量,可高速完成高质量的MS/MS 质谱数据;采用独有的PANTM 全景宽域聚焦技术,可以在非常宽的质量范围内获得大于25000 的分辨率。MALDI - TOF 质谱可用来分析较为复杂的混合物,在样品含量低于10-12mol 时,分子量的测定仍有相当高的灵敏度和分辨率。近年来发展的MassARRAY ™时间飞行质谱生物芯片系统由美国Sequenom 公司开发,是目前唯一采用质谱法直接检测单核苷酸多态性(SNP)的设备。该系统的突出特点是能以极高的精确度快速进行基因型识别,直接测出带有SNP 或其他突变的目标DNA。MassARRAY ™系统反应体系为非杂交依赖性,不存在潜在的杂交错配干扰,不需要各种标记物,其采用的高密度SpectroCHIP ™点阵芯片分析系统能在4h 之内完成多达3840 个多重性鉴定,每个检测点只需3~5s,结果实现全自动分析。这套系统所提供的大规模、高通量检测SNP 的技术平台,在当前疾病机制研究中发挥重要作用。

  • 敞开式离子化质谱技术在中草药研究中的应用(二)

    ⒉敞开式离子化质谱技术在中草药研究中的应用建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论。⑴直接电离离子源直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析是将[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url]头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。⑵直接解吸电离离子源自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。⑶解吸后电离离子源DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。⑷在中草药质量评价和质量控制中的应用随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。⑸本实验室的研究工作中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。①中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 ②中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 ③对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 ④DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 ⑤开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。⒊总结与展望中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制