当前位置: 仪器信息网 > 行业主题 > >

质谱数据差异分析方法

仪器信息网质谱数据差异分析方法专题为您提供2024年最新质谱数据差异分析方法价格报价、厂家品牌的相关信息, 包括质谱数据差异分析方法参数、型号等,不管是国产,还是进口品牌的质谱数据差异分析方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱数据差异分析方法相关的耗材配件、试剂标物,还有质谱数据差异分析方法相关的最新资讯、资料,以及质谱数据差异分析方法相关的解决方案。

质谱数据差异分析方法相关的论坛

  • 【原创大赛】热分析/质谱联用的数据分析方法之理论基础

    【原创大赛】热分析/质谱联用的数据分析方法之理论基础

    [b]作者:[/b][font=&]丁延伟,[/font][font=&][color=#2d374b]中国科学技术大学理化科学实验中心副主任。[/color][/font] 1. 热分析联用简介 联用技术是近年来分析仪器的一个发展趋势,许多常规的分析仪器如色谱、X射线衍射、各类光谱仪等都已实现了与其他分析技术的联用,热分析仪当然也不例外。早在两千多年前,我国战国时期的楚国诗人、政治家屈原在《楚辞• 卜居》中就已指出“尺有所短,寸有所长。物有所不足,智有所不明”。这告诉我们每种分析技术均有其独特的优势,但我们也应清醒地认识到它们自身也会存在着一定的不足。只有在实际应用中对每种分析技术扬长避短,充分发挥其优势,才可以达到事半功倍的效果。其实,在许多中文版本的文献资料中,对联用技术的描述通常使用“联用”而不是“连用”来表述,这也充分表明联用技术不是简单地将两种或多种技术连接或拼接在一起,而是要在实际上有机地、合理地将其组合在一起。也就是说,对于由多种技术的联用仪而言,其不仅仅满足于可以达到1+1+…+1 = N的效果,而且应达到1+1+…+1 N的效果。当然,对于一些不成功的联用技术而言,有时达到的效果可能为1+1+…+1 N,甚至等于0。 由常规的热分析可以得到在热分析实验过程中所研究的对象在一定的气氛和程序控制温度下由于其结构、成分变化而引起的质量、热效应、尺寸等性质的变化信息。通过将热分析技术与常规的分析技术如红外光谱技术、质谱、色谱、显微技术、拉曼光谱、X射线衍射等联用,可以得到在物质的性质发生发生变化的过程中产物的结构、成分、形貌、物相等的变化信息。通过这些信息,可以使我们了解到物质在一定的气氛和程序控制温度下所发生的各种变化的更深层次的一些信息,对于过程中的反应机理、动力学信息有更深刻的认识。热分析联用技术的特点和优势可以概括为实时、全面、高效,但我们也应清醒地认识到对于一些高温分解产生的气体分析时在传输过程中的冷凝现象的影响,一些高温产物在传输管线中的冷凝会导致由红外光谱、色谱和/或质谱进行气体分析时丢失一部分气体产物的信息。当前应用最为广泛的热分析联用技术主要有:(1)热重-差热分析、热重-差示扫描量热法以及显微热分析等,这属于同时联用的范畴;(2)热分析与红外光谱技术、质谱的联用,这属于串接式联用的范畴;(3)热分析与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等技术的联用,由于与热分析联用的这类技术自身在分析时需要一定的时间,因此通常称该类技术为间歇式联用技术。其实,这类技术也属于串接式联用的范畴。 2. 热分析/质谱联用技术简介TA/MS联用技术是在程序控制温度和一定气氛下,通过质谱仪在线监测由热分析(主要为热重仪、热重-差热分析仪以及热重-差示扫描量热仪)中由试样逸出的气体的信息的一种热分析联用技术,常见的联用形式有TG/MS、TG-DTA/MS以及TG-DSC/MS等技术。 质谱法(Mass Spectrometry,简称MS)是一种检测和鉴别微量气体物质的非常灵敏的方法,通过这种技术可以得到化合物的化学和结构的信息(官能团和侧链)。质谱法即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。 由于对MS的详细描述内容已经超出了本文的范围,因此在本部分内容中我们仅讨论在应用时所必需的一些与MS相关的背景知识。 在联用的质谱中,样品分子通过一个离子源进入质谱,在离子源中样品分子被高能电子束(通常为~70 eV)轰击。这个能量比有机物的离子化势能和键强度大,该能量实际上足够从分子上移动一个或更多的电子,形成正电荷分子离子。另外,电子束的能量还能够引起分子发生大量的碎裂,通过复杂的裂解途径形成许多不同的正电荷碎片离子,形成的这种碎片离子与所研究的分子结构密切相关。 3. 热分析/质谱联用技术的工作原理 TA-MS主要包括一台热分析仪(主要为TG、TG-DTA、DIL)、一台质谱仪以及将两者联合的接口。为了获得释放气体分析的最佳结果,热分析仪和接口一定要设计成保证释放气体有足够量转移到质谱仪,同时质谱仪要设计成能快速扫描和长周期稳定操作。由于质谱在高真空条件下工作,从热分析仪逸出的气体只有约1%通过质谱仪(否则会失去真空条件 )。如此低的逸出气体对于高灵敏度的质谱来说足够了。热分析仪和MS之间的联用需要通过特殊设计的接口来进行,这是因为热分析仪在1个大气压下正常工作,而MS则需要在大约10-6 mbar的真空条件下进行工作。通过可以加热的陶瓷(惰性)毛细管或内衬涂层的金属管将由热分析仪逸出的一小部分气体带入至MS仪中实现联用。实验时,主要使用He作为载气,但也可以使用诸如空气或O2等之类的气体。热分析和/或质谱设备的制造商提供了用于联用的接口和软件,使得MS可以在线监测由热分析仪逸出的气体(如图1所示)。一些MS设备的制造商已经扩展了它们的应用范围,现在已经有专门的MS设备可以通过更加方便的方式与热分析设备进行联用。[align=center][img=,690,331]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310934470794_5318_3224499_3.jpg!w690x331.jpg[/img][/align][align=center]图1 热重/质谱联用仪工作原理示意图[/align] 质谱仪提供的定性信息是靠气体分子和原子的离子比,再将所得到的离子比按它们的质量电荷比分开,每种气体物质在离子化过程中分裂产生一个特征离子模型,可与已知物质的模型辨别比较。进入MS的气体在电离室中被电子轰击,气体分子被分解成阳离子,根据这些阳离子的质量/电荷将其分离。通过测量离子的电流,可以获得如图5所示的强度为质荷比函数的谱图。[align=center][img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310934599640_9061_3224499_3.jpg!w690x342.jpg[/img][/align][align=center]图2. 强度作为质量/电荷比的函数的MS谱图[/align] 在图2中给出了一个瞬时扫描的MS谱图。由于在整个TG实验期间连续扫描,因此可以(用适当的软件)合并得到的每张所有瞬时扫描谱图中相同质量/电荷比的数据,还可以针对每个质量/电荷比获得强度随时间或温度的曲线。在图3中所列举的例子中,给出了在空气气氛中加热Nd2(SO4)3· 5H2O过程中的质量/电荷比为18(H2O +)、32(O2+)和64(SO2+)的强度随温度和时间变化的曲线。[align=center][img=,504,329]https://ng1.17img.cn/bbsfiles/images/2019/10/201910310935098720_2749_3224499_3.jpg!w504x329.jpg[/img][/align][align=center]图3. MS信号强度作为温度的函数[/align] 借助相应的谱图库,可以将获得的碎片的实验结果与谱图库进行比较,以便识别出在离子化之前的原始气体分子的信息。

  • 蛋白质谱数据分析

    [table=100%][tr][td]想请教一下,做完胶内酶解肽段后的质谱,如何处理数据寻找差异蛋白,并进行相关分类呢,这方面没接触过,希望懂的赐教一下,谢谢[/td][/tr][/table]

  • 热分析/质谱联用的数据分析方法第1部分 理论基础

    热分析/质谱联用的数据分析方法第1部分 理论基础

    [b][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]热分析联用简介[/size][/font][font=华文楷体][size=14.0pt]联用技术是近年来分析仪器的一个发展趋势,许多常规的分析仪器如色谱、X射线衍射、各类光谱仪等都已实现了与其他分析技术的联用,热分析仪当然也不例外。早在两千多年前,我国战国时期的楚国诗人、政治家屈原在《楚辞卜居》中就已指出“尺有所短,寸有所长。物有所不足,智有所不明”。这告诉我们每种分析技术均有其独特的优势,但我们也应清醒地认识到它们自身也会存在着一定的不足。只有在实际应用中对每种分析技术扬长避短,充分发挥其优势,才可以达到事半功倍的效果。其实,在许多中文版本的文献资料中,对联用技术的描述通常使用“联用”而不是“连用”来表述,这也充分表明联用技术不是简单地将两种或多种技术连接或拼接在一起,而是要在实际上有机地、合理地将其组合在一起。也就是说,对于由多种技术的联用仪而言,其不仅仅满足于可以达到1+1+…+1 = N的效果,而且应达到1+1+…+1 N的效果。当然,对于一些不成功的联用技术而言,有时达到的效果可能为1+1+…+1 N,甚至等于0。[/size][/font][font=华文楷体][size=14.0pt]由常规的热分析可以得到在热分析实验过程中所研究的对象在一定的气氛和程序控制温度下由于其结构、成分变化而引起的质量、热效应、尺寸等性质的变化信息。通过将热分析技术与常规的分析技术如红外光谱技术、质谱、色谱、显微技术、拉曼光谱、X射线衍射等联用,可以得到在物质的性质发生发生变化的过程中产物的结构、成分、形貌、物相等的变化信息。通过这些信息,可以使我们了解到物质在一定的气氛和程序控制温度下所发生的各种变化的更深层次的一些信息,对于过程中的反应机理、动力学信息有更深刻的认识。热分析联用技术的特点和优势可以概括为实时、全面、高效,但我们也应清醒地认识到对于一些高温分解产生的气体分析时在传输过程中的冷凝现象的影响,一些高温产物在传输管线中的冷凝会导致由红外光谱、色谱和/或质谱进行气体分析时丢失一部分气体产物的信息。当前应用最为广泛的热分析联用技术主要有:(1)热重-差热分析、热重-差示扫描量热法以及显微热分析等,这属于同时联用的范畴;(2)热分析与红外光谱技术、质谱的联用,这属于串接式联用的范畴;(3)热分析与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]等技术的联用,由于与热分析联用的这类技术自身在分析时需要一定的时间,因此通常称该类技术为间歇式联用技术。其实,这类技术也属于串接式联用的范畴。[/size][/font][font=华文楷体][size=14.0pt]2. [/size][/font][font=华文楷体][size=14.0pt]热分析/质谱联用技术简介[/size][/font][font=华文楷体][size=14.0pt]TA/MS[/size][/font][font=华文楷体][size=14.0pt]联用技术是在程序控制温度和一定气氛下,通过质谱仪在线监测由热分析(主要为热重仪、热重-差热分析仪以及热重-差示扫描量热仪)中由试样逸出的气体的信息的一种热分析联用技术,常见的联用形式有TG/MS、TG-DTA/MS以及TG-DSC/MS等技术。[/size][/font][font=华文楷体][size=14.0pt]质谱法(MassSpectrometry,简称MS)是一种检测和鉴别微量气体物质的非常灵敏的方法,通过这种技术可以得到化合物的化学和结构的信息(官能团和侧链)。质谱法即用电场和磁场将运动的离子(带[/size][/font][/b][url=https://baike.baidu.com/item/%E7%94%B5%E8%8D%B7/1144574][font=华文楷体][size=14pt][color=windowtext]电荷[/color][/size][/font][/url][b][font=华文楷体][size=14.0pt]的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于[/size][/font][/b][url=https://baike.baidu.com/item/%E6%A0%B8%E7%B4%A0/426295][font=华文楷体][size=14pt][color=windowtext]核素[/color][/size][/font][/url][b][font=华文楷体][size=14.0pt]的准确质量是一多位[/size][/font][/b][url=https://baike.baidu.com/item/%E5%B0%8F%E6%95%B0/2172615][font=华文楷体][size=14pt][color=windowtext]小数[/color][/size][/font][/url][b][font=华文楷体][size=14.0pt],决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。[/size][/font][font=华文楷体][size=14.0pt]由于对MS的详细描述内容已经超出了本文的范围,因此在本部分内容中我们仅讨论在应用时所必需的一些与MS相关的背景知识。[/size][/font][font=华文楷体][size=14.0pt]在联用的质谱中,样品分子通过一个离子源进入质谱,在离子源中样品分子被高能电子束(通常为~70 eV)轰击。这个能量比有机物的离子化势能和键强度大,该能量实际上足够从分子上移动一个或更多的电子,形成正电荷分子离子。另外,电子束的能量还能够引起分子发生大量的碎裂,通过复杂的裂解途径形成许多不同的正电荷碎片离子,形成的这种碎片离子与所研究的分子结构密切相关。[/size][/font][font=华文楷体][size=14.0pt]3. [/size][/font][font=华文楷体][size=14.0pt]热分析/质谱联用技术的工作原理[/size][/font][font=华文楷体][size=14.0pt]TA-MS[/size][/font][font=华文楷体][size=14.0pt]主要包括一台热分析仪(主要为TG、TG-DTA、DIL)、一台质谱仪以及将两者联合的接口。为了获得释放气体分析的最佳结果,热分析仪和接口一定要设计成保证释放气体有足够量转移到质谱仪,同时质谱仪要设计成能快速扫描和长周期稳定操作。由于质谱在高真空条件下工作,从热分析仪逸出的气体只有约1%通过质谱仪(否则会失去真空条件 )。如此低的逸出气体对于高灵敏度的质谱来说足够了。热分析仪和MS之间的联用需要通过特殊设计的接口来进行,这是因为热分析仪在1个大气压下正常工作,而MS则需要在大约10[sup]-6[/sup] mbar的真空条件下进行工作。通过可以加热的陶瓷(惰性)毛细管或内衬涂层的金属管将由热分析仪逸出的一小部分气体带入至MS仪中实现联用。实验时,主要使用He作为载气,但也可以使用诸如空气或O2等之类的气体。热分析和/或质谱设备的制造商提供了用于联用的接口和软件,使得MS可以在线监测由热分析仪逸出的气体(如图1所示)。一些MS设备的制造商已经扩展了它们的应用范围,现在已经有专门的MS设备可以通过更加方便的方式与热分析设备进行联用。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt][img=,647,297]https://ng1.17img.cn/bbsfiles/images/2020/06/202006020811465166_5753_1879291_3.png!w647x297.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图1热重/质谱联用仪工作原理示意图[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]质谱仪提供的定性信息是靠气体分子和原子的离子比,再将所得到的离子比按它们的质量电荷比分开,每种气体物质在离子化过程中分裂产生一个特征离子模型,可与已知物质的模型辨别比较。进入MS的气体在电离室中被电子轰击,气体分子被分解成阳离子,根据这些阳离子的质量/电荷将其分离。通过测量离子的电流,可以获得如图5所示的强度为质荷比函数的谱图[10]。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt][img=,562,273]https://ng1.17img.cn/bbsfiles/images/2020/06/202006020812056555_2241_1879291_3.png!w562x273.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图2. 强度作为质量/电荷比的函数的MS谱图[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]在图2中给出了一个瞬时扫描的MS谱图。由于在整个TG实验期间连续扫描,因此可以(用适当的软件)合并得到的每张所有瞬时扫描谱图中相同质量/电荷比的数据,还可以针对每个质量/电荷比获得强度随时间或温度的曲线。在图3中所列举的例子中,给出了在空气气氛中加热Nd[sub]2[/sub](SO[sub]4[/sub])[sub]3[/sub]· 5H[sub]2[/sub]O过程中的质量/电荷比为18(H[sub]2[/sub]O+)、32(O[sub]2[/sub]+)和64(SO[sub]2[/sub]+)的强度随温度和时间变化的曲线。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt][img=,381,246]https://ng1.17img.cn/bbsfiles/images/2020/06/202006020812206401_7706_1879291_3.png!w381x246.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图3. MS信号强度作为温度的函数[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]借助相应的谱图库,可以将获得的碎片的实验结果与谱图库进行比较,以便识别出在离子化之前的原始气体分子的信息。[/size][/font][font=华文楷体][size=14.0pt]在接下来的几部分内容中将陆续介绍与热分析/质谱联用技术相关的数据分析、作图及应用相关的内容,敬请关注。[/size][/font][/b]

  • 实验室分析仪器--气相色谱质谱联用仪数据处理系统介绍

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术,以其优异的分离定性特点,被广泛地应用于分析复杂混合物中的挥发性组分中。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]的使用过程:将在通常[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]上优化后的色谱条件移植到[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]上,全扫描分析进行定性,然后选取目标化合物的特征质量进行选择性离子扫描,进行定量分析。在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪中,采用四极杆作为质量分析器是其中的主流。由于四极杆采用的时域性分辨,因此在定量过程中通常推荐采用选择离子扫描模式(SIM),采用多通道SIM模式可对样本中的多个化合物实现定量检测,其检测灵敏度较全扫描模式可提高10倍以上,同时数据采集频率也可获得极大的提高,更好地匹配高速[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url],对于SIM模式定量检测而言核心是选择目标化合物的特征离子,确保附近的共流出化合物对其没有干扰,在SIM模式下获取的质量色谱图的数据处理与常规的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]数据处理基本一致,在此不予深入讨论。[b]一、定性谱图的获取[/b][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术的另一个主要应用是复杂混合物中组分的定性,定性的基础是流出物的质谱图。采用全扫描方式获得的总离子流与FID产生的谱图(图1)极为相似(应该注意的是由于响应灵敏度的不同强度有所差异),每一个点的强度相当于该时间段所有离子丰度的总和,根据归一计算每一个点可获得一张对应的质谱图。[img=Compress_1.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249047244813.jpg[/img] 图1 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]总离子流图(a)及单点对应的质谱图(b)然而,其质谱图通常会包含一些来自于离子源污染物、柱流失物、基质干扰物、共流出化合物所产生的离子,在分析复杂基质中的痕量物质时,这一现象尤为突出,样本中的基质就会不可避免地被引入检测过程中,对目标化合物的质谱图产生严重的干扰。因此,通过对质谱数据的后处理,将目标化合物的质谱图从原始谱图中提取出来,根据新建的“纯净”的质谱图进行图库检索或标样谱图比对,可使目标化合物的定性结果更加准确系统的背景噪声结构相对比较简单,包含空气中组分的分子离子(18、28、32、40、44等)以及部分色谱固定液的流失(高温条件下),扣除此类干扰较为简单,通常采用从目标化合物的质谱图中减去其周围本底的质谱图。丰度较高的共流出物及复杂基质干扰物的离子,使目标化合物的定性变得更为困难,简单的扣“本底”的方法无能为力。目前大部分[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱软件均不具备重叠峰自动判别以及自动谱图解卷积提取功能,因此在进行谱图提取时不能简单地扣除背景进行谱图检索。对总离子流谱图中的峰进行定性时,首先要判断其是否为重叠峰。判断标准一般为该峰的前肩位置和后肩位置的质谱特征是否一致。如果存在显著差异,表明该峰至少由两个或更多物质重叠而成。如图2所示,图中154号峰峰形基本正常,但前肩和后肩的质谱图存在显著性差异,可认定其为重叠峰。如果发现重叠峰,选择两个谱图中差异大的离子,获取离子谱图,根据谱峰对比确认重叠峰。选择特征离子134和146(图3),可发现两个质量色谱图存在峰错位,进一步验证了上述判断。为获得第一个物质的质谱图,如果选择位置a作为原始数据,那么它的背景应选择在位置b进行扣除。类似于双波长光谱的背景扣除,因为位置a所包含的第二个物质的量与位置b相等。图3(I,Ⅱ)给出了准确减扣后的两个物质质谱图,相互之间的干扰被完全去除,定性结果更加准确。 [img=Compress_2.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249049364498.jpg[/img] 图2 总离子流图及重叠峰前肩和后肩质谱图 [img=Compress_3.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249051332596.jpg[/img] 图3 重叠峰干扰扣除及对应的两个物质的质谱图为了能够达到更好的重叠峰拆分效果,化学计量学的方法被应用于质谱数据后处理中通过数学计算对质谱数据进行去卷积处理,以提取“干净”的质谱图。目前己商品化的去卷积谱图拆分软件有美国国家标准技术研究院(NIST)开发的一套软件 AMDIS( Automated MassSpectral Deconvolution& Identification System)、美国Leco公司色质谱工作站内含的去卷积算法等。图9-9显示了Leco工作站对一段总离子流谱图的重叠峰拆分结果,根据算法在一个前肩峰中拆分出5个物质。其中A为该时间点的质谱图,B为去卷积拆分后6号物质的谱图,C为NIST谱图库中的标准谱图。该结果表明,采用去卷积算法可以有效地获取准确的谱图,解决复杂物质分离分析时共流出物质的干扰。 [img=Compress_1.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249053444127.jpg[/img] 图4 去卷积分法拆分重叠峰结果显示去卷积谱图分析算法一般包括以下部分。(1)噪声分析:排除噪声对后期数据分析的影响。(2)特征离子提取:全谱图分析,确定化合物的特征离子及其峰形。(3)谱图去卷积:根据特征离子及其峰形将这段时间范围内的离子进行相关性归属,获得纯净的谱图。当两个共流出化合物的保留时间偏差大于2个以上数据采集点时,才能获得准确的拆分如果流出时间完全一致,无法获得拆分,定性结果往往只能显示丰度较高物质,同时匹配度有所降低。[b]二、谱图的定性分析[/b]通常在获取化合物纯净的质谱图后,通过检索的方法进行定性分析。谱图检索是一项比较成熟的技术。NIST等积累了大量的实验数据并形成了标准质谱谱图库,这些数据库被安装在各种[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]工作站上,极大地简化了定性的过程。但在检索的基础上,人工解析[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]得到的质谱图,有时也是非常必要的,尤其对于同分异构体、同系物以及未知化合物的定性分析[b]1.分子离子峰的确定[/b]EI质谱图中有分子离子的话,它应该出现在谱图的最高质荷比区,但是,质谱图上质荷比最高的离子不一定就是分子离子,仍需进一步检验确定,以便排除各种干扰。一个分子离子必要的但非充分的条件是:(1)一般是最高荷质比的离子,但是,某些含氧含氮的化合物,如醚、酯、胺、酰胺氨基酸酯、氯化物等,往往在比母峰多一个质量单位处出现一个峰(M+1),同样,有些分子,如芳醛、某些醇和含氮化合物易失去一个氢而生成M-1离子(2)分子离子必须能够通过丢失合理的中性碎片,产生谱图中高质量区的重要离子。通常,分子离子不可能失去质量为4~14和21~25的中性碎片而产生重要的峰。(3)分子离子对应的分子式应符合“氮规则”。假若一个化合物含有偶数个氮原子,则分子离子的质量为偶数,含奇数个氮原子的化合物,分子离子的质量为奇数,其他有机化合物,分子离子的质量一般为偶数。(4)分子簇丰度分布符合同位素峰规律:同位素峰分布强度分布规律符合(aX+bY)n展开式。其中n为该元素的个数,a,b分别为不同同位素的分布比率,如C为3:1,Br为1:1分子离子峰的强、弱甚至消失取决于分子离子的稳定性,也就是和化合物的结构类型密切相关。一般而言,相似结构或分子量情况下,分子离子峰的强度:芳香族共轭烯烃脂环化合物烯烃直链烷烃硫醇胺→酸支链烷烃醇。[b]2.碎片离子解析[/b](1)研究高质量端离子峰。质谱高质量端离子峰是由分子离子失去中性碎片形成的。从分子离子失去的碎片,可以确定化合物中含有哪些取代基。常见的离子失去碎片如表91所示。(2)研究低质量端离子峰。寻找不同化合物断裂后生成的特征离子和特征离子系列。应该注意的是上述离子系列在不同化合物的质谱中可能表现出的离子丰度相差比较大,另外有些离子系列在谱图中只出现其中的几个离子,芳基对应的离子丰度一般比较低。

  • [资料]有机质谱分析方法通则

    MV_RR_CNJ_0003有机质谱分析方法通则1. 有机质谱分析方法通则说明编号JY/T 003—1996名称(中文) 有机质谱分析方法通则(英文) General principles for organic mass spectrometry归口单位国家教育委员会起草单位国家教育委员会主要起草人郑思定批准日期1997年1月22日实施日期1997年4月1日替代规程号无适用范围本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。本通则规定了四极质谱法分析方法,适用于带有计算机数据处理及控制的四极质谱及与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相色谱联机仪器。应具备进样器,色谱与质谱联用所需的接口,离子源,质量分析器,检测器,计算机控制与数据处理系统,真空系统等。本通则适用于仪器规定质量范围的有机化合物定性和定量分析。本通则规定了有机质谱法对离子阱质谱仪的要求和分析方法,本通则适用于仪器规定质量范围内的有机化合物定性和定量分析。主要技术要求1. 定义2. 方法原理3. 试剂和材料4. 仪器5. 样品6. 操作步骤7. 分析结果的表述是否分级无检定周期(年)附录数目无出版单位科学技术文献出版社检定用标准物质相关技术文件备注2. 有机质谱分析方法通则的摘要本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。3 定义本通则采用下列定义3.1 原子质量单位 Atomic Mass Unit定义C原子质量的1/12为一个质量单位,简写为amu或u。3.2 毫原子质量单位 Milli Mass Unit千分之一的原子质量单位,简写为 mmu,lmmu=1/1000u。3.3 质荷比 Mass to Charge Ratio离子的质量和所带电荷的比值,简写为m/z。3.4 质谱图 Mass Spectrum质谱分析中以质荷比为横坐标,离子的相对强度为纵坐标所作的谱图。3.5 分子离子 Molecular Ion试样分子失去或得到一个电子而形成的离子。它在正离子场合下表示为M+。它的质荷比即表明试样分子所对应的分子量数值。在分子中含不同同位素时,以天然丰度最大者作分子离子。3.6 亚稳离子 Metastable Ion是指离子在质谱仪的离子源中产生,在达到检测器前分解的离子。其表观质量记为m※。3.7 母离子 Parent Ion是指产生某一碎片的前体离子,母离子不一定是分子离子。3.8 子离子 Daughter Ion是指由母子离子裂解后形成的离子。3.9 碎片离子 Fragment Ion分子离子经过裂解后形成的离子。3.10 重排离子 Rearrangement Ion是指质谱过程中产生的与前体离子中原子排列不同的离子。3.11 电子轰击电离 Electron Impact Ionization试样分子在离子源内经电子流轰击电离成离子的方法,简写为EI。3.12 化学电离 Chemical Ionization在离子源内电子流首先使反应气如 甲烷、异丁烷、氨等离子化,然后再与试样分子发生分子离子反应,使试样分子离子化,这种方法称化学电离,简写为CI。3.13 解吸电离 Desorption Ionization通以电流使涂在金属线圈上的试样分子迅速解吸下发生电子电离或化学电离,简写为DEI或DCI。3.14 场致电离和场解吸电离 Field Ionization and Field Desorption Ionization经过活化处理的发射丝,尖端的曲率半径可达微米级,加上高电压后,其附近的场强可达108V/cm,高场强使挥发性的试样分子产生离子化称为场致电离,简写为FI;而把试样涂在发射丝上并通以加热电流在高场强下使样品离子化称为场解吸电离,简写为FD。3.15 快原子轰击电离和二次离子质谱 Fast Atom Bombardment and Secondary Ion Mass Spectrometry快速Ar原子(或Xe原子)轰击涂敷有某种底物靶面上的试样,使试样分子离子化,这种方法称为快原子轰击电离,简写FAB;如用高能量的一次离子如Xe+、Ar+、Cs+来轰击涂敷在靶面上的试样而溅射出试样分子的二次离子来进行质谱分析,称为二次离子质谱法,简写SIMS。3.16 磁式质谱仪 Magnetic Sector Mass Spectrometer是一种使试样分子电离成离子,并通过扫描磁场,使它们按质荷比不同进行分离,并依次检测它们的强度,对它们进行定性和定量分析的一种仪器。3.17 双聚焦质谱仪 Double Focussing Mass Spectrometer是由静电场(E)和磁场(H)所组成的质量和能量分析器的有机磁质谱仪。如静电场排列在前,称为正置式(EH)双聚焦质谱仪,反之,如磁场排列在前,称为反置式(HE)双聚焦质谱仪。3.18 联动扫描 Linked Scanning是在双聚焦磁质谱仪中,加速电压(V)固定,将磁场强度H和静电场强度E的比值保持不变,来扫描不同质荷比的离子,由母离子来找到各种子离子的测定方法以及将H2/E的比值保持不变来扫描,由于离子来找母离子的测定方法,皆称为联动扫描。3.19 碰撞诱导解离或碰撞诱导活化 Collision Induced Dissociation & Collision Induced Activation在电场和磁场中间的无场区,具有较高动能的离子与中性原子或分子(一般为惰性气体如N2,He)发生非弹性碰撞,离子的一部分动能转化为内能,结果导致离子的解离,这种由离子与中性原子或分子碰撞而引起的解离称为碰撞诱导解离或碰撞诱导活化,简写为CID或CIA。3.20 色质联机 Chromatography Mass Spectrometer由色谱仪与质谱仪通过接口构成为整体的一种联用仪器。3.21 色质联用法 Chromatography Mass Spectrometry通过色质联机对物质进行分析的方法,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与质谱联用分析简写为GC/MS,液相色谱与质谱联用分析简写为LC/MS。3.22 质谱/质谱联用法 Mass Spectrometry/Mass Spectrometry在第一质谱仪中进行离子的质量分离,选择感兴趣的离子在碰撞室中进行解离,得到所选离子的各种裂解碎片谱图。这一过程等于获得一个质谱中某一离子的质谱,称为质谱/质谱法,此类仪器称为串联质谱仪,简写为MS/MS。3.23 总离子流色谱图 Total Ion Chromatogram是未经质量分离的各种质荷比离子,所产生的总电流强度信号与时间相对应的关系图。在色质联用分析时,TIC与色谱分析时各种检测器所得到的色谱图相对应,各峰的面积可作为GC/MS定量分析的依据,简写为TIC。

  • 安捷伦气质联用仪测试数据主成分分析的方法

    各位老师:近期我用安捷伦GC-Q-TOF-MS做了不同产地的某药材的挥发油,现需对所测数据进行主成分分析,有如下问题请各位老师赐教:1.安捷伦的气相色谱-四极杆-飞行时间质谱仪所测数据应当导出为何种格式,才能导入SPSS软件进行主成分分析,具体当如何操作?.2.安捷伦新推出了MPP(mass profiler professional),即质谱数据差异分析软件,不知道是否有老师有相关教程进行聚类分析?

  • ESI-MS质谱图分析方法

    [font=&][size=18px]原因:[/size][/font][font=&][size=18px]  1.平均自由程是分子(离子)两次碰撞所走过的路程,发生碰撞的时候那么离子的运动方向和速率都将会发生变化,在质谱中离子的平均自由程越大,那么在有限长的真空腔体内发生分子间或者是离子间的碰撞就越少,有利于提高分辨率,如果真空低,平均自由程就短,那么分子之间的碰撞就频繁,分辨率下降。[/size][/font][font=&][size=18px]  2. 如果真空腔体真空低,比如说是在几Pa到几十Pa,那么根据放电的最佳条件可知,这个时候高压特别容易放电;另外如果系统使用的是EI,那么为了防止EI灯丝烧断,真空度要高于10-3Pa。[/size][/font][font=&][size=18px]  3.高气压下,离子分子反应这个就不必讲了,CID就是最为典型的人为离子-分子反应得到目标离子碎片。[/size][/font][font=&][size=18px]  4.真空中必须高真空还有一点就是,目前所使用的微通道板和电子倍增器等信号放大系统都需要在高真空下才能够达到应有的效果。[/size][/font][font=&][size=18px]  质谱系统:[/size][/font][font=&][size=18px]  常用的微生物鉴定方法都是基于微生物的形态学、细胞生理生化、以及核酸基础建立的。自20世纪90年代,微生物鉴定系统不断发展,自动化程度不断提高,但仍然是建立在传统的生理生化和核酸基础上。近年来,基于蛋白质组学的质谱技术凭借其高灵敏度、高通量、快速等特点在微生物检测和鉴定方面得到快速发展。质谱技术主要是利用特定离子源将待检样品转变为高速运动的离子,这些离子根据质量/电荷比的不同在电场或磁场作用下得到分离,并且检测器记录各种离子的相对强度,形成质谱图用于分析,进行数据库检索,提供可靠的鉴定结果。目前用于微生物检测鉴定的质谱技术主要是气—质联技术(GC—MS)、基质辅助激光解吸飞行时间质谱(MALDI—TOF MS)、电喷雾质谱(ESI—MS)及热裂解亚稳态原子轰击质谱(Py—MAB—MS)等。[/size][/font][font=&][size=18px]  气象色谱质谱联用仪实验:[/size][/font][font=&][size=18px]  一、实验目的[/size][/font][font=&][size=18px]  1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法;[/size][/font][font=&][size=18px]  2. 了解色谱工作站的基本功能,掌握利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪进行定性分析的基本操作。[/size][/font][font=&][size=18px]  二、实验原理[/size][/font][font=&][size=18px]  [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])是最早实现商品化的色谱联用仪器。目前,小型台式[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]已成为很多实验室的常规配置[/size][/font]

  • 英开发质谱成像技术新方法 推动癌组织分析数字化

    原标题:英开发出质谱成像技术运用新方法 推动癌组织分析进入数字时代 在癌症研究领域,质谱成像(MSI)是一种非常有前途的技术,但目前该技术的运用还受原始数据预处理、图像精确度及图像识别能力等问题限制。英国帝国理工学院近日发布新闻公报称,该校研究人员开发出一种新方法,可有效解决上述问题。新方法将改变病体组织的检测方式,从而推动癌症组织分析进入数字时代。相关研究成果刊发在最新一期《美国国家科学院院刊》上。 质谱成像技术主要是利用质谱直接扫描生物样品,分析化学成分在细胞或组织中的结构、空间与时间分布信息。这种成像方法不局限于特异的一种或几种蛋白质分子,可在生物组织样本中找到每一种蛋白质分子,并提供它们在组织中空间分布的精确信息。早在几年前,就有科学家提出利用该技术来确定生物组织类型的构想,但却一直没有设计出实用有效的方法。 新方法利用解吸电喷雾电离技术来优化数据预处理,提高图像精确度,并通过提取生物组织特定的分子印记来强化不同生物组织类型的生化特性,以增强图像识别能力。研究人员称,利用新开发的集成生物学信息平台,可将质谱成像技术获得的大量人体组织的具体信息数据,用于构建各种类型的组织数据库。通过多样本分析,并与传统的组织学分析结果进行比较,计算机就可以学习识别不同类型的组织,从而使癌变组织的解析变得相对简单高效。他们将自己设计的工作流程用于直肠结肠癌组织的检测,效果良好。 与标准组织学动辄几周才会得出完整结果的检测手段相比,利用质谱成像技术进行单一检测,仅需几小时即可获得更详尽的信息,不仅会显示组织是否发生癌变,还会显示癌症是哪一种类型和亚型。这些信息对于医生选择最有效的治疗方法十分重要。 研究人员指出,自19世纪后期染色技术用于显示组织结构以来,对组织病理学样本的分析方法鲜有变化。直到今天,染色法依然是医院组织学分析的主流手段,并且变得越来越复杂,耗费也越来越高。而质谱成像技术可能改变组织学的基本范式,科学家将不再根据组织的结构,而是根据它们的化学成分来定义组织类型。将来的检测不再依靠专家的眼睛,而是以海量数据为基础,仅一个检测所得到的信息就远比多个传统组织学检测所得到的更多。他们表示,新研究克服了一些质谱成像技术实际应用所遇到的障碍,将成为创建下一代完全自动化的组织学分析手段的第一步。 总编辑圈点 这是用互联网思维改造传统检测方法的一种尝试,它首先选取了质谱成像方法中最容易快速成像的解吸电喷雾电离技术,实现了数据快速采集;其次,通过将质谱成像得到的结果数字化,建立样本库,提高了数据规模,保证了分析精度;最后,与大数据、云计算等结合,可不断提高检测的准确性,为可靠应用提供保证。新思维已经提高了单个样本的检测精度,我们对它在群体和地区性疾病的检测预防方面也应有所期待。

  • 安捷伦气质联用仪测试数据主成分分析的方法

    [color=#444444]近期我用安捷伦GC-Q-TOF-MS做了不同产地的某药材的挥发油,现需对所测数据进行主成分分析,有如下问题请各位老师赐教:[/color][color=#444444]1.安捷伦的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-四极杆-飞行时间质谱仪所测数据应当导出为何种格式,才能导入SPSS软件进行主成分分析,具体当如何操作?.[/color][color=#444444]2.安捷伦新推出了MPP(mass profiler professional),即质谱数据差异分析软件,不知道是否有老师有相关教程进行聚类分析?[/color]

  • 质谱技术在蛋白质组研究中的分析方法

    2003年人类基因组精细图绘制完成,是人类科学史上一个里程碑式的事件。后基因组时代的研究重点自然落在了蛋白质头上。为啥?因为中心法则告诉我们,基因的产物——蛋白质,是生命活动的最终执行者。与基因组类比,研究生物体内全套蛋白质的科学,就是蛋白质组学。基因组计划完成的同年,人类蛋白质组计划启动,令人激动的是,2014年人类蛋白质组的草图也完成了。而蛋白质组学能够飞速发展的最大功臣非质谱莫属。质谱的应用范围非常广泛,但这里只讨论蛋白质组学中的质谱。简单地说,质谱法(mass spectrometry)就是对肽段离子的重量(质荷比,m/z)进行测量的分析方法。样品经质谱仪(mass spectrometer)检测得到质谱图(mass spectrum),通过对质谱图的分析就可以对样品中的蛋白进行鉴定、定量。亲,图1的这种典型的蛋白质组学流程都很熟悉吧。蛋白首先都要被特异性的酶(通常为Trypsin)切割为肽段,再进行后续分析,这在蛋白质组学中被称为“自下而上”的研究策略(Bottom-up proteomics)。我们平时见到的质谱分析基本都是这种类型。提到蛋白质组,即会联想到一系列高大上的名词,iTRAQ、SWATH、SILAC、Shotgun、Label-free等等。很多概念容易弄混淆,下面我们就来理理清楚。图1. 典型的蛋白质组学流程大体上,质谱研究蛋白主要是鉴定和定量。通过二级质谱图(MS2或者MS/MS)进行数据库搜索匹配鉴定蛋白。通过各种标记或非标记的手段对不同样品中的蛋白进行比较就是定量。蛋白定量比较是质谱最重要的用途,图2是对定量方法的一个简单总结。非标定量(Label-free)不需要标记,不同样品分别处理、分别进质谱检测;优点是处理简单、无需标记、价格便宜、可以比较很多组样品,缺点是对操作步骤、LC、质谱稳定性要求严格。SILAC是在细胞培养基中加入稳定同位素标记的氨基酸,在代谢水平标记蛋白,一级质谱图进行定量,可以做到三组样品混合后进行比较,定量准确,但是不能标记组织样本,养细胞成本也较贵。双甲基化标记是通过化学反应的办法在肽段水平进行标记,一级质谱定量,也可以三组对比,标记试剂都比较便宜,而且可以标记任何来源的样品。iTRAQ和TMT是商品化的试剂盒,肽段水平标记,二级质谱定量;分别可以做到最多8组和10组样品间蛋白质组的比较。图2. 质谱定量方法以上这几个是一家的,还有几个名词是属于另外一家,比如Shotgun (DDA)、SWATH/DIA、SRM (MRM)、MRMHR/PRM。质谱进行数据采集的方式大致分为三种:鸟枪法(Shotgun)、选择反应监控(SRM)和全景式的SWATH/DIA。下面对照图3再来简单介绍一下。图3. 质谱扫描方式DDA、IDA、Shotgun和鸟枪法说的是相同的东西,意思是质谱在每个循环的中从一级里挑选丰度高的TopN个肽段去打碎做二级扫描,得到的结果通过与已知数据库中的理论蛋白进行匹配。DDA简单有效,分析流程比较成熟,也是目前质谱分析的主流方式。DDA也有其固有的缺陷,即具有一定的随机性,偏向于检测丰度较高的肽段,而抑制了低丰度肽段的检测。靶向策略被称为质谱领域的Western blot。质谱只去采集目标肽段大小的离子信息,因而提高了灵敏度和特异性。这种方法用来研究感兴趣的特定蛋白,定量准确,但是通量很有限。SWATH/DIA这种全景式的数据采集方式在最近几年突然火了起来,被认为在不远的未来可能会取代DDA的主流位置。该方法采取的策略是将扫描范围内的所有肽段按照质荷比分为若干个窗口,再对每个窗口里所有的肽段一起打碎,采二级,数据分析时通过抽提蛋白的子离子信息进行定量。SWATH/DIA解决了DDA中随机性选择肽段的缺陷,所以重复性更好,定量的准确性基本达到了SRM的水平,而且可以实现大规模定量。借用听来的一个比喻来说明:DDA就像机关枪扫射,数量多、体积大的目标命中的概率要大一些。靶向扫描(SRM或PRM)就像精准狙击,排除干扰,目标明确,每一枪直指目标,但是难以大规模消灭敌人。SWATH/DIA就是地毯式轰炸,只要暴露在我方攻击范围内的敌人,不管三七二十一,全部炸完。图4. 定量方法与采集方式结合如果将上述的定量方法(图2)和质谱数据采集方式(图3)结合起来,就得到了现在基于质谱的蛋白质组学研究的各种策略(图4)。再打个比方,保证吃货们一听就懂:鸡、鱼、肉、蛋、蔬菜要通过炒锅、烤箱、高压锅、微波炉等烹调之后才能变为美食,填饱肚子。同样的,各种定量方法(非标的和标记的)处理的样品,要通过质谱各种采集方式变为电脑中的数据,才能分析并从中得到蛋白的信息。本次的介绍就先到这里了,如果其中有什么问题,欢迎您批评和建议,我们会努力变得更好;如果需要跟我们进行技术交流和讨论,欢迎大家联系武汉金开瑞。后续我们还会继续推出对质谱技术各方面进行解析的文章,敬请期待。ReferencesA draft map of the human proteome. Nature 509: 575–581 (2014)Mass-spectrometry-based draft of the human proteome. Nature 509: 582–587 (2014)A review: Annu. Rev. Biochem. 80: 273–99 (2011)SILAC: Molecular & Cellular Proteomics 1: 376-386 (2002)iTRAQ: Molecular & Cellular Proteomics 343: 91–99 (2010)SRM: Nature Methods 9: 555–566 (2012)SWATH: Molecular & Cellular Proteomics 11: 1–17 (2012)

  • 【讨论】实际分析过程与标准方法有差异吗

    各位在实际分析过程中的操作与标准方法有差异吗?我们往往在标准方法基础上做些改进,在原始记录中需要体现这些差异吗?标准方法通常可分为前处理、仪器条件、数据处理等,前处理与仪器条件分属不同方法,允许么?如允许,该怎样填写方法名称?

  • 【分享】核分段逆回归集成线性判别分析用于质谱数据分类

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152864]核分段逆回归集成线性判别分析用于质谱数据分类.caj[/url]摘 要 针对高维小样本质谱数据在构造模型时易产生的过拟合现象!变量间的严重共线性!及结构与性质间的非线性关系,采用了核分段逆回归()特征提取集成线性判别分析()新技术"首先以算法完成质谱数据的非线性特征提取,然后在由新特征矢量张成的低维空间构造样本类别的线性判别函数,负责各样本个体类别的判定"将2方法应用于软饮料的质谱数据分类,结果表明:该方法不仅适应质谱数据与性质间的非线性关系,而且可以更少!解释能力更强的特征变量取得更高的分类精度,并能实现在低维特征空间对数据的解释及可视化。

  • 【原创大赛】在热分析/质谱联用仪器分析软件中质谱部分的数据处理与作图

    【原创大赛】在热分析/质谱联用仪器分析软件中质谱部分的数据处理与作图

    [b][font=华文楷体][size=14.0pt]在热分析/质谱联用的数据分析方法系列内容第4部分《热分析/质谱联用的数据分析方法 第4部分 仪器分析软件中热重部分的数据处理与作图》中以实验室在用的美国PerkinElmer公司的热重/红外光谱/[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用仪为例简要介绍热分析/质谱联用中与热重部分的数据处理与作图相关的内容,在本部分内容中将介绍与质谱部分的数据处理与作图相关的内容。[/size][/font][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]质谱数据的导入[/size][/font][font=华文楷体][size=14.0pt]点击质谱软件TurboMass图标(图1),软件打开后的界面如图2所示。点击Flie菜单下的Open Data File 选项(图3),按照数据的保存路径找到需要分析的质谱原始数据文件(图4)。点击图中的OK按钮,弹出的软件界面如图5所示。[/size][/font][/b][align=center][img=,155,192]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100736475405_4350_1879291_3.png!w155x192.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图1[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,106]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100737032466_270_1879291_3.png!w558x106.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图2[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,353,326]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100737190144_9553_1879291_3.png!w353x326.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图3[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,490,440]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100738067789_8969_1879291_3.png!w490x440.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图4[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,621,333]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100740197431_8686_1879291_3.png!w621x333.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图5[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]2.[/size][/font][font=华文楷体][size=14.0pt]总离子流曲线的数据分析与导出[/size][/font][font=华文楷体][size=14.0pt]图5中的红色曲线为不同的实验时间的总离子流曲线(TIC曲线),横坐标为时间,单位为min;纵坐标为相对丰度,为每一时刻的总离子电流与最强的峰所对应的总离子电流的百分比,总离子流曲线是将物质发生电离的所有离子的强度加和得到的。点击曲线中的每一点可以得到每一时刻的质谱图,如图6所示。图6为第25.329min时的质谱图,由图可见该时刻的气体产物中含有质荷比m/z为18、28、32和44的碎片信息。其中28和32主要为空气中渗入的N2和O2造成的,产物中的CO的m/z也为28。如需判断产物中是否存在CO,需比较不同时刻的m/z为28的选择离子流曲线,在下面的内容中将会介绍具体的比较方法。[/size][/font][/b][align=center][img=,561,306]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100740314499_1177_1879291_3.png!w561x306.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图6[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]在图5中的总离子流曲线中,在第8.47min、25.27min和38.62min分别出现了三个峰。这三个峰分别对应于一水合草酸钙失去一分子结晶水、一分子一氧化碳和一分子二氧化碳的过程。质谱曲线中的时间对应于热重开始的时间,按照下式在作图软件中将时间换算为温度:[/size][/font][/b][align=center][b][i][font=华文楷体][size=14.0pt]T [/size][/font][/i][font=华文楷体][size=14.0pt]= [i]T[/i][sub]0 [/sub]+ [/size][/font][i][font=华文楷体][size=14.0pt]βt [/size][/font][/i][font=华文楷体][size=14.0pt](1)[/size][/font][/b][/align][font=华文楷体][size=14.0pt]等式(1)中,[/size][/font][font=华文楷体][size=14.0pt]T[/size][/font][font=华文楷体][size=14.0pt]为不同时刻[i]t[/i]所对应的温度,单位为℃;[/size][/font][i][font=华文楷体][size=14.0pt]T[/size][/font][/i][sub][font=华文楷体][size=14.0pt]0[/size][/font][/sub][font=华文楷体][size=14.0pt]为实验开始的温度,单位为℃;[/size][/font][i][font=华文楷体][size=14.0pt]β[/size][/font][/i][font=华文楷体][size=14.0pt]为加热速率,单位为℃/min。[/size][/font][font=华文楷体][size=14.0pt]如果需要将总离子流曲线导出至其他作图软件,需点击Edit菜单下的CopyChromatogram List选项(图7),复制曲线所对应的数据。通常将复制的内容粘贴至空白的excel文件中,复制后的文件如图8所示。为了便于区别其他的质谱数据,可以将excel表格底部的sheet1改为TIC。图8中的第二列数据为质谱信号的绝对强度。[color=red]在进行数据分析时,应将横坐标由时间转换为温度。[/color][/size][/font][align=center][img=,408,357]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100740475293_9233_1879291_3.png!w408x357.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图7[/size][/font][/b][/align][align=center][img=,171,1025]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100741043059_8251_1879291_3.png!w171x1025.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图8[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]3.[/size][/font][font=华文楷体][size=14.0pt]选择离子曲线的数据分析与导出[/size][/font][font=华文楷体][size=14.0pt]在本系列内容的第3部分中介绍了在设定质谱的实验条件时的选择离子扫描和全范围离子扫描的内容。通过选择离子扫描,可以得到一些浓度较低的离子随时间(也即不同的温度下)的变化信息。对于未知物,通常从全范围离子扫描得到的质谱图中提取相关质量数的碎片来分析特征产物分子随时间(也即不同的温度下)的变化信息。[/size][/font][font=华文楷体][size=14.0pt]对于一水合草酸钙而言,在加热过程中随着温度升高分别失去一分子结晶水、一分子一氧化碳和一分子二氧化碳。在设定实验条件时,分别设定了相关的特征质量数(共6个检测通道)作为检测对象(图9和图10)。图11中给出了m/z分别为44、32、28、18、12的选择离子曲线(SIR)。由图可见,m/z分别为44、18、12的SIR曲线在加热过程中分别出现了检测峰。其中,m/z为44、12的SIR曲线的峰对应于为CO2的逸出过程。对于一水合草酸钙而言,25min左右的峰对应于CO的产生,在实际的检测过程中,由于O2的存在,CO会被快速地氧化为CO2,少量的CO由于其质量数为28,与空气中的N2的质量数相同,该变化过程通常被淹没在背景中而很难被检测到。但是,可以通过在该温度范围内检测到的O2浓度的下降(图12中在20-28min范围向下的倒峰)来证明该氧化过程。如果不存在该氧化过程,由空气中渗入的氧浓度(作为背景)在检测过程中几乎保持不变,当CO氧化为CO2时,背景中的氧浓度会降低。当反应结束时,氧浓度会回到正常水平。[/size][/font][/b][align=center][img=,419,231]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100741176284_6468_1879291_3.png!w419x231.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图9[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,419,236]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100741326145_297_1879291_3.png!w419x236.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图10[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,579,287]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100741447963_7989_1879291_3.png!w579x287.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图11[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,579,287]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100741576896_3711_1879291_3.png!w579x287.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图12[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]在进行数据导出时,在实验过程中得到的每一个选择离子所对应的SIR曲线可以按照本文第2部分中总离子流曲线(即TIC曲线)的方法,将每一条感兴趣的SIR曲线导入到excel文件中,导出后的excel文件如图13所示,图13中的第二列数据为质谱信号的绝对强度。[/size][/font][/b][align=center][img=,282,219]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100742095335_8652_1879291_3.png!w282x219.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图13[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]4.[/size][/font][font=华文楷体][size=14.0pt]软件中的质谱曲线的作图[/size][/font][font=华文楷体][size=14.0pt]分析时,可以将软件中显示的TIC曲线和SIR曲线直接复制到相应的报告中。点击图7中的Copy Picture选项,即可将软件中的图(图14)复制到相应的Excel文件中(图15)。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt][img=,558,303]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100742393640_3543_1879291_3.png!w558x303.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图14[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,303]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100742557012_9724_1879291_3.png!w558x303.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图15[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]5. SIR[/size][/font][font=华文楷体][size=14.0pt]与TIC曲线的时间温度转换方法[/size][/font][font=华文楷体][size=14.0pt]由于在仪器的分析软件中无法将时间直接转换为温度,需在作图软件中按照等式(1)的方法将时间转换为温度。具体方法如下:[/size][/font][font=华文楷体][size=14.0pt]本文中仅以m/z为44的SIR曲线在Origin作图为例介绍TIC曲线的时间温度转换方法,对于其他m/z的SIR曲线和TIC曲线可以参考这种做法。[/size][/font][font=华文楷体][size=14.0pt]将相应的数据从图15中的excel表中复制到Origin数据窗口(图16)中,并将横坐标改为时间(单位为min),纵坐标改为质谱信号。在图16中增加一列,并定义为温度,将该列定义为X轴(图17)。选中温度列,右击鼠标,在菜单中选择Set Column Values 选项(图18)。在弹出的窗口中输入等式1的换算关系,对于本次实验[i]T[/i][sub]0[/sub]取19.85℃,β取20℃/min,对时间列进行运算(图19)。点击OK,运算后的结果如图20所示。选中B列和C列进行作图,得到如图21所示的不同温度下的m/z为44的SIR曲线。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt] [img=,475,657]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100743092167_8218_1879291_3.png!w475x657.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图16[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,299]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100743264742_670_1879291_3.png!w558x299.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图17[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt] [img=,443,516]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100743395766_306_1879291_3.png!w443x516.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图18[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,514,357]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100743571524_9023_1879291_3.png!w514x357.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图19[/size][/font][/b][/align][align=center][img=,558,597]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100744087656_4144_1879291_3.png!w558x597.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图20[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,449]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100744266946_4924_1879291_3.png!w558x449.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图21[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]6. [/size][/font][font=华文楷体][size=14.0pt]每一时刻(温度)下的质谱图的作图方法[/size][/font][font=华文楷体][size=14.0pt]TIC[/size][/font][font=华文楷体][size=14.0pt]曲线中每一点对应于不同时刻(温度)下的逸出气体质谱图,可以直接点击图7中的Copy Picture选项直接进行复制,也可将图中的数据复制到Origin软件中进行作图。[/size][/font][font=华文楷体][size=14.0pt]以下以第25.409min的质谱图为例(图22)进行介绍。[/size][/font][font=华文楷体][size=14.0pt]点击图7中Edit菜单下的Copy Chromatogram List选项,将曲线所对应的数据直接复制到excel软件或者Origin软件(本文中直接复制到Origin软件中)的表格窗口中(图23),并将横坐标改为m/z,纵坐标改为MS signal,选中A列和B列,右击鼠标,在弹出的菜单中依次选中Plot、Symbol、VerticalDrop Line选项进行作图,得到如图25所示的质谱图。点击图25中的曲线,在弹出的窗口中将黑色实心方框的大小设置为0,即可得到与图22相似的质谱图。纵坐标如需用丰度表示,可以将所有的质谱信号强度值分别处以最强的质谱信号的强度值,乘以100后得到。如需标注每个质量数m/z的数值,双击图中的曲线,在弹出的窗口中选择Label选项(图28)。Enable选项打勾,Label From选项设置为X,Position选项设置为Center,Verticle Offset选项设置为50。另外,还可以根据需要设置字体的大小和颜色。设定完毕相关参数后,点击OK,可得到如图29的质谱图。[/size][/font][/b][align=center][img=,558,297]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100744371040_485_1879291_3.png!w558x297.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图22[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,306]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100744502049_1756_1879291_3.png!w558x306.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图 23[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,594,257]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100745035557_8436_1879291_3.png!w594x257.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图24[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,594,379]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100745152707_9314_1879291_3.png!w594x379.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图25[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,594,381]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100745277133_1859_1879291_3.png!w594x381.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图26[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,594,381]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100745401393_4646_1879291_3.png!w594x381.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图27[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,611,381]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100745584237_2422_1879291_3.png!w611x381.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图28[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,611,401]https://ng1.17img.cn/bbsfiles/images/2020/06/202006100746119074_2135_1879291_3.png!w611x401.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图29[/size][/font][/b][/align][align=center][/align]

  • 实验室分析仪器--质谱仪器扫描质谱数据的处理介绍

    对于逐点扫描得到的一段质谱数据,数据处理的首要任务是峰位置的判别。其实质是峰数据与既有模型的匹配过程,这与质谱仪的特性、扫描参数以及数据的统计信息等多种因素有关系。简单情况下,连续几个数据都大于设定的阈值(如最大值5%)即可认为该段数据是峰数据,而剩余的数据可认为是本底。在峰位置判别的基础上,根据本底数据判断谱段的基线。可将感兴趣谱段的非峰数据(未被标记)的平均值作为基线。但对于大范围的质谱扫描谱,可能存在不同谱段本底不同的现象,因此当处理几十个质量扫描范围质谱数据时,应注意基线的波动。对于每个具有一定幅度的质量峰,确定其峰中心位置是数据处理的重要一环。质量峰的位置准确,才能正确地反映离子流强度的变化。对于左右对称的峰,其峰中心一般取两个半高横坐标的中心;对于左右不对称的峰,可分别对峰两侧的斜坡作延长线,两延长线的交点位置即可作为峰中心。在作峰中心时,数据的涨落往往给计算结果带来显著的偏差,这也是峰中心标定的误差来源。对于平顶不明显的谱图,可以使用二次曲线拟合得到离子流强度。对于每个峰位置,原始数据的横坐标可能是计算机设定的DAC数值,也可能是按照时间排列的序列数。要通过计算机自动标定每个峰位置对应的质量数,除了要求一定的峰数据的量,还必须有对应的扫描参数和数据库支持。可人工指定几个峰位置对应的质量数,再由计算机根据扫描参数与质量数之间的线性或非线性关系算出其他相邻峰的位置,从而可画出峰强度质量谱图。对扫描峰离子信号的强度计算,第一种是峰高法,用峰中心位置的数据(或连续几个数据的均值)减去基线数据作为离子信号强度;第二种是峰面积法,用该峰数据(一般选大于5%峰高的数据)和基线围成的面积作为离子信号强度;第三种是采用窗口数据累加,即以峰中心位置开始向大质量数和小质量数寻找固定长度,确定一个质量范围,将该质量范围内的数据平均值减去基线数据作为离子信号强度。离子峰数据的涨落和基线的涨落都对测试数据有较大的影响,比较而言,峰面积法的精度高于其他方法。通过对峰数据的分析,还可得到其他质量峰的特征参数:①半峰宽。是反映仪器分辨本领的参数之一。谱图在一半峰高处的质量数之差就是半峰宽。②峰顶平坦度。反映探测器的稳定度。只有梯形峰谱图才能计算,计算公式为平顶位置处的离子流强度的极差与峰高的比值。该值越小表明探测器越稳定。③峰形系数。是反映仪器分辨本领的参数之一。定义为10%峰高处的峰宽与90%峰高处的峰宽之差与峰半高全宽的比值,该值用百分比表示。

  • 蛋白质组数据分析综述

    基于高通量的质谱技术方法,目前,各种疾病相关的差异蛋白质组数据高速增长。但是要从这些数据中发现生物学规律,挖掘得到疾病相关的生物标记物,以及发现潜在的疾病药物靶标,还有很艰难的数据分析任务需要完成。需要借助生物信息学的工具,去综合现有数据库数据及文献数据的知识,对这些蛋白质进行综合分析。发表于蛋白质组学杂志上的一篇综述From proteome lists to biological impact-tools and strategies for the analysis of large MS data sets. (Rainer et.al,. Proteomics 2010,10.1270-1283)很好地概括了面对海量的蛋白质组数据这个艰巨的任务时,生物学家和生物信息学家共同发展的数据分析策略和方法,从而数据中挖掘出隐藏的生物学知识。文章介绍了数据预处理过程(如ID转换)、功能富集分析、网络分析及蛋白质性质分析(如PTM, domain,motif)等工具;另外,还介绍了随着实验数据增长起来的文献数据的文本挖掘方法。

  • 求教数据分析方法

    我需要测许多个样品(样品为同一物质),样品中包含许多种成分,这些成分种类相似,但含量有差异,我就想知道通过什么样的数据分析方法可以得出样品间的联系和区别(比如SPSS或者XISTAT软件中的多元方差分析、因子分析、K-均值、相似度计算等,分析方法很多,但是不知道用哪一种或几种合适)

  • 【分享】如何选择质谱分析方法?

    如何选择质谱分析方法?——是用于研究蛋白,核苷酸还是小分子,这里也许有理想的答案 正如其它先进的技术一样,质谱技术冲击带来了市场的膨胀,造成了多选择性的产品,专业性的术语,这也就无形中增加了研究人员选择合适于他们的系统的困难性。正如西雅图Fred Hutchinson癌症研究中心蛋白组主任Philip Gafken所说的那样,“无论大家相信与否,这种技术并没有如它们所被应用的那样被逐渐的了解,研究人员没有认识到利用这种技术的真正目的。”比如说三级四极质谱仪(Triple Quadrupole Mass Spectrom)是一种相对便宜一点,但扫描速率(scan rate)也相对比较慢的质谱仪,而目前精良的傅立叶变换离子回旋共振质谱仪(Fourier transform ion cyclotron resonance,FTICR)则在精确性和分辨率都是首屈一指的,当然价钱也会比较贵。Gafken说道,“人们总是倾向于购买一些顶级的产品,但是事实上,这些应用中很大一部分都能由一些相对便宜一点的仪器来完成”,所以我们需要购买适用于各自需要的正确仪器。1.Protein Chemist级分析对于protein chemist而言,需要得到的仅仅就是知道他在研究的是什么。通过分析一种蛋白的免疫共沉淀的成份,或者利用二维电泳识别特殊的蛋白斑点,protein chemist就可以了解这种蛋白质的生物学特性了。对于这种应用,快速而并不需要太精确的方法就可以满足需要了。推荐系统:MALDI+TOF理由:肽指纹图谱(PePtide Mass Fingerprinting,PMF)和基质辅助激光解析电离飞行时间(matrix-assisted laser desorption ionization-time of flight,MALDI-TOF)质谱是可以考虑的首选方法。TOF是一种简单的质谱分析系统,灵敏度高,能进行从10原子质量单位到上百上千单位的片段分析。另一个TOF的优点就是分析的速度,伊利诺斯大学的化学副教授Neil Kelleher就表示“这就是它为什么能与MALDI配合工作的原因,你可以以一种高重复率在激光上操作,每秒获得许多光谱。” 而MALDI则是一种首先就可以考虑的方法,但是并不适合如何人,来自华盛顿大学的化学教授,Journal of the American Society for Mass Spectrometry杂志的编辑Michael Gross就说,“如果你的免疫共沉淀中有20或30个蛋白,每一个有50条特殊带,那么你就有1000条带,利用MALDI并不能在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中打到全部的”,为了得到更多的信息,必需要考虑一个可以提供序列详细信息的任意构造,比如MALDI-TOF-TOF,或者一个更加灵敏的仪器——离子捕获。

  • 质谱数据分析

    哪位大侠有质谱原始数据包括[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url],[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]都行。求质谱原始数据方便在自己电脑里学习。谢谢!!!

  • 【共享】 质谱分析方法

    word版 好东西啊[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18421]质谱分析方法[/url]

  • 质谱数据处理问题

    请问: 我用的是bruker离子阱质谱,但是bruker默认的原始数据是Analysis.yep格式,现在我想用MaxQuant或是MSQuant软件来分析数据,请问有什么方法转化格式吗?我找了一圈都没找到? MSQuant软件里面好像带有PTM Score打分方法,这个方法有没有独立的程序可用啊?或是源代码也行啊? 恳请各位专家指教!

  • 【网络会议】:2015年07月30日 14:00 公安司法毒物分析面临的挑战以及高分辨质谱数据库构建的实践与应用

    【网络会议】:2015年07月30日 14:00 公安司法毒物分析面临的挑战以及高分辨质谱数据库构建的实践与应用

    【网络会议】:公安司法毒物分析面临的挑战以及高分辨质谱数据库构建的实践与应用【讲座时间】:2015年07月30日 14:00【主讲人】:宋丽娟、徐牛生宋丽娟,博士,毕业于中科院化学研究所。现就职于山东省公安厅物证鉴定研究中心,主要从事刑事案件中毒物毒品相关的物证检验,在常见农药、安眠镇静药物、各种天然毒品、半合成毒品及化学合成毒品的检验鉴定方面具有丰富经验。 徐牛生,博士,毕业于中科院长春应用化学研究所-长春质谱中心。现任赛默飞液质应用工程师,致力于高分辨静电场轨道阱在公安司法领域的应用方法开发和技术支持。【会议介绍】 毒物是指进入生物体后通过化学或者物理化学作用损害生命正常活动引发功能性或者器质性病变乃至造成死亡的化学物质(如麻醉药物和精神药物等)。毒物分析是对样品提取信息的过程,它由样品采集、样品前处理、分析检测、数据处理及贯穿于各个步骤的质量控制所组成。毒物分析通常使用的方法有化学法、经典色谱法及现代仪器分析方法等。本次讲座主要内容:如何检测毒物?分辨率和质量精度的实际工作意义基于Orbitrap高分辨质谱的未知毒物分析流程 -------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年07月30日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/15495、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 【原创大赛】热分析/质谱联用的仪器分析软件中热重部分的数据处理与作图

    【原创大赛】热分析/质谱联用的仪器分析软件中热重部分的数据处理与作图

    [font=华文楷体][/font][font=华文楷体][size=14pt][b][color=#3366ff]注:本文最初发于《热分析与吸附》公众号,[url=http://mp.weixin.qq.com/s?__biz=MzI5MjUzMzQ0OA==&mid=2247484368&idx=1&sn=0de4d622ceba3f1af5c6b6d1c1f684a0&chksm=ec7ea677db092f612a1cc4701af60cf453391fabff2794955128cefd47d7a37b016c3d486fdf&token=106295096&lang=zh_CN#rd]原文链接[/url],欢迎关注公众号了解更多的与热分析和吸附相关的内容[/color][/b][/size][/font][b][font=华文楷体][size=14.0pt]本部分将介绍实验结束后的数据处理过程。由于本部分内容较多,为了叙述和阅读的方便,本部分将以实验室在用的美国Perkin Elmer公司的热重/红外光谱/[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用仪为例简要介绍热分析/质谱联用中与热重部分的数据处理与作图相关的内容,在下一部分内容中将介绍与质谱部分的数据处理与作图相关的内容。[/size][/font][font=华文楷体][size=14.0pt]1. [/size][/font][font=华文楷体][size=14.0pt]实验样品信息[/size][/font][font=华文楷体][size=14.0pt]样品:一水合草酸钙(白色粉末);[/size][/font][font=华文楷体][size=14.0pt]实验气氛:高纯He,流速100mL/min;[/size][/font][font=华文楷体][size=14.0pt]坩埚:敞口氧化铝坩埚;[/size][/font][font=华文楷体][size=14.0pt]温度范围:室温-900℃;[/size][/font][font=华文楷体][size=14.0pt]加热速率:20℃/min[/size][/font][font=华文楷体][size=14.0pt]仪器:美国PerkinElmer 热重(型号Pyris 1)/红外光谱(型号Frontier)/[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](型号Clarus680)/质谱(型号Clarus SQ8T)联用仪;[/size][/font][font=华文楷体][size=14.0pt]传输管线温度:热重仪至红外光谱仪温度、红外光谱仪气体池温度、红外光谱仪至[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]温度、GC/MS八通阀温度均为280℃,泵抽速60mL/min,由TL-900联用装置控制(图1)。[/size][/font][/b][align=center][img=,558,480]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090804397673_2956_1879291_3.png!w558x480.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图1[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]GC/MS[/size][/font][font=华文楷体][size=14.0pt]仪工作条件:柱温箱280℃,载气He流速1mL/min,MS传输线温度280℃、EI源、源电压70eV、源温度280℃;其他参数见图2. [/size][/font][font=华文楷体][size=14.0pt]MS[/size][/font][font=华文楷体][size=14.0pt]检测通过选择离子扫描(质量数为12、18、28、32、44)和全范围离子扫描(质量数范围44-300)进行。[/size][/font][/b][align=center][img=,690,469]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090804561376_5834_1879291_3.png!w690x469.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图2[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]2. [/size][/font][font=华文楷体][size=14.0pt]热重曲线分析[/size][/font][font=华文楷体][size=14.0pt]打开需分析的热重曲线的原始文件,打开后界面如图3所示。点击Display菜单中的weight%选项,将纵坐标由绝对质量换算为以百分比表示的相对质量(图4)。点击Temperature/time图标(图5),将横坐标由时间转换为温度(针对线性加热的实验条件)。坐标转换后的曲线如图6所示。图6中的TG曲线中,随温度升高先后出现了失去一分子结晶水、失去一分子CO和失去一分子CO2的三个失重过程。[/size][/font][/b][align=center][img=,404,243]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805118263_5265_1879291_3.png!w404x243.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图3[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt] [img=,447,398]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805262347_8583_1879291_3.png!w447x398.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图4[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt] [img=,562,209]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805385064_2880_1879291_3.png!w562x209.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图5[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,562,268]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090805498981_6279_1879291_3.png!w562x268.jpg[/img] [/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图6[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]如需得到微商热重(DTG)曲线,则选中Math菜单下的Derivative选项(图7),可得到如图8所示的DTG曲线。图8中右侧的Y轴所对应的为DTG曲线,左侧的Y轴所对应的则为TG曲线。如需对DTG曲线进行平滑处理,则选中图7中的Smooth选项,在弹出的窗口(图9)中设置需平滑的范围和平滑次数,平滑后的曲线如图10所示。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt] [img=,562,327]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090806007117_8271_1879291_3.png!w562x327.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图7[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,562,273]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807061823_1075_1879291_3.png!w562x273.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图8[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt] [img=,424,230]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090806531189_8898_1879291_3.png!w424x230.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图9[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,274]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807190910_1332_1879291_3.png!w558x274.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图10[/size][/font][/b][/align][align=center][/align][b][font=华文楷体][size=14.0pt]点击图11中的Calc菜单中的相关选项,分别计算每一失重台阶所对应的百分比及其特征温度,分析后的曲线如图12所示。需要指出,在分别对TG和DTG曲线进行分析时,应用鼠标首先选中需分析的曲线,选中后的曲线显示较粗(如图8和图10)。[/size][/font][/b][align=center][img=,301,397]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807319702_2966_1879291_3.png!w301x397.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图11[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,558,275]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090807499866_9742_1879291_3.png!w558x275.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图12[/size][/font][/b][/align][align=center][/align][font=华文楷体][size=14.0pt]3. [/size][/font][font=华文楷体][size=14.0pt]热重曲线分析结果的导出[/size][/font][font=华文楷体][size=14.0pt]由于软件中经归一化、平滑、微分等处理后的分析结果不能一键导出,在数据导出时建议采用以下方法:[/size][/font][font=华文楷体][size=14.0pt](1)原始数据的导出[/size][/font][font=华文楷体][size=14.0pt]点击File菜单下的Export data选项(图13),选择导出的文件格式(.txt或.csv),并保存为相应的文件,导出的数据如图14所示。需要注意,[color=red]通过这种方式导出的文件为经平滑、微分等处理前的数据![/color] [/size][/font][align=center][img=,440,424]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808011001_6739_1879291_3.png!w440x424.jpg[/img][/align][align=center][b][font=华文楷体][size=14.0pt]图13[/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt][img=,690,239]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808155641_7273_1879291_3.png!w690x239.jpg[/img][/size][/font][/b][/align][align=center][b][font=华文楷体][size=14.0pt]图14[/size][/font][/b][/align][b][font=华文楷体][size=14.0pt]图14中,第一列为实验时间(单位为分钟),第二列为样品质量(单位为mg),第四列为程序温度(单位为℃),第五列为程序温度(单位为℃)。在其他作图软件中进行作图时通常用第五列中的样品温度作为横坐标,第二列中的质量作为纵坐标进行分析。当然,第二列中的质量需要进行归一化处理。在公众号文章《Origin软件中热重曲线的作图方法》中以Origin软件为例介绍了相应的处理方法,此处不做赘述。[/size][/font][font=华文楷体][size=14.0pt](2)数据处理后的数据导出方法[/size][/font][font=华文楷体][size=14.0pt]如需导出经归一化、平滑、微分等处理后的分析数据,可选中Edit菜单下的Copy或CopyImage选项复制数据或者图片到作图软件中进行进一步处理(图15)。为了便于分析,也可以复制到空白的Excel表中再导入至其他软件中进行进一步处理。图16给出了将TG曲线和DTG曲线复制到一个Excel文件中的实例,供参考。也可将曲线分析后的图片直接复制到该表格中,如图17。[/size][/font][/b][align=center][b][font=华文楷体][size=14.0pt] [img=,438,219]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808279901_2592_1879291_3.png!w438x219.jpg[/img][/size][/font][/b][/align][align=center][font=华文楷体][size=14.0pt]图15[/size][/font][/align][align=center][font=华文楷体][size=14.0pt][img=,609,455]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808403512_4838_1879291_3.png!w609x455.jpg[/img][/size][/font][/align][align=center][font=华文楷体][size=14.0pt]图16[/size][/font][/align][align=center][font=华文楷体][size=14.0pt][img=,690,231]https://ng1.17img.cn/bbsfiles/images/2020/06/202006090808535773_6875_1879291_3.png!w690x231.jpg[/img][/size][/font][/align][align=center][font=华文楷体][size=14.0pt]图17[/size][/font][/align]

  • 蛋白质质谱分析

    PS1利用基质辅助激光解吸电离-飞行时间(MALDI-TOF)技术来表征生物分子。样品溶于固定的底物中形成晶体,用激光脉冲使其离子化,离子被加速后通过飞行管时分离,所有离子均可被检测。系统包括三个组成部件:样品点样制备工作站(SymBiot 1)、生物质谱工作站(Voyager-DE PRO)和自动化分析软件(AutoMS-Fit)。SymBiot1 是一个自动样品处理系统,支持亚微升级微量点样,具有快速省时、重现性好的特点;Voyager-DE PRO是为蛋白质组研究专门设计的自动飞行时间质谱分析系统,配有AB公司之专利—延迟检测技术,具有高分辨率、质荷比宽等特点;AutoMS软件可以批处理方式或实时动态方式检索Protein Prospector蛋白数据库或您指定的蛋白数据库,查询参数可以任意设定,检索结果以Microsoft Access格式分类编号及储存。 PS 1技术平台建立伊始便受到了许多蛋白质课题研究组的关注。中国科学院上海生物化学研究所戚正武院士课题组从猪肝中提取某一活性蛋白组分,该组分理化性质不清楚,天然含量十分低,并无相关文献报道。用HPLC分离以后对活性组分的成分不能确定。上海基康生物技术有限公司运用PS 1系统对HPLC分离后的活性组分作了质谱分析,仅在一个工作日内就精确确定该组分由分子量极为相近的几种蛋白质构成,分子量精确度达到10 ppm。后经HPLC再次细分(洗脱梯度增加了2.5倍),证实了质谱的结论。此活性组分曾滤过1kD分子筛,基康的质谱数据纠正了研究人员过去对该活性组分分子量的误判,为研究人员明确实验方向、优化实验步骤提供了强有力的依据。 PS1除了可以进行生物大分子的精确分子量测定,还可用于蛋白的肽指纹图谱分析(peptide mass fingerprint,PMF),提供相关生物信息学服务,并且还可以利用源后衰变(Post Source Decay,PSD)技术来获得样品的MS/MS数据,以得到一级结构信息。PSD方法通常增加了激发激光的功率,使其超过产生一般肽指纹谱图所需功率的阈值,过剩的能量使前体离子在源内离子化之后发生裂解,产生一系列碎片离子,在反射器的作用下,最终可以得到一张连续的碎片离子图谱。经特定的软件分析后,即可在数据库中检索到肽段的氨基酸序列。利用PSD分析技术,还可以对磷酸化,糖基化等翻译后修饰进行定位分析,同样也可以鉴定产生翻译后修饰肽段的蛋白质。Neville et al.(1997)将这一方法成功的用于磷酸肽的序列分析。作为重要的蛋白质鉴定手段之一,PS1的精确度可以达到10 ppm,灵敏度为fmol,分子量检测范围可达到500 kDa,每天可自动分析40-100个样品,适用于大规模“蛋白质组学”研究。

  • 标准方法差异分析表

    如果标准方法已作废,被新标准替代了,请问各位这个标准方法差异分析是怎么做的么?能不能发个表格格式参考一下,谢谢。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制