当前位置: 仪器信息网 > 行业主题 > >

色谱分析定量分析方法

仪器信息网色谱分析定量分析方法专题为您提供2024年最新色谱分析定量分析方法价格报价、厂家品牌的相关信息, 包括色谱分析定量分析方法参数、型号等,不管是国产,还是进口品牌的色谱分析定量分析方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱分析定量分析方法相关的耗材配件、试剂标物,还有色谱分析定量分析方法相关的最新资讯、资料,以及色谱分析定量分析方法相关的解决方案。

色谱分析定量分析方法相关的资讯

  • 毛细管气相色谱仪对复杂样品的定性定量分析
    在现代分析化学领域,毛细管气相色谱技术因其分离效率和精确的分析能力而被广泛应用。尤其在面对组成复杂的样品时,毛细管气相色谱仪显示出其优势。本文将深入探讨它在处理复杂样品时的定性和定量分析能力,以及其在实验过程中的应用策略和注意事项。   毛细管气相色谱仪的核心部分是长而细的毛细管柱,内壁涂有固定相。这种设计极大地增加了相互作用的表面积,使得样品分子能在气相和固定相之间进行成千上万次的交互作用。通过精准控制色谱条件如载气流速、温度程序等,可以实现复杂混合物中各组分的有效分离。   在进行定性分析时,毛细管气相色谱通常与质谱(MS)或傅里叶变换红外光谱(FTIR)联用,以增强识别未知化合物的能力。例如,气相色谱-质谱联用技术可以提供样品中每个峰的质谱图,通过数据库比对实现快速鉴定。这种方法尤其适用于石油产品、植物提取物、香精香料等复杂样品的分析。   定量分析方面,仪器通过与标准物质的保留时间和峰面积或峰高对比,实现高精度的定量测定。使用内标法或外标法定量,可以根据实际需要选择最合适的方法。内标法通过添加已知浓度的内部标准物来校正样品处理过程中可能出现的损失,从而提高定量的准确性。外标法则依赖于标准曲线,适用于可以精确控制样品进样量的情况。   操作时,需特别注意温度的控制和优化。升温程序必须精心设计以确保所有组分都能得到有效分离而不致于峰展宽或峰形失真。载气的选择和流速的调整也至关重要,氮气和氦气是常用的载气,它们具有化学惰性,不会与样品发生反应。   维护和日常检查对于保持设备的最佳性能也是必要的。定期检查和更换进样口的隔垫、衬管和色谱柱,可以防止样品交叉污染并保证分析的重现性。   综上所述,毛细管气相色谱仪是分析复杂样品的强有力工具。通过优化分析条件和适当的操作维护,可以实现对复杂样品中各个组分的高效、准确的定性和定量分析。
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 大化所高通量多重蛋白质组定量分析方法研究获进展
    近日,中科院大连化学物理研究所王方军博士、邹汉法研究员等人在高通量多重蛋白质组定量分析方法研究方面取得新进展,发展了一级质谱(MS1)谱图中六种不同蛋白质样品同时规模化定量分析的同位素标记方法,并将该方法应用于细胞蛋白质合成-降解周转更新分析,分析通量是常规同位素标记方法的三倍,研究成果发表在自然出版社新创立的综合性刊物《科学报告》(Scientific Reports, 2013, 3, 1827. doi: 10.1038/srep01827)上。   基于一级质谱(MS1)的蛋白质组学定量分析由于定量精度高,是现今蛋白质组学定量分析中应用最为广泛的分析技术。由于同位素标记的限制,现有的方法最多可以在一次液相色谱-质谱联用分析中定量三种不同的蛋白质样品,极大限制了蛋白质组学定量分析的通量。王方军博士、邹汉法研究员等人将体内氨基酸同位素标记方法与体外二甲基化同位素标记方法进行有机组合,实现了六种不同蛋白质样品的差异标记并在单次实验中实现了相对定量分析。该六重同位素标记策略还可以应用于细胞中蛋白质的合成及降解速率的高通量分析,成功测定了HeLa细胞中1365个蛋白质的合成-降解周转更新时间。此外,该工作中使用的基于MS1六重蛋白质组学定量及蛋白质周转分析软件系统也由我所自主开发,是国际上首个可以同时定量六个不同蛋白质样品的软件系统。 Quant-ArMone 六重蛋白质组学定量及蛋白质周转分析软件示意图 HeLa细胞内蛋白质降解动态拟合曲线示例
  • 高效液相色谱定量分析的误差来源与消除
    要提高分析结果的准确度,必须考虑在分析过程中可能产生的各种误差,采取有效措施,将这些误差减到最小。01 样品处理过程中误差的来源样品的处理包括称量、溶解到标记稀释等步骤。样品处理要尽量减少操作者的技术问题带来的误差,样品的稀释次数、稀释工具都是误差的来源。02 手动进样误差的来源作为进样主力,仍是手动进样器。如果使用方法不当,会引起色谱图问题,标准曲线无线性,重复性差。定期对进样阀清洗和保养,可避免由进样阀引起的污染和堵塞,排除干扰峰,提高准确性。进样量要大于定量环的3倍以上,这样才能防止部分样品由溢流管溢出从而导致定量分析的误差。03仪器系统误差的来源输液泵在分析中因输液泵的故障而引起分析结果的不准确是很常见。如尘埃、垃圾等污染物进入输液流道内,引起配管堵塞,单向阀污染引起压力不稳,密封垫损坏导致系统漏液,柱塞杆损坏引起无流动相流出,压力波动。保证输液泵的稳定和正常运行对分析结果的准确性、降低误差是非常重要的。流动相引起流动相组成变化配置引起的误差、线上混合泵失灵引起的比例误差、放置后组成的变化。例如使用挥发性溶剂,真空脱气引起挥发性成分的损失;流动相吸收空气中二氧化碳引起pH改变。流动相组成变化对tR值大的组分影响zui大。反相溶剂微小的变化,会引起保留时间相当大的变化。温度的变化柱上没有恒温装置,通常会因温度引起保留时间的变化,应使用柱温箱,另外保持室内最小温差。色谱柱流动相对色谱柱进行冲洗30min后,每隔10min~20min重复进相同的样品,如保留时间不变表明已平衡。应注意,柱可能对某一组分平衡,而对其它组分尚未平衡。因此只有对所有的组分都平衡,才能正式分析样品。04 结论提高操作技能,工作认真谨慎,仔细观察可以控制的误差,尽量把能控制的误差减小到zui低,分析结果的准确度将更高。
  • 生物惰性液相质谱联用系统提升寡核苷酸定量分析性能
    样品流路中分析物与金属表面相互作用引起的金属吸附是寡核苷酸分析中的主要问题之一。使用传统的 LC系统(基于不锈钢材质)通常会导致峰形不佳、灵敏度和定量性能受损。本文介绍了使用为解决金属吸附问题而开发的 Nexera XS inert系统分析寡核苷酸的示例。对灵敏度、定量性能和残留进行了评估,结果显示,与在流路中使用不锈钢的 HPLC 系统相比,该生物惰性系统在整体性能上明显改善。Nexera XS inert系统对金属配位化合物表现出优异的分析性能。通常用于 HPLC 流路的不锈钢 (SUS) 具有出色的耐压性,但含有磷酸基团的化合物可以通过金属配位作用与润湿不锈钢表面吸附。金属吸附会对峰形、检测灵敏度和重现性产生负面影响,并降低定量分析的性能。一般通过重复注入高浓度样品来抑制吸附,但这种方法既费时又昂贵。另一种方式是使用含有螯合剂的溶液来抑制吸附。但是此方法不适用于 LC/MS 分析,因为它可能导致污染和灵敏度降低。为了评估金属吸附抑制效果,采用常规HPLC系统(Nexera XR)和生物惰性UHPLC系统(Nexera XS inert)进行分析,并分别使用不锈钢色谱柱和无金属色谱柱。寡核苷酸的反相色谱分析中通常采用离子对试剂,本实验中使用HFIP(1, 1, 1, 3, 3, 3-六氟-2丙醇)和DIPEA(N, N-二异丙基乙胺)。样品信息:序列:5'-dG-dC*-dC*-dT-dC*-dA-dG-dT-dC*-dT-dG-dC*-dT-dT-dC*-dG-dC*-dA-dC* -dC*-3',(*) 表示 5-C 或 5-U 甲基化 (d) 2'-脱氧核苷分子量:6431.72色谱及质谱条件:略。图 1 显示了使用 Nexera XR 和不锈钢色谱柱以及 Nexera XS inert和无金属色谱柱分析的 10 ng/mL 标准寡核苷酸溶液的色谱图。与 Nexera XR 相比,Nexera XS inert 的峰强度增加了约 1.7 倍。图1 寡核苷酸标准溶液(10 ng/mL)的MRM色谱图图2 (a) Nexera XR,(b)Nexera XS inert 交叉污染比较分析浓度为1000 ng/mL的寡核苷酸溶液后,立即将样品溶剂水作为空白进样以评估残留情况。图2(a)显示了Nexera XR空白分析的色谱图,图2(b)显示了Nexera XS inert空白分析的色谱图,可以看到两者的残留水平分别为0.0790%和0.0033%。这些结果表明,Nexera XS inert系统显著抑制了金属吸附并最大限度地减少了交叉污染。样品流路中分析物与金属表面相互作用引起的金属吸附是寡核苷酸以及其他金属敏感化合物分析中的主要问题之一。Nexera XS inert在样品接触流路中使用生物惰性材料,对易被吸附的化合物具有出色的峰形、分离度、灵敏度、重现性和定量性能。而且,该系统耐压超过100MPa,适用于超快速分析,显著提高实验室分析通量。Nexera XS inert系统与MS的结合是分析金属敏感化合物的理想解决方案。本应用中使用的仪器(Nexera XS inert+LCMS-8060)参考文献:1、LCAV-0001-0274,Improvement of Quantitative Performance in LC/MS Analysis of Oligonucleotides using Nexera XS inert本文内容非商业广告,仅供专业人士参考。
  • 安捷伦与AFG合作开发蛋白质定量分析方法
    6月25日,安捷伦科技公司和Anderson Forschung Group LLC (AFG)表示,将合作开发多肽定量分析方法,旨在加快蛋白质生物标志物的开发和验证速度。   在合作中,AFG将利用其稳定同位素标准和用抗肽抗体提取(SISCAPA)技术,与安捷伦的1200系列HPLC-芯片和6400系列三重串联四极杆质谱仪(MS)相结合。用这种组合开发测定复杂样品(如,血浆)酶解产物中多种多肽含量的方法。其成果将使双方受益,财务细节尚未披露。AFG首席执行官Leigh Anderson表示:候选生物标志物的SISCAPA分析可以大大受益于安捷伦平台的重现性和灵敏度,我们期待着对这一组合进行优化。   据了解,Agilent 1200系列HPLC-Chip/MS系统是一个在聚合物芯片上集成了液相色谱柱、连接毛细管和纳流喷雾喷射器的微流控平台,即使样品载入量很小,也可以提供无与伦比的色谱性能。信用卡大小的装置插入安捷伦的HPLC-Chip Cube中,与质谱连接。芯片载入、溶剂和样品输送、液流的高压切换,以及在质谱离子源中芯片的定位,全部实现了自动化。 Agilent 6400系列三重串联四极杆LC/MS系统可以在宽质量范围提供飞克级灵敏度。该仪器以其对复杂基质中痕量有机化合物的可靠定量而享有盛誉,包括,测定药物代谢物、食品中农药残留和地下水中的污染物等。SISCAPA方法是利用抗体包被的磁珠和一个旋转的磁珠捕集装置,捕获目标多肽,然后用纳流LC-MS/MS系统进行测定。目的是对样品酶解液中极少量多肽的量进行测定,创建一种对高级诊断有潜在用途的研究工具。   安捷伦科技有限公司是分析仪器系统的领导供应商,其产品正在化学、环保、食品、医药和生命科学领域中广泛使用。安捷伦具有世界最先进的化学分析仪器,丰富的法规适应性和专业技术经验,以及优良的支持服务系统,这些都能够帮助您的实验室超前应对分析的挑战。
  • 《样品前处理技术及痕量金属定量分析方法交流会》
    上海光谱联合广东省分析测试协会、中国广州分析测试中心 共同举办《样品前处理技术及痕量金属定量分析方法交流会》 由中国广东分析测试协会、中国广州分析测试中心,上海光谱仪器有限公司联合举办的样品前处理技术及痕量金属定量分析方法交流会于2008年11月28日在中国科学院广州分院学术报告厅顺利举行,中国广州分析测试中心李忠军处长受广东省分析测试协会、中国广州分析测试中心的委托,主持了本次交流会。 来自广东省100多个科研院所、质检、商检、卫生、农业、高校、企事业的230多位专家、学者、工程师和用户代表也参加了本次交流会。由上海光谱仪器有限公司多位产品经理和技术支持组成的团队为本次交流会提供了全面的服务和支持。 (来自各个领域的分析测试工作者踊跃参加此次交流会) 在现代分析测试技术中,样品前处理已经成为制约分析速度、分析质量和分析成本的重要因素。在多种萃取新技术中,快速溶剂萃取技术具有有机溶剂用量少、萃取速度快、回收率高等突出优点。但是,由于进口产品价格较高,制约了这一技术的推广与普及。 上海光谱仪器有限公司此次推出的SP-100QSE型快速溶剂萃取仪,是国家十五重大科技攻关项目,产品性价比远远优于进口产品。同时,广州分析测试中心和上海光谱应用研发中心的应用技术人员针对国内市场需求,开发了许多应用方法,为产品的推广与普及做了大量的基础工作。 (广州分析测试中心和上海光谱仪器有限公司的工程师介绍前处理技术) 交流会上,以“样品前处理技术及痕量金属定量分析方法”为主题,做了多场专题讲座。中国广州分析测试中心工程师杨运云先生、上海光谱仪器有限公司应用工程师安强先生、中国广州分析测试中心工程师王畅女士及上海光谱仪器有限公司应用工程师王伟女士,分别做了主题为《固体样品前处理技术简介及加速溶剂萃取的原理和应用》、《SP-QSE系列快速溶剂萃取仪高温高压全自动样品前处理系统》、《原子吸收光谱法分析原理和分析技巧》及《原子吸收分光光度计结构、功能、使用、维护简介》的专题报告。专题报告对上海光谱仪器有限公司的“SP-QSE100快速溶剂萃取仪”的原理、应用方法、与国际上同类产品的比较等方面进行了学术上的分析,列举了大量的应用实验数据报告,提出了广泛的使用前景,引起了与会专家、学者、应用工程师和经销商的兴趣,上海光谱仪器有限公司的产品经理还一一解答了与会者的提问,许多参会者纷纷表达了求购、合作经营的愿望。 (上海光谱仪器有限公司研发生产的“SP-QSE100快速溶剂萃取仪”是目前国内唯一投产的商品化“快速溶剂萃取”设备,与国际同类产品相比,具有安全可靠、操作简便、物美价优等特点) 上海光谱仪器有限公司还在本次会议上,展示了获得2008BCEIA金奖的“SP-3800系列原子吸收分光光度计”,详尽的向参会者介绍了该产品的创新思想、技术特征、应用特点,许多代表踊跃索要产品样本和应用手册,表达了对国产分析仪器的尊重和支持。 (上海光谱仪器有限公司技术支持人员在解答与会者的提问。) 此次交流会获得了广大分析工作着的积极响应,与会人数超过250人,无论是交流会规模,用户的反响的热烈程度、都是类似交流会少见的。此次交流会的成功举办,使上海光谱仪器有限公司更加坚定了“通过产、学、研、用合作,发展国产分析仪器”的信心,公司还将在近期通过与北京、上海、四川等地专业机构的合作,分别举办类似的技术交流会,使更多的用户了解发展中的国产优质分析仪器,支持中国分析仪器产业。 在提倡高效、节能、安全、环保的今天,上海光谱仪器有限公司积极响应市场需求、努力提升自身价值,踊跃参与国产仪器开发,本着“诚实诚信、用户第一”的原则,提供最优质的产品、最优秀的服务,为国产仪器事业做出自己的贡献。 (撰稿:上海光谱市场部朱颖奇)
  • 安捷伦与ISB合作开发人类蛋白质定量分析方法
    2009年11月30日,北京——系统生物学研究所(ISB)和安捷伦科技公司(NYSE: A)今天宣布,合作开发人类多反应监测(MRM)Atlas,一种让科学家对所有人类蛋白质进行定量分析的综合方法。该项目将有望使生物标志物的发现与验证,以及基于蛋白水平的诊断检验、个性化医疗、人类健康监测等工作获得重要进展。   该项目获得“美国复兴与再投资法案——投资机会”项下国立卫生研究院国家人类基因组研究所提供的460万美元资助,由ISB的Robert Moritz 和 Leroy Hood开发“全人类多肽和MRM Atlas ”。苏黎世联邦理工学院的Ruedi Aebersold 也将携欧洲科研理事会提供的经费加入该项合作研究。   该研究将历时2年,分别在西雅图的ISB和苏黎世ETH进行,将使用安捷伦三重串联四极杆和四极杆飞行时间液相色谱/质谱(LC/MS)系统和纳流液相色谱-芯片/质谱系统。   “我们相信这将是蛋白质分析领域一个革命性的进展,”ISB成员兼蛋白质组学负责人Rob Moritz说,“这将促进蛋白质定量的常规应用,在人类疾病的机理研究、早期诊断和监测中发挥重要作用。”   “安捷伦很高兴共同担纲开发人类MRM Atlas,并且基于MRM方法,支持蛋白定量研究,”安捷伦LC/MS营销负责人Ken Miller说,“我们的三重串联四极杆质谱系统、蛋白质分析专用软件工具、以及独特的液相色谱-芯片/质谱技术,构成了分析这些大量样品稳定而灵敏的平台。”   MRM Atlas旨在让科学家们能够对人类组织、细胞系和血浆中大约20,000种蛋白质进行定量处理,从而对关乎人类健康的众多领域产生影响。该计划对每个人类蛋白编码基因,可生成多达四种多肽的数据库,经过快速精确的质谱MRM方法分析验证,实现对人类蛋白质组中几乎所有蛋白的明确鉴定与定量,从而将对普通生物学研究和大规模蛋白质组研究产生积极推动作用。
  • 微生物代谢的原位拉曼可视化定量分析成功实现
    记者21日从中科院海洋研究所获悉,该所研究员张鑫课题组和孙超岷课题组共同合作,基于共聚焦显微拉曼技术,通过三维定量成像实现了长期、近实时、非破坏性的微生物监测,对微生物生长和代谢情况进行可视化及定量分析,为未来分析微生物原位生物过程提供了新思路。研究成果近日发表于《微生物学谱》上。固体培养基培养的菌落的三维定量成像示意图 课题组供图记者了解到,张鑫课题组在之前的工作中,观测到我国南海冷泉环境中单质硫含量丰富。随后,孙超岷课题组发现了冷泉细菌Erythrobacter flavus 21-3可以高效氧化硫代硫酸钠生成单质硫,张鑫课题组通过拉曼光谱鉴定后发现单质硫结构为环状S8,研究成果发表在生物学领域权威期刊《国际微生物生态学会杂志》。后续两个课题组合作将E. flavus 21-3及其突变株布放到深海冷泉喷口附近进行原位培养,证实该菌株在深海原位环境中也能形成硫单质,相关成果发表在国际生物学期刊《微生物学》,为解释我国南海冷泉喷口广泛分布硫单质的成因提供了重要理论依据。E. flavus 21-3在高氧条件下的三维拉曼成像分析 课题组供图由此可见,微生物是深海硫形成和循环的重要贡献者,其介导的硫代谢的研究对于了解深海硫循环至关重要。然而,由于深海环境极端复杂,采样困难、微生物难于分离培养等因素,以及缺少对硫元素的形成的近实时无损的监测方法,深海微生物的原位探测面临巨大挑战。目前,主要通过经典的生物和化学方法研究硫元素的生成过程,例如X射线吸收近边结构、高效液相色谱、透射电子显微镜、离子色谱法或化学计量法等。但是,这些方法主要通过取样来获知特定时间点的微生物代谢情况,不能在不破坏样品的前提下连续监测其在时间尺度上的代谢过程;并且,其中一些方法样品制备复杂,会破坏细胞的原位真实性;也可能会出现取样不均匀及污染的情况,导致难以实现连续的原位观察。因此,亟需新的方法突破此瓶颈。低氧条件下E. flavus 21-3的三维拉曼成像分析 课题组供图共聚焦显微拉曼三维成像技术拥有低成本、快速、无标签和无破坏性的优势,具有将定性、定量和可视化完美结合的潜力,为我们解决相关问题提供了新的思路。因此,为证明此技术的潜力,研究团队构建了一套固态基底上微生物群落拉曼三维定量原位分析方法,将光学可视化与拉曼定量分析相结合,可在时间和空间两个维度上无损定量表征微生物群落代谢过程。该技术已成功应用到深海冷泉细菌E. flavus 21-3硫代谢过程的原位监测。据介绍,基于拉曼三维成像进行体积计算和比率分析,课题组对不同环境下的菌落生长和代谢进行了量化,发现了生长和代谢方面不为人知的细节,为厘清深海冷泉生物群落中广泛分布的硫单质成因提供了重要技术支持。“据我们所知,这是首次尝试长期监测菌落在固体培养基中生长的原位无损技术。我们能够快速确定代谢产物,推断反应发生的途径,并快速筛选产硫细菌。由于这一成功的应用,不仅证明了该方法在未来对微生物原位过程的可视化及定量分析的潜力,也为研究深海中附着在岩石沉积物等固体表面上的微生物提供了新的思路。”张鑫对《中国科学报》表示。该研究得到了国家自然科学基金、中国科学院A类战略性先导专项、中国科学院海洋大科学研究中心重点部署项目、泰山青年学者计划等项目联合资助。
  • “6元时代”汽油品质的快速筛查和精确定量分析方法
    我的学习我做主,术业有专攻,3月我只学对的。 会议名称:Agilent5100 ICP-OES 汽油样品多种元素直接分析测量 会议时间:2015-03-10 14:00 讲师:欧阳昆 会议介绍: 随着汽油需求量的逐步加大,我国对于汽油质量的要求越来越高,从国三升级到国四再升级到国五,汽油中对于硫含量、蒸汽压、烯烃含量等指标的检测与要求愈加严格,汽油中多种无机元素的检测,也日益紧迫和突出。其中硅含量的监测和标准却始终游离在标准之外,且我国国家标准与石油化工行业标准中均无汽油中硅含量的测定方法。 然而,在汽油的实际使用中,硅等多种无机元素的含量多少对于汽车的行驶与养护有着很关键的影响。本方法建立了以Agilent 5100 ICP-OES同步双向观测等离子体发射光谱仪,汽油直接进样,分析多种无机元素。方法方便快速、可靠,适用于对汽油品质的快速筛查和精确定量分析。 参会报名:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1349
  • 岛津应用:基于nSMOL技术和Skyline软件的曲妥珠单抗LC-MS/MS定量分析方法开发
    曲妥珠单抗是一种抗 Her2 的重组 DNA 衍生的人源化单克隆抗体,它通过将自己附着在 Her2 上来阻止人体表皮生长因子在 Her2 上的附着,从而阻断癌细胞的生长,曲妥珠单抗还可以刺激身体自身的免疫细胞去摧毁癌细胞。随着曲妥珠单抗在临床的广泛应用,对该药物在人体血浆中定量检测的精密度和准确度要求也日益提高。 随着液相色谱和质谱技术以及生物样品分离技术的发展,LC-MS/MS 定量技术在蛋白质定量研究中的应用日益广泛。相对于传统的免疫分析方法(例如 ELISA),LC-MS/MS定量技术提高了蛋白分析的精密度和准确度。基于质谱法的蛋白定量在抗体药物临床前及临床研究中受到越来越多的关注,为了使蛋白质定量技术与药物研究和临床检验更加紧密结合,岛津公司将其超快速液相色谱-质谱联用平台和强大的定量蛋白质组学软件 Skyline集成一体。根据蛋白质序列和用户自定义,Skyline 软件可以用来设计、改善以及优化选择反应监测(SRM)/多反应监测(MRM)、全扫描质谱和串联质谱定量法。Skyline 软件不仅将结果和方法优化结合起来,也为蛋白质定量的研究工作提供了标准化的工作流程。同时岛津研发工程师们为简化复杂生物基质中抗体药物的定量分析工作,对抗体药物前处理过程进行了独特的设计,发明了 nSMOL 前处理试剂包,该方法能够有效富集血浆/血清中的抗体药物,实现 Fab 区域的选择性酶解,提高酶解效率,极大降低了酶解产物的复杂性,对于复杂生物基质中抗体药物的准确定量提供了非常有利的工具。 本文建立了一种使用岛津超高效液相色谱仪 LC-30A 和三重四极杆质谱仪 LCMS-8060与Skyline软件联用建立血浆中曲妥珠单抗定量分析的工作流程。结合nSMOL前处理技术,实现抗体药物 Fab 区域选择性酶解,从而显著降低了方法开发的复杂程度。在本实验筛选阶段,共有 10 个肽段具有明显的色谱峰,其中 8 条肽段与曲妥珠单抗的 Fab 区域相关,而曲妥珠单抗具有代表性的特异性肽段集中于 Fab 区域,充分体现了 nSMOL 技术的高选择性,从而极大地降低了酶解产物的复杂性,提高方法开发的速度。实验通过 Skyline 软件完成MRM 通道的设计和方法的输出,LabSolutions 基于 Skyline 导出的 MRM 分析方法,进行肽段筛选、碰撞能量优化,最终确认曲妥珠单抗的特征肽段及其对应的 MRM 离子对。基于以上所建立的方法,本文完成血浆中曲妥珠单抗药物的定量分析方法开发,定量特征肽段为IYPTNGYTR(542.80404.70),线性范围为 0.122 μg/mL~125 μg/mL。 了解详情,敬请点击《基于nSMOL 技术和Skyline 软件的曲妥珠单抗LC-MS/MS定量分析方法开发》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 许国旺研究员课题组建立一种高覆盖的代谢组和脂质组的定量分析方法
    近日,许国旺研究员课题组在代谢组学定量分析方面取得新进展,建立了适用于代谢组和脂质组交替定量分析的双反相液相色谱-质谱新方法(RPLC/RPLC-MRM-MS),可定量分析超过1,000个代谢物和脂质。代谢组学在精准医疗中发挥着越来越重要的作用。然而,代谢组学在精准医疗研究的应用需要大规模定量数据的支持。目前,仍然缺乏高覆盖度的代谢组靶向定量分析方法。针对上述问题,研究团队首先开发了包含397个代谢物MRM离子对和1,080个脂质MRM离子对的双液相色谱-质谱(RPLC/RPLC-MRM-MS)交替分析方法。然后利用221个标准品定量分析了超过1,000个代谢物和脂质,包括胺、氨基酸、苯衍生物、肽、核酸碱基及其相关物质、胆汁酸、羧酸、脂肪酸、激素、吲哚等代谢物的绝对定量,以及肉碱、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、自由脂肪酸、鞘磷脂、磷脂酰胆碱、磷脂酰乙醇胺和甘油三酯等的半定量。与Biocrates MxP Quant 500试剂盒相比,建立的交替RPLC/RPLC-MRM-MS方法可定量的代谢物数量提高了约1倍。该交替RPLC/RPLC-MRM-MS定量方法为大规模临床样本高覆盖定量数据的获取提供了可靠的分析平台,并将在健康人群代谢物的基准浓度测定中发挥积极的作用。相关研究成果以“Comprehensive Metabolite Quantitative Assay Based on Alternate Metabolomics and Lipidomics Analyses”为题,于近日发表在《分析化学学报》(ANALYTICA CHIMICA ACTA)上。该工作的第一作者是许国旺研究员课题组博士研究生吕王洁,通讯作者为赵欣捷副研究员和许国旺研究员。以上工作得到了国家自然科学基金、大连市重点基金、大连化物所创新基金等项目的资助。(文/图吕王洁)文章链接:https://www.sciencedirect.com/science/article/abs/pii/S0003267022005505
  • 【网络会议】:2015年07月09日 14:00 生物大分子液质定量分析方法开发
    【网络会议】:生物大分子液质定量分析方法开发 【讲座时间】:2015年07月09日 14:00 【主讲人】:宋玉玲 宋玉玲女士于岛津企业管理(中国)有限公司上海分析中心,担当液质应用工程师,在液质技术相关的生物分析及大分子分析方面具有丰富的经验,多年从事复杂生物基质中多肽类药物分析方法开发、蛋白定量方法建立等工作。 【会议介绍】 在复杂生物体系中蛋白药物定量研究的手段中,与传统的ELISA方法相比,利用LC-MS/MS对抗体药物进行定量分析的方法具有更好选择性,并且能够实现代谢产物的同时分析,为抗体药物的药代动力学分析提供了一种有效的研究手段。 对于复杂生物样本中的痕量蛋白检测,简化方法开发过程、提高分析灵敏度、获得好的重现性是普遍关注的热点,在此介绍岛津最新开发的蛋白定量技术,以蛋白定量方法开发过程、蛋白定向酶解技术、氧鎓离子技术在糖蛋白分析中的应用等展开介绍。 -------------------------------------------------------------------- 1、报名条件:只要您是仪器网注册用户均可报名参加。 2、报名并参会用户有机会获得100元手机充值卡一张哦~ 3、报名截止时间:2015年07月09日 13:30 4、报名参会: http://www.instrument.com.cn/webinar/Meeting/meetingInsidePage/1506 5、报名及参会咨询:QQ群&mdash 379196738
  • 【行业应用】赛默飞发布食物包装卡纸中迁移污染物的定性和定量分析方法
    赛默飞世尔科技(以下简称:赛默飞)近日发布应用固相微萃取-气相色谱-三重四极杆质谱联用技术(SPME-GC-MS/MS)对食物包装卡纸中迁移污染物的定性和定量分析方法。通过自动化操作,该方法运行快速、稳定且大量节省了人力。食品包装是食品工业中的一个关键环节, 包装材料种类繁多,包括塑料、纸质、金属和玻璃等。它在保护食物不受损坏的同时,可以保持食物新鲜、免于微生物降解。然而,食品包装材料同样可能导致食物腐坏。食品包装材料在全世界均受到相关法规的管制,最新发布的EU/202/2014法规,对可能接触食物的塑料材质包装物进行了限制规定:不仅规定了可由包装材料转移到食物中的化学物质最高限量,还明确了食品包装材料中禁止含有的化学物质,以及食品和包装材料中有关物质的限量。 过去20年,科研人员发表了多种对包装迁移物进行有效监控分析的测试方法,通常来说,主要分为两类:第一类是假设包装材料中每种化合物均 100% 向食物转移,对包装材料本身的最终形态进行分析,第二类在模拟条件下将模拟食物产品与包装材料在特定时长和特定环境下接触放置,再分析包装中化合物向食品的迁移情况。 食品包装卡纸可由原生纸、再生纸或二者混合物制成,再生卡纸更有可能广泛含有由降解产生的危险污染物,包括打印油墨、涂层和粘合剂。本次测试采用了固相微萃取技术(SPME)和气相色谱-三重四极杆质谱技术(GC-MS/MS),采取上文所诉的第一类方法,对食品包装卡纸中12 种代表性的可能迁移物(邻苯二甲酸盐、光引发剂、苯酚和异味成分等挥发性和半挥发性物质)进行了定量分析。本次实验应用Thermo ScientificTM TSQTM 8000 Evo GC-MS/MS质谱仪联用配备Thermo ScientificTM TriPlusTM RSH自动进样器和SPME(SPME NL: 50.5mm)模块的Thermo ScientificTM TRACETM 1310气相色谱仪系统进行测试分析。气相色谱分离采用Thermo ScientificTM TraceGOLDTM TG-5SilMS色谱柱(30m × 0.25 mm × 0.25μ m, P/N 10177894),用于定量和确证的原始数据则通过Thermo ScientificTM TraceFinderTM 3.2 软件中的智能定时扫描(timed-SRM)模块采集。 本实验采用经内部验证的测试方法,对 12 种可能由卡纸引入的迁移污染物进行了定量分析。方法应用了全自动SPME技术,有效提高了实验室测试通量。依据 IUPAC/AOAC 统一操作流程,完成内部方法学验证,并确证此方法适用于监测可能与食物接触的卡纸中的有害污染物。更多产品信息,请查看:TSQTM 8000 Evo GC-MS/MS质谱仪www.thermoscientific.cn/product/tsq-8000-evo-triple-quadrupole-gc-msms.html TriPlusTM RSH自动进样器www.thermoscientific.cn/product/triplus-rsh-autosampler.html TRACETM 1310气相色谱仪系统www.thermoscientific.cn/product/trace-1310-gas-chromatograph.html TraceGOLDTM TG-5SilMS色谱柱www.thermoscientific.cn/product/tracegold-tg-5silms-gc-columns.html方法下载,请查看:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/GCMS/documents/SPME-GC-MS-MS.pdf ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 色谱分析时,会用到哪些气体?
    色谱分析是一种分离和识别混合物中不同成分的化学分析技术,通过将混合物中的化合物分离成单一成分,并根据它们在某种介质中的运移速度或亲和性进行定性和定量分析。这种方法广泛用于科学研究、工业生产和质量控制中,以识别和测量样品中的化合物,从而提供重要的信息和数据。色谱分析中会用到多种气体,其中一些主要用途包括作为载气、检测气体或驱动气体。以下是在色谱分析中常用的一些气体:1、载气(Carrier Gas):氮气(Nitrogen, N2):氮气是最常用的载气之一,用于气相色谱(Gas Chromatography,GC)分析中,帮助将样品中的化合物从进样口传送到分离柱。氢气(Hydrogen, H2):氢气通常用于快速GC分析,因为它具有较低的扩散速度,能够提供更短的分析时间。氦气(Helium, He):氦气也常用作载气,特别是在气相色谱中。尽管氦气价格较高,但它的扩散速度低,能够提供更好的分离效果。2、检测气体(Detector Gas):氢气(Hydrogen, H2):氢气通常用作一些检测器的气体,例如火焰离子化检测器(Flame Ionization Detector,FID)和电子捕获检测器(Electron Capture Detector,ECD)的气体。3、驱动气体(Purge Gas):空气(Air):在液相色谱(Liquid Chromatography,LC)中,空气通常用作驱动气体,帮助推动溶液通过柱子。4、样品制备和进样气体(Sample Preparation and Inlet Gas):氮气(Nitrogen, N2):氮气常用于进样前的样品制备步骤,如干燥、溶解和吹扫。氦气(Helium, He):氦气有时也用于样品进样,特别是在质谱分析中。这些气体的选择取决于分析仪器的类型、分析需求以及实验条件。不同的气体具有不同的性质,对于不同的分析技术和应用,需要选择合适的气体以确保准确和可重复的分析结果。
  • 汽油中芳烃及醇醚类组分定量分析装置
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 142" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 506" colspan=" 3" p style=" line-height: 1.75em " 汽油中芳烃及醇醚类组分定量分析装置 /p /td /tr tr td width=" 142" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 506" colspan=" 3" p style=" line-height: 1.75em " 中国科学院大连化学物理研究所 /p /td /tr tr td width=" 142" p style=" line-height: 1.75em " 联系人 /p /td td width=" 158" p style=" line-height: 1.75em " 关亚风 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " guanyafeng@dicp.ac.cn /p /td /tr tr td width=" 142" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 506" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 √可以量产 /p /td /tr tr td width=" 142" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 506" colspan=" 3" p style=" line-height: 1.75em " √技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp □合作开发& nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong /p p style=" line-height: 1.75em " /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/eb720d47-6740-4d0e-a41d-be0c1bfdb558.jpg" style=" width: 300px height: 185px " title=" 芳烃及醇醚-2.png" width=" 300" height=" 185" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201604/insimg/5495a0ea-d95f-45a8-9020-e7f3704ae497.jpg" title=" 芳烃及醇醚-1.png" width=" 300" height=" 227" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 227px " / br/ /p p style=" line-height: 1.75em " br/ & nbsp & nbsp & nbsp 该装置和方法采用毛细管柱串联—切割反吹的方法将汽油中芳烃完全与其它烃类分离,但是所有组分从同一个检测器定量检测,因此可以与其它组分进行校正归一化定量。在切割反吹的过程中允许较长的时间窗口,从而在不采用外标的情况下,获得准确的定量分析数据。 br/ & nbsp & nbsp & nbsp strong 主要技术指标: /strong br/ & nbsp & nbsp & nbsp 分析沸点在380℃以下的组分。在分析汽油中含氧组分时,允许切割窗口时间:≤12s br/ & nbsp & nbsp & nbsp strong 技术特点: /strong br/ & nbsp & nbsp & nbsp 传统的国标或ASTM方法分析汽油中含氧组分的中心切割时间窗口仅为0.2 s,对仪器设备和色谱柱的性能要求很高。而本方法在切割反吹的过程中允许的时间窗口为12 s,在12秒内对定量误差没有影响,而且不必采用外标定量。这项技术可用于轻质油的组分分析、ppm级苯含量测定,以及乙醇汽油中醇类含量的测定。 br/ /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 用于石油、化工等领域中芳烃及醇醚类组分定量分析。市场容量为200-400台/年,具有广阔的推广应用前景。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 以技术秘密形式保护知识产权。 /p /td /tr /tbody /table p br/ /p
  • Obitrap超高分辨质谱平台:多肽药物特立帕肽的定量分析
    多肽药物是介于大分子蛋白/抗体类药物和小分子药物之间的一 类重要的药物分子,因其生物活性高、靶向专一性高、选择性 高、毒副作用低等优点而被广泛应用于疾病治疗领域[1]。Ther mo Obitrap因其超高的分辨率,质量轴稳定性,已经广泛应用 在了多肽药物结构表征中。Obitrap 作为高分辩还具有极高灵敏 度和线性范围,因此也被越来越多的应用到药物的定量研究中。  PTH 是甲状旁腺主细胞分泌的由84个氨基酸组成的多肽类 激素,其对于维持钙磷代谢的稳定起着至关重要的作用。 特立帕肽(SVSEIQLMHNLGKHLNSMERVEWLRKKLQDV HNF,4117.7 Da)是一种人工重组合成的人PTH 1-34多 肽,是第一个被美国食品药品监督管理局(Food and Drug Administration,FDA)批准的抗骨质疏松性骨折的骨合成药物。 Thermo Scientifific Q Exactive Focus 四极杆 Orbitrap 组合型质 谱仪专为常规分析应用而设计,最高分辨率为7万,最大分辨 率12Hz,可以在同一系统中同时实现准确可靠的定性和定量分析。  Obitrap Fusion Lumos是赛默飞世尔科技在2015年推出的三合 一的静电场轨道阱超高分辨质谱仪。Lumos搭载的分段式四级 杆技术(Advanced Quadrupole Technology,AQT)使离子传 输效率至少提高了 2 倍,超高场的Obitrap拥有50万分辨率和 20Hz的超快扫描速度,使Lumos在具有极佳的灵敏度同时,还 拥有稳定性和动态范围。  本实验将基于两款Obitrap高分辩质谱Q Exactive Focus和Obit rap Fusion Lumos建立多肽药物特立帕肽的定量分析方法,考 察高分辩质谱Obitrap的定量能力。  实验结果  1、特立帕肽标准品在Focus,Lumos上的线性与准确度。  用稀释剂(含0.1ug/μL BSA,1% FA,5% ACN)的稀释剂逐级 稀释特立帕肽标准品,配置成一系列浓度标准品,上样分析。 结果表明,Focus对特立帕肽的定量下限为50 pg/mL, 上样5μL,上柱约60 amol,标准曲线线性良好,R2=0.997,标 准曲线各点回算的浓度在理论值的15%以内。  特立帕肽的LOQ点在Focus和Lumos上的提峰图如图,峰型良 好,信噪比S/N10,重复5针的RSD10%,表现出了 良好的稳定性。图 Focus,Lumos上LOQ的峰图  2、特立帕肽血浆样品在Lumos上的线性与准确度。   同时在Lumos上考察了特例帕肽血浆样品的定量下限。取150 μL的空白人血浆,加入一系列浓度梯度的特立帕肽标准品,配 置成血浆标曲,用1:6体积的75% 乙腈沉淀后,离心去上清, 挥干,复溶后进样。 结果显示,Lumos对于基质复杂的血浆样品仍表现出良好的线 性,精密度,稳定性。特立帕肽最低定量下限为50 pg/mL,线 性范围50 pg/mL-50 ng/mL,1000倍的线性范围,上柱 量约60 amol,标曲各点Diff值 10%。  结论 本文分别在Obitrap Focus,Lumos上建立了大分子多肽类药物 特例帕肽的定量分析方法。结果表明,高分辩Obitrap对特立 帕肽表现出良好的定量能力,定量下限可以分别达到上柱60 amol,24 amol。同时,对于基质更为复杂的血浆样品,Lumos 上可以达到定量下限上柱60 amol,灵敏度满足临床上对特立帕 肽的检测要求。Obitrap作为高分辨质谱,在拥有超高分辨率的 同时,兼具出色的灵敏度和稳定性,可以应用大分子多肽类药 物的定量分析与检测。
  • 艾威仪器举办样品前处理技术及痕量金属定量分析方法交流会
    2008年11月28日,为促进广大分析工作者对快速溶剂萃取及石墨消解等前处理技术的交流,广东省分析测试协会与中国广州分析测试中心、艾威仪器科技有限公司等共同举办了“样品前处理技术及痕量金属定量分析方法交流会”。 在交流会上,艾威仪器科技有限公司的雷华卫经理向大家重点讲解了“石墨消解样品前处理技术的原理和应用”。 来自广东省的250多位科研院所、质检、商检、卫生、农业、高校、企事业的专家、学者、工程师和用户代表参加了本次交流会,他们均表示对交流会的效果感到满意。为答谢众多用户的支持,艾威仪器科技有限公司会持续地开展此类技术交流会活动,感兴趣的客户请关注我们的网站。 艾威仪器科技有限公司 市场部 网址:www.evertechcn.com 电话:020-87688215 传真:020-87688280 邮箱:info@evertechcn.com
  • 岛津应用:环境中PPCP的LCMSMS同时定量分析
    近年来,PPCP(pharmaceuticals and personal care products)做为一种新污染物质而引人注目。PPCP中的大部分化合物难以在环境中降解,并且具有强生理活性,因此,对其环境中的监测必不可少。为了高效率、准确地定量分析PPCP多种类的化合物,需要一种使用一个方法,迅速且高灵敏度地同时分析多种化合物的分析手段。为此,本应用方案介绍基于岛津LCMS-8080的高速正负离子化切换技术测定PPCP的方法。同时,对于正负离子化切换分析的结果与正离子/负离子分别测定的结果进行了比较,并验证了LCMS-8080的高速正负离子化切换性能。 岛津三重四极杆型液相色谱质谱联用仪LCMS-8080 本方案利用最优化的梯度程序,抑制了基质的影响,所有化合物都获得了70 - 120%的良好的回収率。使用LCMS-8080分析环境水中添加的PPCP,获得了出色的灵敏度和线性。即使对于环境水中的PPCP实施的高速正负离子化切换测定,也获得了与正离子/负离子分别测定时同等的结果。 了解详情,敬请点击《基于LCMSMS高速正负离子化切换的环境中PPCP多成分的同时定量分析》 关于岛津 岛津中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津微信平台
  • 【瑞士步琦】您最关心的近红外定量分析小知识我都有!
    红外定量分析小知识近红外分析作为一种二次分析方法,需要借助模型来对采集的近红外光谱进行计算,从而得到用户关注的指标的结果,可以简单地将这个模型理解成类似与指纹图谱的数据库,只要这个数据库足够全面,就能快速准确地提供分析结果。通常来说,初次接触近红外以及想要独立建立近红外定量分析模型的用户最为关心的问题就是:我需要多少个准备多少个样品才能建立起一个“能用”的模型呢?在回答这个问题之前,需要先了解近红外分析的工作流程。近红外分析的工作流程收集建模样品获取样品参考值采集建模样品的近红外光谱建立模型验证模型用于未知样品的分析日常分析与监测通过上述分析流程可以看出,之前提到的问题是对近红外这项分析技术基础但很核心的疑问。其实问题的答案也很简单,一句话概括就是足量的具有代表性的样品。虽然这个回答很简略,但其中包含的要点却不少。展开来说分为两方面:一个是足量的样品,另一方面是代表性的样品。这两点在GB/T 29858 《分子光谱多元校正分析通则》中有详细的描述:对于校正集至少需要 6 倍于建模潜变量(建模时的一个重要参数)大小的样品,当潜变量小于 4 时,样品数量不应少于 24 个。样品应包含所分析的成分。收集的样品成分含量变化范围应适当超过日常分析的范围(10 %-15 %)。收集的样品成分含量分布需服从均匀分布。对于验证集至少需要 4 倍于建模潜变量大小(与校正集潜变量相同)的样品,当潜变量小于 5 时,样品数量不应少于 20 个。收集的样品成分含量的跨度和标准偏差应是校正集的 95% 到 100% 之间。从国标中不难看出,建立一个分析模型至少需要接近 50 个具有代表性的样品,当然这只是最低的要求,如果想要获得一个更加稳健的模型,得到更为准确的分析结果,增加更多具有代表性的样品到模型中则是必不可少的。下期的近红外定量分析知识将为大家分享如何系统地评价模型的性能,欢迎关注步琦实验室服务号,及时获取最新信息。如果您在近红外仪器使用过程中还有其他问题,也可通过下方的联系方式告诉我们,会有专业的技术人员竭诚为您答疑解惑。
  • 第二届近红外纤维定量分析比对试验结果公布
    纺织品纤维含量分析是决定纺织产品标识准确度的重要因素,多国制定相关技术法规,要求纺织服装产品上贴有永久性的标签,并在标签上按照规定的方法注明产品的纤维成分及含量。传统纺织品成分定量方法采用的化学溶解法存在着使用化学试剂、对环境污染、检测周期长、破坏样品等缺点。近红外光谱分析技术作为一种新兴检测技术已经开始迅速被应用于纺织品成分定性和定量检测,具有快速、无损、环保、便捷等优点。该技术主要利用在近红外光的照射下,不同的纤维成分呈现不同吸收峰,其成分含量不同则体现出不同大小、缓陡的吸收峰,利用相应的化学计量学方法和纤维成分数据库,即可获得准确的纤维成分及含量。但在纺织品纤维定量方面,由于近红外模型受仪器类型、实验室环境、织物结构、颜色、染料、纤维含量、检测条件等因素影响,校正模型建立好坏程度直接影响其预测效果,且目前仍存在定量模型无法统一或互通的问题。中国海关科学技术研究中心工业与消费品安全研究所联合深圳市菲雀兰博科技研究中心有限公司,在中国仪器仪表学会近红外光谱分会的大力支持下,于2021年成功举办了第二届(2021)近红外纤维定量分析比对试验,以期推动近红外光谱分析技术的发展和应用。本次比对试验,共涉及棉/氨纶、聚酯纤维/氨纶、棉/聚酯纤维、锦纶/氨纶、棉/聚酯纤维/氨纶 5 大类别,4 类二组分,1 类三组分。分别是棉/氨纶(1-3#)、聚酯纤维/氨纶(4-6#)、棉/聚酯纤维(7-9#)、锦纶/氨纶(10-12#)、棉/聚酯纤维/氨纶(13-15#),五组面料均由中国海关科学技术研究中心工业与消费品安全研究所提供。本次比对试验共有16个机构报名参加,包括中纺标检验认证股份有限公司、北京市毛麻丝织品质量监督检验站、天纺标检验认证股份有限公司、青岛市产品质量监督检验研究院、江苏省纺织产品质量监督检验研究院、南通市纤维检验所、上海英柏检测技术有限公司、上海冉紫实业有限公司、上海纺织集团检测标准有限公司、国家纺织服装产品质量监督检验中心(浙江桐乡)、浙江中纺标检验有限公司、福建省纤维检验中心晋江检验部、中山海关技术中心、广州亚诺检测技术有限公司、中纺标(深圳)检测有限公司、深圳市英柏检测技术有限公司等。在规定期限内有15家实验室反馈了测试结果,1家实验室取消了比对。在15个实验室中,Lab 1、2、3、7、11参加了全部模型比对;Lab 6、8、9、10、12参加了4个模型的比对;Lab 4、5、14、15参加了3个模型比对;Lab16参加1个模型比对。执行标准FZ/T 01144-2018。结果Z比分数图:从参试实验室比对结果可以看出,棉/氨纶、聚酯纤维/氨纶两类样品,各参试实验室所建模型预测结果较为理想,锦纶/氨纶、棉/聚酯纤维、棉/聚酯纤维/氨纶样品,存在少数参试实验室所建模型预测结果不理想的情况。由于纺织纤维种类众多,且复合织物的种类和比例各不相同,使得近红外光谱校正模型的建立难度较大,需要大量的样本数据,校正数据的准确性及合理的计量学方法都对测试结果有影响。针对此次近红外纤维定量分析比对计划,对于相关模型的建立,给出以下建议:1)样品筛选:某些较厚双层针织结构的织物,其谱图看不到明显的吸收峰,或与其他的谱图偏差较大,在建模过程中,此类样品对模型的建立会造成很大影响,不适宜做校正样品,应该去除。2)样品采集: 样品采集过程中,建议将样品折叠适宜厚度,一般4层,水平放置测试窗口上,并在样品上施加一固定压力。采集中对于吸收峰不明显、谱图偏移或漂移严重、光谱形态异常的应提前剔除。3)光谱数据预处理:仪器采集的原始光谱中除包含与样品组成有关的信息外,同时也包含来自各方面因素所产生的噪音信号。这些噪音信号会对谱图信息产生干扰,从而影响校正模型的建立和对未知样品组成或性质的预测。光谱数据预处理主要解决光谱噪音的滤除、数据的筛选、光谱范围的优化及消除其他因素对数据信息的影响,为下步校正模型的建立和未知样品的准确预测打下基础。常用的数据预处理方法有导数、滤噪(平滑)、多点基线校正、归一化处理等。在近红外分析中,对于样品不同组分之间的相互干扰导致吸收光谱谱线重叠的现象,可采用求导的方法进行处理。其中常用的是一阶导数和二阶导数。4)定量校正算法: 近红外光谱分析常用的计量方法有主成分分析(PCR),偏最小二乘法(PLS)和人工神经网络法(ANN)等,其有着各自的优点和局限。选择适合的校正算法,对模型的适用性,有效性有着显著帮助。比如:TQ Analyst提供了定量校正算法,包括了比尔定律、最小二乘法(CLS)、偏最小二乘法(PLS)和主成分回归法(PCR)等。其中在纺织纤维定量检测模型中,偏最小二乘法(PLS)较为经典和常用。5)光谱波长范围的选择:光谱范围的选择在NIR定量分析模型的建立中是最难的一步。至今为止,化学计量学领域仍无完美算法来选择最佳的光谱范围。目前,已有一些配套软件可实现自动化选择光谱范围。例如:TQ Analyst软件中自带Suggest向导进行自动选择光谱范围。光谱波长范围的选择会直接影响模型的精度,即相关系数与均方差。6)建模及模型优化:近红外光谱存在谱带宽、重叠较严重、吸收信号弱、信息解析复杂等问题,它依赖于化学计量学方法,在样品待测属性值与近红外光谱数据之间建立一个校正模型,再通过模型对未知样品的近红外光谱进行预测来得到各性质成分的预测值。目前,近红外建模方法大都以“光谱数据预处理,波长筛选进行特征降维和突出,再通过PLS、SVM算法进行建模”的方法为主。建模的优化常见于如何使用预处理算法对光谱进行预处理,来消除仪器变异所引起的偏差;如何使用波长选择算法,提取光谱中的有效特征;如何利用化学计量方法建立稳定可靠的模型。除此之外,随着人工智能技术的发展,深度学习可以利用现有的大规模已标记数据集训练出一个预测能力强、鲁棒性好的多层网络结构模型。此外深度学习方法建模,其对预处理、波长选择等依赖性很低,该法也将为近红外光谱检测带来新的机遇。
  • AES/XPS/SIMS/GD-OES(MS)深度剖析定量分析
    溅射深度剖析作为表面分析的常规技术,被广泛应用于膜层结构元素成分随深度变化的表征,但由于溅射、样品粗糙度以及测量信号来源于距样品表面不同的深度等因素的影响,使得测量的深度谱与原始的膜层结构比较可能会有较大的畸变。对测量深度谱数据进行定量分析,不仅可以确定样品的膜层结构,还可以获得其界面粗糙度、元素间的互扩散系数、元素的溅射速率、以及溅射深度分辨率等定量信息。报告讨论了多晶样品深度剖析中溅射诱导粗糙度产生的原因及消除的方法。并以4Si(15nm)/Al(15nm) AES、XPS和ToF-SIMS,以及60Si(3.7nm)/B4C(0.3nm)/Mo(3.0nm) 脉冲-射频-GDOES等深度谱为例,讨论了溅射诱导粗糙度对测量深度谱的影响及其相应的定量分析。同时还提出了将TV正则化与MRI深度分辨率函数结合,对深度谱数据进行反卷积定量分析的新方法,并应用于8Ni(25nm)/Cr(25nm) AES、60Si(3.5nm)/Mo(3.5nm) 脉冲-射频-GDOE和ToF-SIMS深度谱的定量分析,获得的膜层结构与HR-TEM的测量结果相吻合。点击查看视频回放王江涌,博士,教授,1984年武汉大学理论物理专业学士;1989年四川大学原子与分子物理专业硕士;1997年南非自由州大学表面物理专业博士;1998-2001年美国堪萨斯州立大学物理系研究助理;2001-2009年德国马普金属研究所高级研究员;2009年起任汕头大学物理系教授。从事表面分析工作近三十年,在薄膜相变及深度剖析定量分析领域做出了诸多创新性工作。发表英文专著2部,论文150余篇(SCI 110余篇)。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》等期刊编委、评委。
  • 讲座预告——如何采用拉曼光谱定量分析地质流体
    主题:Quantitative Raman spectroscopic analyses of geologicalfluids 如何采用拉曼光谱定量分析地质流体 时间:2013年12月11日 15:00~16:30 地点:HORIBA 北京办公室(建国门外大街甲6号SK大厦1801室) 主讲人:Prof. I-Ming Chou (周义明教授) 网络直播:无法莅临北京现场的用户可就近选择HORIBA其他办公室,参加网络视频会议并进行交流 &diams 上海:天山西路1068号联强国际广场A栋1层D单元 &diams 广州:天河区体育东路138号金利来数码网络大厦1612室 报名联系: 联系人:Ms. Zhao 邮箱:shifang.zhao@horiba.com 电话:010-85679966-212 报名截止:12月9日(含当天) 注:本次讲座名额有限,有意者请尽快报名,额满为止。 报告摘要 Standards were prepared infused silica capillaries for the calibration of Raman systems for quantitativeanalyses of geological fluids, such as those found in fluid inclusions in minerals. The standards include fluids in unary (CH4, CO2), binary (CH4-CO2, CH4-H2O, CO2-H2O,CH3COOH-H2O) and ternary systems (CH4-CO2-N2). Three different ways of standards preparation were introduced andcompared. After calibrating the Raman spectroscopic system with some of thesestandards, it is credible to determine, for example, (1) the pressures of CH4 in fluidsamples, (2) the diffusion coefficient of CH4 in water at room temperature, and (3) the solubility of methanehydrate in water. Fluid standards prepared in fused silica capillaries arereliable for calibration of Raman systems and small enough to be used forinter-laboratory comparisons. 主讲人简介 周义明,男,1945出生,台湾省新竹县人。1974年毕业于美国约翰霍普金斯大学地球与行星科学系地球化学专业,获博士学位。先后担任美国约翰霍普金斯大学博士后、美国国家研究委员会、驻太空总署詹森太空中心博士后、美国洛奇电子公司首要科学家、美国内政部地质调查局研究地质学家、美国卡耐基学院、地球物理研究所访问学者,在包括《Science》在内的国际学术刊物上发表学术论文130篇。现为美国内政部地质调查局&ldquo 荣誉退职&rdquo 研究地质学家、中国科学院三亚深海科学与工程研究所一级研究员兼深海端环境模拟实验室主任。 曾任NorthAmerica Chinese Earth Scientists Association主席(1998-1999),现任Overseas Chinese Earth Science and TechnologyAssociation主席 (1998至今)。 主要研究方向: (1) 矿物及气体水合物(包括天然气水合物)在不同的温度、压力、共存流体组分及氧逸度下的稳定性和物理化学性质。 (2) 地质流体的物理化学性质。 (3) 矿物及地质流体的热力学数据的取得、评鉴及应用。 关注我们: 邮箱:info-sci.cn@horiba.com 新浪官方微博:HORIBA Scientific 微信二维码:
  • 利用数据非依赖质谱技术定量分析化学合成B型利钠肽中的杂质肽
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 相对于数据依赖质谱(Data-dependent& nbsp acquisition,DDA)技术,在数据非依赖质谱(Data-independent& nbsp acquisition,DIA)采集中,预先设定好的离子采集范围将被切分为若干小窗口,质谱仪可匀速、高频地对每个窗口中的的母、子离子进行选择、碎裂和记录,从而无遗漏、无差异地获得样本中所有离子的全部碎片信息。这样,在前端色谱分离度良好的情况下,便无需使用理化性质相同的同位素标记物作为内标进行定量(Label-free),极大的拓宽了定量灵活度,可以节约成本、减少定量环节,理论上也可以减少结果的不确定度。比较形象的描述是:DIA就像地毯式轰炸,无遗漏地打击全部目标。2015年,《Nature Method》将DIA技术评为未来几年中最值得期待的方法之一[1]。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 588px " src=" https://img1.17img.cn/17img/images/202010/uepic/7e2121df-7505-45b8-9462-425f5998dce0.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 588" border=" 0" vspace=" 0" / /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " 图1& nbsp DDA与DIA技术的应用对比示意图[2] /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " B型利钠肽(B-type& nbsp natriuretic& nbsp peptide,BNP)是心衰临床检测和治疗过程中极为重要的多肽分子,其含量水平将直接作为心衰患者心肌功能的分级依据。因此,建立高准确度定量分析方法,研制量值准确可靠的标准物质,为临床检测进行量值传递和校准,不但符合ISO17511的要求,也是目前临床化学界的共识。尽管化学合成多肽已经广泛用于临床诊断、药物研发、化学检测等领域,但其中所含结构类似肽的分离、分析,一直是行业内关注的焦点。因为杂质肽往往与主成分的活性不一致,其他理化性质也存在一定差异。尤其在药物和临床诊断研究中,各国药典、诊疗指南、专家共识等,对结构类似杂质肽的含量及检出能力均有明确要求。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 中国计量科学研究院李红梅团队采用DIA技术,建立了内标肽辅助的MS2-High3定量策略,对化学合成B型利钠肽中的杂质肽进行了定量分析。由于作者在待测BNP样本中加入了已知量的内标肽,且该内标肽的量值可溯源至氨基酸国家标准物质,因此,后续的杂质肽定量结果同样具备计量学溯源性。该方法的最大特点是分析高效与准确,在2小时内,可对合成BNP中的10种含量较高的杂质肽进行平行定量,非常适合对BNP药物(奈西利肽)、标准物质、校准品等开展质量控制与分析。目前,该研究已被“欧洲临床化学与检验医学联合会”的官方期刊《Clinical& nbsp Chemistry& nbsp and& nbsp Laboratory& nbsp Medicine》接收并先期在线发表(图2)。 /p p style=" text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 195px " src=" https://img1.17img.cn/17img/images/202010/uepic/e325ef64-df1b-4118-8d4a-7c778606669c.jpg" title=" 图片2.png" alt=" 图片2.png" width=" 600" height=" 195" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 图2& nbsp 基于Label-free& nbsp DIA质谱技术分析BNP中杂质肽 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 参考文献 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " [1] Allison Doerr,& nbsp DIA mass spectrometry. Nature Methods,& nbsp 2015 (12): 35. /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " [2] Jarrett D Egertson, Brendan MacLean, Richard Johnson, Yue Xuan, Michael J MacCoss, Multiplexed peptide analysis using data-independent acquisition and Skyline. Nature Protocols, 2015 (10): 887-903. /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办 span style=" color: rgb(255, 0, 0) " strong 第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” /strong /span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center text-indent: 0em margin-top: 10px margin-bottom: 10px line-height: 1.75em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/ccf4bd70-dddd-45f4-ba22-f780937c770b.jpg" title=" 图片3.png" alt=" 图片3.png" / /p p style=" text-align: center text-indent: 0em margin-top: 10px margin-bottom: 10px line-height: 1.75em " strong 欢迎各位专家、同仁报名参会! /strong /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" text-indent: 2em text-align: right margin-top: 10px margin-bottom: 10px line-height: 1.75em " 供稿:中国计量科学研究院化学所 /p p style=" text-indent: 2em text-align: right margin-top: 10px margin-bottom: 10px line-height: 1.75em " 肖鹏 宋德伟 李红梅 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p
  • 脂肪酸气相色谱分析的故事
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用气相色谱分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”1 脂肪酸气相色谱分析的历史故事  气相色谱被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,气相色谱的出现于脂肪酸的分析有密切的关系,1952年气相色谱发明人A. T. James 和 A. J. P. Martin就用最为原始的自制气相色谱仪分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配气相色谱的原理,设计了自动滴定检测脂肪酸的气相色谱仪。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。 图1 用自动滴定计气相色谱仪分析小分子脂肪酸的色谱图  分离从乙酸到戊酸的色谱如图2所示:图 2 分离从乙酸到戊酸的色谱  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min 色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,(5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,(9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,(13) n-十二酸酯, (14) 10-甲基十二酸酯2 脂肪酸气相色谱分析的发展  脂肪酸的气相色谱分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)气相色谱时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123–129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。图 4 巨噬细胞中的各种脂肪酸的色谱图图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17–20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11–20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 3 国内外进行气相色谱分析脂肪酸的一些例证   为了进一步了解进行气相色谱分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。表 1 国内气相色谱分析脂肪酸的色谱柱和分析对象 表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱4 脂肪酸气相色谱分析所用色谱柱  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。表3 重要的一些脂肪酸  三种主要色谱柱分离脂肪酸的特点如下:  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:图8 HP-88 的分子结构  HP-88 对一些异构体的分离能力由于DB-23如下图9所示  图 8 HP-88和HP-23分离能力的差别  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序( 吴惠勤等,分析化学,2007,35(7):998-1003)
  • 基于扫描电镜-拉曼联机系统的微细矿物快速识别与定量分析技术
    扫描电子显微镜(SEM,简称扫描电镜)是观测物质表面形貌的基础微束分析仪器,具有分辨率高、景深长、样品制备简单等特点,已成为地球和行星科学研究领域最常用的仪器之一。近年来,扫描电镜的空间分辨率已大幅度提升,分辨率优于1纳米,附属硬件的集成(如背散射电子探头、X 射线能谱仪、拉曼光谱等)和软件的开发极大地拓展了扫描电镜的功能,显著提高了人们认知矿物组成和微观结构的能力,促进了固体地球科学、行星科学等多个学科的发展。复杂样品的三维重构,微细复杂矿物的快速精准识别、定位以及定量分析,是扫描电镜分析技术的前沿发展方向。   中国科学院地质与地球物理研究所电子探针与扫描电镜实验室团队原江燕工程师、陈意研究员和苏文研究员等,基于2020年购置的扫描电镜-激光拉曼联机系统(RISE),开展了一系列技术研发工作。该仪器可快速精准地实现扫描电镜与拉曼光谱仪之间的切换,采集样品同一微区的形貌、成分及三维结构信息。克服了传统扫描电镜对熔体包裹体、有机质和同质多像矿物识别的困难,并将拉曼光谱分析拓展至亚微米和纳米尺度。   铌(Nb)是医疗、航空航天、冶金能源和国防军工等行业不可缺少的重要战略性金属资源。我国白云鄂博是超大型稀土-铌-铁矿床,氧化铌的远景储量达660万吨,占全国储量的95%。对富铌矿物的赋存状态开展研究,有助于查明铌的分布规律,提高铌矿床选冶效率。然而,白云鄂博矿床的铌矿物种类繁多,且具分布分散、粒度小、成分和共伴生关系复杂等特点,如何精准识别和定位这些矿物并进行分类,往往给科研人员带来困扰。该团队针对这一问题,在白云鄂博碳酸盐样品的基础上,建立了铌矿物快速识别、精准定位和定量分析方法。通过电子背散射图像灰度阈值校正、两次图像采集和两次能谱采集,极大地缩短了对铌矿物识别和定量分析的时间,15分钟即可实现118平方毫米区域内微米级铌矿物的快速识别和精准定位,整个薄片尺度可在3小时内完成。基于自动标记区域的能谱定量分析数据,结合主成分分析(PCA)统计学方法,即可实现不同铌矿物的准确分类。该方法也可用于稀土矿床中稀土矿物、天体样品中微细定年矿物等在大尺寸范围内的快速识别、精准定位和分类。   嫦娥五号月壤具有细小、珍贵、颗粒多、成分复杂等特点,平均粒径不足50微米。获取如此细小颗粒的全岩成分,是对微束分析技术的一次挑战。传统方法通常运用电子探针分析获取矿物平均成分,用面积法统计矿物含量,再结合矿物密度,计算出月壤的全岩成分。然而,月壤矿物(如橄榄石和辉石)普遍发育显著的成分环带,为矿物平均成分统计带来很大的不确定性。因此,传统方法不仅效率低,误差也大。   针对这一问题,该团队建立了单颗粒月球样品全岩主量元素无损分析方法。他们首先使用 MAC国际标准矿物为能谱定标,检测限为0.1 wt%,对于含量1 wt%的元素, 分析精度优于2-5%。在此基础上,通过能谱定量mapping技术,直接准确获得矿物的平均成分,再结合矿物含量与密度,最终可确定单颗粒月壤的全岩成分。将新方法运用于月球陨石NWA4734号样品,在误差范围内与其他化学分析方法的推荐值一致。该新方法已成功应用于嫦娥五号月壤样品研究。由于该方法不受样品形状的限制,不仅可用于月球、小行星、火星等珍贵样品的全岩成分分析,还可以针对薄片尺度内任意形态微区开展局部全岩成分分析。   扫描电镜技术在地球和行星科学领域分析仪器中具有不可替代的地位,随着搭载附件和软件的提升,其分析技术开发和应用将具有无限可能。将扫描电镜与大数据分析技术相结合,建立更为高清、高效、精确的图像和成分分析方法,是扫描电镜技术发展的重要方向。   研究成果发表于国际学术期刊Microscopy Research and Technique, Atomic Spectroscopy,Journal of Analytical Atomic Spectrometry上。研究受中科院地质与地球物理研究所重点部署项目(IGGCAS-201901、IGGCAS-202101)、实验技术创新基金(E052510401)和中科院重点部署项目(ZDBSSSW-JSC007-15)联合资助。
  • 第一届近红外纤维定量分析比对试验结果公布
    p   近红外检测技术日趋成熟,在很多行业有了广泛的应用。对纺织品领域而言,随着FZ/T 01144-2018《纺织品 纤维定量分析 近红外光谱法》的发布和实施,近红外技术的应用也进入了快车道。不过,目前近红外技术在纺织检测领域的应用仍然处在验证和建模研究阶段,使用机构和单位主要是一些大学,研发机构,规模较大的第三方检测机构等,大部分处于探索和尝试阶段,没有真正地用近红外检测技术进行检测并出具检测报告,主要原因还是担心出具的数据不够准确,模型不够稳定,无法鉴别出异常样品等。 /p p   因此,为了更好地了解各家单位和机构近红外设备的使用情况,加强各机构之间的互动和交流,推动近红外检测技术在纺织品检测领域更广泛地应用。受中国仪器仪表学会近红外光谱分会的委托,上海英柏检测技术有限公司主办了第一届近红外纤维定量分析的比对试验。 /p p   本次比对试验由上海质量监督检验技术研究院纤维检验所作为独立第三方,承担准备比对试验用样品、样品制备、样品邮寄、数据收集、化学法测试安排和数据收集汇总等工作 比对样品的化学法测试结果由上海市质量监督检验技术研究院、绍兴中纺联检验技术服务有限公司、浙江中纺标股份有限公司三家机构进行独立测试并提供数据。 /p p   此次共有11家实验室机构参加比对试验,基本涵盖了目前纺织品检测领域有近红外设备且已建立了自有模型的机构。参加本次比对试验的机构(排名不分先后)有:上海纺织集团标准检测有限公司、福建省纤维检验中心晋江检验部、天纺标检测认证股份有限公司、上海天祥质量技术服务有限公司、上海英柏检测技术有限公司、赣州市检科院、广州市纤维产品检测研究院、青岛市产品质量监督检验研究院、深圳市英柏检测技术有限公司、上海冉紫实业有限公司、中山海关技术中心。 /p p   本次比对试验参加机构所用到的仪器品牌及型号(排名不分先后)有:JDSU Smarteye 1700便携式近红外分析仪、长沙普测T-NIR、冉紫实业RZNIR 7900、聚光 SupNIR-1520 TM、珀金埃尔默PE 9700、冉紫实业RZNIR 5600、聚光SupNIR-1500、聚光SupNIR-1520 、赛默飞世尔 Antaris II、布鲁克 Tango-R。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 645px " src=" https://img1.17img.cn/17img/images/202006/uepic/74bf4692-9aa0-4a06-bf43-a3a885806fa5.jpg" title=" 微信图片_20200624100859.png" alt=" 微信图片_20200624100859.png" width=" 450" height=" 645" border=" 0" vspace=" 0" / /p p   此次比对试验选择市场上使用比较普遍的三种模型(棉/氨纶,聚酯/氨纶,棉/聚酯)进行,每个模型选择三块样品参与比对。比对试验采用Round Robin Test方式进行。由第三方独立机构先将样品寄给lab1,并告知lab2的地址和联系人,lab1在规定的时间内完成比对试验,并上报结果给第三方独立机构后将样品寄给lab2,以此类推,直至所有的机构都完成比对试验,由最后一家机构将样品寄回第三方独立机构 在比对试验进行中,试样不得破坏。在循环传递的过程中,后一家机构须对寄到的样品进行检查,如果发现样品被损坏,需第一时间告知主办方,同时比对试验终止,此次比对试验宣告失败。 /p p   比对测试的数据比对方式是采用近红外方法与传统方法两者的数据进行比较,理论上可以认为,近红外方法的试验数据越接近传统方法的试验数据时,比对结果更优,反之,则比对结果更劣。当然,虽然传统方法的试验数据由三家机构提供,取平均值,但也仍然不排除有偏差的可能性,因此,即使是理论上的推断,仍然建议依据此数据得出的评价结果仅供参考。 /p p   比对试验执行标准:FZ/T 01144-2018《纺织品 纤维定量分析 近红外光谱法》 参考值执行标准:GB/T 2910.11纺织品 定量化学分析 第11部分:纤维素纤维与聚酯纤维的混合物(硫酸法)、FZ/T 01057(部分)纺织纤维鉴别试验方法、FZ/T 01095-2002 纺织品 氨纶产品纤维含量的试验方法。 /p p style=" text-align: center " strong 比对试验近红外法试验结果 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 150px " src=" https://img1.17img.cn/17img/images/202006/uepic/fe216ded-f19a-4618-81f8-605275fc29f0.jpg" title=" 01.png" alt=" 01.png" width=" 600" height=" 150" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 151px " src=" https://img1.17img.cn/17img/images/202006/uepic/fe4957b4-e092-4865-a9e0-65c497d04ff6.jpg" title=" 02.png" alt=" 02.png" width=" 600" height=" 151" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 168px " src=" https://img1.17img.cn/17img/images/202006/uepic/376e4545-1eab-46f7-86f8-e6e57de959f2.jpg" title=" 03.png" alt=" 03.png" width=" 600" height=" 168" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 169px " src=" https://img1.17img.cn/17img/images/202006/uepic/4c41878c-6bb1-4908-9cdd-71430f289d56.jpg" title=" 04.png" alt=" 04.png" width=" 500" height=" 169" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 比对试验传统方法试验结果汇总 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 139px " src=" https://img1.17img.cn/17img/images/202006/uepic/737deb51-d521-4d5d-8a0c-228b9e9228e9.jpg" title=" 05.png" alt=" 05.png" width=" 600" height=" 139" border=" 0" vspace=" 0" / /p p   据介绍,本次比对试验目的在于各机构之间的技术交流,因此对于最终的数据只进行呈现,不对每个实验室的数据进行评价。各机构可根据各自实验室的数据进行对比分析。 /p p   不过,虽然不做具体的评价,但是从数据上观察,仍然可以得出一些普遍性结论供大家参考:从数据的一致性和稳定性方面,进一步验证近红外法适用于纺织品纤维定量分析 棉/氨纶,聚酯/氨纶的近红外方法的数据与传统方法的数据差异较小,且大部分机构间的数据一致性较好 在这三个模型上,不同品牌和型号的仪器都有可能得到较好的测试结果,相同品牌和型号的仪器也可能得出一致性较差的测试结果,说明检测设备在满足基本参数条件下,更多地取决于建模样品的选取,建模过程的控制,建模方法的选择。 /p p br/ /p
  • GB/T 17623气相色谱分析仪--适用分析充油电器设备
    根据中投产业研究院发布的《2021-2025年中国石油化工行业投资分析及前景预测报告》,我国石化化工行业的发展形势,具体主要有以下几点:一是市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。二是低油价可能成为新常态。油价是世界经济的温度计。世界经济下行,将影响经济需求,进而导致国际原油及其他大宗商品价格走低。加上页岩油(岩页油)、页岩气(岩页气)技术的成熟,非常规油气资源的大规模开发利用,国际原油市场供求关系正在发生转折性变化,国际石油供应总体保持宽松,油价将极大概率继续低位运行。综合国际政治经济多因素分析,低油价可能成为今后一个较长时期内的新常态。在油价低位的背景下,煤价也将下移,价格中枢回落。低油价、低煤价将向石化产业链下游传导,整个产业链的价格体系都将重构。三是安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。气相色谱仪是利用色谱分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不超过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。气相色谱-质谱联用仪是一种质谱仪,应用于医学、物理学,气相色谱的流动相为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。A1220气相色谱分析仪是依据GB/T 17623、DL/T 703标准规定的方法设计制造的,适用于分析充油电器设备中(包括变压器、电抗器、电流互感器、电压互感器、充电套管等)溶解于绝缘油中的氢、一氧化碳、甲烷、二氧化碳、乙烯、乙烷、乙炔等气体含量的分析。主要技术特点与参数:1、实现计算机实时控制和数据处理:仪器自带数字接口,通过一根通讯线在计算机上实现实时数据信号采集、数据处理及检测结果。仪器电脑连接互联网,可通过远程计算机与仪器连接,实现远程数据采集和管理。提高了装置的自由度,促进实验室的有效应用。通过人性化软件操作界面,极大方便用户设定包括各路温度、程升、检测器、桥流等参数;直观地操作包括FID点火(先已改成全自动的,无需人工操作),开关桥流,开启关闭控温,和各个时间事件等功能;2、高精度,稳定可靠的温度控制系统:主控电路采用了功能先进的微处理器、大容量存储器的采用,使数据的保存更加可靠;同时集测量、控制、电路板的一体化设计提高了仪器的抗干扰性和可靠性;采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度; 柱箱具有超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;3、简洁明了的人机对话界面,操作简便,易学易用仪器采用大屏幕LCD液晶汉字显示,显示直观、操作方便、更适合中国国情;自我诊断功能,能显示故障部位;数据断电保护功能,仪器所设定的运行数据在断电后能长期保存;具有秒表、计数功能4、双重稳定的高精度气路控制系统。载气气路采用先稳压后稳流的双重稳定的气路系统流量调节阀采用旋钮调节,直观、可靠性好。配有电子压力显示系统,精度比压力表更高。5、柱室采用跟踪升温方式。6、仪器检测低含量的烃类和高含量的CO、CO2可分开检测,避免相互干扰。7、氢火焰离子化检测器(FID):圆筒型收集极结构设计,金属喷嘴,响应极高检测限:≤2×10-12g/s(正十六烷/异辛烷)基线噪声:≤2×10-13A基线漂移:≤2×10-12A/30min线性:≥106可调式全自动点火,稳定时间:30分钟8、热导检测器(TCD):采用半扩散式结构电源采用恒流控制方式灵敏度:≥5000mVml/mg。基线噪声:≤10μV。基线漂移:≤100μV/30min。线 性:≧1059、大屏幕LCD液晶显示:清晰显示各路温度的设定值,实测值和保护值实时显示仪器状态触摸式键盘,菜单式操作,全自动点火10、温控指标:温度范围:室温上5℃~420℃?精度±0.1℃11、其他参数:电源:220V±22V,50Hz,功率:≥2kW重量:55KG外形尺寸:60cm×50cm×50cm
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。   反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。   2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。   在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。 反应顶空气相色谱的应用 1. 测定造纸厂黑液中的碳酸盐含量   碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:   把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。 (1) 温度的影响   二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。 (2) 检测器线性和恒定的凝固相释放气体速率   这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。 (3) 顶空气体稀释变化对分析准确度的影响   用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.   表 1样品体积变对准确度的影响 (1) 空气中二氧化碳的影响   空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。 (2) 测定精度   作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。   表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法   柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。 (1) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)   柱温:60℃   载气:He 3.1 mL/min   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min (2)样品分析步骤   (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (3)分析条件的影响   (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化   (b)空气中二氧化碳的影响   在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。   (c)液体样品的体积   一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。 (3)这一方法的准确度和精密度   使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。 表3 测定酸与滴定法的比较 样品 盐酸/(mol/L) 相对偏差/% 本方法 滴定法 1号溶液 0.1002 0.1000 0.22号溶液 0.0498 0.0500 -0.3 3号溶液 0.0247 0.0250 -1.2 4号溶液 0.0101 0.0100 1.0 表4 测定碳酸钠与电导法的比较 样品 碳酸钠/% 相对偏差/% 本方法 电导法 1号黑液 4.9 4.7 4.3 2号黑液 23.2 24.1 -3.7 3号黑液 25.124.5 2.4 4号黑液 42.0 42.8 -1.9 3 用反应顶空气相色谱测定木纤维中羧基   在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。   所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。 (1) 测定原理   木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下: (2) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )   柱温:60℃   载气:He 3.1 mL/min,使用不分流模式   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min   样品瓶如图2所示: 图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶 (3)测定步骤   首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。   取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。 (4)这一方法的准确和精密度   表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果 表4 顶空气相色谱分析木纤维中羧基的比较结果 样品 纤维中羧基含量/(mmol/g) 相对偏差/% 本方法 滴定法 1号样品 0.0789 0.0786 0.35 2号样品 0.0682 0.0739 -7.11 3号样品 0.0413 0.0415 -0.57 4号样品 0.06950.0694 0.04 5号样品 0.0815 0.0755 8.01 6号样品 0.0611 0.0610 0.10 7号样品 0.0225 0.0241 -6.87 8号样品 0.0577 0.0581 -0.69 (1) 方法的进一步改进   两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。   (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。   (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。 图3 测定纸浆中羧基的顶空样品瓶 4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐   ( JChromatogr A,2006,1122:209-214)   测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:   这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。   氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。   柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。   下面列出部分相关的文献供读者参考: 序号 题目 原始文献 1 制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法) J. Pulp Paper Sci., 1999, 256-262. 2 顶空气相色谱分析复杂基质中的非挥发性物质 J. Chromatogr. A, 2001, 909:249-257.3 木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量 Ind. Eng. Chem. Res., 2003, 42: 5440-5444. 4 顶空气相色谱测定酸和碱组分 J. Chromatogr. A, 2005, 1093:212-216. 5 顶空气相色谱测定木质素的甲氧基含量 J. Agric. Food Chem., 2012, 60: 5307&minus 5310. 6 顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量 J. Chromatogr. A, 2012,1235:182-184. 7 顶空气相色谱测定丁二酸酐改性纤维素的取代度 J. Chromatogr. A,2012,1229:302-304. 8 一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量 J. Ind. Eng. Chem., 2014,20:13-16. 9 一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量 Anal. Lett., 2012, 45: 1028-1035. 10 顶空气相色谱技术快速测定个护用品中的甲醛含量 Anal. Sci., 2012, 28: 689-692. 11 顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量 J. Ind. Eng. Chem.,2013,19:748-751. 12 顶空气相色谱法检测纸浆中羰基含量的研究 中国造纸, 2014,33(10): 36-39. 13 静态顶空气相色谱技术 化学进展, 2008,20(5): 762-766. 5 更多反应顶空气相色谱的应用   国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。 序号 题目 方法要点 1 顶空进样-气相色谱法测定大气中吡啶的研究 用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶 空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。 王艳丽等,中国环境监测,2013,29(2):62-64 2 顶空气相色谱法测定粮食中的氰化物 称取试样5-10 g于100 ml顶空管中加入 纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。 刘宇等,中国卫生检验杂志2009,19(3):552-553 3 顶空气相色谱法测定膨化大枣中的亚硫酸盐含量 将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸,在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量 王晓云等,山东化工,2007,36(1):36-38 4 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气 相色谱法 在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳 聂春林等,精细化工中间体,2010,40(6):63-66 5 测定尿中三氯乙酸的自动顶空气相色谱法 尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析 李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。 致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • SCIEX在线SPE系统对污水中12种毒品及代谢物的定性与定量分析
    城市生活污水中毒品成分监测分析工作是科学、客观评价当地毒情发展态势的有效手段,是禁毒工作决策的重要依据。根据检测结果、污水处理厂当日潜水流量等参数,得到城市日均毒品消耗量、城市人口日毒品吸食总量和平均人口毒品暴露水平,用来追踪毒品滥用随时间的变化情况,城市非法药物和毒品贩制情况、以及城市的非法药品使用滥用情况,实现实时毒情监测。在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”话题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文邀请到SCIEX公司应用技术专家孙小杰经理谈谈污水验毒相关的技术及解决方案。SCIEX公司 应用技术专家孙小杰经理污水中毒品及其代谢物的浓度测定是污水分析法评估毒品使用量的关键。方法的基本思路是对污水中的毒品及代谢物进行检测,但毒品代谢物进入污水系统后与生活污水进行混合,其中的化合物含量有可被稀释上千倍,浓度在ng/L级别,同时污水中复杂的基质也对仪器的抗污染能力提出较高要求。相比传统的离线固相萃取方式,在线固相萃取(On-line SPE)具有样品利用率高、所需样品少;全体积自动在线萃取、解吸、进样,通量高、可大大节约人力及时间成本;同时前处理交叉污染相对较少等特点。因此在实际污水验毒工作中深受一线检测人员欢迎。基于此,我们开发了SCIEX On-line SPE-MS/MS 系统对污水中12种毒品及代谢物进行定性与定量分析方法。本方法具有以下特点:1、速度快:无需复杂前处理过程,一针进样只需15分钟,同时结合重叠进样(Load Ahead)功能,可极大的减少样品等待时间,提高检测效率。2、抗污染:SCIEX专利的Turbo VTM离子源可耐受长期、大量的污水检测工作,无需频繁的清洗和维护,有效减少工作量,提高定量准确度。3、兼容性好:设备可以在On-line SPE-MS/MS和常规的UPLC-MS/MS之间无缝切换,在做污水验毒项目时不影响其他项目的检测。试验方法1.样品前处理取10mL污水,加入同位素内标制得25ng/L的溶液,10000rpm转速下离心10min,取上清,待上样分析。2. 液相条件液相:SCIEX Exion LC 20ADTM系统大体积进样器:CTC PAL3 进样系统分析柱及流动相条件:Phenomenex Kinetex Biphenyl(2.1*100 mm, 2.6μm),流速0.4mL/min,流动相A:水(0.02%甲酸+2mM甲酸铵);B:乙腈(0.02%甲酸+2mM甲酸铵),梯度见表1。SPE柱及流动相条件:HLB(2.1*30mm, 20μm),流速2mL/min,A:水;B:甲醇,梯度见表2。柱温:40 ℃上样量:2mL梯度洗脱条件:表1 表2 实验结果12种毒品及代谢产物的典型色谱图采用空白污水样本加标,配置浓度在1-500ng/L范围内的系列标准曲线,内标加入浓度为25ng/L,全部12种化合物线性关系良好,见图2。图 2 12种毒品及代谢物的线性关系曲线总结建立了一种CTC On-line SPE系统和SCIEX Triple QuadTM 4500系统联用,分析污水中12种常见毒品及代谢物的分析方法。该方法前处理操作简单,可有效地节约时间和人力成本,提高工作效率;方法的灵敏度高、重复性好、准确度高,经过多批次的实际样品测定,结果稳定可靠。通过多目标物的在线自动富集,可有效提高方法的检测灵敏度,更好的应对污水验毒工作。打击防范毒品违法犯罪是一项复杂、艰巨、长期的系统工程。针对毒情新形势新变化,加强禁毒技术研究,推进禁毒科技创新,才能牢牢掌握同毒品违法犯罪作斗争的主动权,推动禁毒工作不断取得新成效。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制