当前位置: 仪器信息网 > 行业主题 > >

色谱甲醇成本组成分析

仪器信息网色谱甲醇成本组成分析专题为您提供2024年最新色谱甲醇成本组成分析价格报价、厂家品牌的相关信息, 包括色谱甲醇成本组成分析参数、型号等,不管是国产,还是进口品牌的色谱甲醇成本组成分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱甲醇成本组成分析相关的耗材配件、试剂标物,还有色谱甲醇成本组成分析相关的最新资讯、资料,以及色谱甲醇成本组成分析相关的解决方案。

色谱甲醇成本组成分析相关的资讯

  • FT-ICR MS助力石油地质样品精细组成分析
    中国石化石油勘探开发研究院无锡石油地质研究所引进了傅立叶变换离子回旋共振质谱(Fourier transform ion cyclotron resonance mass spectrometry, FT-ICR MS),该仪器超导磁体强度为12T(特斯拉)。FT-ICR MS具有超高的分辨率( >200 万)、质量准确度(<0.3×10-6),可以精确确定石油分子中所含的C、H、O、N、S及它们主要同位素组成,结合所配置的电喷雾电离源(ESI)、大气压光电离源(APPI)及大气压化学电离源(APCI),该仪器可以在分子层面上实现对石油地质样品弱极性的多环芳烃、含硫化合物及中、高极性的NSO杂原子化合物的精细组成分析。与传统的气相色谱质谱仪(GCMS)相比,该仪器可以突破样品沸点限制,对未经分离的原油样品进行直接分析,大大拓展了对有机大分子极性化合物的检测范围,可以对分子量在100~10 000 Da 的极性化合物进行检测,获取复杂有机混合物中化合物类型、分子式、相对丰度及分子缩合度(DBE)等信息。在石油勘探开发研究领域,该技术主要应用于:(1)石油组学研究,包含非烃、沥青质中NSO等化合物组成剖析;(2)油气田排出水中有机质组成分析;(3)烃源岩沉积环境及热演化特征研究;(4)油源对比和油气运移示踪研究;(5)高酸稠油成因和次生改造研究;(6)非常规领域中页岩油、致密油成藏示踪研究等。由于石油地质样品中的NSO杂原子化合物包含有丰富的地质地球化学信息,该技术将极性化合物的检测范围拓展到分子量更大、极性更强的石油分子,研究成果推动了大分子非烃地球化学学科的发展,理论和应用价值巨大;同时,该技术形成的一些创新性成果已成功应用于常规和非常规油气勘探开发领域。日前,中国石油大学(北京)史权教授在仪器信息网网络讲堂做演讲报告,题为“面向分子炼油的质谱分析技术”,详细视频可点击此处观看。
  • L-8900高速全自动氨基酸分析仪肽配方降钙素中氨基酸组成分析
    评价类似肽配方的质量之一是确认其组成氨基酸的种类及含量,本文采用日立L-8900高速全自动氨基酸分析仪,以药典规定的分析法(采用3μm色谱柱)测定了降钙素的氨基酸组成。测试样品采用市售的降钙素(鲑鱼)。  http://www.instrument.com.cn/netshow/SH100322/s243938.htm 公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 默克氘代甲醇成本价促销
    默克光谱级氘代甲醇成本价促销 促销价:180元/包装 市场价:533元/包装 先买先得,售完为止 产品名称 甲醇-D4 品牌 MERCK 包装 10*0.5ml 氘代率 =99.8% 用途 核磁共振谱 货号 1.06028.0005 陈燕 021-51693889-11 chenyan@hq17.com QQ:2830218935 www.hq17.com 上海恒奇仪器仪表有限公司 上海市金钟路658弄1号楼甲4层
  • 前沿科技 | 全新亚微米红外&拉曼同步测量关键技术助力多层薄膜内部组成分析
    包装薄膜材料常使用传统红外光谱进行表征,但传统FTIR通常只能测单一红外光谱,不具备样品红外光谱成像功能或成像空间分辨率受红外波长限制,高也仅为5-10 μm。在实际应用中,层状材料越来越薄,这对常规FTIR技术的空间分辨率提出了大的挑战。 全新光学光热红外光谱技术光学光热红外光谱技术(O-PTIR)可在非接触反射模式下对多层薄膜进行亚微米的红外表征,同时探针激光器会产生拉曼散射,从而以相同的亚微米分辨率在样品的同一点同时捕获红外和拉曼图像。基于光学光热红外光谱技术的非接触亚微米分辨红外拉曼同步测量系统的工作原理是:光学光热红外光谱技术通过将中红外脉冲可调激光器与可见探测光束结合在一起,克服了红外衍射限。将红外激光调谐到激发样品中分子振动的波长时,就会发生吸收并产生光热效应。如图1所示,可见光探针激光聚焦到0.5 μm的光斑尺寸,通过散射光测量光热响应。红外激光可以在一秒钟或更短的时间内扫过整个指纹区域,以获得红外光谱。图 1. 非接触亚微米分辨红外拉曼同步测量系统 红外和拉曼光谱的光束路径示意图。 红外&拉曼同步测量传统的透射红外光谱通常不能用于测量厚样品,因为光在完成透射样品之前会被完全吸收或散射,导致几乎没有光子能量到达检测器。由于光学光热红外光谱技术是一种非接触式技术,因此非接触亚微米分辨红外拉曼同步测量系统可以对较厚的样品进行红外测量,大地简化了样品制备过程,提升了易用性。在图2中,作者使用非接触亚微米分辨红外拉曼同步测量系统针对嵌入环氧树脂中的薄膜样品横截面进行了分析。图2线阵列中各点之间的数据间隔为500 nm。 由于非接触亚微米分辨红外拉曼同步测量系统与传统FTIR光谱具有好的相关性,因此可以使用现有的光谱数据库搜索每个光谱。对红外光谱的分析对照可以清楚地识别出不同的聚合物层,聚乙烯和聚丙烯,以及嵌入的环氧树脂。图 2.上:薄膜横截面的40倍光学照片;中:红外光谱从标记区域收集;下:同时从标记区域收集拉曼光谱。 化学组分分布的可视化成像当生产层状薄膜时,产品内部的化学分布是产品完整性的重要组成部分。非接触亚微米分辨红外拉曼同步测量系统特地实现了高分辨率单波长成像,以突出显示样品中特定成分的化学分布。非接触亚微米分辨红外拉曼同步测量系统可以在每层的特吸收带处采集图像,以此实现显示层的边界和界面的观察。图3展示了多层膜截面的光学图像。从线阵列数据可以看出,中间位置存在一个宽度大约为2 μm的区域,该区域与周围区域的光谱差异很大。红色光谱显示1462 cm?1处C-H伸缩振动显著增加。图3. 上:薄膜截面的40倍光学照片;下:标记表示间距为250 nm的11 μm线阵列。红外单波长成像使我们能够清晰地可视化层状材料的厚度和材质分布,如图4所示。从图像中可以看出,非接触亚微米分辨红外拉曼同步测量系统红外显微镜可以在非接触状态下进行反射模式运行,以佳的空间分辨率提供单波长图像。图4. 红外单波长成像层状材料的成分分布。 总结通过同时收集红外和拉曼光谱,科学家发现非接触亚微米分辨红外拉曼同步测量系统可被广泛用于分析各种多层膜。收集的光谱与传统的FTIR光谱显示出 99%相关性,并且可以在现有数据库中进行搜索。此外,使用非接触亚微米分辨红外拉曼同步测量系统进行单波长成像可实现亚微米分辨率样品中组分的可视化。通过该技术,我们可以更好地了解薄膜材料的整体构成。总体而言,非接触亚微米分辨红外拉曼同步测量系统次提供了可靠且可视化的亚微米红外光谱,目前它已在高分子、生命科学、临床医学、化工药品、微电子器件、农业与食品、环境、物证分析等领域得到广泛应用并取得了良好的效果,显示出了广阔的应用前景。
  • Nexis视角丨创新气相色谱技术助力钢铁行业高质量发展
    钢铁是现代社会重要的工业原料,钢铁工业的发展状况也是衡量一个国家工业水平的重要指标。我国钢铁行业发展快速,已经成为全球主要的钢铁生产国和消费国。 2022年2月,工业和信息化部、国家发展和改革委员会、生态环境部三部委联合发布《关于促进钢铁工业高质量发展的指导意见》,其中着重强调了“钢铁工业是国民经济的重要基础产业,是建设现代化强国的重要支撑,是实现绿色低碳发展的重要领域。“十四五”时期,我国钢铁工业仍然存在产能过剩压力大、产业安全保障能力不足、绿色低碳发展水平有待提升、产业集中度偏低等问题。”可以预见,在新的政策下,高质量发展仍是现阶段钢铁行业发展的重要目标,从追求产量增加向追求质量提高与追求绿色低碳环保发展。落实钢铁行业碳达峰实施方案,统筹推进减污降碳协同治理,提升高质量发展水平。 岛津气相色谱仪在钢铁冶金行业中应用非常广泛,具体涉及到煤气、粗苯、焦油加工产品、焦化废水等多方面,尤其是焦化工业中。相关需求可以大致分为三类: 焦化工业回收中的需求比如煤气主组成分析;硫化氢分析、粗苯、萘等含量分析;脱萘循环洗油中萘含量分析,贫富油中粗苯含量分析等。 焦油加工中的需求比如煤焦油萘含量分析;三混油分析;洗油分析;粗酚分析、以及深加工产品分析。 环保及安全性分析的需求比如大气中非甲烷总烃分析;焦化废水中酚类和其他污染物分析、工业废水中丙烯酸甲酯分析等分析。相关需求及应对方案举例如下:岛津气相色谱仪广泛应用于国内外钢铁冶金行业客户中,典型方案举例如下: 1 煤气全组分分析 炼焦炭时产生的煤气叫焦炉煤气。将焦炭送到高炉去炼铁,作为还原剂使用,把铁矿石中的铁还原出来,焦炭就生成了高炉煤气。焦炉煤气和高炉煤气等气体是钢铁冶金企业重要的燃料,准确测定煤气组成对于提高煤气利用率,降低综合燃料比和成本具有重要意义。常见分析标准有《GB/T 28901-2012 焦炉煤气组分气相色谱分析方法》和《GB/T 10410-2008人工煤气和液化石油气常量组分 气相色谱分析》等。 岛津高炉煤气分析(单TCD)方案此外,岛津还有高炉煤气分析(双TCD)等多种方案,以及岛津热值软件,满足不同客户的精细化分析需求。 2 煤气中H2S分析 焦化厂在炼焦的过程中会产生大量的H2S、SO2、COS、CH3SCH3等含硫气体,硫化物对人的身体健康,环境都有极大的影响。而且对后续焦炉气生产甲醇产生严重的影响,造成系统中设备、管路堵塞、腐蚀,催化剂中毒、失活等一系列问题。因此硫化物(H2S为代表的)的测定非常重要。常见标准:《YB/T 4496-2015 焦炉煤气 硫化氢含量的测定 气相色谱法》,《GB/T 28727-2012气体分析.硫化物的测定.火焰光度气相色谱法》。 形态硫色谱图硫化氢,羰基硫,总硫色谱图 此外,准确分析合成气、煤气等样品中痕量的总硫、总有机硫及形态硫含量,对保护反应过程中所使用的昂贵的催化剂有着极为重要的作用。同时,岛津也可提供搭载硫化学发光检测器Nexis SCD-2030的气相色谱分析方案,可高灵敏度检测各种痕量硫化物。 3 粗酚分析粗酚是焦油加工的副产品,主要分析标准是:《GB/T 2601-2008 酚类产品组成的气相色谱测定方法》,其中方法一:焦化产品中焦化苯酚、工业酚、邻甲酚等组成的测定。方法二:焦化产品中的工业甲酚、间对甲酚、工业二甲酚等组成的测定。 4 大气中非甲烷总烃分析 非甲烷总烃是钢铁工业大气污染物中非常重要的指标之一,一般是指从总烃中扣除甲烷以后其他气态有机化合物的总和,常见标准有:《HJ 604-2017 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》、《HJ 38-2017 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》。岛津拥有非常丰富的非甲烷总烃分析经验,目前有多套成熟的非甲烷总烃以及苯系物分析方案。 钢铁行业作为工业的重要领域,是能源消费大户,同时也是CO2排放大户,目前中国钢铁行业CO2排放约占全国的15%~17%,在工业领域中是仅次于电力行业的第二排放大户,深入推进绿色低碳环保和促进钢铁工业高质量发展对国家“双碳”目标的实现具有重要意义。岛津长久以来一直致力于提高气相色谱的性能,通过技术创新将硬件、软件、性能等进行优化,实现操作体验、产品性能、运行效率的融合,这些新技术将助力钢铁行业的分析工作更上一层楼。Nexis GC-2030加强版 ——Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 GC-2010 Pro ——GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。 本文内容非商业广告,仅供专业人士参考。
  • 在线气体分析仪在煤化工中的应用—甲醇合成
    甲醇合成的原料主要是气化煤气、焦炉煤气、天然气等,经过净化(变换,脱硫,脱碳),然后调整其压力进合成塔,出来后冷却,然后在经过醇分进精馏塔提纯。在线分析仪器的主要用量在煤气化工段,而对于净化和合成工段所使用的仪器数量较少。针对相同制煤气工艺而言,甲醇工艺所需要的分析仪器数量要少于合成氨工艺。煤气化技术是发展煤基化学品(如甲醇,氨、二甲醚),煤基液体燃料,先进的IGCC发电技术,多联产系统,制氢,燃料电池,直接还原炼铁等过程工业的基础,是这些行业的共性技术,关键技术和龙头技术,可以说是工业领域许多行业发展的“引擎”。航天炉煤气化工艺主要技术路线:干煤粉作原料,采用激冷流程,主要特点是技术先进,具有较高的热效率(可达95%),碳转化率高(可达99%) 气化炉为水冷壁结构结构,气化温度能到1500-1700℃的高温 对煤种要求低,可实现原料本地化 拥有自主知识产权 关键设备全部国产化,投资少,生产成本低。(图源网络,侵删)不同的设计院、以上数据有差异
  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical AtomicSpectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • 脂肪酸分析用三氟化硼甲醇溶液
    下载:脂肪酸分析用三氟化硼甲醇溶液.pdf 关键词:三氟化硼甲醇 脂肪酸 甲酯化 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • “立足当下,着眼未来”——第二届全国石油化工分析测试技术暨第十二届全国石油化工色谱学术报告会圆满落幕
    仪器信息网讯 7月17日下午,在陕西省西安市,第二届全国石油化工分析测试技术暨第十二届全国石油化工色谱学术报告会正式落下了帷幕。本次大会由中国石油学会石油炼制分会主办,中国石化石油化工科学研究院和北京理化分析测试技术学会共同承办,汇集了中国石油化工领域的专家、企业代表以及仪器公司相关技术人员等。会议现场17日下午,首先进行的是大会报告环节,该环节由中国石化石油化工科学研究院刘泽龙、中国石化上海石油化工研究院王川主持。报告专家:中国石化上海石油化工研究院 王川报告题目:石化有机原料分析方法标准研究进展王川就近5年石化有机原料分析方法标准的研究进展作简要介绍,包括引入先进分析设备,开展在线分析技术的标准化转化,推广绿色分析技术方案,拓展气相色谱分析,开展工业类芳烃类产品纯度杂质有效碳数校正面积归一化法研究,提升国家标准引领作用助力煤化工,推动高水平国标向国际标准转化,不断提升在国际标准领域的话语权。报告专家:中国石油勘探开发研究院 王汇彤报告题目:全二维气相色谱在未知化合物发现和鉴定中的应用随着全二维气相色谱在石油地质样品分析中的应用与普及,人们基本掌握了石油地质样品的全二维分析谱图特征及其规律。王汇彤介绍了全二维气相色谱对未知化合物发现与鉴定的优势,主要是除干扰能力强,以及具有族分离特性和“瓦片效应”。另外,他还简要介绍了全二维气相色谱在未知化合物发现和鉴定中的应用情况。报告专家:中国石化炼油事业部 尹彤华报告题目:油品实验室管理与发展探讨油品实验室除了需满足资质认定和实验室认可等通用规则外,还需满足油品领域的一些特殊要求。尹彤华梳理了国内检测实验室管理构架与要求,油品实验室检测管理要素及注意事项,同时针对油品实验室在建设及管理过程中的常见问题给出了相应解决方案,提出信息化在油品实验室的应用以及未来油品实验室的主要发展趋势。报告专家:中国石油大学(北京)重质油国家重点实验室 史权报告题目:基于电喷雾质谱的重馏分油分子组成分析方法与应用基于分子工程理论和方法,开发分子管理技术,实现炼油过程的分子层次优化,已经成为学术界和工业界的普遍共识。面向分子管理技术的石油分子组成分析方法是目前面临的一个重大需求。史权介绍了基于电喷雾高分辨质谱开发的不同类型化合物分子组成分析方法,通过组合不同分析方法,仅使用ESI电离源,实现覆盖重馏分油组分分子组成的全面表征。报告专家:浙江福立分析仪器有限公司 冯帅报告题目:福立气相色谱快速炼厂气分析解决方案炼厂气是炼油厂在石油加工过程中产生的混合气体总称,其组分测定在石油加工过程中中间控制及炼厂气的有效利用是重要环节,快速、准确、实效检测出各组分的含量尤为重要。福立仪器新一代气相色谱仪GC9720 Plus主机,配备五阀七柱气路系统,制订出的五阀七柱快速炼厂气解决方案是目前检测炼厂气组分多、分析组分含量范围广、结构复杂的方案。报告专家:中国石化石油化工科学研究院陶志平报告题目:通用航空发展对未来油品需求当前通用航空和无人机对油料的需求是航空汽油和航空煤油。通用航空的不断发展,特别是以内燃机为动力的无人机(包括军用无人机与民用无人机),为航空油料发展带来了新的需求和机遇。陶志平主要介绍了航空汽油的发展现状以及航空煤油(航煤馏分)的需求及其质量要求。报告专家:中海油炼油化工科学研究院 齐邦峰报告题目:油液检测技术机械设备油液检测技术是实施设备状态监控维修的有效技术,是维修决策的重要依据。齐邦峰详细讲述了油液监测技术的发展历程,采样技术,油液物性检测技术,污染度检测技术,以及磨损磨粒分析技术。采用上述技术对在用油进行表征,并结合设备使用环境、状况及使用性能进行全面的分析,从而正确评估在用油液的品质与设备的运行状态。报告专家:中国石化石油化工科学研究院 钱钦报告题目:炼化企业污染物分析及溯源技术进展作为环境管理的重点管控行业,石油炼制三废的排放必须要满足相应的排放标准。钱钦针对近年来炼厂气液固三废的分析技术及溯源技术进行了概述,主要讲解了炼化企业污染物溯源技术进展,炼化企业循环水漏油溯源分析技术,其他相应分析技术如含油污泥分析技术等。报告专家:宁波海关 王群威报告题目:出口成品油现状及质量分析重点问题王群威介绍了我国目前出口成品油的现状,出口成品油的种类主要是汽油、柴油和航空煤油,具有量大点多的特点,并且不同国家对成品油产品质量标准要求差异较大,这提高了我国海关检验工作的困难。结合工作经验,他强调了出口成品油检验应注意的一些问题,以及实施出口成品油检验工作重点关注的问题。报告专家:中国石化石油化工科学研究院 陈瀑报告题目:智能化炼厂在线分析技术过程分析的核心是利用在线分析仪监测所有影响最终产品的关键过程参数和质量属性。陈瀑概述了炼油行业的成油品质量性质分析仪、安全环保相关在线分析仪和其他在线仪器技术与应用的现状,其中特别介绍了在线色谱,在线近红外以及在线核磁技术。他指出,在线仪器与实验室仪器分析重点完全不同,在线仪器功能单一、注重自动化、集成度和持续稳定性,对分析速度和安全性要求较高。此外,他认为原位分析会是未来主要的发展趋势。大会报告环节结束后,本次会议举行了简短的闭幕式。闭幕式由中国石化石油化工科学研究院李长秀主持,大会主席中国石化石油化工科学研究院首席专家&教授级高工徐广通做总结发言。中国石化石油化工科学研究院李长秀中国石化石油化工科学研究院首席专家&教授级高工徐广通本次大会有近300人参加,会议报告涉及领域广泛,参展仪器厂商展示了最新的产品及技术,引发了激烈的学术碰撞。徐广通认为,本次会议以石油化工分析技术为主导,进而形成了极强的凝聚力,各单位专家都有这样一个基本共同的研究目标,从彼此的技术手段、研究方法中相互借鉴。对于双碳政策下石化行业的转型,每个人都持不同的意见,新能源领域的探讨也产生了不小的争议,他倡议石化分析工作者们“立足当下,着眼未来”,做好当下的研究工作,也要对未来政策的转变有所准备!后记近年来,原油进口依存度高达70%。受疫情影响,外部环境复杂且原油市场价格波动剧烈,给国家能源安全带来了威胁。氢能作为清洁能源,是国家实施能源安全的重要组成部分,在未来国家能源结构中占有重要地位。在石油化工领域,氢能也发挥着重要的作用,本次大会多位专家分享了氢能研究的内容。特别是徐广通教授指出当前氢能发展面临的问题:一是缺乏国家层面总体统筹和顶层设计,已出现产业雷同、低水平重复建设的苗头;二是在液态储氢等核心技术、高端材料、装备制造方面存在“卡脖子”风险;三是氢能管理体系尚未建立,行业标准、技术路线需要进一步探索研究;四是当前“绿氢”(风光水核电等非化石能源制氢)成本高,经济性利用较为困难。当前,我国氢能源大多处于“灰氢”阶段,“蓝氢”的相关工作也正在不断地开展,希望技术人员能尽快突破技术瓶颈,实现“蓝氢”到“绿氢”的真正转变。
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 — END —扫描二维码 |
  • 第五届岛津石化、煤化气相色谱分析技术论坛成功举办
    随着石化、煤化产业的高速发展,项目开发中间过程控制以及成品品质保证多个环节都对气相色谱技术提出了更高的要求,气相色谱相关应用技术水平已成为实验室能力的重要标志。近年来,岛津公司助力越来越多的化工大项目和高端催化科研领域,积累和研发了很多业界领先的色谱解决方案。为了与业内的专家老师共同分享、交流气相色谱应用最新成果和经验,使色谱技术能够发挥出更大的作用,岛津公司于2018年11月30日在江苏连云港举行了第五届岛津石化、煤化气相色谱分析技术论坛。会议现场聚集了来自石化、煤化行业的100多位专家、用户,共同探讨并分享气相色谱分析技术在石化、煤化行业中的应用。此次会议规模相比往届攀上了新高,会议获得了专家、用户的良好反馈。岛津公司分析仪器事业部部长吴彤彬先为论坛致开幕词,并对与会来宾表示了热烈欢迎。他谈到,由于国家能源的战略和布局的重新调整,我国能源和化工正在步入新型快速发展新通道。而岛津历来重视能源和化工行业发展,致力于新产品、新应用方案的创新和研发,希望通过这次会议,持续倾听不同客户声音,不断的研发和创新产品、解决方案。期待能够和专家、用户建立更为深入、持久的合作关系。岛津公司分析仪器事业部部长吴彤彬致开幕词在开幕词后,会议进入专家发表环节。会议邀请中石化石科院李长秀教授、江苏斯尔邦石化有限公司质检中心苏建萍主任、中科院大连化学物理研究所李杲教授、中科合成油技术有限公司李莹部长共四位专家学者带来了精彩的报告。岛津公司分析测试仪器市场部能源与化工应用吴建涛经理、产品专员李言先生、顾晖先生、网络化专员陈家鼎先生也给大家分享了最新的气相色谱及网络化应用方案。岛津分析测试仪器市场部能源和化工组吴建涛经理报告岛津分析测试仪器市场部能源和化工组吴建涛经理报告题目为《岛津气相色谱技术在化工领域的应用》。吴建涛经理以其丰富的行业工作经验,结合岛津近年来在化工行业的成功大项目情况,对化工行业的整体现状和发展方向进行了梳理,以宏观的视角对行业进行了分析。报告中详细讲解了岛津气相色谱技术在“石油化工”、“现代煤化工”、“泛化工”、“新能源、新材料”等四大领域中的应用。他说道,岛津在每一领域都有成熟可靠的配置方案的经验累积,无论哪一个部分岛津总是本着工匠精神要求自己,做出精品项目,提供更新的产品、更好的解决方案,跟随行业发展,和用户共成长。中石化石科院李长秀教授报告中石化石科院李长秀教授的报告题目为《石化行业色谱分析解决方案及新标准解读》。她对中国石化科学研究院在油品分析气相应用发展情况做了详细的介绍。分别对汽油单体烃和族组成分析、汽油中非烃组分及非常规添加组分的测定、色谱模拟蒸馏分析多个油品分析的标准向与会嘉宾做了解读。此外,在结合产业的新发展方面,也分享了很多引领行业发展的新标准制定工作。她表示,新能源行业的发展开始进入到石油化工科学研究院的视野当中。江苏斯尔邦石化有限公司质检中心苏建萍主任报告江苏斯尔邦石化有限公司质检中心苏建萍主任报告题目为《江苏斯尔邦石化江苏斯尔邦石化质检中心及分析经验介绍质检中心及色谱应用经验介绍》。苏建萍主任作为化工产业的代表,其质检中心拥有71台岛津气相色谱仪及13台岛津其他仪器,双方形成了良好的合作关系。她在报告中介绍了质检计量中心的组织构架、职能以及将来规划。实验室采用了岛津公司的网络化系统部署管理,使用方便稳定,提升了备份数据的效率,同时也有效避免丢失数据从而保证实验室的稳健运行。在一些特殊分析方法建立中与岛津充分合作共同解决了很多行业难题。此外实验室还在申请CNAS认可,不断地对化验室的工作提升做出努力。 中科院大连化学物理研究所李杲教授报告 中科院大连化学物理研究所李杲教授报告题目为《催化研究---化工产业升级的根本动力》。李杲教授首先介绍了大连化物所研究成果在工业应用的璀璨成绩,刘中民院士团队DMTO技术,包信和院士团队甲烷无氧制烯烃芳烃,丁云杰教授团队醋酸加氢制备乙醇,李灿院士的汽油超深度脱硫技术,无处不体现催化研究的科学技术带来第一生产力。他结合自己课题组的研究方向,二甲醚催化转化制富含异构烷烃汽油,异丁烯醛催化合成MMA为此次论坛的产学研结合画上浓墨重彩的一笔,让大家了解到催化研究对于产业的升级是一个最核心的驱动力,从其研究的方向也能够领略到将来化工行业发展的趋势。 中科合成油技术有限公司李莹部长报告中科合成油技术有限公司李莹部长报告题目为《气相色谱在煤间接液化领域的应用》。李莹部长的报告技术内容丰富,充分展现了其在行业内色谱应用的高水平。他介绍了中科合成油的煤间接液化,F-T合成等关键技术,并结合多个已投产项目的实际分析技术支持进行经验分享,以及多个煤基费托合成产物的分析方法标准的制定,展示了其在国家能源战略布局的煤制油领域中,涉猎的广度和深度,为此次论坛奉献了一场精彩的报告,获得了现场业内同仁的热烈反响,在项目现场开车保运很多攻坚克难的工作经验分享也为了行业做出了很好的表率。 岛津分析测试仪器市场部网络化专员陈家鼎岛津分析测试仪器市场部网络化专员陈家鼎先生报告题目为《岛津LabSolutions CS实验室网络信息化管理解决方案》。在大数据流行的当下,实验室也同样将步入信息化的时代,对此,他讲述了如何理解、定义实验室网络化,实验室数据将何去何从;当前实验室管理条件下存在哪一些值得进步、改善的环节等重点内容。岛津网络化系统LabSolutions CS提供了相对完整的解决方案,并能够结合LIMS系统,实现高效率的管理。他详细介绍了岛津新推出的软件可以实现LIMS的关键性功能,并且能够很好的改善LIMS系统和网络化工作站原有结合方式的很多问题,引起了与会嘉宾的广泛关注。 岛津分析测试仪器市场部能源和化工组产品专员顾晖岛津分析测试仪器市场部能源和化工组产品专员顾晖先生的报告题目为《岛津化工行业气相色谱新技术及应用》。他介绍了烯烃样品中痕量砷烷、磷烷的GCMS解决方案,中心切割技术延长了色谱柱的使用寿命,减少了人员老化色谱柱以及标定仪器的工作量,实现了用一台仪器完成传统两台仪器的分析任务,节约了成本。他表示,新技术可提高分析仪器的使用效率,减少分析时间,及时为生产装置提供分析数据,在行业内有很好的应用前景。岛津FPD对硫化物分析的超高灵敏度,实现了用户对微量硫化物分析低成本、稳定、维护方便的期许。 岛津分析测试仪器市场部能源和化工组产品专员李言岛津分析测试仪器市场部能源和化工组产品专员李言先生的报告题目为《岛津气相色谱在化工催化研究领域的应用》。他介绍了光解水、光催化CO2还原产物分析的成熟成套解决方案,以及CO2电催化等近年来的研究热点对应的成熟分析方案;对费托合成,合成气转化、甲烷转化C1化学领域的应用方案,根据分析目标进行了分类,并且以高沸点产物在线分析方案为核心,将一个研究分析难点的解决方式和解决过程进行了充分的讲解;最后以多个科研领域创新方案为实例,讲解了其创新性和在化工项目的应用潜力。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 中石化汽油再曝质量门 或因甲醇代乙醇
    中石化再一次陷入汽油“质量门”,不过,这次“受害者”由香港车主变为河南车主。   昨日,中石化办公厅有关负责人接受《每日经济新闻》采访时表示,中石化总部正在等待河南安阳当地工商局和技术监督局对油品进行抽样检验的报告。而中石化安阳公司有关人士也称,目前已停止出售这批疑因导致部分车辆故障的93#汽油。   各方等待抽样检验报告   据报道,2010年3月中下旬开始,河南省安阳市内许多4S店突然接到大批送修车辆。这些故障车辆都有着同样的“病症”:轻则会出现加油不顺、冒黑烟、尾气刺鼻的情况,重则排气管不断喷出红或黑色液体、无法启动,最严重的会出现一些零件损坏的情况。   对此,《每日经济新闻》向中石化方面进行了求证。   中石化办公厅有关负责人士说:”此事件还没有上升到中石化北京总部这个层面解决,具体情况要问中石化河南安阳分公司,由他们具体负责处理,中石化总部也在等待检测报告的出来。估计就这几天会出来,到时会对外公布。”   “对不起,我只是一个负责加油的员工,关于车辆故障的问题我不太清楚。”中石化河南安阳分公司旗下加油站的一位员工在电话中说道。   安阳分公司负责油品零售业务有关人士也对《每日经济新闻》表示,4月1日起,当地加油站已经全部更换了一批新的93#汽油,上批油已经停止销售了。4月初,中石化河南安阳分公司在安阳市电视台也发表了公开声明,表示将对车主损失的油费和清洗费进行理赔。   中石化河南石油分公司目前也声明表示,已组成调查组,在前期组织有关专家赴现场进行调查的基础上,责成安阳石油分公司主动邀请当地工商局和技术监督局对油品进行抽样检验,同时将邀请车友代表和关注此事的网友、媒体记者对抽检过程进行监督,最终调查结果待专家及权威机构拿出意见后及时公布。如果调查证实下属企业确实存在内部管理问题,其将对有关责任人问责。   甲醇代替乙醇所导致?   一位不愿署名的汽车业内专家称在最终抽样检验没有出来之前,无法确定事故的最终原因。不过,他担心或许是汽油中加入甲醇代替乙醇导致。   国家发改委和财政部之前曾联合下发紧急通知,要求各地暂停核准玉米加工乙醇项目。乙醇汽油最大的问题就是会占用耕地和粮食,而且发酵乙醇价格高。上述专家说,国内乙醇限产,没那么多已乙醇添加,一些加油站为了追求利润,甲醇代替乙醇。而全国每年有几十万吨甲醇不知去向,特别是在山西、河南地区。   与乙醇汽油相比,甲醇汽油的生产成本具有绝对优势。甲醇生产成本在每吨1000元左右,而每吨乙醇的生产成本在4500元左右。   据专业人士介绍,甲醇汽油M15标准,是汽油里面加入15%左右的甲醇,以及一定量的添加剂,以此类推M30和M50则是分别加入30%和50%的甲醇。目前,只有山西省在全面推广甲醇汽油。
  • 智能化炼厂在线分析仪器技术与应用现状(涉及色谱、近红外和核磁)
    针对炼化企业的智能化建设,均涵盖在工业和信息化部提出的“生产管控”、“设备管控”、“能源管理”、“供应链管理”、“安全环保”和“辅助决策”六个主要业务领域,只是各企业现阶段的侧重点有所不同[1]。图1 工信部提出的石化智能工厂6个主要业务领域 [1] “生产管控”主要指通过生产过程智能化的优化控制,提升操作自动化和实时在线优化水平,炼厂作为生产企业,生产管控智能化在很大程度上决定着炼厂的智能化水平。目前,在大量使用DCS 的现代化炼油装置中,基本都具备了先进过程控制(Advanced Process Control,APC)能力,但随着过程工业日益走向大型化、连续化,对过程控制的智能化提出了更高的要求,控制与经济效益的矛盾日趋尖锐,迫切需要一种新的控制策略,实时优化(Real-Time Optimization,RTO)技术便应运而生,其能够显著提高生产过程的效益,已经在过程控制领域获得了广泛的应用,是决定炼厂 “生产管控”智能化的重要技术。同时,RTO技术要想顺利实施,必须及时感知生产中的各类过程数据,即离不开过程分析技术(Process analytical technology,PAT)的帮助。PAT过程分析技术的概念最早是由美国食品和药物管理局在2004年引入制药行业的,旨在支持创新和提高药品开发效率,保证药品质量。此后,该技术逐步推广到各个国家的各种生产制造行业,如炼化、食品、饲料等生产行业,其核心是利用在线分析仪监测所有影响最终产品的关键过程参数和质量属性,在线分析仪就是用来在线检测工业生产过程中的原料、中间产品、产品以及相关辅助原料、副产品等物料性能指标的分析仪器。在线分析仪取样分析方式有两种:一是通过探头直接从工艺管线或设备中取样同时进行分析,二是通过快速回路等方式将样品从主管线或设备中引出后取样分析。前者一般不需要或仅进行简单的样品预处理,而后者均需要配备样品预处理系统。炼厂各类油品往往含有从装置或管线中带出的少量固体颗粒及水等杂质,因此较少直接从工艺管线中直接取样进行在线分析,大部分在线分析都是将样品引出后进行。完整的在线分析系统除在线分析仪本身外,样品预处理系统和分析小屋也是其重要组成部分。预处理系统的目的不外乎调节样品环境、净化样品、保护装置等,但针对不同生产领域的样品,如炼油领域和化工领域,预处理系统也存在一定差异。分析小屋的需求一般取决于分析仪本身。样品预处理系统是分析对象进入在线分析仪的前端环节,就炼厂来说,样品预处理系统的目的就是为在线分析仪提供连续的、有代表性的油样,油样状态满足在线分析仪所需的温度、压力、流量、洁净度等要求,从而确保仪器长期可靠运行,减少仪表故障甚至是安全事故的发生。可见样品预处理系统的重要性丝毫不亚于在线分析仪,并且由于样品预处理系统涉及部件较多,集成性往往不如在线分析仪,因此其使用可靠性也低于分析仪。在实际使用中,样品预处理系统所遇到的问题往往比分析仪多,即使使用正常,其维护量也远远高于分析仪本身[2]。在线分析仪一般安装在工业现场,需要为其提供不同程度的气候和环境防护,以确保仪器的使用性能、寿命并便于维护。对分析仪的保护可以采取加装外壳及箱柜、搭掩体以及分析小屋的方式,简单的在线分析仪如电导仪、密度计等可直接依靠外壳、箱柜或掩体防护,但这些防护措施无法或仅能提供简单的环境防护,对仪器及维护人员提供的保护不足。对于在线色谱、在线近红外等需要经常维护且系统复杂、具有重要用途的大型在线分析仪,分析小屋能为其提供可控的操作和维护环境,并可延长使用寿命,降低维护成本。图2 某装置在线近红外分析小屋外景和预处理箱就油品质量性质分析来说,从干气、液化气、轻质油品到重质油品,油品质量性质成百上千,如液化气组成、汽油馏程、航煤冰点、柴油凝点、渣油粘度等等,对应的在线分析仪也很多,这些仪器构成了炼厂在线分析仪的主力军,概括起来可以分为三大类:以在线色谱为代表的组份分析仪;以在线近红外和在线核磁为代表的光(波)谱分析仪;基于常规方法的油品质量在线分析仪表,如在线硫分析仪、在线馏程分析仪等。在线色谱色谱是一种基于对分析样品强大的分离能力来进行定性和定量分析的仪器,在线色谱仪和实验室色谱仪分析侧重点完全不同,前者功能单一,注重自动化、集成度和持续稳定性,对分析速度和安全性要求很高,需配备取样和预处理系统,固定于装置现场,基本无可拆卸部件。而后者往往具备多种可更换部件和扩展功能,分析对象广、检测限低,但分析时间相对较长,需要丰富的人员操作经验。在线色谱仪在石化领域应用主要集中在组成分析,其另一主要功能即模拟馏程分析的应用较少。按照工艺装置来分,在线色谱仪在炼油行业主要应用场所有:催化裂化、催化重整、气体分离、烷基化、MTBE等;在化工行业的主要应用场所有:乙烯裂解、聚丙烯、聚乙烯、氯乙烯、苯乙烯、丁二烯、醋酸乙烯、乙二醇、芳烃抽提等,总体来说在线色谱在化工行业的应用要多于炼油领域。以重整和芳烃联合装置为例,在线色谱主要用来进行物料组成及含量分析,主要应用点有:检测脱戊烷塔顶馏出物中C6组分含量;C4/C5分馏塔液化石油气产品组成;脱戊烷塔底料(芳烃抽提进料)的芳烃(BTX,苯、甲苯、二甲苯)组成;苯抽提塔顶MCP、苯、非芳含量等等。表1 在线色谱在重整和芳烃联合装置上的应用应用点 物料 被测组分 测量目的 催化重整装置 脱戊烷塔顶 C6 减少C6+组分的损失 C4/C5分馏塔液化石油气 C5 控制C5质量分数 脱戊烷塔底 BTX、苯、甲苯、二甲苯 监测重整生成油中BTX纯度 循环氢 CO、CO2、C1- C5 监测循环氢中碳氢化合物杂质 芳烃抽提装置 脱己烷塔顶或塔底 甲基环戊烷(MCP)、苯 了解芳烃抽提进料质量 苯抽提塔顶 MCP、苯、非芳 了解抽提效果 溶剂回收塔顶 甲苯、二甲苯、非芳 了解抽提效果,减少苯损失 在线近红外和核磁在线近红外和核磁共振分析方法均属于波谱分析方法的在线应用,二者均反映化合物的结构信息;二者利用谱图直接进行化合物结构解析和定量分析的能力均有限,通常结合化学计量学方法如主成分分析(PCA)、偏最小二乘(PLS)等建立定性和定量分析模型,来进行样品判别分析或预测和样品化学结构直接或间接相关的性质,如油品的密度、烃类组成、馏程等等;二者在炼油企业原油调合、汽油调合、常减压、催化裂化、催化重整等很多装置上均有应用,分析对象涉及原油、汽柴油、航煤、蜡油等诸多油品;总的来说二者在炼化企业的应用范围和应用模式均有较高的重叠度。虽然应用重叠度较高,但在线近红外和核磁还是有区别,表2列出了两种技术的特点对比。表2 在线近红外光谱与核磁共振谱的对比在线近红外光谱在线核磁共振氢谱化学信息反映的是分子化学键振动的倍频和组合频信息,由分子偶极矩的变化即非谐性产生,主要是含氢官能团的信息,如C-H、N-H和O-H等;光谱范围12000~4000 cm-1,倍频和组合频的化学信息丰富,但有重叠。反映的是氢核对射频辐射(4~60MHz)的吸收,核磁共振氢谱的化学位移与氢核所处的分子结构密切相关,主要是不同化学环境下的氢核信息;相对高场核磁,在线低场核磁的分辨率较低,信号较弱,化学信息量明显减少。定量原理对于汽、柴油、润滑油和原油等复杂混合物,需要采用多元校正方法(如PLS或ANN)建立校正模型。对于汽、柴油、润滑油和原油等复杂混合物,需要采用多元校正方法(如PLS或ANN)建立校正模型。工业现场在线分析技术可采用低羟值的石英光纤,传输距离大于100m;可同时对多路物料进行测量,不需要样品流路切换和清洗;需要一定的预处理。仅一路进样通道采用阀切换方式进行多路测量,存在交叉污染和阀内漏等风险,分析效率相对较低;需要简单预处理。工业应用成熟度已建立完善的原油光谱数据库和汽、柴油光谱数据库;实验室快速分析和工业在线分析应用广泛,工程化成熟度高。工业在线核磁应用起步相对较晚,受外界环境干扰大,导致核磁信号稳定性相对较差;未建立完善的油品数据库,工业应用成熟度和广度相对较低。从谱图的化学信息来看,在线核磁一般为60M左右的低场核磁,所以其谱图包含的组成信息较少。图3 某相同油品在线近红外和核磁谱图比较从仪器硬件来看,国内外知名品牌的在线近红外光谱仪器已有十余家厂商,仪器性能稳定,测量附件齐全,在国内外炼厂已有二十余年的应用历史,售后服务已经规范化和标准化,近红外硬件技术已很成熟。而目前世界范围内只有两家企业提供商用在线核磁共振仪器,应用案例相对较少。工业现场适应性来看,近红外光可以通过光纤进行传输,通过光源分配与多个检测器结合,一台在线近红外光谱仪可以同时对多路样品进行测量,分析效率高。在线核磁技术为避免磁场干扰,一台检测箱中只能安放一套检测仪,使用一根核磁管,通过程控阀组切换的方式实现多路样品轮流检测。由于不能多路同时测量,该技术测量速度相对较慢,同时,阀组长期高频次切换会产生磨损,造成堵塞、内漏、样品交叉污染等诸多隐患。但在分析深色重质油品如原油时,在线近红外对预处理系统的要求比在线核磁要高。最后,从油品谱图数据库来看,不论近红外还是核磁共振技术,数据库的大小和维护都是这类技术的核心。对于近红外光谱技术,由于在石化行业已有近30年的应用,已经建立较为完善的油品近红外光谱数据库,包括原油、石脑油、汽油、柴油、VGO、润滑油基础油等,分析项目涵盖了所有关键的化学组成和物性数据。对于在线核磁共振技术,由于发展时间较短,在炼油企业的应用成熟度和广度不高,尚未开展系统的数据库建立工作。结语相对于欧美等发达国家,过程分析技术在我国石化行业的普及性和投用率都有一定差距,原因是多方面的,主要原因还是维护困难,对操作人员专业知识水平要求较高,以及缺乏相应的标准,很多场合想用在线分析仪而不能用、不敢用。借助国家大力发展智能化炼厂建设的契机,过程分析技术有望在石化行业进入发展快车道。 参考文献[1] 龚燕, 杨维军, 王如强, 等. 我国智能炼厂技术现状及展望[J]. 石油科技论坛, 2018, 3: 29-33.[2] 王森. 在线分析仪器手册[M]. 1版. 北京: 化学工业出版社, 2008.作者:中国石油化工股份有限公司石油化工科学研究院 陈瀑
  • 珀金埃尔默洗手液分析仪可在30秒内完成甲醇检测
    致力于为创建更健康的世界而持续创新的全球技术领导企业,珀金埃尔默日前宣布其洗手液分析仪可用于检测含酒精的洗手液产品中是否存在甲醇,并在30秒内给出产品合格与否的检测结果。美国食品药品监督管理局(FDA)最近发布的警告和实施的产品召回,表明含有毒性的甲醇若经皮肤被人体吸收可能对消费者有害,若不慎摄入,还会危及生命。这款仪器于2020年4月上市,还可检测洗手液中乙醇和异丙醇等目标醇类物质的浓度水平,有助于按照世卫组织(WHO)、美国药典(USP)或美国食品药品监督管理局(FDA)的指南确保产品功效。这款设计紧凑的便携式分析仪是在珀金埃尔默的Spectrum Two™ 傅里叶变换红外(FT-IR)光谱仪解决方案基础上研发的。利用这项基础技术,可快速检出浓度低至0.03%(或300ppm)的甲醇,检测灵敏度高于FDA规定的检出限。珀金埃尔默应用市场事业部副总裁兼总经理Suneet Chadha谈到:“目前,新冠疫情仍在全球蔓延,流感爆发季又即将来临。在这种环境下,含酒精的洗手液产品必须能让消费者充分信任其安全性与功效。珀金埃尔默洗手液检测仪能助力这些高需求量产品的生产企业和供应商快速获得可靠的检测结果,从而保护消费者,避免消费者使用假冒产品,杜绝产品召回事件。”洗手液分析仪是珀金埃尔默助力抗击新冠疫情综合解决方案的一部分。从病毒检测到发现药品和疫苗乃至在整个保护性产品检测过程中,都能发现珀金埃尔默的创新成果,包括各种试剂、仪器、信息科学服务、自动化和工作流程解决方案及服务。珀金埃尔默还致力于向世界各地捐赠仪器和试剂,以帮助重点疫区开展疾病的筛查和诊断。欲了解更多信息,敬请访问: www.perkinelmer.com.cn。关于珀金埃尔默珀金埃尔默助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。我们始终致力于为创建更健康的世界而持续创新,我们为诊断、生命科学、食品及应用市场推出独特的解决方案,我们与客户建立战略合作关系,凭借深厚的市场知识和技术专长,助力客户更早地获得更准确的洞察。在全球,我们拥有13,000名专业技术人员,服务于全球190多个国家和地区,时刻专注于帮助客户创造更健康的家庭,改善生活质量,并维持全球人民的健康和长寿命。2019年,珀金埃尔默年营收达到约29亿美元,客户遍及190个国家,并为标准普尔500指数中的一员。了解更多信息,请通过纽交所上市代号1-877-PKI-NYSE或访问www.perkinelmer.com.cn。
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 使用超高效合相色谱分析短杆菌肽
    使用超高效合相色谱(UPC2)分析短杆菌肽 Sean M. McCarthy, Andrew J. Aubin, 和 Michael D. Jones 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 快速分离短杆菌肽 ■ 载量线性响应 ■ 准确、高精度分析短杆菌肽的方法 ■ 有可能用于其它疏水性肽和蛋白质 沃特世解决方案 ACQUITY UPC2系统 ACQUITY® SQD ACQUITY UPC2 CSH氟苯基色谱柱 Empower&trade 3软件 关键词 超高效合相色谱、UPC2、疏水性肽、短杆菌肽 简介 用反相液相色谱(RPLC)分析疏水性肽和蛋白质难度很大,因为溶液中经常需要使用洗涤剂保持疏水性物质的稳定性,而这些洗涤剂容易发生聚集和/或沉淀,严重影响它们的回收,这些因素以及其它原因使得难以用RPLC分离疏水性肽和蛋白质。 在本应用纪要中,我们为您介绍一种在ACQUITY UPC2TM系统上使用沃特世(Waters® )超高效合相色谱技术分离典型跨膜肽-短杆菌肽的方法。 短杆菌肽是由芽孢杆菌产生的一种常见和已被良好表征的跨膜肽物质,它被用作对抗革兰氏阳性和某些革兰氏阴性细菌的局部用抗生素,短杆菌肽包括通用组成为甲酰-L-缬氨酸-甘氨酸-L-丙氨酸-D-亮氨酸-L-丙氨酸-D-缬氨酸-L-缬氨酸-D-缬氨酸-L-色氨酸-D-亮氨酸-L-X-D-亮氨酸-L-色氨酸-D-亮氨酸-L-色氨酸-氨基乙醇的一族化合物,其中X取决于短杆菌肽分子,即分别占总短杆菌肽量约87.5%、7.1%和5.1%的革兰氏A(X=色氨酸)、革兰氏B(X=苯丙氨酸)和革兰氏C(X=酪氨酸),1需要交替的D和L氨基酸单元构成_-螺旋状。 我们研究了色谱柱化学品、流动相改性剂和梯度斜率对分离短杆菌肽的影响。采用优化方法分离市场上销售的非处方药物(OTC),将测定的短杆菌肽浓度与标示量进行对比。采用质谱仪测定短杆菌肽的浓度,采用选择离子谱表征每种物质。在ACQUITY UPC2系统上使用我们的方法,可得到线性和可重复的结果&mdash &mdash 测定的OTC制剂浓度为标示量的98.4%。 试验 测试条件 除非另有说明,以下是用于所有色谱最终方法的最佳条件。 UPC2测试条件 UPC2系统: ACQUITY UPC2 检测器: PDA、ACQUITY SQD PDA @ 280nm,分辨率为6 nm(补偿400至500 nm) 色谱柱: ACQUITY UPC2 CSH 氟苯基,3.0 x 100 mm, 1.7 &mu m 柱温: 50 ° C 样品温度: 15 ° C UPC2 ABPR: 1885 psi 进样量: 1 &mu L 流速: 2.0 mL/min 流动相A: CO2 流动相B: 含0.1%TFA的甲醇(除非另有标示) 梯度: 20%至30% B,1.5min SQD条件 离子源: ES+ 锥孔电压: 20 V 毛细管电压:3.7kV 源温度: 150 ° C 脱溶剂气温度: 500 ° C 脱溶剂气体流速: 400 L/hr 锥孔气体流速: 25 L/hr SIR: 922.6,930.3,941.9 数据管理 Empower 3软件 样品描述 用解硫胺素芽孢杆菌(短芽孢杆菌)制备的短杆菌肽从Sigma Aldrich公司购买,将样品溶解在甲醇中制成0.5mg/mL浓度的溶液,如需要,可用甲醇稀释。含有短杆菌肽的非处方软膏是从当地药店购买的。将0.2g软膏溶解在10mL正己烷中,然后用5mL甲醇萃取短杆菌肽,去除甲醇层,用0.2-&mu m的烧结玻璃盘过滤,然后直接进样ACQUITY UPC2系统。 结果与讨论 我们系统性地筛选了四种色谱柱,测定哪种分离效果最佳,结果如图1所示,色谱柱筛选过程可在1小时内非常快速地完成。在我们设定的筛选条件下,BEH 2-EP和BEH色谱柱未检测到谱峰,由于其它色谱柱表现出合适的色谱性能,因而未对这两者的非洗脱原因深入研究,其中ACQUITY UPC2 CSH氟苯基色谱柱检测的色谱峰形最佳,因此采用该色谱柱继续研究。 图1.通过短杆菌肽标准物的色谱峰形和保留时间筛选各种化学特性色谱柱。所有色谱柱规格为3.0x100mm,填装亚-2-微米填料;所有分离条件都采用流动相 A:CO2、流动相 B、含0.1% FA的MeOH、2 mL/min, 3%B至25% B,5min。 为了分离短杆菌肽物质,对酸性改性剂的影响进行了研究,结果表明:使用三氟乙酸(TFA)可得到稍好的峰形,提高了短杆菌肽A和短杆菌肽C之间的分离度,结果如图2所示。已知TFA会抑制质谱电离,但每种物质的信号都足以定量检测治疗制剂,后续将对此进行讨论。对于要求更高灵敏度的应用,可能需要降低TFA浓度或使用甲酸,以达到希望的检测限值。 图2.酸性改性剂对分离短杆菌肽的影响。 当设置好合适色谱条件后,通过减少梯度时间优化分离过程,结果如图3所示,我们能够在1.5分钟时间内使每种短杆菌肽组分的分离度达到1.4或更高,在相同流速下通过减少运行时间增加梯度斜率,不但实现有效分离,同时还将短杆菌肽A的信噪比从336提高至605。 图3.UV 280-nm痕量检测优化分离短杆菌肽A、B和C。 我们测试了最佳分离条件,能够使用单四极杆质谱(SQD)检测每种物质,图4显示:每种物质都被质谱良好分离和检测到,另外每种短杆菌肽物质都显示含有绝大多数的M+2H离子,后续的研究将使用这些参数进行选择离子监测。 图4:每种短杆菌肽物质的总离子图谱-A和加合离子图谱-B-D。选择强度最高的离子评估市场上销售的抗菌制剂中的短杆菌肽含量,对于多肽序列,红色残基是L型同分异构体,黑色残基是D型同分异构体。 为了评估我们的方法是否适用于定量分析市场上销售的非处方药中的短杆菌肽,我们在ACQUITY SQD上使用选择离子监测,结果如图5A所示。我们绘制浓度-峰面积曲线,得到每种物质的校正曲线。结果发现:如图5B-D所示,每种成分在测试范围内都呈线性响应。另外还使用校正曲线测定了非处方药物中的每种短杆菌肽物质浓度。 图5,图A-25.0、12.5、1.25和0.625mg/mL浓度的标准溶液中含有短杆菌肽物质的叠加选择离子谱。图B、C和D-每种短杆菌肽A、B和C各自的MS峰面积线性拟合图。 使用开发的方法评估非处方药物中的短杆菌肽物质的浓度和相对丰度。如图6所示,重复分析结果表明:每种短杆菌肽%RSD值小,计算浓度与标签上的标称值相吻合;我们还发现短杆菌肽物质的相对丰度与文献报道的丰度非常吻合1。 图6. 从抗菌软膏中萃取的短杆菌肽A、B和C的叠加选择离子谱重复进样分析的计算RSD值(N=3)在可接受限值以内,计算丰度与文献报道数值非常吻合1。 结论 正如本应用纪要所展示的,ACQUITY UPC2系统与ACQUITYUPC2色谱柱化学结合使用,可为短杆菌肽提供简单、准确和可重现的分析方法。该工作表明ACQUITY UPC2系统可用于分析疏水性肽,还可能用于分析疏水性蛋白质,例如膜蛋白。 参考文献 1. The Merck Index and Encyclopedia of Chemicals, Drugs, and Biologicals.13th ed. Whitehouse Station, NJ : Merck Research Laboratories 2001. 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • PerkinElmer推出红外成像方法分析大气中PM2.5的成分
    雾霾天气的无疑给人类健康和生活带来很大的影响,大气中污染物的数量及其对人类健康的影响正成为全球所关注的问题。大气中的污染物主要来源于悬浮于大气中的颗粒物(PM),固体和液体小微粒。国际癌症研究机构(IARC)和世界卫生组织(WHO)把空气中的微粒指定为1号致癌物质。由于微粒的吸入,它们有可能导致人类健康问题。微粒越小就越容易进入人的呼吸系统。根据颗粒物的粒径大小可以将它分为不同的种类,比如PM10(粒径小于10μm的颗粒)和PM2.5(粒径小于2.5μm的颗粒)。PM2.5是受人们特别关注的并且一直是许多健康研究的主题,这些健康研究一般与呼吸道疾病和肺癌的增长有关联。PM2.5主要来源于工业燃烧、道路运输(燃料排放物),化石燃料燃烧和小规模的垃圾焚烧。同时也有自然来源,比如火山爆发和海洋飞沫。红外显微成像系统结合了红外对成分的定性定量和成像技术直观测试结果的优势,可以对收集在聚碳酸酯过滤器上的颗粒分布和成分进行剖析。红外成像实验所得到的数据不仅能够定性(颗粒物的组成分析),而且还能够通过校正给出现有组分的定量信息。红外成像测量仅仅需要5分钟,然而离子色谱需要溶剂萃取颗粒物,分析一个样品需要大约20-25分钟。点击下载应用文章
  • 【瑞士步琦】使用Sepmatix 8x SFC进行高效色谱柱筛选
    高效色谱柱筛选尿嘧啶和黄嘌呤,即咖啡因、可可碱和茶碱,是一组在各种生物过程和人类消费中起重要作用的有机化合物[1-3]。这些分子属于杂环化合物,其特点是含有碳原子和氮原子的环状结构。尿嘧啶是 RNA(核糖核酸)的基本组成部分,RNA 是形成遗传密码并参与蛋白质合成的基本核碱基之一。另一方面,黄嘌呤、咖啡因、可可碱和茶碱是一类结构相似但生物效应不同的生物碱[1-3]。这些黄嘌呤存在于各种植物中,是一种众所周知的兴奋剂,可以穿过血脑屏障,影响中枢神经系统。在 RP(反相色谱)[1-3]条件下(SN_802_2023), LC(液相色谱)可分离生物碱。超临界流体色谱(SFC)是一种使用超临界二氧化碳(CO2)作为流动相的基本成分的色谱技术。这种状态的二氧化碳被称为超临界,它具有独特的特性,如高扩散系数和低粘度,使其成为分离和分析化合物的绝佳溶剂。与传统色谱方法相比,SFC 提供了许多优势,包括更快的分析时间,更低的溶剂消耗和分离的差异选择性。此外,与 RP-LC 相比,SFC 代表了一种正交技术,为各种分析挑战提供了互补的分离能力。在 SFC 中,色谱柱筛选包括测试不同的固定相,以找到最适合特定分离任务的固定相。固定相是色谱系统的重要组成部分,因为它直接影响色谱的选择性。不同的固定相具有不同的化学功能和与分析物的相互作用,使它们或多或少地选择特定的化合物。通过筛选和选择合适的色谱柱,可以优化分离条件,以获得更好的目标分析物的分辨率和灵敏度。本文描述了使用 Sepmatix 8x SFC 仪器对尿嘧啶、咖啡因、可可碱和茶碱混合物进行平行柱筛选,随后转移到制备的 Sepiatec SFC-50。1设备Sepiatec SFC-50 instrumentSepmatix 8x SFC instrumentPrepPure Silica, 5μm, 250 x 10mmPrepPure Diol, 5μm, 250 x 10mmPrepPure Silica, 5μm, 250 x 4.6mmPrepPure Diol, 5μm, 250 x 4.6mmPrepPure Amino, 5μm, 250 x 4.6mmPrepPure 2-EP, 5μm, 250 x 4.6mmReprosil 4-EP, 5μm, 250 x 4.6mm (Dr. Maisch GmbH)PrepPure PEI, 5μm, 250 x 4.6mmPrepPure CBD, 5μm, 250 x 4.6mmCyano, 5μm, 250 x 4.6mm, (Dr. Maisch GmbH)2试剂和材料二氧化碳(99.9%)甲醇(≥99%)尿嘧啶(99% + %)可可素(99%)咖啡(99%以上)茶碱(99%)3实验样品制备:在 50/2.5mL 甲醇/水混合液中,40℃ 下用超声水浴溶解 0.05g 尿嘧啶,0.07g 咖啡因,0.055g 可可碱,0.085g 茶碱。Sepmatix 8x SFC 筛选运行条件:流动相:A =二氧化碳:甲醇流速:3ml /min(每柱)流动相条件:0-0.5min:5% B0.5-8.0min:5 - 50%8.0-9.4min:50%9.4-9.5min:50 - 5%9.5-10min:5% B检测:紫外扫描波段:200nm - 600nm筛选运行是自动开始的。使用流量控制单元将流量设置为每通道 3mL/min,并平衡色谱柱。自动进样(V=5 μL),开始平行筛选(运行时间=10min)。背压调节器设置为 150bar,柱箱加热至 32°C。SFC-50 运行条件:流动相:A =二氧化碳;B=甲醇流动相条件:等度运行条件检测:紫外波长 270nmSFC 柱在规定的流速下条件预热 3 分钟,使用定量环自动注入样品并开始运行。背压调节器设置为 150bar,柱箱加热至 40°C。3结果与讨论用 Sepmatix 8x SFC 筛选色谱柱:为了确定样品的最佳分离选择性,进行了不同色谱柱的筛选。使用 Sepmatix 8x SFC 仪器可以高效地同时筛选8个色谱柱。因此,最佳选择性可以在很短的时间内确定。为此,使用了 8 种不同的固定相:硅胶、二醇基、氨基、氰基、2-EP、4-EP、PEI 和 CBD,图1显示了筛选的结果。▲图1:Sepmatix 8x SFC 仪器筛选结果。从左到右依次为:硅胶、氨基、氰基、二醇基;下从左至右依次为:2-EP、4-EP、PEI、CBD 柱;运行时间=10分钟用分辨率(R)来衡量色谱方法在色谱图中分离和区分两个相邻峰的能力,它量化了分析物相互分离的程度。表 1 显示了 4 组分分离的分辨率值。使用 Sepmatix 软件和以下公式自动确定:其中tR1 和 tR2 代表 组分 1 或组分 2的保留时间W1 和W2 代表分量1或分量 2 峰高一半处的宽度在处理复杂的混合物时,分辨率尤其重要,因为它确保每个分析物都被很好地分离,并且可以准确地识别和定量。分辨率为 1 表示峰值根本没有被分解,基本上是合并的,而更高的分辨率值表示峰值之间的分离更好。在使用过程中,分辨率至少应达到 1.5,才能以适当的定量和鉴定分析物。色谱柱R1R2R3硅胶1.574.183.79氨基5.421.264.44氰基未分离3.351.69二醇3.925.12.292-EP3.622.72未分离4-EP9.462.87未分离PEI9.931.8610.8CBD5.011.274.51表1:SFC 不同筛选条件下的分辨率值R 值的筛选和评价表明,硅胶、二醇基和 PEI 相对样品的分离选择性最好。二醇基在运行时间和分辨率方面表现出最佳性能。硅胶柱上的分离并不完全是茶碱和咖啡因的基线分离。PEI 相的运行时间相对较长,因为样品分子的位阻较大。表 2 为洗脱顺序,这是通过测定的光谱和组分的单独进样来确定的。与其他相相比,硅胶显示出不同的洗脱顺序。对于氰基、2-EP 和 4-EP,不能完全确定洗脱顺序。色谱柱洗脱顺序硅胶茶碱,咖啡因,尿嘧啶,可可碱氨基咖啡因,茶碱,可可碱,尿嘧啶氰基咖啡因和茶碱的双峰,可可碱,尿嘧啶二醇咖啡因,茶碱,可可碱,尿嘧啶2-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰4-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰PEI咖啡因,茶碱,可可碱,尿嘧啶CBD咖啡因,茶碱,可可碱,尿嘧啶表2:SFC 不同色谱柱筛选条件下的洗脱顺序将开发方法通过 SFC-50 放大:由于二醇基取得了最好的结果,因此选择了 5μm, 250 x 10mm 的 PrepPure 二醇基进行 Sepiatec SFC-50 方法放大制备。由于通过堆叠注射法纯化混合物的效率明显高于多次梯度注射法,该方法是在等度运行条件下实施的,这是使用堆叠进样的要求。在等度条件下,样品只能在低甲醇含量下分离(见图2,下)。在高甲醇浓度下,由于流动相的高洗脱强度,尿嘧啶、咖啡因、茶碱和茶碱是不可分离的(见图2,上)。▲图2:使用 PrepPure Diol 5 μm, 250 x 10mm 色谱柱分离样品。上:流速= 20 mL/min, 150 bar, 40℃,270nm, 33% B,进样量= 0.09 mL,运行时间= 4 min;下:流量= 20 mL/min 150 bar 40°C, 270 nm, 12%甲醇,0.09 mL,运行时间= 5 min改变压力和温度可以优化分辨率。最佳分离条件为 40℃ 和 150bar。图 3 为图 2(下)实验条件下的堆叠进样情况,堆叠时间为 2.42min,因此每 2.42min 进样一次。在这种情况下,由于每次额外注入节省了平衡时间,因此提高了产能。为了更有效的多次分离,可以使用硅胶填料。使用 34% 的甲醇作为改性剂,将堆叠时间缩短至 2.15min。与二醇基相比,硅胶填料在 100bar 下表现出更好的性能。然而,在 1.5 的分辨率下,咖啡因和茶碱并不能获得理想的基线分离。由于硅胶的极性比二元醇高,为了快速洗脱,必须增加改性剂的含量,但这也导致溶剂消耗增加。4结论在本文中,使用 Sepmatix 8x SFC 进行柱筛选,并将开发结果转移到 Sepiatec SFC-50 进行放大。在色谱参数分辨率和运行时间方面,二醇基表现出最好的效果。对于二醇基,根据筛选结果,在 Sepiatec SFC-50 仪器上采用 250 × 10 mm 柱进行等度堆叠进样。作为比较,开发了另一种用于硅胶填料的方法,但分辨率值略差。这种分离表明,要想在 prep-SFC 中获得一个好的分离方法,事先通过柱筛选确定最佳选择性是很重要的。然后,该方法可以在 prep-SFC 上简单实现,并进行了优化。最理想的是,该方法在等度条件下应用,以最大限度地提高产量。每次注射后的叠加紫外信号表明该方法具有良好的再现性(图3和4,下面)。垂直线描述了收集相应分数的时间窗口。▲图3:堆叠进样与二醇柱分离。流速= 20 mL/min, 150 bar, 40℃,270 nm, 12% B,进样量= 0.12 mL;堆叠时间:2.42 min,注射次数:8次;上图:最终色谱图;下图为各注射剂的紫外信号叠加图▲图4:堆叠进样与硅胶柱分离。流速= 16 mL/min, 100 bar, 40℃,270 nm, 34% B,进样量= 0.09 mL;堆叠时间:2.15 min,注射次数:7次;上图:最终色谱图;下图:分别在254 nm和270 nm处注射的叠加紫外信号5参考文献https://doi.org/10.1093/chromsci/46.2.144DOI: 10.1021/jf030817mDOI: 10.1016/j.foodchem.2004.11.013DOI: 10.1016/j.saa.2004.03.030Laboratory Chromatography Gμide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)
  • 【瑞士步琦】喷干技术塑型ZSM-5基催化剂:对甲醇制烯烃过程的影响
    喷干技术塑型ZSM-5基催化剂对甲醇制烯烃过程的影响喷干应用”在石油化工领域,采用喷雾干燥法制备 FCC(流体催化裂化)催化剂和 SAPO-34 基甲醇制烯烃催化剂。在此我们向您介绍一项研究,是使用步琦喷雾干燥仪 B-290 探索用喷雾干燥法制备一系列含有 ZSM-5 商业沸石与不同的粘土和粘合剂的催化剂复合材料;在甲醇制烯烃(MTO)过程中,评价了所得到的形状颗粒的催化性能。该研究选用天然粘土如高岭土、滑石、蒙脱土、硅镁土和海泡石作为催化剂配方。本研究中优化得到的喷雾干燥参数均可以平移转换到步琦最新款喷雾干燥仪 S-300 上使用,完美实现不同型号设备之间的平稳过渡!1简介在基质设计的进步是在实验室规模上开发的新催化剂的大规模实施至关重要。最佳的催化剂体是结合了活性、选择性、寿命和合适的成本等性能的催化剂体。催化剂配方需要适当选择成分,这高度依赖于所使用的制备方法(即挤出或喷雾干燥)。喷雾干燥是一种通过溶剂蒸发将喷雾状的浆料转化为干粉的技术。喷雾干燥过程的主要原理是使液体浆料与干燥气体(通常是空气或氮气)接触,一起通过一定孔径的喷嘴,形成小液滴的喷雾。喷雾干燥允许对最终产品性能的显著控制:粒度分布,残余水分含量,堆积密度和形态。与其他湿法塑型的方法(如挤压或造粒)相比,喷雾干燥技术提供了几个主要优点,即可以通过浆料的固体含量来控制颗粒密度,以及制备具有高度均匀性的有效填充球形颗粒的能力。2实验部分使用不同粘土、粘合剂和 ZSM-5 沸石制备复合浆料的过程,以及通过喷雾干燥技术将浆料转化为粉末状催化剂的方法。使用了三种不同的粘合剂-胶体二氧化硅,薄水铝石和水合氯铝。制备了10wt.%薄水铝石(PuralSB)溶胶;分散率为 45wt.% 的 NH4- ZSM -5 (SAR23)原液;50wt.% 的粉末与 0.01M 的(NH4)2HPO4 溶液混合,得到高岭土分散体。所有其他粘土,即滑石、膨润土、硅镁土和海泡石,以粉状形式加入浆料中,用水分散,根据固体含量达到~ 20wt .%的浆料。喷雾干燥过程采用实验室规模的步琦喷雾干燥机 B-290 Advanced,搭配可变孔径(1.4mm, 2.0mm 和 2.8mm)的钛合金双流体喷嘴。选择最佳喷雾干燥条件的标准是干燥室底部不存在液体沉积。最后,将干燥的复合材料在静态烘箱中,在 700º C 的空气下,以 5º Cmin-1的坡度煅烧 7h。3表征方法包括 X 射线衍射(PXRD)、氮气吸附实验、热重分析(TG)、扫描电子显微镜(SEM)、X 射线荧光测量(XRF)、静态光散射(SLS)、电感耦合等离子体(ICP)分析、傅里叶变换红外光谱(FTIR)和程序升温 NH3 脱附(NH3-TPD)等。4结果与讨论加工过程参数对塑型过程的影响首先评估加工参数的影响。在保持其他工艺参数不变(Tin= 200°C, 11 mLmin-1,抽气机在 80%)的情况下,以34 wt.%(固形物基础上)高岭土为基体,40 wt.% ZSM-5 (H+ 的 MFI 沸石)和 26 wt.% 的 Pural SB(粘合剂)的复合浆料以不同的气体流量进行喷雾干燥。不同产物和初始浆料的形态特征对比如图1a-c 和 S1 所示,表明组分的亚微米级颗粒聚集形成球形复合颗粒。值得注意的是,复合球的平均直径与用于形成喷雾的气体流量有关。从粒径分布图(图1d)可以看出,复合材料具有较窄的粒径分布曲线和较低的粒径分布曲线。这样的观察结果与事实是一致的,即高气流产生的更高的压降迫使液滴分解成更小的液滴。▲ 图1所示。(a)浆料的扫描电镜图像,浆料中高岭土含量为 34%,ZSM-5 含量为 40%,Pural SB 含量为 26% 不同气流(b) 173 Lh-1和(c) 283 Lh-1雾化得到喷雾干燥颗粒。(d)旋风收集器中收集的固体产品的粒径分布随气体流速的变化曲线。喷雾干燥条件:Tin= 200°C, 11 mLmin-1,抽气机80%。不经过(e-f)和经过(g-h)球磨机预处理 30min 得到复合颗粒。对三种不同孔径(2.0 mm、1.4 mm 和 0.7 mm)的喷嘴进行了评估,目的是确定上述固定组合物对产生的颗粒尺寸的影响。▲ 图2。(a)喷雾干燥喷嘴示意图,突出了喷嘴直径(上)和喷嘴孔径(下)。(b)喷雾干燥机收集固体产品的区域:干燥室底部收集器(红色区域)和旋风收集器(蓝色区域)。(c)底部收集器(上)和旋风收集器(下)通过不同孔径的喷嘴喷射产生的固体馏分粒度分布:2.0 mm(蓝色)、1.4 mm(红色)和0.7 mm(绿色)。(d)喷嘴孔径分别为2.0 mm、1.4 mm和0.7 mm的底部(红色框)和旋风收集器(蓝色框)收集的固体产物光学显微镜图像(从左至右为柱);比例尺对应100 μm。(e)旋风收集器(蓝色区域)、底部收集器(红色区域)和干燥室沉积物(米色区域)收集的固体产品质量分布图;(f)孔径分别为2.0 mm、1.4 mm和0.7 mm的喷嘴产生的喷雾几何形状(从上到下)。橙色区域表示湿喷雾与干燥室壁的接触区域。相应地,喷嘴帽的选择使喷帽与喷嘴尖端之间的间隙为0.8 mm (2.8 / 2.0 mm 2.2 / 1.4 mm 1.5 / 0.7 mm)。在评价过程中,浆料的组成(高岭土 60 wt.%, ZSM-5 20 wt.%, Al2Cl(OH)5 20 wt.%)和喷雾干燥条件(进料- 15 mLmin-1,气体流量- 473 Lh-1,抽气机- 80%,Tin- 210℃)保持不变,以排除任何侧干扰。喷雾干燥过程产生颗粒产品被分成两个主要部分——一个在干燥室的底部收集器中,另一个在旋风收集器中(图2b)。样品在两个馏分之间的分离与颗粒的大小和密度的差异有关。从粒径分布曲线(图2c)可以看出,粒径较小、粒径较轻的产物优先被收集到旋风容器中,粒径较大、粒径较重/密度较大的产物则倾向于沉降到底部干燥桶中,且粒径最大的组分粒径与喷嘴孔径的相关性较好 孔径为 2.0 mm 的喷嘴产生的喷雾颗粒约为 35μm,孔径为 0.7 mm 的喷嘴产生的最细颗粒约为 9μm。此外,光学显微镜图像(图2d)证实了这一观察结果,即无论喷嘴大小如何,较轻的亚微米(0.20-0.22 μm)复合颗粒优先被旋风分离器分离。另一个有趣的观察结果是,喷嘴尺寸极大地影响了干燥产品在不同馏分之间的质量分布,如图2e所示,其中红色馏分对应于干燥室底部收集的粉末质量,蓝色馏分对应于旋风收集器收集的粉末百分比,米色馏分对应于喷雾干燥筒壁上积聚的喷雾造成的不希望的损失。无论喷嘴孔径大小如何,较重/较大颗粒的相对质量分数几乎没有变化(约为 10-13 wt.%),而细颗粒的相对质量分数随着喷嘴孔径的减小而增加。此外,固体产品损失呈相反趋势下降。这种相关的质量分布可以从具有一定孔径的喷嘴产生的喷射锥几何形状来解释(图2f)。考虑到喷雾干燥筒的长度(L)和直径(D)是固定的,孔口处的压力是恒定的,当孔口孔径较大时,喷雾锥的角度要宽得多。因此,这导致与湿浆接触的面积更大,并在干燥室的壁上形成固体。相反,较小的孔板孔径最大限度地减少了与干燥室壁的直接接触,并在旋风收集器中增加了更多的产品。表1总结了所研究的不同变量对喷涂颗粒最终性能的影响,作为对有兴趣制定自己的喷雾干燥方案的读者的指导。▲ 图3。(a)“循环再循环”概念的示意图。在底部容器中的复合颗粒收集是通过喷涂(b)新鲜配制的浆料(60 wt.%高岭土,20 wt.% ZSM-5和20 wt.% Al2Cl(OH)5)制备的 (c)经球磨预处理(标尺- 100 μm)和(d)不经此预处理(标尺- 500 μm),由旋风收集器的细粒再分散制备的浆料。在不同倍率下(e) ×5(标尺- 500 μm)和×20(标尺- 100 μm)煅烧和筛分至粒径 38 μm的最终粉末的光学显微图。(g)复合材料终组分粒度分布图。喷雾干燥条件:Ø 喷嘴= 2.0 mm,Tin= 210℃,进料= 15 mLmin-1,气体流量= 473 Lh-1,抽气机= 80%。粘土对塑型过程的影响在上述优化之后,后续研究了五种不同粘土对所得技术体的配方和催化性能的影响。选择高岭土、海泡石、滑石、硅镁土和蒙脱土,具有不同的结构、化学成分和晶体形态(图4)。▲ 图4。(a)高岭石,(b)海泡石,(c)滑石,(d)硅镁石,(e)蒙脱石 相应的晶体结构表示如下:AlO6八面体表示为赤土色,SiO4四面体表示为米色,MgO6八面体表示为紫色,蓝色球体表示为水分子,紫色表示为Ca2+/Na+阳离子。(f-j)由20wt .%的ZSM-5(SAR 23)、20wt .%的Al2Cl(OH)5和60wt .%的粘土-高岭土(f)、海泡石(g)、滑石(h)、硅镁石(i)和蒙脱土(o)组成的喷雾干燥颗粒(f-j)。从图4可以看出,只有在以高岭土为基础的混合物中才能形成具有光滑外表面的致密球体。在这种特殊情况下,由于粘土的亲水性和润湿性以及晶体的板状特性,浆料的高固体含量(~ 47 wt.%)有利于喷雾干燥颗粒内的致密堆积。相比之下,海泡石和硅镁石粘土往往形成凝胶状分散体,迫使混合浆料稀释到相对较低的固体含量(海泡石和硅镁石分别为 ~ 25% 和 22wt .%)。由于这种稀释作用,复合颗粒的密度降低,形状偏离球形,外表面粗糙(图4g,i,l,n)。在滑石基浆料的情况下,由于材料的疏水性和高结晶度,我们能够制备固体含量约为 42 wt.% 的可泵送浆料。然而,由于粘土与水浆中其他组分的低混相性,导致球形不规则,充填效率低,成分分布不均匀,形成的形状颗粒表面非常粗糙(图4h,m)。这些结果表明,粘土的性质,特别是润湿性在喷涂过程中起着非常重要的作用。5结论在这项工作中,我们探索了一种用于催化剂配方的喷雾干燥技术。整喷雾干燥工艺参数,得到粒径在 30 ~ 100μm 之间的颗粒。结果表明,通过改变气体流量、喷嘴孔径、球磨浆前处理和浆料组分配比,可以制备出具有不同粒径和形态特征的复合颗粒。在所有不同的研究变量中,浆料配方中最关键的方面是可喷涂浆料的总固体含量,这受到催化剂成分(特别是粘合剂和粘土)的强烈影响:浆料稀释率低于 30wt.% 会导致松散的、表面缺陷的复合材料,其耐磨性较差,而更高的负载,在最佳喷涂条件下,提供更好的形状颗粒。另一方面,所选粘土的性质不仅影响喷雾本身,而且影响催化性能。特别是,我们的研究结果表明,所选择的粘土对改变复合材料的最终酸度有很大的影响,当应用于 MTO 时,会导致烯烃或芳烃循环的传播。6参考文献Shaping of ZSM-5 based catalysts via spray drying: effect on methanol-to-olefins performanceTuiana Bairovna Shoinkhorova, Alla Dikhtiarenko, Adrian Ramirez, Abhishek, Dutta Chowdhury, Mustafa Caglayan, Jullian R. Vittenet, Anissa Bendjeriou-Sedjerari, Ola S Ali, Isidoro Morales Osorio, Wei Xu, and Jorge GasconACS Appl. Mater. Interfaces, Just Accepted Manuscript &bull DOI: 10.1021/acsami.9b14082 &bull Publication Date (Web): 15 Oct 2019 Downloaded from pubs.acs.org on October 19, 2019
  • Nexis视角 | 创新气相色谱技术助力电子烟产品分析
    电子烟是一种将电子烟液经雾化器雾化向呼吸系统传送烟碱和/或其他物质的产品。电子烟2004年在中国问世,之后逐渐从我国流入欧美和日本等国并得到迅猛发展。世界卫生组织《烟草控制框架公约》第七次缔约方大会的报告表明:2015年全球用于电子烟的开支为100亿美元。中国是电子烟的发明者和主要生产地,全球 90%以上的电子烟来自中国深圳等地。 电子烟尽管相较于传统卷烟,减少了一氧化碳、焦油等物质,但其中的尼古丁等成分的危害依然不能被忽视。近年来,由于电子烟产业无序发展,一些产品存在烟碱含量不清、添加成分不明、烟油泄漏等问题,特别是部分经营者宣传误导消费者,诱导未成年人吸食,侵害未成年人身心健康,社会各界反映强烈,不断呼吁加强监管。2021年11月10日,《国务院关于修改的决定》明确“电子烟等新型烟草制品参照本条例卷烟的有关规定执行”。2022年3月11日,国家烟草专卖局发布了《电子烟管理办法》,自2022年5月1日正式施行,其中指出,禁止销售除烟草口味外的调味电子烟和可自行添加雾化物的电子烟。 表1. 电子烟相关标准*《电子烟雾化液产品通用技术要求》中指定烟碱采用GB/T 23355-2009方法 2022年4月8日,市场监管总局(标准委)发布了《GB 41700-2022 电子烟》强制性国家标准,自2022年10月1日起实施。标准明确规定不应使产品特征风味呈现除烟草外的其他风味,并明确要求“雾化物应含有烟碱”,即不含烟碱的电子烟产品不得进入市场销售。同时标准列出允许使用的101种添加剂,纳入添加剂“白名单”。并要求电子烟烟具应具有防儿童启动功能和防止意外启动的保护功能。标准正式实施后,市场上销售的电子烟产品必须符合国家标准。 电子烟液的主要成分是烟碱、发烟溶剂和香味物质,其中,烟碱含量一般在0-3%之间。根据文献报导,消费者长期摄入烟碱会有致瘾性,过量的烟碱摄入能够引起毒性反应,甚至死亡;欧盟在2014年5月通过的最新烟草指令——2014/40/EU《欧洲议会和理事会关于协调各成员国烟草及相关产品生产、展示和销售的法律、法规和行政规定的指令》明确规定电子烟液中烟碱含量不得超过20 mg/mL。 图1. 尼古丁结构图 2022年4月15日,市场监管总局(标准委)发布了《GB/T 41701-2022 电子烟烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法》,采用液液萃取+GC-FID进行分析。如下图所示采用岛津GC-2030气相色谱仪,氢气做载气进行尼古丁分析: 图2. 尼古丁标准溶液分析色谱图(甲醇溶剂)图3. 电子烟液样品分析色谱图 介质阻挡放电等离子体检测器(BID)是通过介质阻挡放电产生的氦等离子体进行电离(离子化),对常见有机和无机化合物(He和Ne除外)均具有高灵敏度(通常高于TCD百倍以上&高于FID两倍以上),是融合了高灵敏度和高通用型的检测器。图4. 岛津BID检测器及旗舰级气相色谱仪Nexis GC-2030加强版 如下图所示,采用BID检测器对收集的烟气成分进行分析,以往需要使用FID和TCD两个检测器完成的工作,现在一个BID检测器即可实现尼古丁、薄荷醇、水、溶剂等多种成分的同时分析。 图5. BID检测器对收集的烟气成分分析色谱图 电子烟作为一种吸食类产品,烟液成分的组成及含量与消费者的身体健康密切相关,电子烟液成分安全如果不能得到有效监管,则会增加消费者的健康风险。岛津长久以来一直致力于提高气相色谱的性能,在Nexis GC-2030平台的基础上,不断突破创新,推出众多特色产品或附件,通过新科技的引入,不断将硬件、软件等进行优化,提高配置的灵活性和针对性,实现操作体验和产品性能的融合。岛津气相色谱仪可为电子烟产品的化学成分测定提供技术支持。随着电子烟行业相关法规和标准的不断完善,管理制度和监管力度逐步深入,产品质量和技术研发不断升级,整个行业将真正迎来良性可持续发展的新阶段。 参考资料:1.全国标准公共信息服务平台:电子烟烟液 烟碱、丙二醇和丙三醇的测定 气相色谱法2.蔡君兰,陈黎,等. 气相色谱法同时测定电子烟烟液中的烟碱、1,2-丙二醇和丙三醇. 中国烟草学报,2016年Vol.22 No.5,3.GC_TechReport_eCigarette:Quantification of Nicotine in E-cigarette Liquid Sample Using GC-FID and Hydrogen Carrier Gas.4.https://pubchem.ncbi.nlm.nih.gov/compound/nicotine#section=3D-Conformer 本文内容非商业广告,仅供专业人士参考。
  • 使用超高效合相色谱系统测定雌二醇(Estradiol)色谱纯度
    目的 采用沃特世ACQUITY UPC2&trade 系统对雌二醇进行杂质分析,能获得和美国药典(USP)方法相当或者更好的结果。 背景 目前,美国药典(USP)检测雌二醇(estradiol)色谱纯度的方法使用4.6 x 250 mm的硅胶柱和含有2,2,4-三甲基戊烷、正丁基氯、甲醇45:4:1的流动相,流速2 mL/min。由于许多实验室都想限制脂肪烃和氯化物溶剂的使用,所以必须对替代性的色谱方法,如超临界流体色谱(SFC)进行评估。沃特世ACQUITY UPC2系统被用于开发测定雌二醇色谱纯度的方法。Ultra Performance Convergence Chromatography&trade (UPC2&trade )得到的结果直接和由目前的美国药典检测雌二醇杂质的方法对比。两种方法检测的结果相似,与美国药典使用的正相HPLC方法相比,UPC2方法检测雌二醇杂质的灵敏度更高。此外,使用UPC2时,样品的运行时间大大缩短,每次分析的总成本也显著降低(基于溶剂用量和废液处理成本计算)。 使用UPC2方法测定雌二醇的色谱纯度,其速度是目前正相HPLC方法的3倍,而单次分析的成本降低100多倍。 解决方案 使用现行美国药典方法制备和分析雌二醇,如图1所示。HPLC分析的结果同ACQUITY UPC2系统分析的结果(使用相同的样品制备方法)进行对比,如图2所示。 UPC2方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,2.1 x 150 mm,1.7 微米 流动相: A=CO2 B=1:1甲醇/异丙醇 背压: 130 bar/1880 psi 柱温: 45 ° C 检测: UV /PDA,280 nm 两种测试方法得到的结果对比见表1。正相HPLC方法和UPC2均检出至少5种含量小于0.1%(按面积计算)杂质。两种方法在0.01%范围内峰的信噪比约为3:1,UPC2结果得到的值稍高。UPC2方法测得的最大杂质(以面积计约0.05%)的信噪比为16:1,正相HPLC方法测得的为9:1。这些实验结果清晰地表明,ACQUITY UPC2系统可成功地用于分析雌二醇中的微量杂质。UPC2方法的运行时间明显短于正相HPLC方法所用的时间(20min对比60min),从而提高了实验室的生产率。对每次运行的成本分析表明,正相HPLC的溶剂成本5.89美元,而使用UPC2,每次运行的成本仅为0.05美元。正相HPLC方法所产生需要处理的混合氯化物废液为108Ml2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。2,2,4-三甲基戊烷、9.6mL正丁基氯和2.4mL甲醇。UPC2方法产生的需处理废液为甲醇和异丙醇各0.60mL。分离中使用的CO2通过实验室排气管排出。使用UPC2方法,废液处理成本降低了150倍之多。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • PharmaSep药物分离纯化技术交流会顺利举行
    仪器信息网讯 2014年6月27日,PharmaSep药物分离纯化技术交流会于上海开元曼居酒店举行,近百名来自制药企业、科研院所从事药物研发、分析、生产等技术人员参加了本次交流会。   本次技术交流会围绕药物研发过程中杂质、手性化合物的纯化与分离技术相关的常规液相色谱仪、制备液相色谱仪以及相关色谱填料等技术手段,小分子化学药和中药两个类别的药物分离与纯化的实际应用案例进行交流,现场气氛热烈。 会议现场   来自先声药物研究院的执行技术总监肖柏明就仿制药杂质谱的研究给出其研究思路。报告中指出,杂质研究流程包含三部分:杂质研究、基因毒杂质研究以及方法学研究。其中,杂质研究要经过确定是否有质量标准、是否有杂质结构、是否需要推测杂质结构、能否通过文献获得等一系列程序直至确定研究对象,在此基础上确定是否继续研究或终止研究。基因毒杂质的研究需要高选择性、高灵敏度的分析方法,确定研究对象后经过购买、合成、制备之后就需要给药物进行定位,进而分析其杂质情况,而这一过程就涉及到了用以优化的方法学研究。 报告人:江苏先声药业有限公司 肖柏明 报告题目:仿制药杂质谱研究的思维   来自上海美迪西生物医药有限公司的刘月庆对杂质分析中HPLC方法建立进行了介绍。在药物杂质分析过程中,HPLC方法开发流程要经过6个步骤:第一,确定分析方法的目的,熟悉化合物的化学性质 第二,确定起始HPLC分析条件,即开发一个达到最低分离限度的分析条件,用于方法开发实验 第三,样品制备,即制定一个合适的样品制备方法流程 第四,确定合适的定量方法,使用相对矫正因子等 第五,进行方法优化以及耐用性实验 第六,根据指导原则进行方法完全验证。 报告人:上海美迪西生物医药有限公司 刘月庆 报告题目:杂质分析中HPLC方法建立   来自浙江海正药业股份有限公司的朱文明博士就制药企业中分离纯化技术及应用进行了介绍。制药企业应用的分离纯化技术包括回收技术、细胞破碎技术、初步破碎技术、初步纯化技术、高度纯化技术及成品加工五大方面,涉及制备色谱、离心机、压滤机、超临界萃取、多级牛柳连续萃取、电泳、模拟移动床、层析柱、提取罐等仪器及设备,其中制备色谱药物研发、生产过程中一个极其重要的设备。评价制备色谱主要指标是单位时间内分离纯物质的量,高压制备在节约生产时间成本、提高生产效率、纯化效率、安全保障和环境效益等方面具有非常大的优势,使得药物纯化过程中绿色工艺的开发成为可能。 报告人:浙江海正药业股份有限公司 朱文明 报告题目:制药企业中分离纯化技术及应用   来自军事医学科学研究院放射与辐射医学研究所的马百平研究员主持本次技术交流会,并做&ldquo 中药化学成分的组成分析报告&rdquo 。 报告人:军事医学科学研究院 马百平 报告题目:中药化学成分的组成分析报告   此外,会议还邀请睿智化学蔡斌博士、杭州中美华东制药有限公司徐金勇博士及成都普瑞法科技开发有限公司谢期林高工做精彩报告。 报告人:睿智化学 蔡斌 报告题目:手性化合物的纯化与制备 报告人:杭州中美华东制药有限公司 徐金勇 报告题目:发酵与制备纯化的关联性研究 报告人:成都普瑞法科技开发有限公司 谢期林 报告题目:中药化学成分的放大生产及相关技术   作为本次交流会的赞助方博纳艾杰尔科技有限公司王洪宇就&ldquo 制备色谱填料的选择及工艺优化&rdquo 向与会人员进行了介绍。 报告人:博纳艾杰尔科技有限公司 王洪宇 报告题目:制备色谱填料的选择及工艺优化   本次交流会与会人员与演讲嘉宾进行了热烈的互动交流。 互动交流
  • 利用XP色谱柱改进美国药典(USP)噻康唑有机杂质分析方法
    利用eXtended Performance(XP)色谱柱改进美国药典(USP)噻康唑有机杂质分析方法 Kenneth D.Berthelette、Mia Summers和Kenneth J.Fountain 沃特世公司,美国马萨诸塞州米尔福德 方案优势 ■ 使用XP色谱柱改进耗时的USP美国药典有机杂质分析方法,实现更快速的分析并减少溶剂的使用量,同时仍符合美国药典章指南的规定。 ■ 将样品运行时间缩短80%,从而提高了生产能力。 ■ 将溶剂用量减少90%,降低了运行成本。 沃特世提供的解决方案 ACQUITY UPLC® H-Class系统 Alliance® HPLC系统 XSelect&trade CSH&trade C18色谱柱 Empower® 3软件 eXtended Performance [XP] 2.5 &mu m色谱柱 TruView&trade LCMS认证最大回收样品瓶 关键词 美国药典方法、噻康唑、ACQUITY UPLC色谱柱计算器、沃特世反相色谱柱选择表、仿制药 引言 全世界的制药企业在日常工作中都需要对仿制药中的有机杂质进行分析。使用较为陈旧的仪器和色谱柱技术进行有机杂质分析,因为需要长时间使用大量的溶剂,所以既耗时又费钱。然而通过使用显著改进的仪器和色谱柱技术有机杂质分析会变得更高效。2.5&mu m 粒径的eXtended Performance(XP)色谱柱设计用于高效液相色谱和超高效液相色谱。该色谱柱是改进美国药典方法的理想选择,因为其能够使色谱分析工作者实现更小粒径和低扩散系统带来的利益,同时能够符合美国药典章色谱分析指南的规定。章列出了允许的方法变化幅度。 噻康唑是一种用于治疗酵母菌感染的咪唑类抗真菌化合物。被转换的方法是噻康唑有机杂质的分析方法2。有机杂质分析方法用于测定样品中是否存在杂质及其含量。该XP色谱柱方法是从最初在HPLC系统上的色谱柱规模的美国药典方法缩放至HPLC和UPLC仪器上的。在HPLC仪器上使用XP色谱柱对现行美国药典方法进行改进能够缩短运行时间,从而提高了常规分析实验室的样品通量。而在UPLC系统上使用XP色谱柱则可以比HPLC进一步缩短运行时间并减少溶剂的使用,从而节约了总成本。 实验条件 Alliance 2695 HPLC色谱条件 流动相: 44:40:28乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18,4.6 x 250 mm,5 &mu m, 部件号:186005291;XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111 柱温: 25 ℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 ACQUITY UPLC H-Class色谱条件 流动相: 44:40:28 乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111;XSelect CSH C18 XP,2.1 x 150 mm,2.5 &mu m, 部件号:186006727 柱温: 25℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 数据管理: Empower 3软件 样品描述 用100%的甲醇将噻康唑样品制备成表1所述的浓度。将样品转移至一个进样用的TruView最大回收样品瓶中(部件号:186005662CV)。 结果与讨论 全世界制药企业都需要对常规方法制备的噻康唑进行日常分析。本应用纪要使用美国药典专论中规定的有机杂质分析方法,在几种不同规格的色谱柱上对噻康唑及其有关物质A、B、C的分离进行了比较。因为噻康唑许多杂质缺乏实际可用性,所以将噻康唑有关物质A、B、C用作低浓度杂质标准品。美国药典所列的有机杂质分析方法用于分析复杂的样品处方。样品中多种成分的有效分离通常需要使用更长的色谱柱。使用较大填料粒径(&ge 3.5 &mu m)的长色谱柱会使运行时间加长,溶剂使用量增大。例如,最初的美国药典中的噻康唑有机杂质分析需要使用4.6 x 250 mm,5 &mu m的色谱柱,分离时间长达30分钟,每分析一个样品需要耗费30 mL溶剂。但是,使用2.5&mu m粒径的eXtended Performance(XP)色谱柱,可以在缩短运行时间的同时仍然符合考核的要求。由于运行时间缩短,样品通量得到了提高,每次分析所需溶剂减少,从而降低了总成本。现行的美国药典章色谱分析指南规定了允许的方法变化幅度。这些允许的变化包括± 70%的色谱柱长度变化,-50%的粒径变化,± 50%的流速变化。1美国药典要求有关物质B和C之间的分离度要达到1.5,本应用纪要证明:在不同的色谱柱和不同的色谱系统之间进行的方法转换完全满足对这两个难分离化合物的苛刻要求。 在HPLC仪器上使用XP色谱柱进行有机杂质分析 噻康唑的有机杂质分析方法需要使用L1专用色谱柱,为该分离而列出的色谱柱是LiChrosorb RP-182。参照沃特世反相液相色谱柱选择表,本文选用更先进的XSelect CSH C18固定相色谱柱。之所以选择XSelect CSH C18色谱柱是由于其与所列出的色谱柱相类似,并且能提供适用于HPLC UPLC仪器的各种规格和粒径。本文首先使用一根XSelect CSH C18,4.6x250mm,5&mu m色谱柱在Alliance HPLC系统上运行美国药典方法,流速1.0mL/min。如表2所示,本次分离符合考核标准。本次分离的总运行时间为30分钟,在连续批量分析样品时,将面临着时间和成本管理的双重挑战。如果使用原始的美国药典方法, 8小时的一个工作日仅能分析16个样品,要消耗480mL溶剂。通过使用XP色谱柱,在同样的8小时工作日内可分析80个样品,且仅需使用240mL溶剂,显著地提高了样品通量并降低了运行成本。 在不同的系统上使用2.5&mu m XP色谱柱改进的标准方法具有通用性,同时仍符合美国药典章指南的要求,如图1所示。XP色谱柱是一款2.5-&mu m颗粒的HPLC和UPLC色谱柱,经高效填装并能够承受UHPLC系统的高压,使XP色谱柱在HPLC和UPLC仪器上均能使用。 本纪要的标准方法首先从最初的4.6 x 250 mm,5 &mu m色谱柱转换至4.6 x 150 mm,2.5 &mu mXP色谱柱,用以说明使用更小粒径的色谱柱可以缩短运行时间。使用更小的粒径还可以提高分离能力,用色谱柱长度与粒径的比值(L/dp)即可预测。在本例中,L/dp从50,000(初始条件)提高到60,000(4.6 x 150 mm XP色谱柱)。根据ACQUITY UPLC色谱柱计算器的计算,用于该XP色谱柱的最佳流速为2.0 mL/min3。但是,这个流速超出了美国药典章指南规定的变化范围。故采用1.0 mL/min的流速以保证符合美国药典指南的规定,同时也适应HPLC系统反压的限制。噻康唑及其有关物质在原始色谱柱上与在4.6 x 150 mm XP色谱柱上的分离进行了对比,如图2A-B所示。4.6 x 150 mm XP色谱柱将运行时间缩短43%,分离度提高5%,如图2所示。 接着使用一根更短的4.6 x 100 mm,2.5 &mu m XP色谱柱进行分离,用以说明在实现更快速分离的同时,仍保持着合格的分离度。运行时间的缩短对于有机杂质分析尤其有用归因于附加的分离复杂性,这些方法一般比其他方法具有较长的运行时间。需要注意的一个重要问题是,不一定任何时候都会选用具有较低分离能力(L/dp 40,000)的较短色谱柱。例如在辅料和杂质洗脱时间很接近的情况下可能需要保持原始的分离能力。图2C显示了使用4.6 x 100 mm,2.5&mu m XP色谱柱进行分离时,与初始条件相比,运行时间缩短57%,并且仍然符合所有的考核标准,如图2所示。在这种情况下,L/dp从50,000(初始条件)降低至40,000导致有关物质B与C之间的分离度降低15%;但分离度仍然符合要求,这取决于原始分离的复杂程度。 在UPLC仪器上使用XP色谱柱进行有机杂质分析 如图1所示,通过同时使用XP色谱柱和ACQUITY UPLC色谱柱计算器,该方法可以从Alliance HPLC系统转换至ACQUITY UPLC H-Class系统上。更新的仪器,例如ACQUITY UPLC H-Class系统,可以实现更快速、更高效的分离,归因于其高反压耐受能力、进样之间更快速的平衡以及显著降低的系统体积和扩散。为了对比HPLC和UPLC系统之间的分离能力,将图2B中所示的使用4.6 x 150 mm,2.5 &mu m颗粒的 XP色谱柱进行的有机杂质分析方法在ACQUITY UPLC H-Class系统上重新运行,如图3A所示。仅仪器本身的变化&mdash &mdash 从HPLC变到UPLC,会使B与C色谱峰之间的分离度增加5%,使运行时间缩短12%,如表2和表3所示。分离度的增大归因于UPLC系统的低系统体积和低扩散,因为这两个属性都可以改善峰形。 为进一步说明UPLC仪器的优点,如图3B所示在UPLC系统上使用4.6 x 100 mm XP色谱柱进行分离。此分离操作使B与C色谱峰之间的分离度从使用HPLC系统时的1.6(参见表2)提高到使用UPLC系统时的1.8(参见表3)。在UPLC系统上使用4.6 x 100 mm XP色谱柱,得到与在HPLC系统上用原始方法分离相同的分离度,但是比原始方法快57%。 最后,将标准方法转换至一根2.1 x 150 mm 2.5 &mu m XP色谱柱上。这根色谱柱的测试结果说明通过减小色谱柱的内径,在保留相同分离度的同时,还能进一步缩短运行时间,并且大大减少溶剂用量。根据ACQUITY UPLC色谱柱计算器的计算,适合这根色谱柱的流速为0.42 mL/min。但这个流速超出了美国药典章指南的要求,因此实验使用符合规定的0.5 mL/min流速。分析得到的色谱图(如图3C所示)显示,如表3所示与原始条件相比运行时间缩短80%,而适用性要求仍很容易达到。此外,仅仅通过减小色谱柱的内径分析就比使用4.6 x 150 mm XP色谱柱快63%,如图3A所示。最后,通过使用2.1 x 150 mm XP色谱柱,与原始的标准方法相比,溶剂用量减少90%,显著地节约了成本。当对流速进行调整,以保持在美国药典章指南规定的范围内时,B和C色谱峰的分离度从1.9下降至1.8,但仍符合考核标准。 结论 在进行既耗时又费钱的有机杂质分析时,在现有HPLC系统上使用eXtended Performance [XP] 2.5 &mu m色谱柱,与原始的美国药典方法相比,可以缩短运行时间和减少溶剂用量57%。通过将XP色谱柱与UPLC仪器相结合,运行时间可减少80%,溶剂用量可减少90%。既能在HPLC仪器上运行又能在UPLC仪器上运行的XP色谱柱的实用性可以用于在遵循现行美国药典章指南的同时,改进美国药典方法。在常规分析实验室中,使用经更小粒径色谱柱改进的美国药典方法,可以节约大量的时间和运行成本。 参考文献 1. USP General Chapter , USP35-NF30, 258. The United States Pharmacopeial Convention, official from August 1, 2012. 2. USP Monograph. Tioconazole, USP35-NF30, 4875. The United States Pharmacopeial Convention, official from August 1, 2012. 3. Jones MD, Alden P, Fountain KJ, Aubin A. Implementation of Methods Translation between Liquid Chromatography Instrumentation. Waters Application Note 720003721en. 2010 Sept.
  • 车用甲醇汽油国标或年内出台 推广存阻力
    “《M15车用甲醇汽油》国家标准上报稿已经完成了,经专家讨论后将上报国家标准委审核通过。”5月4日,全国醇醚燃料及醇醚清洁汽车专业委员会一位权威人士表示,如果不出意外,该标准将在年内出台。   甲醇汽油是甲醇与汽油的混合物,甲醇的掺入量一般为5%-20%,以掺入15%者为最多,所以称M15甲醇汽油。   “这仅意味着甲醇汽油在全国生产和销售具有了合法性,但是光有标准还不行,还需要公众的接受以及省级和国家层面出台政策促进。”上述人士说。   随着国际原油价格大幅上涨,甲醇汽油相对普通汽油成本优势越来越大。卓创资讯的分析师陈晴称,目前国内市场上乙醇汽油和普通汽油的价格基本一致,93#汽油的均价在8000元/吨左右,而市场上甲醇汽油的批发价格仅在2000-3000元/吨,零售方面1升甲醇汽油要比普通的汽油便宜3~5角。这主要是因为甲醇是化肥和制药、煤炭等行业生产的副产品,也可利用化工原料合成,价格低廉,来源极为广泛。   不过,甲醇汽油在推广中也发现了不足。据了解,甲醇腐蚀性很强,普通汽车的油路系统不是耐腐蚀材料制成,汽车的发动机寿命明显缩短。   此外,其低温运转性能和冷起动性能较差,动力性能也不及纯汽油。   目前中石油、中石化对于甲醇汽油的姿态却始终 “隔岸观火”。陈晴称,携手两大油企推广甲醇汽油存在阻力。因为,两大公司都有自己的炼厂,有足够的油源供应,在资源不紧张的情况下,一般不会外采其他油源 更为重要是甲醇汽油的参与本身就影响两大油企的利益分配。
  • 第四届岛津煤化、石化气相色谱技术论坛成功举办
    石化、煤化工行业在中国面临着新的市场需求和发展机遇,产业发展前景十分可观。随着该产业的高速发展,项目开发、中间过程控制以及成品品质保证多个环节都对气相色谱技术提出了更高的要求,气相色谱相关应用技术水平已成为实验室能力的重要标志。近年来,岛津公司的气相色谱产品和应用技术得到越来越多用户的选择和信任,积累了大量的分析经验和解决方案。为了帮助行业客户更好分享行业内经验和各项先进技术,岛津从2014年在上海首次举办煤化、石化气相色谱技术论坛,至今已成功举办三届,其实用性、技术性深受广大参会客户的好评。9月21日,“第四届岛津煤化石化气相色谱技术论坛”在银川揭幕,来自煤化、石化产业的近百位专家、用户齐聚一堂,展开了深入的交流,成果颇丰。“第四届岛津煤化石化气相色谱技术论坛”现场传真本次论坛由岛津公司分析测试仪器市场部李言经理主持。岛津公司分析测试仪器市场部胡家祥部长致论坛开幕词,对论坛的顺利召开表示祝贺。他在致辞中谈到,岛津公司作为全球领先的分析仪器及解决方案提供商,不断开拓创新,将各项先进技术应用到石化、煤化相关领域中。我们深深认识到,只有和广大用户保持密切合作,持续倾听客户的声音,才能开发出真正适合用户需求的产品和应用,我们也期待能够和各位专家、老师建立更为深入的合作关系。岛津公司分析测试仪器市场部李言经理主持论坛岛津公司分析测试仪器市场部胡家祥部长致论坛开幕词本次论坛特别邀请多位知名专家给与会者介绍行业前景和应用热点、难点解决方案,岛津公司分析测试仪器市场部的产品专员也将给大家带来最新的气相色谱及网络化应用方案。 中国科学院山西煤炭化学研究所李学宽研究员做了题为《国际能源展望及中国石油与煤炭消费》的报告。他在报告中谈到,无论世界还是中国,化石能源还是主要来源。可再生能源的利用比例会越来越大,煤炭消费比例会下降。天然气(尤其是非常规天然气)所占比例会大幅度上升。石油消费和核能将平稳增长,发达国家石油消费将下降,发展中国家石油消费将增长。核能与石油消费相似。中国与世界其他地方一样煤炭消费主要用于发电,尽管总体煤炭消费量增长缓慢甚至下降,但煤化工在中国发展迅速,化工用煤将快速增长。中国科学院山西煤炭化学研究所李学宽研究员做报告中国石油化工股份有限公司石油化工科学研究院李长秀教授做了题为《汽油组成模拟蒸馏及非烃组分检测》的报告。她在报告中谈到,石化应用领域对于色谱分析的要求在于分析过程稳定可靠且自动、高效、快速,适应多种加工工艺以及信息的提取加工,为此需采取的措施首先是分析方法的标准化,其次是快速分析方法的开发与专用分析软件的开发,以及建立不同类型的计算模型。她同与会者分享了其研究团队在汽油单体烃和族组成分析、汽油中非烃组分及非常规添加组分的测定、色谱模拟蒸馏分析等方面的有效完整的解决方案。中国石油化工股份有限公司石油化工科学研究院李长秀教授做报告 神华宁夏煤业集团公司刘雷主任在题为《精准质检、快乐质检》的报告中介绍了 神华宁夏煤业集团公司煤制油化工基地的概括以及神华宁煤集团煤制油化工质检计量中心的全貌。他在介绍烯烃二期实验室时强调该实验室采用了岛津公司的网络化系统部署管理,分析人员能够在任意一处的操作端主机上,精准地定位仪器的使用情况及数据的存放位置;管理员能够对实验室数据进行统一化管理及备份,提升了备份数据的效率,同时也有效避免丢失数据从而保证实验室的稳健运行。他在谈及岛津的良好合作时说道,质检计量中心大量采用岛津分析仪器,在甲醇中痕量三甲胺分析、痕量硫分析等分析方法建立中得到了岛津的大力协助,在仪器的安装、调试、人员培训、保运和平时报修方面得到岛津售后部门的大力支持,解决了仪器使用的后顾之忧。神华宁夏煤业集团公司刘雷主任做报告在论坛的下半场,岛津公司分析测试仪器市场部陈家鼎经理做了题为《岛津LabSolutions CS实验室网络信息化管理解决方案》的报告。他在报告中谈到在大数据流行的当下,实验室也同样将步入信息化的时代,对此,他在报告中讲述了如何理解、定义实验室网络化,实验室数据将何去何从;当前实验室管理条件下存在哪一些值得进步、改善的环节等重点内容。他特别强调岛津网络化系统LabSolutions CS提供了相对完整的解决方案,并能够结合LIMS系统,实现高效率的管理。岛津公司分析测试仪器市场部陈家鼎经理做报告岛津公司分析测试仪器市场部顾晖经理做了题为《岛津GC-GCMS在化工行业的新运用》的报告。他在报告中谈到,在烯烃聚合过程中,砷烷、磷烷对催化剂有较大的毒害,岛津提供烯烃样品中痕量砷烷、磷烷的GCMS解决方案,最低检出限可达到10ppb甚至更低,满足工艺和生产需要。常温常压下气、液混合态样品进样方式的选择在业内一直存有争议,他本次报告介绍了不同进样方式的优缺点,并提供了岛津高压液体模拟针进样的优化解决方案。他还介绍了岛津Dean Switch技术在复杂样品分析中的应用方案以及岛津新型专利技术 BID检测器在化工行业痕量分析的应用方案。岛津公司分析测试仪器市场部顾晖经理做报告岛津公司分析测试仪器市场部卢波经理做了题为《实验室气相配置和框架设计》的报告。他在报告中谈到,在化工行业精细化、产品多元化的前提下,化工用户对实验室分析仪器数量需求越来越大,对仪器的性能和仪器供应商解决问题的能力也提出了更高要求。用户如何买到满足分析要求的仪器,仪器厂家如何提供出满足用户要求的仪器是摆在双方面前需要共同沟通的问题。为此,他系统、详尽介绍了岛津从仪器生产供应公司的角度出发如何实现仪器厂家和用户沟通交流,甚至促进化工设计院、化工分析用户、化工工艺人员、仪器厂家四方的沟通,以最终让用户获得最经济,最合理有效的仪器的经验。岛津公司分析测试仪器市场部卢波经理做报告 作为论坛的特别安排,全体与会者参观了神华宁煤集团煤制油化工质检计量中心的烯烃一期和二期项目的实验室。与会者们对实验室排列有序的大量的岛津公司气相色谱仪器表示出浓厚的兴趣,长时间驻足参观、交流。实验室现场传真与会者参观交流在参观过程中偶遇岛津公司分析计测技术部的墨东康工程师。从实验室启动时起,他便长期在现场为用户提供全面的技术支持,因高超的技术水平和热情的服务态度而获得用户的交口称赞 在论坛结束后的岛津招待晚餐上,岛津公司分析仪器事业部营业部李军波部长发表致辞祝贺论坛的成功举办,并期待与业界的专家用户进一步加深合作,共同为中国煤化、石化的发展尽力。岛津公司分析仪器事业部营业部李军波部长发表致辞论坛与会者合影留念关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 江苏省计量院研制的甲醇中胆固醇溶液标准物质通过定级鉴定
    近日,全国标准物质管理委员会召开国家二级标准物质评审会,江苏省计量院化学所研制的甲醇中胆固醇溶液标准物质(2种)通过专家评审。   评审会上,项目负责人就此次申报的溶液标准物质的制备过程、定值方法、均匀性及稳定性考察、不确定度评定等方面内容进行了汇报。最终,专家组一致同意江苏省计量院研制的甲醇中胆固醇溶液标准物质(2种)通过国家二级标准物质的定级鉴定。   液相色谱仪作为一种常见的分析仪器,广泛应用于食品医药、环境化学、石油化工等行业相关产品的分析,台件保有量巨大。本次通过的甲醇中胆固醇溶液标准物质可用于液相色谱仪示差折光检测仪和蒸发光散射检测器的检定和校准工作。   近5年来,江苏省计量院化学所在各类科研项目的支持下,研制并获批国家有证标准物质19种,包括气体、有机溶液、无机溶液等多个品种。通过总结研制经验和专家指导意见,江苏省计量院将加大标准物质研制投入力度,为提升检测技术和科研能力,拓宽产业计量业务维度贡献更多力量。
  • 快速指纹鉴定食品中的香精成分
    目的 使用一种无需进行样本萃取、过滤、稀释和色谱分离的简单而快速的技术对食品中的香精成分进行成功鉴定。 背景 对包括嗅觉、味觉和口感在内的各种感官有吸引作用的香精是促成食品成功销售的最重要因素之一。每个食品制造商都创造并保持自己的风味特征,从而与竞争者的产品区别开来。不同食品中的香精成分特征存在差异。为确保产品质量和标示准确,需要通过化学分析法对香精成分和最终成品进行分析和验证。然而,大多数化学组成分析方法需要进行包括萃取、过滤、稀释和色谱分离在内的耗时而费力的样本制备程序。因此迫切需要拥有一种能快速检验香精特征并验证产品质量的筛查工具。 ASAP只需不到3分钟的时间就能为各种饮料和食品中香精成分的化学组成指纹鉴定。 方法 沃特世(Waters® )大气压固相分析探头(ASAP)与四极杆质谱仪联用能满足这种需求。ASAP无需进行样本萃取、稀释和色谱分离,可用于快速的对诸如香草精、咖啡、冰淇淋和曲奇饼等各种饮料和食品中香精成分化学组成的指纹鉴定。 通过直接将毛细管穿过样品表面,曲奇饼和冰淇淋样本被加载至ASAP探头的密封玻璃熔融毛细管上。将密封玻璃熔融毛细管的顶端浸入样本中,这样香草精和咖啡样本就被加载到ASAP探头上。ASAP探头被插进密封的源里面,脱溶剂气被快速加热至200 ℃。 图1-4的数据通过使用ESCi正离子质量扫描模式,在15V的锥孔电压下用3分钟的运行时间采集得到。去背景 质谱图通过从样本的总离子流图扣除参考谱图的基线而得到的。 图1-4比较了真假香草精、法国香草味咖啡和爱尔兰奶油味咖啡、两种曲奇饼样本A和B、以及两种冰淇淋样 本A和B之间的质谱图。数据表明这些产品的香精特征存在差异。 总结 ASAP无需进行样本萃取、稀释和色谱分离,可用于快速指纹鉴定各种食品中香精特征并验证产品质量。由于免除了样本制备和溶剂使用,因此这种用时3分钟的筛查解决方案可通过节省分析时间而很有可能增加实验室的产能。它也可减少环境影响,而这与绿色化学的原则相符。最终的结果是实验室的日常运营成本降低。
  • 专业检测,“乳”此简单 | 解析乳制品中脂肪酸的组成
    乳脂肪是高质量的脂肪,主要成分是多种饱和脂肪酸和不饱和脂肪酸。乳制品中的脂肪酸是膳食的主要组成部分, 具有广泛的生理活性和生物学效应。其中亚油酸、α-亚麻酸是人体必需脂肪酸,人体不能自行合成 而必须从食物中摄取。而二十二碳六烯酸、二十碳五烯酸则与人体免疫、衰老发生、胎儿发育和基因调控等过程密切相关。有些人会担心乳制品中的反式脂肪酸问题,因为大量摄入反式脂肪酸会增加心血管疾病的危险。而牛奶中天然存在反式脂肪酸,婴幼儿配方乳粉中也发现了存在反式脂肪酸,因此国家在乳制品标准中对反式脂肪酸制定了限量标准。乳制品中脂肪酸的组成和含量不仅和乳制品的营养、口感密切相关,也直接关系到乳制品的安全。随着我国消费者对乳与乳制品的需求量逐年增长,乳制品中脂肪酸的组成作为评价乳与乳制品的重要指标之一。脂肪酸的检测的分析方法文献报道的很多,如光谱法、色谱法、电泳分析法等,其中红外光谱法和色谱法比较常用。目前乳制品中脂肪酸检测标准主要包括 GB 5009.168-2016 食品安全国家标准 食品中脂肪酸的测定和SN/T 2326-2009 食品及油脂中反式脂肪酸含量的检测傅立叶变换红外光谱法,采用的仪器是气相色谱和红外光谱。原奶脂肪酸检测消费者期望了解牛奶中饱和脂肪酸和不饱和脂肪酸的比例。对于原奶而言,奶牛的饲料,基因遗传,体脂肪情况都会影响牛奶脂肪酸的组成,采用LactoScope™ FT-A 多功能乳品成份分析仪,不需要对牛奶进行衍生化处理,直接来检测原奶中的脂肪酸组成,可以进行牛奶指纹的建立,奶牛疾病筛查以及饲料的监控。LactoScope™ FT-A 多功能乳品成份分析仪,专为高性能和多功能仪器的大型工厂和实验室而设计,通过将革新的FTIR 光谱仪,均质单元,泵单元及加热系统整合,最快测量时间为每个样品30 秒,典型精度小于1% CV。满足AOAC 标准检测方法和ICAR 认证。脂肪酸组成分析乳制品相关产品尤其婴幼儿配方乳粉、婴幼儿特殊医学用途配方乳粉等产品对于脂肪酸亚油酸,α亚麻酸以及两者的比值有严格的规定,采用的方法是气相色谱法。CLARUS气相色谱拥有升、降温速率快的柱温箱,2 分钟内柱温箱从450℃降到50℃, 改进的毛细管柱进样口,在很大程度上降低样品分解,减少残留,提高线性。可以一次进样分析37种脂肪酸。37种脂肪酸色谱图反式脂肪酸反式脂肪酸是所有含有反式双键的不饱和脂肪酸的总称,其双键上两个碳原子结合的两个氢原子分别在碳链的两侧。反式脂肪酸有天然存在和人工制造两种情况。人乳和牛乳中都天然存在反式脂肪酸,牛奶中反式脂肪酸约占脂肪酸总量的4—9%。世界卫生组织以及各国主管部门对反式脂肪酸的规定是基于它对心血管健康的影响而制定的。2010年我国颁布的《食品安全国家标准 婴儿配方食品(GB 10765-2010)》4.3.3条款规定,“反式脂肪酸最高含量<总脂肪酸的3%”。采用的方法也是气相色谱法。反式脂肪酸气相色谱图:了解更多应用资料和产品信息,扫描下方二维码,下载珀金埃尔默解析乳制品中脂肪酸的组成相关资料。
  • 【应用】使用步琦中压制备色谱C-815高效分离纯化ω-3脂肪酸
    使用 Pure Flash C-815高效分离 ω-3 脂肪酸Pure应用”1简介ω-3 脂肪酸是一类长链多不饱和脂肪酸,由于人体中缺乏 Δ&minus 12 和 Δ&minus 15 脱饱和酶,Ω-3 脂肪酸必须通过饮食获取,并且被认为对人类健康至关重要。EPA 和 DHA 的摄入量的增加已被科学证明在治疗和预防动脉粥样硬化、心肌梗死、炎症、关节炎、糖尿病、婴儿大脑发育和癌症方面有益。许多流行病学、观察性和临床研究强调了 ω-3 脂肪酸在降低血浆甘油三酯水平和预防心血管疾病方面的有效性。全球的心脏病学会建议每天服用 ω-3 脂肪酸(EPA+DHA 或仅 EPA)的剂量为 4 克(总EPA + DHA 超过 3 克),这代表了一种有效的降甘油三酯治疗剂。随着这一关注度的增加,对高纯度 ω-3 脂肪酸的需求激增。然而长期的过度捕鱼导致主要鱼类来源急剧下降,导致 ω-3 脂肪酸的价格迅速上涨。尽管如此,全世界只有少数公司有能力生产药用级 ω-3 脂肪酸。因此开发一种普遍适用且成本效益高的技术,以确保高纯度 ω-3 脂肪酸的安全生产是必要的。在本研究中,使用 RP-MPLC 技术来制备高纯度的 ω-3 脂肪酸乙酯,目标总含量不低于 84% 的 EPA 和 DHA,这是根据药典规定的。基本变量控制分离过程被评估和优化,基于纯度和回收率,包括填料材料、流动相、样品体积、样品浓度、流速和流动相组成。2色谱柱填料对分离效果的影响色谱柱填料是色谱系统的“核心”,其物理化学性质,包括包装结构的均匀性(单相、多孔或非多孔)、几何形状(粒径、床面积和孔径及形状)以及所附接的配体类型,对分离效能有显著影响。为了寻找高通量、低背压、高灵敏度和高分辨率以实现高效分离的色谱柱填料,对多种键合相材料(CN、Diol、C4、C6、C8、C18 和 AQ-C18)在 ω-3 脂肪酸乙酯的纯化中进行了评估(见 图1 和 表1)▲ 图1.使用不同色谱柱填料的 ω-3 脂肪酸乙酯的 RP-MPLC 色谱图表1. AQ-C18 和 C18 对 RP-MPLC 纯化的 EPA 和 DHA 酯的影响。色谱柱填料AQ-C18C18tR2 (min)17.09±0.0831.08±0.14tR3 (min)21.53±0.0737.90±0.1Rs11.43±0.021.27±0.03Rs21.13±0.031.02±0.03注意:tR2 表示 EPA 的保留时间;tR3 表示 DHA 的保留时间;RS1 表示 EPA 与其前杂质(组分A)的分离度;RS2 表示 DHA 与其后杂质(组分D)的分离度。同一组中的不同字母表示显著差异 (p▲ 图2. RP-MPLC 固定相(A) C18 和(B) AQ-C18 的结构差异3流动相对分离效果的影响选择合适的流动相对于提高分离效率起着重要的辅助作用。低粘度、低沸点和低成本的溶剂被优先考虑。在 图3 和 表2 中,乙醇和乙腈在从 ω-3 脂肪酸中分离出杂质时效果不佳,而甲醇则成功了。尽管甲醇的粘度较高,但其较低的沸点使得从产品中除去甲醇,比乙腈和乙醇更容易。因此甲醇被选为首选的流动相。▲ 图3. 不同流动相下 ω-3 脂肪酸乙酯的 RP-MPLC 色谱图表2. 不同流动相对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响。流动相乙醇乙腈甲醇tR2 (min)6.29 ± 0.0813.95 ± 0.117.08 ± 0.06tR3 (min)7.14 ± 0.0415.81 ± 0.0821.54 ± 0.08Rs1001.42 ± 0.02Rs201.32 ± 0.021.27 ± 0.03流动相中有机溶剂的比例会改变其极性,从而影响样品组分在固定相中的分配系数,并影响分离效率。增加甲醇比例会推迟峰出现时间,使峰形变宽,并减少脂肪酸乙酯 EPA 和 DHA 的保留时间、分辨率以及纯度(见 图4 和 表3)。这是因为增加流动相的极性已被发现能够通过延迟非极性FAEE在柱中的保留时间来提高分离效率。当甲醇比例为 86% 至 90% 时,ω-3 脂肪酸的纯度逐渐下降;同时回收率提高。当甲醇比例达到92%时,EPA 和 DHA 的脂肪酸乙酯纯度降至 83.39%,这不符合国家药典标准。甲醇比例超过 90% 不利于制备高纯度的 ω-3 脂肪酸。因此选择 90% 的甲醇溶液作为流动相。▲ 图4. 不同甲醇浓度的 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表3. 不同甲醇浓度对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响甲醇:水86:1488:1290:1092:8EPA-EE/DHA-EE纯度 (%)87.17 ± 0.1586.32 ± 0.1085.27 ± 0.1583.39 ± 0.14EPA-EE/DHA-EE回收率(%)54.51 ± 0.1665.24 ± 0.1274.30 ± 0.1153.28 ± 0.01tR2(min)22.81 ± 0.0518.37 ± 0.0711.87 ± 0.059.67 ± 0.1tR3(min)30.48 ± 0.0824.26 ± 0.0615.07 ± 0.0412.02 ± 0.07Rs11.64 ± 0.041.50 ± 0.021.22 ± 0.041.05 ± 0.03Rs21.41 ± 0.031.26 ± 0.031.02 ± 0.020.84 ± 0.024上样体积对分离效果的影响根据色谱制备的非线性理论,增加样品体积可以提高色谱的处理能力,提高产品回收率,并提高生产效率。如 图5 所示,随着负载体积的增长,保留时间延迟,峰形变宽,分辨率降低,纯化时间增加。这可能是因为更多的杂质在 AQ-C18 填料上吸附,影响了主峰和杂质峰的分离,从而降低了目标物质的纯度。当样品体积为 0.6mL 时,EPA 和 DHA 峰的总乙酯回收率最高(83.57%)。为了在实现更好的分离效果的同时最大化负载体积,选择了 0.6mL 的样品负载量,相当于色谱柱 1.25% 的柱体积。▲ 图5. 不同上样体积 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表4. 不同上样体积对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响上样体积mL0.40.50.60.7EPA-EE/DHA-EE纯度 (%)87.57 ± 0.3086.75 ± 0.0886.67 ± 0.2483.15 ± 0.30EPA-EE/DHA-EE回收率 (%)58.44 ± 0.1365.43 ± 0.2183.57 ± 0.2263.59 ± 0.36tR2(min)17.10 ± 0.0417.25 ± 0.0517.40 ± 0.0517.51 ± 0.04tR3(min)21.47 ± 0.0421.80 ± 0.0322.07 ± 0.0722.30 ± 0.06Rs11.43 ± 0.021.32 ± 0.031.27 ± 0.021.06 ± 0.02Rs21.07 ± 0.021.02 ± 0.011.02 ± 0.020.96 ± 0.025样品浓度对分离效果的影响在工业生产中,增加样品的浓度可以增强色谱处理能力,而降低浓度有助于促进分析物向色谱填料材料的分配和吸附过程,从而提高目标物质与杂质的分离度。然而这种改进是以相应的回收率降低为代价。图6 展示了不同浓度的鱼油乙酯与甲醇混合的 RP-MPLC 色谱曲线,并附 表5。随着鱼油乙酯浓度的增加,EPA 和 DHA 乙酯的纯度下降,而回收率、保留时间和分辨率表现出增加。相反,使用纯鱼油注射降低了 EPA 和 DHA 乙酯的分离因子,实现了 1.23 的前杂质分离因子和 1.10 的后杂质分离因子,纯度为 85.75%。EPA 和 DHA 乙酯的回收率随着样品的浓度稳步增加,达到纯鱼油时的峰值 74.62%。为了最大化生产效率,选择了纯鱼油乙酯。▲ 图6. 不同纯度样品 RP-MPLC 的 ω-3 脂肪酸乙酯色谱图表5. 不同浓度对 RP-MPLC 纯化 EPA 和 DHA 乙酯的影响样品浓度g/mL0.250.51PureEPA-EE/DHA-EE纯度 (%)87.19 ± 0.1986.63 ± 0.2886.11 ± 0.1185.75 ± 0.15EPA-EE/DHA-EE回收率 (%)50.47 ± 0.0858.65 ± 0.0762.21 ± 0.0874.62 ± 0.05tR2(min)15.86 ± 0.0317.51 ± 0.0417.61 ± 0.0317.72 ± 0.02tR3(min)18.07 ± 0.0620.69 ± 0.0621.47 ± 0.0421.92 ± 0.03Rs11.38 ± 0.031.35 ± 0.021.29 ± 0.021.23 ± 0.04Rs21.31 ± 0.041.27 ± 0.031.13 ± 0.021.10 ± 0.036
  • 沃特世多元数学统计方法分析传统草药
    多元数学统计方法分析传统草药,使用U P LC 超高效液相色谱/T O F -MS 飞行时间质谱比较不同样品种类   Kate Yu, Jose Castro-Perez, 和 John Shockcor   沃特世公司,米尔福德,马萨诸塞州,美国   前言   实验方法   传统草药 (THM)或传统中药 (TCM)样品的分析研究是非常具有挑战性的,直接原因是样品的重现性差。植物提取物的成分会因产地,采收季节以及提取方法的不同而发生显著变化。即使提取物是来自同一株植物的提取物或来自相同名称的两株植物,其成分也不尽相同。   此外,为了有效的对中药进行质量控制,非常有必要对中草药进行分析比较。中草药样品分析对于传统草药的生理作用机理的研究也是非常关键的。   我们开发了一套简便快速且易于通用的传统中草药分析流程的(图 1)。该分析流程利用了沃特世 (Waters® ) UPLC® 超高效液相色谱的技术优势,即高分辨,高灵敏度和快速分离,并结合了 SYNAPT™ HDMS™ 质谱系统的飞行时间质谱仪(TOF MS) 精确质量数测定的功能。该工作流程能够应用于化合物鉴定或样品解析。   传统中草药中的化合物鉴定在我们已在另一篇应用纪要中讨论过。1 本文将演示如何利用该分析流程借助多元数学统计方法进行样品数据的解析。结果表明,样品的比较可以在几个小时内完成并获得完整的样品信息。这显著地缩短了传统草药样品的分析时间和节省了人力。 图 1. 传统草药分析的工作流程 。   本实验的样品来自于两种人参提取物口服液。   样品 1 是人参精口服液 (产自中国,JV Trading Ltd. 公司销售,纽约,纽约州)。   样品 2 是青春宝口服液 (产自中国,Overseas Factor Corporation 公司销售,旧金山,加利福尼亚州)。   每个样品在进样前先过滤。   液相条件   液相系统: 沃特世 ACQUITY UPLC® 超高效液相色谱系统   色谱柱: ACQUITY UPLC 超高效液相色谱 HSS T3 色谱柱   2.1 x 100 mm, 1.7 µ m, 65 °C   流速: 600 µ L/min   流动相 A: 水+ 0.1% 甲酸   流动相 B: 甲醇   梯度: 时间 组成 曲线   0 min 95% A   10 min 30% A Curve 6   17 min 0% A Curve 6   20 min 95% A Curve 1   质谱条件   质谱系统: 沃特世 SYNAPT HDMS 质谱系统   离子化模式: 电喷雾   毛细管电压: 3000 V   锥孔电压: 35 V   除溶剂温度: 450 °C   除溶剂气体: 800 L/Hr   离子源温度: 120 °C   采集范围: 50 to 1500 m/z   碰撞气体: 氩气   数据处理   化合物筛选和分析:   MarkerLynxTM   应用管理软件   多元数学统计分析:   SIMPCA-P   结果   为保证数学统计结果的可靠性和重要性,每个样品至少重复进样三次。为获得每个样品的所有信息,有必要对它们在正负离子模式下进行LC/MS分析。本实验中,每种样品重复进样六次:三次电喷雾正离子模式分析和三次电喷雾负离子模式分析。出于演示目的,本文只讨论了负离子模式下的结果。   图 2 显示两种人参提取物口服液基峰离子色谱图的比较。由图可以看出人参精口服液含成份远多于青春宝并且浓度更高。由于两个样品成份都很复杂,有必要利用多元数学统计工具对两个样品做进一步的分析。   图 2. 两种人参提取物样品的 LC/MS 液相色谱/质谱基峰离子色谱图。   使用多元数学统计方法对 LC/MS 数据进行分析的第一步是将三维 LC/MS 数据转换成二维矩阵。这一关键步骤由 MassLynx™ 操作软件中的 MarkerLynx 完成。MarkerLynx 将每一个数据点转换成精确质量保留时间 (EMRT) 数据对,并以二维矩阵型式将结果列出 (图 3)。   本实验共得到了 1184 个精确质量保留时间 (EMRT) 数据对 。可检测到 EMRT 数据对的数量取决于色谱峰检测限的设定,该参数可由分析人员设定。   图 3. MarkerLynx 结果显示窗口。窗口上部为样品进样列表。窗口下部为精确质量于保留时间数据对列表。   从 MarkerLynx 报告界面上,仅需点击 P+ 按钮,EMRT 数据对列表就可以被自动导入到 SIMCA-P 中。首先利用主成分分析 (PCA) 法对对数据进行处理。之后利用无监督统计学模型,结合正交偏最小二乘法进行两维数据分析 (OPLS-DA)。图 4 列出正交偏最小二乘法数据分析的分值结果。该图清晰地展示了两个样品组在 X 轴和 Y 轴方向的差别。 图 4. 数值图表示人参精口服液和青春宝口服液明显的分组情况。   为进一步鉴定两组样品的化学组成上的差异性,正交偏最小二乘法得到的数据分析结果散点图如图 5 所示。 图 5. 基于正交偏最小二乘法获得的人参精口服液和青春宝口服液数据分析结果散点图。   在散点图中,每个点代表一个精确质量保留时间数据对。X轴表示可变量。一个数据点距离 0 越远,该点对样品差异的贡献越大。Y 轴表示在同一样品组中的样品间的相关性。精确质量与保留时间数据对距离 0 值越远,进样间的相关性越好。因此,在 S 型曲线两端的 EMRT 数据对代表了来自每个样品组的可信度最高的特征离子。   例如,图 5 中,接近 S 图右上角的 EMRT 数据对为来自青春宝口服液可信度最强的特征标记物,接近 S 图左下角的 EMRT 据对为来自人参精口服液可信度最强的特征标记物。   这些特征的 EMRT 数据对可以被选择性地捕获,并获得每组样品中特征标记物列表,并以 TXT 文件保存下来。这个 TXT 件可被输回 MarkerLynx ,产生一个结果列表,从而用于元素组成搜索以及数据库搜索。图 6 显示了从两组样品 S 图中获得的十个特征的精确质量与保留时间数据对列表。 图 6. 利用正交偏最小二乘法从两个样品数据分析散点图中获得的最高贡献的十个精确质量保留时间数据对列表。   图 6 表明保留时间为 6.45 分钟质荷比为 945.5419 离子是人参精样品中最显著的标记物,可信度达 0.999。保留时间为6.33 分钟质荷比为 801.5021 的离子是青春宝样品中最显著的标记物,可信度达 0.994。   此外,相比人参精样品(从质荷比 783 到质荷比1187),青春宝样品中最特征的十个 EMRT 数据对在较低的分子量范围内 从质荷比 623 到质荷比 955)。这说明人参精样品的十个特征的标记物中的大多数含有三至四个糖环,而青春宝样品中最特征的十个标记物含有二至三个糖环。   差异性最大的十个 EMRT 数据对也可以用棒状图格式进行查看。图 7 列出人参精 (7a) 和青春宝 (7b) 十个差异性最大的标记物的棒状图。 图 7. 人参精 (7a)和青春宝(7b)十个差异性最大的标记物的棒状图。   棒状图提供了列表中已经鉴定的标记物的额外信息,显示被研究的两个样品组十个差异性最大的 EMRT 数据对的直接比较结果。在图 7 中,人参精样品的十个特征标记物在青春宝样品中几乎没有被检测到。而来自青春宝样品的十个特征标记物在人参精样品中被检测到具有很低的强度,有些也未能检测到。   此外,棒状图也提供了一些半定量的信息。来自青春宝样品的十个最大标记物比在人参精样品中检测到的强度高。表明青春宝口服液是比人参精口服液更纯的提取物。   如上所述,从 SIMCA-P 得到的文本文档可以直接导入 MarkerLynx 结果列表中。图 8 显示填入两组结果的 MarkerLynx 结果窗口界面,每个表格代表一组。 图 8. 导入精确质量与保留时间数据对的 MarkerLynx 结果显示窗口界面, 文本文档从 SIMCA-P 散点图获得。   从 MarkerLynx 结果表格中,可以对每一个 EMRT 数据对报告中的精确质量进行元素组成分析检索。此信息可进一步用于作现有数据库搜查,寻找推断的该成分的化学结构(如果   数据库中存在该种标记物)。举例来说,我们从青春宝样品中选择一个质荷比为 971.4880 的 标 记物,其元 素 组 成 为 C48H76O20,对公共 平台数据库,Chemspider 进行检索。其中一个可能性如图 9 所示。 图 9. Chemspider 数据库中检索的到的质荷比 971.4880 的可能结构。   从该信息很容易返回到液相色谱/质谱 LC/MS 原始数据,利用飞行时间 TOF MSE 数据1的碎片离子来确认推导的结构的准确性。   结论   本应用文集演示一种通用智能化的传统中草药样品分析的工作流程。相对于传统的分析方法,当前这种方法对于相当复杂样品的分析非常有效。   通过 UPLC® 超高效液相色谱/SYNAPT™ HDMS™ 质谱系统的进行飞行时间质谱分析,首先采集含有精确质量测定的原始数据。当将这些数据作为精确质量保留时间数据对转成二维矩阵形式,多元数学统计分析方法即可对这套数据进行分析。每个样品的最特征的离子可以从 SIMCA-P 的正交偏最小二乘法数据分析散点图中获得。结果可以导回 Markerlynx 的结果列表中。如果标记物是已经解析出的化合物,可利用数据库检索其元素组成及化学结构。 整套分析方法简便,快速适用性强。它可以很方便地应用到不同类型的传统中草药样品分析之中。因此,在显著节省资源的同时获得最大信息量。   参考文献   1. An Intelligent Workflow for Traditional Herbal Medicine: Compound   Identification by UPLC/TOF MS. Yu K, Castro-Perez J, Shockcor J. Waters   Application Note. 2008 720002486EN.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制