请问Bruker的Esquire-LC离子井电喷雾质谱 正离子方式检测是什么意思啊?是不是还有负离子方式检测啊。我是菜鸟啊~
各位老师好!想请教下,液相质谱中,哪些特征物质容易在正离子模式下被检测,哪些物质容易在负离子模式下被检测?有官能团特征吗?感谢
[b]用液相色谱质谱仪检测葡萄糖是用正离子模式还是负离子模式?[/b]这个选择有什么讲究?对流动相有什么要求?
我想请教,用MALDI-TOF测量未知多糖的分子量可行吗,基质用DHB,其它的操作条件如何设定,用正离子和线性检测的方式可以吗??谢谢!
请问各位大神,质谱检测结果为什么是【M+H】+和【M+Na】+的m/z值,而不是直接【M】+的分子量的m/z呢?离子化方式是ESI,离子模式是正离子
计算离子晶体中正离子的配位数为8和6时的正、负离子半径比值。谢谢您的回答
SIMS(Secondary Ion mass Spectroscopy二次离子质谱):Ar+轰击GaAs,产生Ga+,Ga-,As+,As-正离子和负离子可以同时检测吗?[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=9157]图[/url]
WATERS qtof-ms中正离子模式376的杂峰是什么东西啊?咋洗都有啊
质谱正离子与负离子模式区别
[color=#444444]酸,氨基(1:1.2投料),HATU,DIPEA 缩合,30min,TLC监测到原料酸没有,有一新点生成。[/color][color=#444444]倒入1N酸水, 没有固体析出,DCM萃取水相,1N碱水洗涤,干燥,柱分离,得到化合物[/color][color=#444444]但是,MS(ESI+),正离子条件下显示,有267,289的峰,没有 278的峰,但是负离子模式:有:276[/color][color=#444444]结构式和质谱图附后,请帮忙大家分析下![/color][color=#444444][img=,690,445]https://ng1.17img.cn/bbsfiles/images/2019/10/201910090953192052_7429_1848218_3.gif!w690x445.jpg[/img][img=,179,92]https://ng1.17img.cn/bbsfiles/images/2019/10/201910090953196817_996_1848218_3.gif!w179x92.jpg[/img][img=,690,431]https://ng1.17img.cn/bbsfiles/images/2019/10/201910090953195292_4009_1848218_3.gif!w690x431.jpg[/img][/color]
质谱被污染,正离子扫描总有186、130、242的离子,换了甲醇,换了乙腈,水也换了,都还有这几个离子出现,而且响应很高,有可能被怎么污染,请高手赐教!
[size=18px]目前在用AB的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测三苯基氯甲烷,Q1 MI模式扫243.1的离子[font=-apple-system, BlinkMacSystemFont, &](应该是三苯甲基碳正离子)[/font],发现基线非常高(30万-50万之间),且不稳定,时高时低,导致峰面积也 不稳定,打电话问客服,几个人几种说法,“液相部分污染了”“这个是正常现象,多走走就稳定了”,尝试用MRM模式去做,打出一个165.2的碎片,基线不到1000,做了线性和回收也都挺好,但是,这个碎片离子是怎么打出来的比较困惑,就怕以后再做的时候重现不出来……[/size][size=18px]流动相是90%甲醇,溶剂是正丁醇:乙腈(80:20)[/size][size=18px]请教一下各位大神,AB的仪器用SIM模式选择Q1 MI还是Q3 MI好呢?基线高且时高时低,除了污染还有什么原因呢?[font=-apple-system, BlinkMacSystemFont, &]三苯甲基碳正离子在质谱里能被打碎吗?会裂解成什么碎片离子?[/font][/size][size=18px][font=-apple-system, BlinkMacSystemFont, &][/font][/size]
[color=#444444]我想请教下各位大侠,离子液体(相当于盐类化合物)要打质谱的话,模式是如何选择的?。。。ESI源的话,正负离子模式是不是都要做的?其中正离子模式下,ESI+会出现+峰,而负离子模式下,ESI-会出现-峰,且两者互不干扰?。。。这只是我的猜测,请问是不是这样的呢,ESI+和ESI-都要打的呢?[/color]
[color=#444444]最近做了一个化合物分子量为1960,做质谱,正离子模式下最大峰为1938.3。请问这样的结果可以吗?[/color]
各位老师,请问甲醇和乙腈哪个更适合用于正离子检测,哪个更适合用于负离子检测?谢谢!假期快乐!
GCMSD的EI源检测的是正离子还是负离子?或是都可以?
GCMSD的EI源检测的是正离子还是负离子?或是都可以?
质谱分析中涉及多种离子类型,每种离子在解析化合物结构时扮演着特定的角色。以下是几种关键的离子类型及其定义: 1. 分子离子(母离子):当一个分子失去一个电子时形成,其质荷比(m/z)直接对应于分子的相对分子质量。是分析物进入质谱后,经过电离、加速、分离后,最接近正离子检测器的离子。分子离子峰能提供分子量的信息,但在硬电离条件下可能不明显或不存在。 2. 准分子离子:与分子存在简单关系的离子,如通过失去或获得一个氢原子形成的(M+H)+或(M-H)-,这些离子对于确定分子量同样重要。 3. 碎片离子(子离子):电离后有过剩内能的分子离子能以多种方式裂解,生成碎片离子。裂解方式包括简单开裂、重排开裂、复杂开裂和双重排开裂,这些碎片提供了化合物内部结构的线索。 4. 亚稳离子:在离子源到检测器的路径中不稳定的离子,它们在检测前分解,但其存在可以通过质谱图上的特定峰来推断,这些峰通常较弱且横跨几个质量单位。 5. 同位素离子:由元素的同位素构成的离子,出现在分子离子或碎片离子的质量数右侧,用于确认分子的组成。各种元素的同位素基本上是按照该同位素在自然界中的丰度比出现在质谱中,这对于利用质谱确定化合物及碎片的元素组成有很大作用。如自然界中氯元素的同位素35Cl和37Cl的丰度比约为3:1,当某一质谱峰的M+和M++2峰的强度比近似为3:1 时,其相应的化合物或碎片中就可能含有1个氯原子。 6. 重排离子:在裂解过程中发生结构重组的离子,保持电荷但改变了分子片段的连接方式,有助于理解化合物的内部结构。 7. 多电荷离子:带有两个或更多电荷的离子,常见于软电离质谱中,其质荷比小于单电荷离子,对于蛋白质等大分子的质谱分析尤为重要。当分子量为一万的大分子物质带有十个电荷时,其质荷比为1000。这就使得质量范围为1000左右的质量分析器,在使用软电离接口时,可以分析分子量达数万或数十万的大分子化合物。 8. 加合离子:当分子离子与溶剂分子、添加剂或其他小分子结合时形成,这种结合可以是有意的也可以是无意的,有助于识别和解析软电离质谱中的分子离子峰。 这些离子类型在质谱分析中至关重要,它们的识别和解析对于理解化合物的化学结构和组成至关重要。
[font=微软雅黑, sans-serif]带电离子的产生、传输和检测[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪工作时,仪器内部真空环境中带电离子的产生、传输和检测需要经过离子源、质量分析器和检测器等部件。[color=red]本文主要介绍单四极杆质谱仪的电子轰击电离源/电子电离源(EI)部分。[/color][/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f0/1d/ff01dcd00e8e45a3bc8250abe70575b7.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]离子源-电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源的主要作用是将分析样品中的待测组分电离成带电离子,并将带电离子集中成密集的离子束,引入质量分析器。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-单四极杆质谱联用仪常见的离子源主要有电子轰击电离源(EI)、化学电离源(CI)等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif]通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)是最常见和最简单的电离方式之一,可靠性和灵敏度高,碎片离子信息丰富,质谱图具有良好的再现性,能够提供详细的结构信息和可供对照的标准NIST质谱数据库。目前EI 源是分析鉴定中草药、香精、香料、杀虫剂和石油成品等挥发性和半挥发性复杂样品的主要手段。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)的结构包括电离腔、透镜组和模拟电路板三大部分。电离腔包括磁铁、灯丝、推斥极等;透镜组则包括离子出口板、离子出口板间隔、聚焦透镜和引入透镜等;模拟电路板[size=12px](点击链接,了解详细内容:[url=https://ibook.antpedia.com/x/666377.html][color=#7030a0]单四极杆质谱仪工作流程及框架概述[/color][/url])[/size]则用以实现电子轰击电离源(EI)灯丝电流控制,离子源加热控制,推斥电极、静电透镜、电子能量电压控制等。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c6/fc/6c6fc7a87049a3eaa393fdac683e4dfc.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的产生[/font][font=微软雅黑, sans-serif]2.1.1.1 [/font][font=微软雅黑, sans-serif]离子的产生位置-电离腔[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电离腔[/font][font=微软雅黑, sans-serif]位于灯丝1与灯丝2之间,(上图)推斥极右侧,(上图)离子出口板左侧;磁铁位于灯丝1和灯丝2 的正上方;色谱柱于上图中色谱柱入口将分析样品中的待测组分引入离子源;另外,位于色谱柱入口正对面的真空腔门上开有小孔,外部装有开关阀及调谐用的全氟三丁胺,称为标液和标液阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源中的两个磁体之间会形成磁场,运动电荷在磁场中受到洛伦兹力的作用;洛伦兹力不改变运动电荷的速率和动能,只改变电荷的运动方向使之偏转;灯丝经过加热产生热电子,并在加速电压的作用下进入磁场,在磁场作用下螺旋形向前运动,增加与样品分子相互作用的几率。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1.2 [/font][font=微软雅黑, sans-serif]电离腔中离子产生的原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=#7030a0]说明:该小节参考《质谱分析技术原理与应用》,台湾质谱学会[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)又称为电子电离源(EI),其基本原理是灯丝经过加热产生热电子,并在加速电压的作用下具有一定的能量和波长。当电子的波长符合分子电子能级跃迁所需的波长时,电子能量会被分子吸收,使分子内能提高,将外层电子提升至高能级,进而至离子化态并产生自由基阳离子。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在离子源中可以通过参数设置控制电子产生的数量和电子的能量。有机化合物的电离能大多数为(10-20)eV,但通常将灯丝产生的电子动能设置为70eV[size=12px](电子伏特(electron volt),符号为eV,是能量的单位。代表一个电子(所带电量为1.6×10-19C的负电荷)经过1伏特的电位差加速后所获得的动能)[/size]。电子动能为70eV时波长约为1.4?,该波长与分子键长度接近,更容易与化学键相互作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV位于最佳离子化效率能量区(50-100eV)的中间,可以避免由于在区间起始或者结束位置时电子能量微小波动导致的离子化效率明显变化;同时,也避免了当电子能量过低无法被分析物有效吸收或者过高直接穿透分子引起的离子化效率降低等情况。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV时可以提供较高的谱图重现性,同时具有丰富的碎片离子,可以提供分子离子的结构信息,用来鉴定或者解析分子。目前美国国家标准与技术研究院(NIST)收集了数十万分子电子电离产生的质谱图并建立了谱图库,可以通过与该标准谱图库进行对比的方法检定化合物的身份。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.1.2 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的传输和聚焦[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在电离腔中产生的离子碎片运动方向较为发散,为了将离子引出电离区,并将轴向发散的离子进一步加速、聚焦成离子束以减少在传输中的损失,并最终以较小的束宽和散角送入质量分析器中,一般使用透镜组对离子进行空间聚焦。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪电子轰击电离源(EI)中的透镜组(静电透镜/单透镜)是离子导向装置的一种,作为离子光学系统的一部分,承担着将离子传输至质量分析器的重要作用。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif]工作过程中,由电子轰击电离源(EI)的裂解机理产生的离子多为正离子,因此首先在推斥极上施加正电压,将离子推向离子出口板;一般而言,离子出口板和离子出口板间隔接地,推斥极和离子出口板之间会形成电压差,电压差亦会推动正离子向前运动;聚焦透镜和引入透镜为负电压,且聚焦透镜的电压值会更低[size=12px](说明:负的更厉害)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在三个圆筒形电极[size=12px](离子出口板和离子出口板间隔、聚焦透镜和引入透镜)[/size]的作用下,中间电极附近形成一鞍形电场——即中间电极电压低于两边电极电压,构成起始减速型单透镜结构,散射的正离子在起始减速型结构的单透镜中先加速后减速,先聚焦后发散再聚焦。该透镜组(静电透镜/单透镜)的特点是对传输离子无质量歧视,可以保持离子的动能,通过调节电压即可实现离子聚焦和改善离子传输效率。[/font]
正离子模式下,D-葡萄糖质谱图中m/z等于73是怎样产生的? 这是网上找的标准的谱图
我做黄酮类的质谱,流动相是乙腈,0.1%的甲酸。其中金丝桃苷分子量465,但是样品对照品都是487.0几,是正离子模式,为什么会出现加22,如果是Na的话正离子模式不是+23吗?急求答案。
直接从质谱进样,为啥用正离子模式,得到的响应位置比实际分子质量多了23
正离子方式–分析碱性化合物 用有机酸调整pH 值 如:甲酸或乙酸;负离子方式–分析酸性化合物 用碱调整pH 值 如:氢氧化铵/氨水。这是什么意思啊?什么是碱性化合物,酸性化合物?4-n-Nonylphenol-2,3,5,6-d4,OD(CAS No.: 358730-95-7)是哪种化合物?有人做过吗?选哪些离子对定量和定性?http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif
直接从质谱进样,为啥用正离子模式,得到的响应位置比实际分子质量多了23。体系里没有钠,流动相是水和乙腈
[color=#444444]如题 直接上图,预测的物质与质谱分析的结构有差异,请帮助分析下,谢谢!!![/color][color=#444444]底物ST:分子量是324,底物的结构见图底物;[/color][color=#444444]产物分子量是:352,质谱图见产物图;[/color][color=#444444]请问:产物如果是双羟基化合物或者是开环物(二者的分子量都是358),分子量与分离的产物的正离子-MS所示的分子量(352)不是很符合,请指教。[/color][color=#444444]因为产物的积累量不够,还没有作核磁,先把MS图贴上,请大神给分析分析,或者能帮着分析下可能的产物结构,谢谢。[/color][color=#444444][img=,690,426]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091002250247_7652_1843534_3.jpg!w690x426.jpg[/img][/color][color=#444444][color=#008000]底物:MW=324,结构如图,已知[/color][/color][color=#444444][color=#008000][img=,690,409]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091002449526_3497_1843534_3.jpg!w690x409.jpg[/img][/color][/color][color=#444444][color=#008000][color=#008000]产物的MS:MW=352,结构可能是ST-二羟基化合物或者是开环物(自己猜的)[/color][/color][/color]
新手求助:样品在离子源中电离时会受到pH的影响。那么pH的高低是如何影响样品电离的呢?为什么建议正离子模式下检测应酸化样品,负离子模式下碱化样品?请各位大神详细讲解下其中的原理~谢谢大家~
分析者对待测离子应有一些一般信息,首先应了解待测化合物的分子结构和性质以及样品的基体情况,如无机还是有机离子,离子的电荷数,是酸还是碱,亲水还是疏水,是否为表面活性化合物等。待测离子的疏水性和水合能是决定选用何种分离方式的主要因素。水合能高和疏水性弱的离子,如Cl-或K+,最好用HPIC分离。水合能低和疏水性强的离子,如高氯酸(ClO4-)或四丁基铵,最好用亲水性强的离子交换分离柱或MPIC分离。有一定疏水性也有明显水合能的pKa值在1与7之间的离子,如乙酸盐或丙酸盐,最好用HPICE分离。有些离子,既可用阴离子交换分离,也可用阳离子交换分离,如氨基酸,生物碱和过渡金属等。很多离子可用多种检测方式。例如测定过渡金属时,可用单柱法直接用电导或脉冲安培检测器,也可用柱后衍生反应,使金属离子与PAR或其它显色剂作用,再用UV/VIS检测。一般的规律是:对无紫外或可见吸收以及强离解的酸和碱,最好用电导检测器;具有电化学活性和弱离解的离子,最好用安培检测器;对离子本身或通过柱后反应后生成的络合物在紫外可见有吸收或能产生荧光的离子和化合物,最好用UV/VIS或荧光检测器。若对所要解决的问题有几种方案可选择,分析方案的确定主要由基体的类型、选择性、过程的复杂程度以及是否经济来决定。表1和2总结了对各种类型离子可选用的分离方式和检测方式。 离子色谱柱填料的发展推动了离子色谱应用的快速发展,对多种离子分析方法的开发提供了多种可能性。特别应提出的是在pH 0-14的水溶液和100%有机溶剂(反相高效液相色谱用有机溶剂)中稳定的亲水性高效高容量柱填料的商品化,使得离子交换分离的应用范围更加扩大。常见的在水溶液中以离子形态存在的离子,包括无机和有机离子,以弱酸的盐(Na2CO3/NaHCO3, KOH、NaOH)或强酸(H2SO4、甲基磺酸、HNO3、HCl)为流动相,阴离子交换或阳离子交换分离,电导检测,已是成熟的方法,有成熟的色谱条件可参照。对近中性的水可溶的有机“大”分子(相对常见的小分子而言),若待测化合物为弱酸,则由于弱酸在强碱性溶液中会以阴离子形态存在,因此选用较强的碱为流动相,阴离子交换分离;若待测化合物为弱碱,则由于在强酸性溶液中会以阳离子形态存在,选用较强的酸作流动相,阳离子交换分离;若待测离子的疏水性较强,由于与固定相之间的吸附作用而使保留时间较长或峰拖尾,则可在流动相中加入适量有机溶剂,减弱吸附,缩短保留时间、改善峰形和选择性。对该类化合物的分离也可选用离子对色谱分离,但流动相中一般含有较复杂的离子对试剂。 此外,对弱保留离子可选用高容量柱和弱淋洗液以增强保留,对强保留离子则反之。表1,2列出了离子色谱中常用的两种主要检测器:电化学检测器(包括电导和安培)和光学检测器。在水溶液中以离子形态存在的离子,即较强的酸或碱,应选用电导检测。具有对紫外或可见光有吸收基团或经柱后衍生反应后(IC中较少用柱前衍生)生成有吸光基团的化合物,选用光学检测器。具有在外加电压下可发生氧化或还原反应基团的化合物,可选用直流安培或脉冲安培检测。对一些复杂样品,为了一次进样得到较多的信息,可将两种或三种检测器串联使用。
分析者对待测离子应有一些一般信息,首先应了解待测化合物的分子结构和性质以及样品的基体情况,如无机还是有机离子,离子的电荷数,是酸还是碱,亲水还是疏水,是否为表面活性化合物等。待测离子的疏水性和水合能是决定选用何种分离方式的主要因素。水合能高和疏水性弱的离子,如Cl-或K,最好用HPIC分离。水合能低和疏水性强的离子,如高氯酸(ClO4-)或四丁基铵,最好用亲水性强的离子交换分离柱或MPIC分离。有一定疏水性也有明显水合能的pKa值在1与7之间的离子,如乙酸盐或丙酸盐,最好用HPICE分离。有些离子,既可用阴离子交换分离,也可用阳离子交换分离,如氨基酸,生物碱和过渡金属等。 很多离子可用多种检测方式。例如测定过渡金属时,可用单柱法直接用电导或脉冲安培检测器,也可用柱后衍生反应,使金属离子与PAR或其它显色剂作用,再用UV/VIS检测。一般的规律是:对无紫外或可见吸收以及强离解的酸和碱,最好用电导检测器;具有电化学活性和弱离解的离子,最好用安培检测器;对离子本身或通过柱后反应后生成的络合物在紫外可见有吸收或能产生荧光的离子和化合物,最好用UV/VIS或荧光检测器。若对所要解决的问题有几种方案可选择,分析方案的确定主要由基体的类型、选择性、过程的复杂程度以及是否经济来决定。表1和2总结了对各种类型离子可选用的分离方式和检测方式。 离子色谱柱填料的发展推动了离子色谱应用的快速发展,对多种离子分析方法的开发提供了多种可能性。特别应提出的是在pH0-14的水溶液和100%有机溶剂(反相高效液相色谱用有机溶剂)中稳定的亲水性高效高容量柱填料的商品化,使得离子交换分离的应用范围更加扩大。常见的在水溶液中以离子形态存在的离子,包括无机和有机离子,以弱酸的盐(Na2CO3/NaHCO3,KOH、NaOH)或强酸(H2SO4、甲基磺酸、HNO3、HCl)为流动相,阴离子交换或阳离子交换分离,电导检测,已是成熟的方法,有成熟的色谱条件可参照。对近中性的水可溶的有机“大”分子(相对常见的小分子而言),若待测化合物为弱酸,则由于弱酸在强碱性溶液中会以阴离子形态存在,因此选用较强的碱为流动相,阴离子交换分离;若待测化合物为弱碱,则由于在强酸性溶液中会以阳离子形态存在,选用较强的酸作流动相,阳离子交换分离;若待测离子的疏水性较强,由于与固定相之间的吸附作用而使保留时间较长或峰拖尾,则可在流动相中加入适量有机溶剂,减弱吸附,缩短保留时间、改善峰形和选择性。对该类化合物的分离也可选用离子对色谱分离,但流动相中一般含有较复杂的离子对试剂。此外,对弱保留离子可选用高容量柱和弱淋洗液以增强保留,对强保留离子则反之。离子色谱中常用的两种主要检测器:电化学检测器(包括电导和安培)和光学检测器。在水溶液中以离子形态存在的离子,即较强的酸或碱,应选用电导检测。具有对紫外或可见光有吸收基团或经柱后衍生反应后(IC中较少用柱前衍生)生成有吸光基团的化合物,选用光学检测器。具有在外加电压下可发生氧化或还原反应基团的化合物,可选用直流安培或脉冲安培检测。对一些复杂样品,为了一次进样得到较多的信息,可将两种或三种检测器串联使用。(中国分析仪器网)
http://ng1.17img.cn/bbsfiles/images/2016/01/201601161028_582049_3052231_3.gif二甲四氯异辛酯,这是它的结构式,我用的是安捷伦6420质谱,sim模式只扫出加纳峰,打碎后子离子只有一个,而且响应值很低,一直搞不懂正离子为什么没有加氢峰,一点都没有,都不是响应值低,农残检测,求定量啊,求大神指点,谢谢!
以ESI正离子为例,通常产生的M+H正离子的H源是流动相中带来的吗,如果是的话,那么以非质子性纯有机相做流动相是否无法让待测样品离子化,质谱也就没有信号。恳请大佬解惑。