当前位置: 仪器信息网 > 行业主题 > >

色谱测定下限计算方法

仪器信息网色谱测定下限计算方法专题为您提供2024年最新色谱测定下限计算方法价格报价、厂家品牌的相关信息, 包括色谱测定下限计算方法参数、型号等,不管是国产,还是进口品牌的色谱测定下限计算方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱测定下限计算方法相关的耗材配件、试剂标物,还有色谱测定下限计算方法相关的最新资讯、资料,以及色谱测定下限计算方法相关的解决方案。

色谱测定下限计算方法相关的资讯

  • 如何区分仪器检出限、方法检出限、样品检出限及测定下限
    p  检出限是分析测试的重要指标,对于仪器性能的评价和方法的建立都是重要的基本参数之一。在日常检测过程中,检出限为具体量度指标,特别是在痕量分析中,痕量分析误差与样品含量相对于检出限的倍数相关联。检出限的确定对于分析方法的选择具有重要意义。对检出限的忽视有可能导致检测结果的不确定度增大。长期以来,各个领域的检测人员针对检出限概念、估算方法及在各个不同领域的应用都进行了大量的探讨。像分析仪器在测定过程中存在与噪音相区别的小信号检出问题,同时也存在着分析方法能可靠测定物质最低含量的界限问题,这两个概念有着本质的不同。在实际应用中,仪器检出限、方法检出限及样品检出限及测定下限的概念经常混乱。/pp  在检验检疫行业中,进出口产品的种类繁多,涉及的领域也是多种多样,对检测人员的要求高,为保障进出口产品质量把关服务的有效进行,合理的使用仪器分析,科学有效的评估仪器分析,都要求在仪器的检出限等各项指标上有个清晰完整的认识。为理清在检出限概念和层次上的认识,本文将对检出限的概念、分类和影响因素进行详尽的探讨。/pp span style="color: #ff0000"strong 一、检出限的概念/strong/span/pp  1947年,德国人Hkaiser首次提出了有关分析方法检出限的概念,并提出检出限和分析方法的精密度、准确度一样,也是评价一个分析方法测试性能的重要指标。国际纯粹与应用化学联合会( IU-PAC) 于1975年正式推行使用检出限的概念及相应/pp  估算方法,于1998年又发表了《分析术语纲要》对检出限检出,检出限的定义为:某特定方法在给定的置信度内可从样品中检出待测物质的最小浓度或量,公式表示为:/pp style="text-align: center"img alt="" height="152" src="http://img1.17img.cn/17img/old/NewsImags/images/20151511437.jpg" style="width: 282px height: 110px" width="411"//pp  欧盟《执行关于分析方法运行和结果解释的欧盟委员会指令》(2002/657/EC)的最新检测限的概念 CC& #945 和 CC& #946 检测限( & #945 ) 是指大于等于此浓度限,将以& #945 误差概率得出阳性结论。检测能力(CC& #946 ) 是指样品中物质以& #946 误差概率能被检测、鉴别和/或定量的最小含量。对于未建立容许限的物质,检测能力是以1-& #946 可信度能被检测出来的最低浓度。如果容许限已经建立,检测能力就是以1-& #946 可信度能被检测到的容许限浓度。/pp  span style="color: #ff0000"strong二、检出限的不同分类/strong/span/pp  strong1、美国国家标准局的分类/strong/pp  (1)仪器检出限: 即相对于背景,仪器检测的可靠最小信号。通常用信噪比(S/N) 表示,当 (S/N)& #8805 3时,定义为仪器检出限。/pp  (2)方法检出限: 即某方法可检测的最小浓度。通常用外推法可以求得。即在低浓度范围内选三个浓度(C1、C2、C3) ,对每一浓度水平分别重复测定,求出各浓度水平的标准偏差 S1、S2、S3,用线性回归法做出拟合曲线,延长该线与纵坐标相交于S0(浓度为零时空白样品的标准偏差)。3S0则定义为方法检出限。/pp  (3)样品检出限: 指相对于空白可检测的样品的最小含量。它定义为三倍空白标准偏差,即3& #963 空白( 或3S空白)。/pp  strong2、国内检出限分类/strong/pp  国内有研究人员刘菁和冉敬等也把检出限分类为仪器检出限、方法检出限和样品检出限。田强兵将检出限分为了仪器检出限、方法检出限和仪器的测定下限和方法的测定下限。/pp  span style="color: #ff0000"strong三、检出限的介绍及影响因素/strong/span/pp  strong1、仪器的检出限/strong/pp  仪器检出限是指在规定的仪器条件下,当仪器处于稳定状态时,仪器本身存在着的噪音引起测量读数的漂移和波动。仪器检出限的水平可对同类仪器之间的信噪比、检测灵敏度、信号与噪音相区别的界限及分析方法进行测量所能达到的最低限度等方面提供依据。仪器的检出限的物理含义为:在一定的置信范围内能与仪器噪音相区别的最小检测信号对应的待测物质的量。通过配制一定浓度的稀溶液12份进行测量,可用下式计算:/pp style="text-align: center"img alt="" height="209" src="http://img1.17img.cn/17img/old/NewsImags/images/201515113548.jpg" style="width: 252px height: 135px" width="399"//pp  strong2、方法的检出限/strong/pp  方法的检出限是指一个给定的分析方法在特定条件下能以合理的置信水平检出被测物的最小浓度,它是表征分析方法的最主要的参数之一。分析方法随机误差的大小不但与仪器噪声有关,而且决定了方法全过程所带来的误差总和,与样品性质、预处理过程都有关系。为了能反映分析方法在整个分析处理过程的误差,可采用已知结果的标准物质或样品按照分析步骤进行测量,通过分析12份已知结果的实际样品来计算方法的检出限,计算公式如下:/pp style="text-align: center"img alt="" height="199" src="http://img1.17img.cn/17img/old/NewsImags/images/201515113611.jpg" style="width: 300px height: 145px" width="443"//pp  strong3、样品的检出限/strong/pp  即单个样品的检出限,指相对于空白可检测的样品的最小含量。故只有当空白含量为零时,样品检出限才等于方法检出限。一方面空白含量往往不为零,由于空白含量及其波动的存在,尽管方法检出限通过外推法可能求得很低的浓度( 或含量),实际上样品检出限可能要比方法检出限大得多 另一方面分析方法检出限采用的是一系列标准物质,基体各不相同,因此只能是一类型样品的平均检出限,并非严格适用于单个样品。对于单个样品确定检出限,必须固定样品基体,即样品检出限的确定应使用样品本身,采取标准加入法作出和方法检出限类似的曲线,使用外推法进行计算。/pp  正因为如此,在实际使用中,样品检出限要比方法检出限要有意义得多。当被测样品种类变化或测定所用试剂和环境变化时,即使使用同一分析方法,样品检出限可能相差很大。在痕量分析时,测量结果的可靠性在很大程度上取决于空白值的大小及空白值的波动情况。设 Wt代表被测样品的总值,Wb 代表空白值,则被测组分的含量( Wt-Wb)与检测可靠性的关系如表1所示( 表中”& #963 空白”为测定分析空白时的标准偏差)。/pp style="text-align: center"img alt="" height="222" src="http://img1.17img.cn/17img/old/NewsImags/images/20151511387.jpg" style="width: 353px height: 191px" width="459"//pp  strong4、空白对检出限的影响/strong/pp  在分析化学中,空白值可分为试剂空白、接近空白与真实空白。真实空白是完全不含待测物质,其它组分与待测样品完全相同的一种分析样品,且按照待测样品的全部分析程序,测定空白试样。但在实际分析中,许多分析工作者使用试剂空白或接近空白,试剂空白:按照真实空白的加入顺序和操作方法混合本实验所需的全部试剂。接近空白: 在试剂空白中加入检出限2倍或3倍的待测物质。由此可见,真实空白的基体较复杂,所以它的值高于试剂空白和接近空白。在分析中应尽量使用真实空白,它更体现了体系的特征。/pp  strong5、仪器的测定下限和方法的测定下限/strong/pp  检出限只能粗略的表征体系性能,仅是一种定性的判断依据,通常不能用于真实分析。测定下限则是痕量或微量分析定量测定的特征指标。仪器的测定下限表示仪器进行定量分析时所能达到的最低界限,是指在高置信度下测定物质的最低浓度或量,其计算公式同式(2)只是一般取K=6,即DsubD/sub=img alt="" height="32" src="http://img1.17img.cn/17img/old/NewsImags/images/201515114052.jpg" style="width: 67px height: 25px" width="75"/。在高置信度下,用特定分析方法能够准确定量测定的待测物质最小浓度或量,称为该分析方法的测定下限。其计算公式同式(3) ,计算时一般img alt="" height="27" src="http://img1.17img.cn/17img/old/NewsImags/images/201515113915.jpg" style="width: 202px height: 20px" width="232"//pp  span style="color: #ff0000"strong四、结语/strong/span/pp  当以检出限作为分析方法和分析仪器比较标准时,应约定统一的检出限计算方法$测定下限反映出分析方法能准确地定量测定低浓度水平待测物质的极限值$随着实验测试技术的不断进步,痕量分析逐步成为实验室最主要的工作。针对痕量分析方法以及一些基本应用理论的研究也愈发重要。因此,为适应检验测试工作实际需要,应当对检出限的计算方法进行优化统一,从而不断促进实验测试技术的发展,欢迎加入仪器大讲堂QQ群:290101720,入群学习更多仪器知识。/p
  • 环保部印发《国控污染源排放口污染物排放量计算方法》
    关于印发《国控污染源排放口污染物排放量计算方法》的通知  各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局:  根据《国务院批转节能减排统计监测及考核实施方案和办法的通知》(国发〔2007〕36号)的要求,为了加强污染源自动监测和监督性监测数据在排污收费和总量核定等环境管理方面的应用,进一步规范污染物排放量的计算,我部制定了《国控污染源排放口污染物排放量计算方法》。现印发给你们,请遵照执行。  附件:国控污染源排放口污染物排放量计算方法  二○一一年一月二十五日
  • 石化和涂料油墨制造行业VOCs排放量计算方法(2017版)来了!
    p  通过一年多的试行,上海市环保局组织修订并发布了《上海市石化行业VOCs排放量计算方法(2017年修订版)》和《上海市涂料油墨制造业VOCs排放量计算方法(2017年修订)》。新版的内容有哪些变化?/pp 1.新增储罐修正周转量《修订方法》在储罐公式法中增设了修正周转量,其根据实测“液位高度变化”与“最高液位高度”比值对储罐周转量进行了修正。/pp 2. 新增储罐和装卸平衡管效率系数《修订方法》中在储罐和装卸公式法增设了平衡管效率系数,充分考虑了油气平衡管控制效率和减排效果,更接近实际排放情况。/pp 3. 加入废水WATER9《修订方法》中废水公式法加入WATER9了模型法,丰富了在废水中VOCs全组份种类及浓度已确定的情况下VOCs排放量计算方法。/pp 4. 加入冷却塔汽提实测法《修订方法》中冷却塔加入汽提实测法,更加精准测算冷却塔、循环水中VOCs排放量。/p
  • 《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见
    半挥发性有机物是一大类较挥发性有机物挥发性较慢的有机物,它们更容易在水、土壤、空气、生物等介质中迁移转化,长期存在于水、土壤中,通过生物富集而危害人体健康。这类有机物的共性是脂溶性、易溶于有机溶剂,可在有机溶剂中分配,同时可进行气相色谱分析。按照萃取条件的不同还可将这一大类有机化合物分为碱-中性可萃取有机物和酸性可萃取有机物。半挥发性有机化合物种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。通常,有机氯农药、有机磷农药、其它除草剂等有机物都可归入这类有机物范围内。由于半挥发性有机物的毒性高,对环境的危害较大,有多种化合物被我国、美国等国家列入水中优先控制的污染物。我国的《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《石油化学工业污染物排放标准》(GB 31571-2015)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)、《污水综合排放标准》(GB 8978-1996)、《渔业水质标准》(GB 11607-1989)等均规定了部分半挥发性有机物的标准值。目前国内个别半挥发性有机物的测定主要以气相色谱法、液相色谱法为主。《水质 酚类化合物的测定 液液萃取/气相色谱法》(HJ 676-2013)、《水质 氯苯类化合物的测定 气相色谱法》(HJ 621-2011)、《水质 硝基苯类化合物的测定 液液萃取-气相色谱法》(HJ 648-2013)、《水质 多环芳烃的测定 液液萃取高效液相色谱法》(HJ 478-2009),另外我国已发布了《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834-2017)和《固体废物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 951-2018)2 个标准。国际上对水中半挥发性有机化合物测定的标准方法所采用的主流技术是气相色谱质谱测定方法,以 US EPA 方法以及相关文献涉及较多。国外气相色谱法质谱联机测定半挥发性有机物的方法主要有 EPA 8270D、EPA 3510C 和 EPA 625 方法,其中 3510 方法使用液液萃取方法,8270 和 625 方法是采用液液萃取的方法,在碱中性和酸性的条件下,用二氯甲烷分别对水样进行萃取,合并有机相,经无水硫酸钠脱水后浓缩,用气相色谱-质谱法来分析水样中的半挥发性有机物。当然随着各种新型前处理技术的不断丰富更新和发展,现有的液液萃取方法将逐步被更加高效先进的固相萃取、固相微萃取以及膜萃取取代,这也是当前前处理技术发展的必然趋势。《水质 半挥发性有机物的测定 气相色谱-质谱法》用二氯甲烷分别在 pH11 和 pH2 的条件下,萃取样品中的半挥发性有机物。萃取液经脱水、浓缩和定容后,经气相色谱-质谱法(GC/MS)分离检测,根据保留时间和目标化合物的特征离子定性,内标法定量。本标准适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析,对于特定类别的化合物,应在此筛选基础上选用专属的分析方法测定。当取样体积为 1000 ml,试样体积为 1.0 ml,采用全扫描方式测定时,方法检出限为 0.1μg/L~2 μg/L,测定下限为 0.4 μg/L~8 μg/L。征求意见稿:《水质 半挥发性有机物的测定 气相色谱-质谱法》(征求意见稿)
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p  日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下:/pp style="text-align: center "img title="1.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg"//pp style="text-align: center "img title="2.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg"//pp  前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。/pp  本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。/pp  本标准起草单位:重庆市环境监测中心。/pp  本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。/pp  本标准于2016年7月20日发布,自2016年10月1日起实施。/pp style="text-align: center "strong固定污染源废气VOCs的测定气相色谱-质谱法/strong/pp  警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。/pp  1 适用范围/pp  本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。/pp  2 规范性引用文件/pp  本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37/pp  3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。/pp  4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。/pp  4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。/pp  4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。/pp  4.4 高纯氦气( 99.999%)。/pp  4.5 高纯氮气( 99.999%)。/pp  4.6 液氮。/pp  4.7 甲醇:农残级或者等效级。/pp  5 仪器和设备/pp  5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。/pp  5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。/pp  5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。/pp  5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。/pp  5.5 罐清洗装置:能将采样罐抽至真空( 10Pa),具有加温、加湿、加压清洗功能。/pp  5.6 气体稀释装置:最大稀释倍数可达1000倍。/pp  5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值 241kPa。/pp  5.8 液氮罐:不锈钢材质,容积为100L~200L。/pp  5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。/pp  5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。/pp  5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。/pp  5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。/pp  5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。/pp  6 样品/pp  6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空( 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。/pp  6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。/pp  6.3 采样/pp  6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。/pp  6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg"//pp /pp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg"/ /pp /pp  6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。/pp  6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。/pp  6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。/pp  6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。/pp  6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。/pp  6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。/pp  6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。/pp  7 分析/pp  7.1 仪器参考条件/pp  7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。/pp  7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg"//pp  7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg"/  /pp  7.3 校准/pp  7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。/pp  7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。/pp  7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg"/  /pp /pp  7.3.3 标准色谱图目标化合物参考色谱图见图2。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg"/  /pp  7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。/pp  7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。/pp  8 结果计算与表示/pp  8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg"/  /pp  8.2 定量/pp  8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。/pp style="text-align: center "img title="10.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg"/  /pp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算/pp   空气样品中TVOC的浓度按公式(5)进行计算。??/pp style="text-align: center "img title="11.jpg" src="http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg"/  /pp  8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。/pp  9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。/pp  10 质量保证和质量控制/pp  10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。/pp  10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。/pp  10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。/pp  11 注意事项/pp  11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。/pp  11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。/pp  11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。/pp  11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。/pp  11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。/pp  11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。/pp style="text-align: center "img title="12.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg"//pp style="text-align: center "img title="13.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg"//pp style="text-align: center "img title="14.jpg" style="float: none " src="http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg"//pp/p
  • 环境空气非甲烷总烃(NMHC)的测定方法及Nutech的选择
    《2021年度国家生态环境监测方案》中明确“全国地级及以上城市开展环境空气NMHC监测工作”,且要求“自动监测”。目前,市场上常见的NMHC浓度的测定方法有两种,一种是差减法,另一种是直测法(又称“直接法”)。前者为我国早些年广泛采用,后者则是近两年被关注、重视并实践应用,且将成为监管趋势。NMHC的浓度特征和两种检测方法在介绍NMHC两个具体监测方法之前,其低浓度(ppb级,通常在几十到几百个ppb不等、甚至十几ppb)的特征理应被人所知。某种意义上来说,因为这一特征,“差减”成了无奈之举、因差减而出现的NMHC“0”值乃至“负值”俨然成为“必然”;也正是因为这一特征,即便是采用直测法的仪器,检测数据出现“ND(未检出)”亦纯属正常,在检测器前端增加预增浓处理环节成为必然选择。差减法按照传统定义,总烃指标准规定的测定条件下在气相色谱仪氢火焰离子化检测器(FID)上有响应的气态有机化合物的总和。nmhc则指上述条件下,从总烃中扣除甲烷以后其他气态有机化合物的总和。所谓“差减法”即自nmhc的这一概念界定而衍生:分别测定总烃和甲烷的浓度值,前者减去后者的差值即为NMHC浓度。理论上,差减法毫无逻辑漏洞。然而,理想很丰满、现实则骨干。在实践中,实际不尽如人意。众所周知,环境空气中甲烷的浓度值是ppm级(全球略有地域差,但通常在2ppm上下),而NMHC浓度,如前所述,为ppb级。这意味着,总烃和甲烷值相差甚微。这个“微”确实小,小到被减数(总烃值)和减数(甲烷值)两者任一数值在得出过程中稍有差池,就可能导致它“消失”(0)或者呈“负值”。而作为严谨、专业的分析测试人员,我们都知道,分析实验过程中的误差是不可避免的,只要它在可接受范围内。有时候,这个可接受范围甚至可以达到30%以内的偏差。然而对于差减法而言,这样的偏差简直是灾难。试想下,假定总烃浓度值为2.02ppm、甲烷浓度值是1.98ppm,它们中的任意一个出现30%哪怕10%的偏差都可能远远大于NMHC的真实浓度值。至此,分析实践中出现“0”值乃至“负值”就很好解释了。而这,也许正是《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》(HJ 604-2017)中将NMHC检出限设为0.07mg/m³(以碳计)、测定下限设为0.28mg/m³(以碳计)的原因。因此,差减法在实践中具有显而易见的局限性。直接法直接法这一称谓是相对于差减法而言的。顾名思义,采用该方法,NMHC是直接实测所得的数值。简单来说,样品经过预处理(预增浓+甲烷分离)后进入FID检测器,直接分析出NMHC浓度值。近两年,这一分析方法在学术界、监管层被广泛关注、重视,并最终为《环境空气非甲烷总烃连续自动监测技术规范(试行)》(总站气字(2021)61号文)所采纳。事实上,上个世纪90年代,“预处理+FID”技术路线直接测定NMHC即为美国EPA TO12方法所采用,Nutech是该标准方法的参与者并贡献了型号为8548的非甲烷总烃分析仪(该标准原文第7.5.1对此进行了列示),其时该产品使用制冷剂进行预处理。而这,也许正是《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》(HJ 604-2017)中将NMHC检出限设为0.07mg/m³(以碳计)、测定下限设为0.28mg/m³(以碳计)的原因。因此,差减法在实践中具有显而易见的局限性。图片转自美国epa to12标准方法Nutech的选择如上所述,Nutech是业内率先采用直接法的机构,并推动该技术路线为美国epa标准方法所采纳。在其后的发展过程中,基于技术应用的进步、实践经验的积累,Nutech不断对该技术方法进行优化改进(采用电子制冷取代制冷剂、并研制成功复合型吸附填充体等),将仪器的检出限降至0.5ppbc,以满足空气质量日渐改善背景下的NMHC监测需要。在中国,本着科学精神,Nutech采取发表技术论文、参与技术交流等不同方式在各个层面、各种场合推动NMHC直测法的应用。2016-17年,采用直测法的6000c先后在深圳、广州被采用;2018年,该型号产品在山东某化工园区厂届的nmhc监测中应用; 2019年,6000c在中国环境监测总站以及山东、上海、山西等省市环境监测部门、科研机构使用,直测法开始被学界、环境监管部门所关注; 2020年,新一代产品(6300)进入中国并参与相关标准的方法验证; 2021年,国家事权层面7个城市/国家级新区(北京、天津、石家庄、太原、济南、郑州、雄安新区)的7个点位开展挥发性有机物自动监测,其中nhmc监测项目的仪器为nutech6300。图片转自中国环境监测中心官方新闻展望2021年1月29日,《环境空气非甲烷总烃连续自动监测技术规范(试行)》(总站气字[2021]61号文,以下简称《规范》)发布,NMHC的直测法首次有了方法依据。在《规范》中,NMHC的检测限明确为更加符合实际的≤ 20 ppbc。虽然《规范》尚在试行阶段,但据悉相关标准正在编制中。
  • 国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿发布
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中挥发性有机物的测定方法,生态环境部组织编制了国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿,现公开征求意见,并于2023年9月1日前将意见建议书面反馈至生态环境部,注明联系人及联系方式,电子文档请同时发送至联系人邮箱。此标准为首次发布,规定了测定固定污染源废气中70种挥发性有机物的容器采样/气相色谱-质谱法,附录A为规范性附录,附录B~附录D为资料性附录。此标准适用于采样温度低于150 ℃的固定污染源有组织排放废气中氯甲烷等70种挥发性有机物的容器采样和测定。进样体积为1.0 ml时,在全扫描(Scan)模式下,本方法70种目标化合物的方法检出限为0.07 mg/m3~1 mg/m3,测定下限为0.28 mg/m3~4 mg/m3。详见附录A此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为:黑龙江省生态环境监测中心,验证单位为:黑龙江省哈尔滨生态环境监测中心、黔西南生态环境监测中心、内蒙古自治区环境监测总站、内蒙古自治区环境监测总站呼和浩特分站、黑龙江省佳木斯生态环境监测中心和北京博赛泰克质量技术检测有限公司。附件:1.征求意见单位名单.pdf 2.固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿).pdf 3.《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿)》(编制说明).pdf
  • 盘点!二氧化碳有哪些测量方法标准?
    (1)国家标准 《温室气体 二氧化碳测量 离轴积分腔输出光谱法》(GB/T 34286-2017)由气象部门提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体二氧化碳浓度的方法,适用于开展温室气体二氧化碳浓度的测量,在非污染大气下,其测量精度应小于0.1×10-6mol/mol。 《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)由气象部门提出,规定了本底大气二氧化碳浓度气相色谱在线观测方法。 《气体中一氧化碳、二氧化碳和碳氢化合物的测定 气相色谱法》(GB/T 8984-2008)由中国石油和化学工业协会提出,规定了气体中二氧化碳的气相色谱测定方法,适用于氢、氧、氦、氖、氩、氪和氙等气体中一氧化碳、二氧化碳和甲烷的分项测定,以及一氧化碳、二氧化碳和碳氢化合物的总量(总碳)测定。 《固定污染源排气汇总颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)由环境保护部门提出,规定了使用奥氏气体分析仪法测定固定污染源排气中二氧化碳的方法,其原理为用不同的吸收液分别对排气中的二氧化碳进行吸收,根据吸收前、后排气体积的变化,计算出该成分在排气中所占的体积分数。(2)行业标准 《温室气体 二氧化碳和甲烷观测规范 离轴积分腔输出光谱法》(QX/T 429-2018)是气象行业标准,除规定了利用离轴积分腔输出光谱法观测二氧化碳方法外,还对观测系统、安装要求、检漏与测试要求、运行和维护要求、溯源及数据处理要求等做了规定,适用于温室气体二氧化碳离轴积分腔输出光谱法的在线观测和资料处理分析。 《固定污染源废气 二氧化碳的测定 非分散红外吸收法》(HJ 870-2017)是国家环境保护标准,规定了测定固定污染源废气中二氧化碳的非分散红外吸收法,适用于固定污染源废气中二氧化碳的测定,方法检出限为0.03%(0.6g/m3),测定下限为0.12%(2.4g/m3)。 《环境空气 无机有害气体的应急监测 便携式傅里叶红外仪法》(HJ 920-2017)是国家环境保护标准,规定了测定环境空气中无机有害气体的便携式傅里叶红外仪法,为定性半定量方法,适用于环境空气中二氧化碳的现场应急监测,以及筛选、普查等先期调查工作,方法检出限1mg/m3,测定下限4mg/m3。 《沼气中甲烷和二氧化碳的测定 气相色谱法》(NY/T 1700-2009)是农业行业标准,规定了沼气中二氧化碳的气相色谱实验方法,适用于沼气中二氧化碳的测定。 《本底大气二氧化碳浓度瓶采样测定方法-非色散红外法》(QX/T 67-2007)是气象行业标准,规定了本底大气中二氧化碳浓度的非色散红外测定方法,适用于本底大气瓶采样样品二氧化碳浓度的测定。 《工作场所空气有毒物质测定 第37部分 一氧化碳和二氧化碳》(GBZ/T 300.37-2017)为国家职业卫生标准,规定了工作场所空气中二氧化碳的不分光红外线气体分析仪法,适用于工作场所空气中二氧化碳浓度的检测,方法检出限为0.001%。 综上,我国气象、生态环境、农业、职业卫生及石化工业等部门均提出了二氧化碳测量方法标准,涉及到的方法原理有离轴积分腔输出光谱法、非分散(不分光、非色散)红外光谱法、傅里叶红外光谱法、气相色谱法及奥氏气体分析仪法等。这些方法根据原理、采样方式、样品基质及特性不同,适用于各类应用场景。 其中农业、职业卫生及石化工业的二氧化碳测量方法主要是为了解决产品组分、职业防护等特定领域问题,从温室气体测量角度出发,在环境大气方面,气象部门提出了较为完善的测量方法体系,以离轴积分腔输出光谱法(GB/T 34286-2017和QX/T 429-2018)和气相色谱法(GB/T 31705-2015)为主,生态环境部门提出的便携式傅里叶红外仪法(HJ920-2017)仅适用于应急监测;在污染源废气方面,生态环境部门提出了非分散红外法(HJ870-2017),而奥氏气体分析仪法(GB/T 16157-1996),由于测试精度以及现场工作便利性的原因,在实际工作中应用不多。 在温室气体(二氧化碳)测量领域,与环境大气二氧化碳测量方法体系相比,污染源废气仅有一个手工测量方法,无在线监测技术规范,而“碳源监测”是实现碳中和的重要保障。国际上对于温室气体排放测算有“排放因子法”与“直接测量法”两种方法,直接测量法在精确度上优势较为明显,也是排放因子法中“排放因子”的基础来源。下一步,可以现有方法标准为依托,进一步优化完善方法体系,构建二氧化碳以及其他温室气体源、汇观测网络,为碳达峰、碳中和提供有效测量支撑与保障。
  • 汇总 | 监测中“未检出”情况表述及总量核算方法
    部长信箱关于废气监测中测定下限及检出限折算问题来信:1、gb/t 16157-1996修改单规定颗粒物测定下限为20mg/m3、HJ 57-2017规定二氧化硫测定下限为12mg/m3,请问,当测定浓度在测定下限时是否需要进行折算,如果折算是按实测进行折算还是有其他规定;如果不需要折算时,如何去判断是否达标排放?2、HJ 57-2017规定二氧化硫检出限为3mg/m3、HJ 693-2014规定氮氧化物检出限为3mg/m3,当测定浓度在检出限以下时应如何去表示,是用3Lmg/m3还是ND或者是其他方式;这时监测结果是否需要去折算,如果折算是按实测进行折算还是有其他规定;如果不需要折算时,如何去判断是否达标排放?回复:关于废气监测中测定下限及检出限折算问题”的来信收悉。经研究答复如下:1、当测定浓度在测定下限时,需要进行折算,折算的要求与高于测定下限时要求一致。2、现行标准体系中未对低于检出限的表示方法进行统一规定,按照3(L)、ND、3等进行表示均可。当测定浓度在检出限以下时,需要进行折算,折算要求与高于检出限时的要求一致。如实测浓度按照ND表示,则折算浓度也按照ND表示;如实测浓度按照3(L)或3表示,则折算浓度按照折算后结果表示(如:表示为3.5(L)或3.5),如果折算后浓度超过排放限值,则应注明无法进行达标评价,并重点复核含氧量、含湿量、烟气温度等参数测试是否准确无误。省厅回复固定污染源废气中低于检出限的数据该如何计算排放速率内容:关于固定污染源废气中某种污染物浓度低于方法检出限的数据该如何计算排放速率,相关标准中并没有规定,部分人按0计算,部分人参考《环境空气质量监测规范》(试行)中的规定,以1/2检出限计算,请问该以那种方式参与计算?答复内容:您好。关于固定污染源废气中某种污染物浓度低于方法检出限的数据该如何计算排放速率,固定污染源废气监测相关技术规范均未作统一规定。建议按《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157-1996)第11.4小节“颗粒物或气态污染物排放率的计算”、《固定源废气监测技术规范》(HJ/T397-2007)第12.5小节“污染物排放速率”所列公式进行计算,并备注说明参与计算的参数取值。感谢您的关注与支持!SL219-2013《水环境监测规范》水环境检测规范12.2.5:年平均值以算术平均法计算,小于检出限的按1/2方法检出限参加计算。但在统计污染物总量时以零计。HJ/T166-2004《土壤环境监测技术规范》土壤环境监测技术规范11.3“低于分析方法检出限的测定结果以“未检出”报出,参加统计时按二分之一最低检出限计算”;《地表水环境质量监测数据统计技术规定(试行)》(环办监测函〔2020〕82号)第七点:当监测数据低于检出限时,以1/2检出限值参与计算和统计。《环境空气质量监测规范(试行)》附件五第二条第一款:若样品浓度低于监测方法检出限时,则该监测数据应标明未检出,并以1/2最低检出限报出,同时用该数值参加统计计算。HJ442-2008《近岸海域监测规范》近岸海域环境监测规范7.3监测数据产生后,在对数据准备性进行确认后进行必要的统计,其中未检出部门按检出限1/2量参加计算。HJ/T164-2004《地下水环境监测技术规范》地下水环境监测技术规范6.7.5当测定结果高于分析方法检出限时,报实际测定结果值;当测定结果低于分析方法检出限时,报所使用方法的检出限值,并加标志位“L”。HJ/T 91-2002《地表水和污水监测技术规范》地表水和污水监测技术规范“当测结果在检出限(或最小检出浓度)以上时,报实际测得结果,当低于方法检出限时,报所使用方法的检出限,并加标志位L,统计污染总量时以0计”;HJ/T92-2002《水污染物排放总量监测技术规范》中规定水污染物排放总量监测技术规范10.5当某种污染物监测结果小于规定监测方法检出下限时,此污染物不参与总量核定”。对某污染物监测结果小于规定监测方法检出下限时,此污染物不参与总量核定。HJ 91.1-2019《污水监测技术规范》污水监测技术规范9.6监测结果的表示方法9.6.1监测结果的表示应根据相关分析方法等要求来确定,并采用中华人民共和国法定计量单位。9.6.2当测定结果高于分析方法检出限时,报实际测定结果值;当测定结果低于分析方法检出限时,报使用的“方法检出限”,并加标志位“L”表示。9.7监测数据的处理对低于分析方法检出限的有效测定结果,按以下原则进行数据处理:a)日均浓度值统计时以1/2方法检出限参与计算;b)总量统计时按HJ/T 92执行;c)对于某一类污染物的测定,如果每个分项项目的监测结果均小于方法检出限,在填报总量的结果时,可表述为“未检出”检并备注出每个分项项目的方法检出限;当其中某一个或某几个分项的监测结果大于方法检出限时,总量的结果为所有分项之和,低于方法检出限的分项以0计。GB17378.1-2007《第2部分:数据处理与分析质量控制》海洋监测规范 第2部分:数据处理与分析质量控制4.4.低于检出限XN的测试结果,应报“未检出”,但在区域性监测检出率占样品频数的1/2以上(包括1/2)或不足1/2时,未检出部分可分别取XN的1/2和1/4量参加统计运算。
  • 高纯试剂中杂质检测专题——工业甲醇中铵离子的测定
    01 引言 离子色谱法测定甲醇中铵离子 监测甲醇中铵离子含量在煤基合成甲醇工艺中具有重要作用。在煤基合成甲醇过程中,会产生一系列杂质气体 ,如 CO 、NH3 以及有机硫化物、氮的氧化物、煤焦油等,而铵离子会引起合成过程中的催化剂中毒失效,致催化剂效率严重下降;同时铵离子含量较高时会降低低温甲醇洗脱硫效率、对工艺设备有严重影响。因此,通过控制甲醇中铵离子的含量 ,可以防止催化剂中毒,提高转化率,降低成本。工艺控制中工业用甲醇中铵离子含量不得大于0.05mg/L.制定工业用甲醇中铵离子测定方法,是为工业甲醇的杂质检测提供一个试验方法,对指导甲醇为原料的相关生产过程的检测具有重要意义。目前甲醇中NH4+的测定都是采用离子色谱法,2022年3月1日开始实施国标《工业用甲醇中铵离子的测定离子色谱法》,下面小编分享下甲醇中NH4测定的离子色谱法。02 相关标准 GB/T 40395-2021《工业用甲醇中铵离子的测定离子色谱法》03 皖仪科技应对方案 皖仪仪器设备 试剂耗材 甲醇:色谱纯;铵根离子:ρ=1000mg/L;一次性注射器(0.5-2mL);有机系针式过滤器(0.22μm) 测试结果 标曲线性测试NH4+标曲重叠谱图NH4+线性说明:由于所有胺类物质一次线性范围均较窄,本次按照标准要求配置的标准曲线系列梯度范围较宽,因此,标准曲线采用二次曲线拟合,本次测试铵离子线性相关系数为R2=0.99996,线性良好。------ 重复性测试 ------ NH4+0.05mg/L连续3针测试谱图NH4+0.2mg/L连续3针测试谱图NH4+2.0mg/L连续3针测试谱图 ------ 重复性结果 ------ 说明:根据谱图及测试结果可见,所有组分定量重复性均小于1%,定性重复性均小于0.2%,测试重复性良好。------ 检出限 ------ 注:标准中规定,在进样体积为50μL下,测定下限为0.01mg/L,本测试以NH4+0.05mg/L进样,考察其峰高,取测试最大噪声,以3倍信噪比对应峰高为检出限。------ 测试结果 ------ 经计算,本次测试 NH4+检出限为 0.434μg/L,小于标准要求的 0.01mg/L。04 总结 结果表明 本文采用离子色谱法,对甲醇中 NH4+进行测定,准确度高,灵敏性好,精密度好,该法可用于甲醇中 NH4+的测定。05 注意事项 注意事项(1)本测试中需要制备无铵甲醇,前处理操作需注意实验安全。配置硫酸溶液时应严格按照“酸入水”的操作准则;蒸馏时应保证操作在通风橱中进行,且不可出现无人值守的情况;(2)采用抑制电导法检测时建议使用外加水模式进行抑制器再生。(3)为减小样品对色谱柱的影响,样品应经过RP柱净化后进样分析。 皖仪科技 中国高端色谱标杆品牌— END —扫描二维码 | 关注我们● 公众号 : 皖仪分析仪器云平台 ● 联系电话:0551-62521516
  • 顺应检测需求 《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》迎来首次修订
    3月17日,生态环境部发布关于征求国家生态环境标准《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法(征求意见稿)》意见的通知。通知中指出,为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部编制了《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》国家生态环境标准征求意见稿,现公开征求意见。  此次发布的标准是对《环境空气挥发性有机物的测定罐采样/气相色谱-质谱法》(HJ759-2015)的修订。HJ759-2015首次发布于2015年,起草单位为江苏省环境监测中心。本次为第一次修订,修订的主要内容如下:——删除目标化合物中甲硫醇和甲硫醚2种组分 ——增加瞬时采样的时间范围 ——细化不同规格采样罐基于不同采样时间的恒定采样流速,并增加恒定采样流量的计算公式 ——“仪器和设备”中增加自动采样器 ——增加标气罐加湿要求和提供加湿方式 ——增加“SIM”扫描方式的方法检出限和标准曲线 ——增加绘制标准曲线中标准使用气浓度,确保定量的准确性 ——删除气体浓缩仪的限定条件和具体的条件参数,减少对浓缩工作原理的单一化要求,强调浓缩仪功能,增强对满足使用要求的不同工作原理浓缩仪的兼容性 ——将定性判别方法由相对保留时间改为保留时间 ——增加标准曲线方程的定量计算方法 ——增加采样前对过滤器和流量控制器的性能检查步骤以及在“质量保证和质量控制”中对流量控制器的性能检查要求,提高采集样品的代表性 ——增加采样罐被抽至真空后的保存时间和清洗完采样罐的抽检频次 ——增加以摩尔分数(nmol/mol)为单位的检出限浓度 ——在“质量保证和质量控制”中增加采样罐气密性检查和惰性检查的内容 ——在“注意事项”中增加12条建议 ——增加附录E,提供样品罐加湿计算公式。  据了解,HJ759-2015制订之初,大气浓缩仪原有2大品牌商,均为液氮制冷型,仪器工作原理基本一致。HJ759-2015发布之后,原两大品牌也推出新浓缩仪产品,原理和参数均略有改变,并且市场上新出一款电制冷原理的浓缩仪和一种采用色谱柱实现吸附和浓缩功能的浓缩仪。由于制定标准时技术发展单一的原因以及标准中对浓缩仪工作原理的限定,使得后面推出的浓缩仪无法被积极有效的应用起来,也一定程度上制约了该标准方法的有效使用。本次修订将以检测结果准确性为导向,放宽对仪器设备的具体参数的要求,以适应仪器不断更新的趋势。目前环境空气中首要污染物主要为臭氧和PM2.5。VOCs是造成臭氧污染的重要前体物,其大气化学反应的产物是PM2.5中的重要组分,也是导致灰霾天气的重要前体物,是治理空气污染问题的“拦路虎”。改善空气质量是目前我国最重要的任务之一,在“十四五”期间,VOCs也取代原先的SO2成为空气质量考核指标之一,在政策和标准的双重支撑下,相信VOCs监测市场将在近几年内得到快速发展。  附件:环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法(征求意见稿)
  • 环保部连发6项国家环保标准 涉LC、GCMS等仪器分析方法
    p  日前,环保部连续发布两则公告,共计批准发发布6项目国家环境保护标准。/pp  strong8月28日,环保部公告批准发布《水质 乙撑硫脲的测定 液相色谱法》等四项标准为国家环境保护标准,自2017年11月1日起实施,由中国环境出版社出版,四项标准均为首次发布。/strong/pp  a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201708/W020170831377026537289.pdf" target="_blank"span style="color: rgb(255, 0, 0) "strong一、《水质 乙撑硫脲的测定 液相色谱法》(HJ 849-2017) /strong/span/a/pp  本标准规定了测定水中乙撑硫脲的液相色谱法,为首次发布。/pp  适用于地表水、地下水、生活污水和工业废水中乙撑硫脲的测定。/pp  当进水量为20μl时,方法的检出限为3μg/L,测定下限为12μg/L。/pp  a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201708/W020170831379928319348.pdf" target="_blank"span style="color: rgb(255, 0, 0) "strong二、《水质 硝磺草酮的测定 液相色谱法》(HJ 850-2017) /strong/span/a/pp  本标准规定了测定水中硝磺草酮的液相色谱法,为首次发布。/pp  适用于地表水、地下水、生活污水和工业废水中硝磺草酮的测定。/pp  当进水量为20μl时,方法的检出限为0.01mg/L,测定下限为0.04mg/L。/pp  a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/sjcgfffbz/201708/W020170831383033827393.pdf" target="_blank"span style="color: rgb(255, 0, 0) "strong三、《水质 灭多威和灭多威肟的测定 液相色谱法》(HJ 851-2017) /strong/span/a/pp  本标准规定了测定水中灭多威和灭多威肟的液相色谱法,为首次发布。/pp  适用于地表水、地下水、生活污水和工业废水中灭多威和灭多威肟的测定。/pp  当进水量为50μl时,灭多威和灭多威肟的方法检出限为1μg/L,测定下限均为4μg/L。/pp  a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201708/W020170831386836503809.pdf" target="_blank"span style="color: rgb(255, 0, 0) "strong四、《环境空气 指示性毒杀芬的测定 气相色谱-质谱法》(HJ 852-2017)。/strong/span/a/pp  本标准规定了测定环境空气中三种指示性毒杀芬的气相色谱-质谱法,为首次发布/pp  适用于环境空气中三种指示性毒杀芬(P26、P50、P62)的测定。/pp  当采气量为500msup3/sup(标准状态)时,三种指示性毒杀芬P26、P50、P62的方法检出限分别为4pg/msup3/sup、4pg/msup3/sup、8pg/msup3/sup,测定下限为16pg/msup3/sup、16pg/msup3/sup、32pg/msup3/sup。/pp strong 8月31日,环保部再批准发布两项国家环境保护标准,上以上两项标准自2017年10月1日起实施,自实施之日起,《含多氯联苯废物污染控制标准》(GB 13015-91)废止。/strong/pp  其中,《固体废物鉴别标准 通则》(GB 34330-2017 )为国家固体废物污染环境防治技术标准,《含多氯联苯废物污染控制标准》(GB 13015-2017)为国家污染物排放(控制)标准。/pp /p
  • 精准测定,守护清澈| 岛津助力生态环境监测大比武项目解决方案(一)
    应对HJ 699-2014《水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》PART1 背景介绍2024年4月,随着生态环境部发布 “关于举办第三届全国生态环境监测专业技术人员大比武活动的通知”,一场关乎绿水青山、涉及千家万户的赛事悄然拉开帷幕。在这场旨在提升我国环境监测水平的盛会中,岛津带来一系列环境解决方案,为实验操作项目注入了新的活力。本期,我们将重点介绍岛津GCMS如何精准测定水质中有机氯农药和氯苯类化合物的含量,为环境监测加油助力。PART2 实验分析1.分析条件气相色谱条件&bull 进样口温度:250℃&bull 进样方式:不分流进样&bull 柱箱温度:80.0℃(1min)→20℃/min→150℃→10℃/min→300℃(2min)&bull 柱流量:1.00ml/min&bull 进样量:1.0μL质谱条件&bull 扫描方式:SIM&bull 离子源温度:230℃&bull 接口温度:300℃2. 质谱图出峰顺序:四氯间二甲苯(SS)、α-六六六、六氯苯、β-六六六、γ-六六六(林丹)、菲-d10(IS)、δ-六六六、七氯、γ-氯丹、α-氯丹、α-硫丹、p,p'-DDE、β-硫丹、p,p'-DDD、o,p'-DDT-d8(SS)、o,p'-DDT、p,p'-DDT、䓛 -d12(IS)3. 实验数据及分析表 检出限、测定下限、相对标准偏差、加标回收率比对表4. 实验结论本实验使用岛津气相质谱联用系统完成测试, 经过方法验证,得出的检出限、测定下限均小于方法HJ 699-2014规定的检出限和测定下限。分别对0. 25μg/L、1.00μg/L、4.00μg/L三个浓度的样品进行了6次平行测定,实验室内相对标准偏差分别为2.3%-8.6%,3.7%-8.1%,1.1%-6.6%。分别对0. 25μg/L、1.00μg/L、4.00μg/L三个浓度的加标实际样品进行加标回收率测定,加标回收率分别为87.0%-124%,61.4%-98.1%,64.2%-102%。精密度、准确度均能满足HJ 699-2014的要求,可以依据该标准开展水质相应检测工作。5. 实验Tips仪器性能检查仪器使用前用全氟三丁胺对质谱仪进行调谐。样品分析前以及每运行 12h 需注入 1.0μL十氟三苯基磷(DFTPP)溶液,对仪器整个系统进行检查,所得质量离子的丰度应满足标准要求。降解率检测样品分析前以及每运行12小时,应对气相色谱质谱系统进行检查,分别注入1.0µ L p,p'-DDT标准使用液,测定其降解率。如果DDT的降解率≥20%,则应对进样口和色谱柱进行维护,系统检查合格后方可进行测定。PART3 岛津应对方案1. 岛津GCMS产品线更丰富2. 特色技术水质有机物数据库,包含Smart SIM数据库、采样前处理SOP、优化方法条件、质量控制等,是确保实验结果准确性和可重复性的关键。从采样、前处理、检测方法到操作的每一个细节,以确保每一步都能精确执行,从而获得可靠的数据。使用Smart SIM/MRM数据库,无需农残标准品,5min内即可建立仪器理想方法。PART4 小结岛津气相色谱质谱联用系统凭借其“低维护、高产出、易操作、高性能”等技术特点,以及水质有机物监测数据库的支持,大大简化了前处理及分析过程。分析结果准确性佳、重复性好,为环境监测提供了有力的数据支持。本文内容非商业广告,仅供专业人士参考。
  • 9项国家生态环境标准发布,涉及多类别仪器检测方法
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项标准为国家生态环境标准批准发布,自 2024年6月1日起实施。一、 土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023)此标准规定了测定土壤和沉积物中 19 种金属元素总量的电感耦合等离子体质谱法,适用于土壤和沉积物中银(Ag)、砷(As)、钡(Ba)、铍(Be)、铋(Bi)、镉(Cd)、铬(Cr)、钴(Co)、铜(Cu)、锂(Li)、锰(Mn)、钼(Mo)、镍(Ni)、锑(Sb)、锶(Sr)、铅(Pb)、铊(Tl)、钒(V)和锌(Zn)共 19 种金属元素的测定。此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为中国环境监测总站、生态环境部华南环境科学研究所、湖南省生态环境监测中心、河南省生态环境监测中心,验证单位为湖北省生态环境监测中心站、河南省济源生态环境监测中心、辽宁省生态环境监测中心、宁夏回族自治区生态环境监测中心、天津市生态环境监测中心、北京市生态环境监测中心。此标准自2024年6月1日起实施。二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ/T 195—2005)此标准规定了测定水中氨氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中氨氮(以N 计)的测定,方法的检出限为 0.02 mg/L,测定下限为 0.08 mg/L。自此标准实施之日起,《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195—2005)废止。此标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:江西省生态环境监测中心、安徽省生态环境监测中心、湖北省生态环境监测中心站。本标准验证单位:重庆市生态环境监测中心、广东省生态环境监测中心、辽宁省大连生态环境监测中心、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。三、 水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ/T 199—2005)本标准规定了测定水中总氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中总氮(以N 计)的测定。采用高温高压消解,取样量为 20.0 ml 时,方法检出限为 0.05 mg/L,测定下限为0.20 mg/L;采用在线紫外消解,方法检出限为 0.05 mg/L,测定下限为 0.20 mg/L。本标准主要起草单位:江西省生态环境监测中心、重庆市生态环境监测中心、辽宁省大连生态环境监测中心。本标准验证单位:湖南省生态环境监测中心、湖北省生态环境监测中心站、四川省生态环境监测总站、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ/T 200—2005)本标准规定了测定水中硫化物的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中硫化物(以S2-计)的测定。方法的检出限为 0.005 mg/L,测定下限为 0.020 mg/L。本标准主要起草单位:江西省生态环境监测中心、辽宁省大连生态环境监测中心、重庆市生态环境监测中心。本标准验证单位:安徽省生态环境监测中心、山西省生态环境监测和应急保障中心、湖北省生态环境监测中心站、甘肃省酒泉生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023)本标准规定了测定固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的高效液相色谱法,适用于固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定。进样体积为 10 µl 时,丙烯酸和甲基丙烯酸的最低检出浓度分别为 0.011 mg/L、0.017 mg/L。固定污染源有组织排放废气采样体积为 30 L(标准状态下的干排气),试样定容体积为50 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.02 mg/m3、0.03 mg/m3,测定下限分别为0.08 mg/m3、0.12 mg/m3。无组织排放监控点空气采样体积为 30 L(标准状态下的干排气),试样定容体积为10 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.004 mg/m3、0.006 mg/m3,测定下限分别为0.016 mg/m3、0.024mg/m3。本标准主要起草单位:广东环境保护工程职业学院。本标准验证单位:广东省广州生态环境监测中心站、广东省佛山生态环境监测站、广东省东莞生态环境监测站、广西壮族自治区南宁生态环境监测中心、广东省科学院生态环境与土壤研究所、广西大学。本标准自 2024 年 6 月 1 日起实施。六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023)本标准规定了测定环境空气和废气中 6 种丙烯酸酯类化合物的气相色谱法,适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、丙烯酸丙酯、丙烯酸丁酯和甲基丙烯酸丁酯等 6 种丙烯酸酯类化合物的测定。环境空气和无组织排放监控点空气采样体积为 20 L,解吸体积为 1.0 ml,进样量为1.0 μl 时,方法检出限为 0.02 mg/m3,测定下限为 0.08 mg/m3;固定污染源有组织排放废气的进样体积为1.0 ml 时,方法检出限为 1 mg/m3~2 mg/m3,测定下限为 4 mg/m3~8 mg/m3。本标准主要起草单位:江苏省苏州环境监测中心。本标准验证单位:江苏省无锡环境监测中心、上海市浦东新区环境监测站、江苏康达检测技术股份有限公司、苏州市华测检测技术有限公司、浙江省生态环境监测中心和江苏省泰州环境监测中心。本标准自 2024 年 6 月 1 日起实施。七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023)本标准规定了开展区域环境空气臭氧自动监测质量评估的的工作流程、仪器和设备、质量评估目标、评估区域及点位抽样、现场检查与比对、质量评估、评价质量保证与质量控制,适用于以紫外光度法等为原理的环境空气臭氧自动监测的质量评估。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、河北省生态环境应急与重污染天气预警中心。本标准自 2024 年 6 月 1 日起实施。八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023)本标准规定了采用臭氧传递标准校准下级臭氧传递标准的操作技术要求,适用于校准环境空气监测臭氧传递标准,浓度范围为 1 nmol/mol~500 nmol/mol。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、山东省生态环境监测中心、中国环境科学研究院。本标准自 2024 年 6 月 1 日起实施。九、 生态遥感地面观测与验证技术导则(HJ 1320—2023)本标准规定了陆地生态遥感地面观测与验证工作各环节的基本要求,包括地面验证场(站)选址、验证样地样方布设、观测参数、观测方法、基础设施建设、遥感产品验证及验证精度评价等,适用于指导基于生态遥感及地面观测技术的全国及区域遥感产品验证、遥感监测等相关工作。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:生态环境部卫星环境应用中心、中国科学院地理科学与资源研究所、中国科学院空天信息创新研究院、山西省生态环境监测和应急保障中心(山西省生态环境科学研究院)、四川省生态环境科学研究院、江苏省环境监测中心。本标准自 2024 年 6 月 1 日起实施。附:一、土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023).pdf二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ_T 195—2005).pdf三、水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ_T 199—2005).pdf四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ_T 200—2005).pdf五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023).pdf六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023).pdf七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023).pdf八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023).pdf九、生态遥感地面观测与验证技术导则(HJ 1320—2023).pdf
  • 《化妆品中禁用物质和限用物质检测方法验证技术规范》发布
    关于印发化妆品中禁用物质和限用物质检测方法验证技术规范的通知  国食药监许[2010]455号  2010年11月29日 发布各省、自治区、直辖市食品药品监督管理局(药品监督管理局):  为规范化妆品检测方法的验证程序,《化妆品中禁用物质和限用物质检测方法验证技术规范》已经国家食品药品监督管理局化妆品标准专家委员会审议通过,现予印发。  国家食品药品监督管理局  二○一○年十一月二十九日附录:《化妆品中禁用物质和限用物质检测方法验证技术规范》  化妆品中禁用物质和限用物质检测方法验证技术规范  为加强对化妆品中禁用物质和限用物质检测方法研究工作的技术指导,规范化妆品中禁用物质和限用物质检测方法研究和验证工作,明确检测方法验证内容和评价标准,有效保证研究制定的检测方法具备先进性和可行性,特制定本规范。  1 适用范围  本规范规定了化妆品中禁用物质和限用物质检测方法研究和建立过程中检测方法验证内容、技术要求和评价指标。  本规范适用于化妆品中禁用物质和限用物质检测方法的验证与评价。  2 依据  《化妆品卫生规范》  3 释义  3.1 本规范中所指化妆品中禁用物质是指《化妆品卫生规范》中规定的化妆品禁用组分。  3.2 本规范中所指化妆品中限用物质是指《化妆品卫生规范》中规定的化妆品组分中限用物质、限用防晒剂、限用防腐剂、限用着色剂、暂时允许使用的染发剂等。  4 定义与术语  4.1 被测物质  是指本规范第3项规定的禁用物质和限用物质。  4.2特异性  在确定的分析条件下,检测方法所具备的检测和区分共存组分中被测物能力的特性。  4.3 线性及线性范围  4.3.1 线性  是指在设计范围内检测响应值与样品中被测物质浓度或量成比例关系的程度。  4.3.2 线性范围  是指利用一种方法取得精密度、准确度均符合要求的检测结果,而且呈线性的被测物质浓度或量的变化范围。  4.4检出限和定量下限  4.4.1 检出限:被测物质能被检测出的最低量。  4.4.2 定量下限:能够对被测物质准确定量的最低浓度或质量。  4.5 检出浓度和最低定量浓度  4.5.1检出浓度:按照检测方法操作,方法检出限对应的被测物质浓度。  4.5.2最低定量浓度:按照检测方法操作,定量下限对应的被测物质浓度。  4.6 精密度  在确定的分析条件下,相同浓度被测物质的一系列独立测量结果的一致程度,包括日内精密度和日间精密度。  日内精密度:同一天测定的精密度。  日间精密度:不同天测定的精密度。  4.7回收率  提取回收率:是指在确定的分析条件下,回收到物质的实际浓度的百分比,以样品提取和处理过程前后被测物质含量百分比表示。  方法回收率:是指在确定的分析条件下,被测物质测得值与真实值的接近程度,以百分比表示。  4.8 实验样品  为建立和验证检测方法而使用的化妆品。  4.9 空白样品  能够以可重复方式获得或制备的,不含被测物质的化妆品。  4.10 稳定性  在确定的分析条件下,一定时间内被测物质在一定溶剂或空白样品中的化学稳定性,包括日内稳定性和日间稳定性。  日内稳定性:在一定溶剂或空白样品中的被测物质在正常实验条件或适宜样品保存的条件下放置一天的稳定性。  日间稳定性:在一定溶剂或空白样品中的被测物质在正常实验条件或适宜样品保存的条件下放置多天的稳定性。  5 检测方法验证的内容  方法验证包括实验室内验证和实验室间验证。  实验室内验证的内容一般包括:方法特异性、线性及线性范围、检出限和定量下限、检出浓度和最低定量浓度、精密度、准确度、回收率和实验样品检测。  实验室间验证的内容一般包括:方法特异性、线性及线性范围、检出限、最低定量浓度、日内精密度、回收率和实验样品检测。  6 检测方法验证的技术要求  6.1 实验室内方法验证  6.1.1特异性  所采用的检测方法需要克服任何可预见的干扰,特别是来自实验样品中除被测物质以外的其他组分的干扰,一般对具有代表性的空白样品和空白样品加被测物质的样品,按照确定的样品前处理方法处理后,进样检测分析,考察实验样品中除被测物质以外的其他组分对被测物质的测定有无干扰。  6.1.2 线性及线性范围  线性考察:制备至少5个系列浓度(不包括零点)的被测物质标准品溶液,进行检测分析,记录相应的信号响应值,以被测物质标准品溶液的浓度为横坐标(x)、信号响应值为纵坐标(y)建立标准曲线,进行相关性分析,并回归得到线性方程和相关系数(r)。呈线性的被测物质的浓度或量的变化范围确定为线性范围。  方法线性考察:在空白样品中加入被测物质标准品,制备成至少5个系列浓度(不包括零点)的样品溶液,进行检测分析,记录相应的信号响应值,以被测物质的浓度为横坐标(x)、信号响应值为纵坐标(y)建立方法标准曲线,进行相关性分析,并回归得到线性方程和相关系数(r)。呈线性的被测物质浓度的变化范围确定为线性范围。  必要时,信号响应值可进行数学转换,再进行回归计算。  6.1.3 检出限和定量下限  检出限和定量下限考察见《化妆品卫生规范》。  6.1.4 检出浓度和最低定量浓度  按照检测方法操作,能够从实验样品背景中区分出被测物质响应信号的最低浓度为检出浓度,能够对实验样品背景中被测物质进行准确定量的最低浓度或质量为最低定量浓度。  6.1.5 精密度  6.1.5.1日内精密度  通常至少采用高低两种适宜浓度的被测物质或在空白样品中加入被测物质的标准溶液,其中:高浓度的标准溶液应接近标准曲线或方法标准曲线的最高点(下同) 低浓度的标准溶液应接近最低定量浓度(下同),于同一日内测定至少6次,记录被测物质的信号响应值,考察该组测量值的彼此符合程度,以相对标准偏差(RSD)表示。  6.1.5.2日间精密度  通常至少采用高低两种适宜浓度的被测物质或在空白样品中加入被测物质的标准溶液,于不同日测定,记录被测物质的信号响应值,考察该组测量值的彼此符合程度,以相对标准偏差(RSD)表示。  6.1.5.3相对标准偏差(RSD)的计算, 其中:  6.1.6 回收率  6.1.6.1提取回收率  采用在空白样品或实验样品中添加高低两种浓度被测物质标准品的方法测定,记录被测物质的信号响应值,代入标准曲线计算被测物质的浓度,计算提取回收率。  6.1.6.2方法回收率  采用在空白样品或实验样品中添加高低两种浓度被测物质标准品的方法测定,记录被测物质的信号响应值,代入方法标准曲线计算被测物质的浓度,计算方法回收率。  6.1.6.3回收率的计算公式  回收率= (样品中被测物质的测定量-样品中被测物质的原有量)/实际添加量×100%  6.1.7 稳定性  6.1.7.1日内稳定性  通常至少采用高低两种适宜浓度的被测物质或在空白样品中加入被测物质的标准溶液,在正常实验条件或适宜样品保存的条件下,在不同时间点分别测定,代入标准曲线或方法标准曲线计算被测物质的浓度,并计算其准确度和RSD值,考察被测物质在溶液或空白样品中放置一天内的稳定性。  6.1.7.2日间稳定性  通常至少采用高低两种适宜浓度的被测物质或在空白样品中加入被测物质的标准溶液,在正常实验条件或适宜样品保存的条件下,连续多天测定,代入标准曲线或方法标准曲线计算被测物质的浓度,并计算其准确度和RSD值,考察被测物质在溶液或空白样品中放置多天的稳定性。  6.1.8 实验样品检测分析  选择具有代表性的实验样品,按照《化妆品卫生规范》规定取样,严格按照检测方法进行检测分析。  6.1.9 禁用物质阳性结果判定依据考察  化妆品中禁用物质阳性结果必须采用适宜的、可靠的方法进行确证。采用色谱-质谱技术确证化妆品中禁用物质阳性结果时,按照确定的分析条件,考察实验样品与加入被测禁用物质的空白样品的质量色谱峰保留时间以及浓度相当时的定性离子的相对丰度比的一致性。采用其他技术确证化妆品中禁用物质阳性结果时,应建立能够保证确证结果正确性的依据和评价指标。  6.2 实验室间方法验证  6.2.1 参加检测方法验证的机构或实验室  参加检测方法验证的机构或实验室必须是按照国家有关认证认可的规定,取得资质认定,其检测人员、环境条件、设施设备等应满足检测方法验证的要求。每种检测方法参加方法验证的检测机构或实验室应不少于3家。  6.2.2 方法验证样品的提供  方法建立机构或实验室应向参与方法验证的机构或实验室提供一致的实验样品、空白样品和标准品,并应注意样品的被测物质的本底情况。  6.2.3 方法验证技术要求  实验室间的具体验证技术要求同6.1实验室内方法验证。  6.3方法验证内容的评价指标  6.3.1特异性  实验样品中共存物质应对被测物质的测定结果无干扰。  6.3.2 线性及线性范围  线性范围适宜,能够满足化妆品中被测物质测定要求,且线性良好,线性相关系数≥0.99。  6.3.3 检出限和定量下限  具有足够低的检出限和定量下限,能够满足化妆品中被测物质测定要求。  6.3.4 检出浓度和最低定量浓度  具有足够低的检出浓度和最低定量浓度,能够满足化妆品中被测物质测定要求。通常要求方法最低定量浓度的精密度的相对标准偏差(RSD)应不超过20%,方法回收率要求在80%-120%之间。  6.3.5 精密度  根据化妆品中被测物质的含量及确定的分析方法,精密度应能够满足化妆品中被测物质的测定要求,通常日内和日间精密度的相对标准偏差(RSD)应不超过表1所列水平。特殊情况应予以说明。  表1:精密度的接受范围被 测 物精密度RSD含量 ≤10 µ g / kg20%10 µ g / kg < 含量 ≤ 100 µ g / kg15%100 µ g / kg < 含量 ≤ 1000 µ g / kg10%含量 >1000 µ g / kg5%  6.3.6 回收率  根据化妆品中被测物质的含量及确定的分析方法,回收率应能够满足化妆品中被测物质的测定要求。通常提取回收率要求在85%-115%之间,如果提取回收率超出85%-115%的范围,则要求方法回收率在85%-115%之间。特殊情况应予以说明。  6.3.7 稳定性  要求被测物质的标准溶液或前处理后的样品在稳定时间内使用和测定。  6.3.8 实验样品分析结果  在重复条件下两次独立测定结果的标准偏差在已确定分析方法的精密度接受范围内。  6.3.9 禁用物质阳性结果判定依据  采用色谱-质谱技术确证化妆品中禁用物质阳性结果时,实验样品与加入被测禁用物质的空白样品的质量色谱峰保留时间要求一致,至少两组浓度相当时的定性离子的相对丰度比一致,定性离子的相对丰度比的最大偏差应不超过表2的规定。采用其他技术确证化妆品中禁用物质阳性结果时,要求满足阳性结果确证依据和评价指标。  表2:禁用物质阳性结果判定时相对离子丰度比的最大允许偏差相对离子丰度比(k)k ≥50%50 % k ≥ 20 % 20 % k ≥ 10 %k≤ 10 %最大允许偏差±20%±25%±30%±50%  6.3.10 实验室间验证结果的评价  实验室间验证结果应相符。
  • 环境LCMSMS新标准|水中氯酚类化合物分析
    广东省分析测试协会发布了T/GAIA 005-2020《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》团体标准,标准规定了水体中3种氯酚类化合物的前处理及仪器分析方法,为水体中氯酚类化合物的检测提供了重要的技术支持和法规依据。 氯酚类化合物危害氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类物质曾长期在世界范围内被作为杀虫剂、除草剂、防腐剂、消毒剂广泛使用,性质比较稳定,能够在环境中相对持久地存在,会对人类和野生动物的健康造成不利影响,包括慢性毒性、致癌性、致突变性等。美国国家环保局(U.S. EPA) 和中国国家环保部均已将多种氯酚类化合物列入优先控制的毒性污染物名单。 目前,研究中普遍关注的CPs化合物主要包括2,4-二氯酚(2,4-dichlorophenol, 2,4-DCP)、2,4,6-三氯酚(2,4,6-trichlorophenol, 2,4,6-TCP)和五氯酚(pentachlorophenol, PCP)。新标准来袭,岛津助您从容应对与现有标准的气相色谱法相比,液相色谱质谱法灵敏度更好,且无需衍生化等复杂的前处理步骤,可直接用于水样的分析,操作简便快捷。 1 分析条件分析仪器:岛津超高效液相色谱-质谱联用仪MRM参数*定量离子对 2分析结果MRM色谱图3种目标物可得到良好的色谱峰形和质谱响应。标准溶液的MRM色谱图见图1。图1. 标准溶液MRM色谱图 方法检出限与测定下限按照《环境监测分析方法标准值修订技术导则》(HJ168-2010)中空白实验中未检出目标物质的检出限测定方法。以高纯水为空白基质,配制低浓度(2, 4-二氯酚和2, 4, 6-三氯酚4 μg/L,五氯酚0.25 μg/L)加标样品,进行7次重复检测,计算其实测浓度的标准偏差(SD),其方法检出限(MDL)=3.143*SD,测定下限为4倍的MDL。 表1. 方法检出限、测定下限计算结果(μg/L) 标准曲线根据测定下限以及实际测定需要,配制三种化合物的混标,标准浓度如表2所示。标准曲线分别如图2所示。 表2. 氯酚标准曲线浓度 (μg/L)图2. 三种氯酚的标准曲线 方法精密度分别以表2中STD 3、STD 5和STD 7为低、中、高浓度进行加标,重复6次测定,计算相对标准偏差(RSD)。结果显示,三种化合物、三个浓度水平RSD均小于11%。 表3. 不同浓度空白加标精密度结果(n=6) 方法准确度选取生活饮用水、地表水、地下水样品,0.22 μm滤膜过滤后上机分析,三种氯酚浓度均低于方法检出限。分别以表2中STD 3、STD 5和STD 7浓度为低、中、高浓度进行加标,平行配制6份分别进行测定,分别计算加标回收率,如表4所示。 表4. 不同水体加标回收结果(μg/L)结语使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统可轻松测定水体样品中3种氯酚类化合物,轻松应对《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》(T/GAIA 005—2020)新标准的要求。环境水体安全监测刻不容缓,岛津方案助您从容应对。
  • 《土壤和沉积物 9种酯类化合物的测定》6项团标征求意见
    按照青海省标准化协会团体标准工作程序,标准起草单位已完成《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》等6项团体标准征求意见稿的编制工作,现公开征求意见。《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:试样经前处理后有电感耦合等离子体全谱直读光谱仪测定。将待测溶液引入高温等离子炬中,待测元素被激发成离子及原子,在特定的波长处测量各元素离子及原子的发射光谱强度,特征光谱的强度与试样中待测元素的浓度在一定范围内呈线性关系而进行定量关系。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10μL、25μL、100μL、250μL和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2 μg/kg-1.5μg/kg,测定下限为4.8μg/kg -6μg/kg ,见附录A。《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定水质样品中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 ml 棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5ml的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5ml,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2g/L -1.5g/L,测定下限为4.8g/L -6.0g/L ,见附录A。《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL甲醇(1:1甲醇和水溶液)振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:不小于 60 ml 具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.振荡器:水平振荡器或翻转振荡器。5.恒温振荡器:温度精度为±2℃。6.天平:感量为 0.01 g。7.提取瓶:不小于40ml,具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。8.平底烧瓶:1000 ml,具塞平底玻璃烧瓶。9.离心机:转速≥3500r/min。本标准适用于土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。当样品量为10g,定容体积为20mL时,目标物的方法检出限为、测定下限见附录A。《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL空白试剂水振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:500mL具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.天平:精度为0.01g。5.平底烧瓶:1000 mL,具塞平底玻璃烧瓶。本标准适用于饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。直接进样法,目标物的方法检出限为0.01mg/L,测定下限为0.04mg/L,见附录A 。《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中水质中22种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 mL棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5mL的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中22种挥发性有机物(二氯二氟甲烷、氯甲烷、氯乙烯、溴甲烷、氯乙烷、三氯氟甲烷、碘甲烷、二硫化碳、乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、2-丁酮、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、甲基异丁基酮、乙酸异丁酯、2-己酮、1,1,2-三氯丙烷、甲基丙烯酸丁酯、乙酸戊酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5mL,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.5-5.0g/L,测定下限为6.0g/L -20.0g/L,见附录A。《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中13种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标物标准质谱图相比较和保留时间进行定性,内标法定量。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10、25、100、250和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中13种挥发性有机物(乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、氯丁二烯、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、顺-1,3-二氯丙烯、乙酸异丁酯、反-1,3-二氯丙烯、乙酸戊酯、甲基丙烯酸丁酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.6 μg/kg -2.2μg/kg,测定下限为6.4 μg/kg -8.8μg/kg,见附录A。
  • 碳中和背景下 温室气体有哪些测量方法标准?
    碳达峰、碳中和是目前和未来一段时间内生态文明建设工作的热点和重点。环境及污染源排放温室气体的直接测量是核算和评估等工作的基础和数据支撑,仪器信息网对我国现行温室气体测量方法标准进行了梳理。  国家标准  《大气二氧化碳(CO2)光腔衰荡光谱观测系统》(GB/T 34415-2017)由中国气象局提出,规定了基于光腔衰荡光谱观测系统观测本底大气中二氧化碳(CO2)浓度的安装环境、原理及系统组成、性能要求,适用于光腔衰荡光谱法在线观测本底大气CO2浓度。  《温室气体 甲烷测量 离轴积分腔输出光谱法》(GB/T 34287-2017)由中国气象局提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体甲烷浓度的方法概述、测量条件、测量准备、测量方法和标校方法等,适用于开展温室气体甲烷浓度的测量。  《温室气体 二氧化碳测量 离轴积分腔输出光谱法》(GB/T 34286-2017)由中国气象局提出,规定了使用离轴积分腔输出光谱法测量环境大气温室气体二氧化碳浓度的方法,适用于开展温室气体二氧化碳浓度的测量,在非污染大气下,其测量精度应小于0.1×10-6mol/mol。  《气相色谱法本底大气二氧化碳和甲烷浓度在线观测方法》(GB/T 31705-2015)由中国气象局提出,规定了本底大气二氧化碳和甲烷浓度气相色谱在线观测方法,包括观测环境、观测系统组成、性能要求、观测流程以及系统维护等,适用于气相色谱法在线观测本底大气二氧化碳和甲烷浓度。  《气体中一氧化碳、二氧化碳和碳氢化合物的测定 气相色谱法》(GB/T 8984-2008)由中国石油和化学工业协会提出,规定了气体中一氧化碳、二氧化碳和碳氢化合物的气相色谱测定方法,适用于氢、氧、氦、氖、氩、氪和氙等气体中一氧化碳、二氧化碳和甲烷的分项测定,以及一氧化碳、二氧化碳和碳氢化合物的总量(总碳)测定。  行业标准  《温室气体 二氧化碳和甲烷观测规范 离轴积分腔输出光谱法 》(QX/T 429-2018)是气象行业标准,规定了利用离轴积分腔输出光谱法观测二氧化碳、甲烷浓度的测量方法及观测系统、安装要求、检漏与测试要求、日常运行和维护要求、溯源以及数据处理要求等,适用于温室气体二氧化碳、甲烷浓度的离轴积分腔输出光谱法的在线观测和资料处理分析等。  《固定污染源废气 二氧化碳的测定 非分散红外吸收法》(HJ 870-2017)是环保行业标准,规定了测定固定污染源废气中二氧化碳的非分散红外吸收法,适用于固定污染源废气中二氧化碳的测定,方法检出限为0.03%(0.6g/m3),测定下限为0.12%(2.4g/m3)。  《本底大气二氧化碳浓度瓶采样测定方法-非色散红外法》(QX/T 67-2007)是气象行业标准,规定了本底大气中二氧化碳浓度的非色散红外测定方法,适用于本底大气瓶采样样品二氧化碳浓度的测定。  地方标准  《畜禽舍二氧化碳快速检测技术规程》(DB 37/T 2143-2012)是山东省地标,规定了畜禽舍二氧化碳快速检测采样点的设置、二氧化碳的采集、检测与结果判读,适用于畜禽舍在养殖过程中产生和排放的二氧化碳的快速检测。  团体标准  《气体中甲烷、氧化亚氮和二氧化碳浓度测定 气相色谱法》(T/LCAA 005-2021)是北京低碳农业协会团体标准,规定了气体中甲烷、氧化亚氮和二氧化碳浓度测定相关的术语和定义、测量步骤和气体浓度计算等技术要求,适用于各类气体样品中的二氧化碳、甲烷和氧化亚氮的浓度测定。  《火力发电企业二氧化碳排放在线监测技术要求》(T/CAS 454-2020)是中国标准化协会团体标准,规定了火力发电企业烟气二氧化碳排放在线监测系统(简称CDEMS)中的主要监测项目、性能指标、安装要求、数据采集处理方式、数据记录格式以及质量保证,适用于火力发电企业产生的二氧化碳排放量的在线监测。采用化石燃料(煤、天然气、石油等)为能源的工业锅炉、工业炉窑的二氧化碳排放量在线监测可参照执行。  综上,我国气象、环保、石油化工、农业等部门均提出了二氧化碳测量方法标准,涉及到的方法原理有离轴积分腔输出光谱法、非分散(不分光、非色散)红外光谱法、傅里叶红外光谱法、气相色谱法以及快速检测法等。这些方法根据原理、采用方式及特性不同,适用于各类应用场景。
  • 烟台海岸带所、海洋所等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布
    近日,中国科学院烟台海岸带研究所、海洋研究所研究人员等联合起草的国家标准《虾青素旋光异构体含量的测定 液相色谱法》颁布,并将于7月1日起实施。  《虾青素旋光异构体含量的测定——液相色谱法》(GB/T 38478-2021)由中国标准化研究院提出并归口承担,标准起草工作组专家主要来自烟台海岸带所、海洋所、中国标准化研究院、山东省标准化研究院、中科院过程工程研究所等单位。该标准从起草制定到颁布,历经6年,起草任务列入国家标准化管理委员会计划项目课题,由烟台海岸带所研究员秦松团队承担。  该标准主要包括八部分内容,对测定范围、原理、试剂材料、仪器设备、不同样品的提取方法和酶解与测定条件与步骤、计算方法、重复性、限量和标准图谱等进行了详细阐述与约定。标准的制定和颁布实施,将规范虾青素产品分析测定操作流程,可为国内虾青素生产企业实现标准化规模生产提供技术支撑。同时,也有利于企业与管理部门在产品质量控制管理的协调统一,使我国虾青素产品质量监督有标准可依。
  • 油烟和油雾测定环保标准征求意见
    p  油烟是指食物烹饪、加工过程中挥发出来的油脂、有机质及其加热分解或裂解产物,其主要成分是动植物油及其分解产物。油雾是指来源于机械加工淬火等工艺产生的油脂及其裂解物,其主要成分是矿物油。br//pp  目前,油烟和油雾已经成为继噪声、尾气、沙尘之后的又一大污染问题,并且成为百姓环保投诉的热点问题之一。有关部门对北京大气气溶胶中PM2.5做的研究表明,其中有机物含量高达30 %~40 %,而来源于饮食业的油烟比例达到了 13 %~15 %,明显高于发达国家的比例。/pp  中国科学院大气物理研究所研究员王跃思等人的研究结果表明,餐饮油烟排放的有机气溶胶(气溶胶是液态或固态微粒在空气中的悬浮体系)是一次有机气溶胶中最重要的组分,餐饮油烟在北京市大气中PM2.5中的比例约为13%,最高时达到15%,在京津冀地区所占的比例约为6% 根据媒体报导,目前广州餐饮企业的排放比重约占大气污染物饮企业的排放比重14 %。以上数据显示,油烟已经成为影响城市空气质量的一个重要污染物来源,加强油烟和油雾治理是改善城市空气质量的一项重要措施。/pp  国外测试油类物质的标准主要有以下几种:重量法、气相色谱法、红外分光光度法、非分散红外光度法、中红外激光光谱法和无溶剂膜萃取红外扫描法,各方法特点见下表。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/3898e0da-87cf-4468-86ca-358bc4cec16e.jpg" title="微信图片_20190308115810.png" alt="微信图片_20190308115810.png" width="600" height="428" border="0" vspace="0" style="width: 600px height: 428px "//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/aebf6eb0-63a6-4d80-9ba0-e1f889b61da1.jpg" title="微信图片_20190308115844.png" alt="微信图片_20190308115844.png" width="600" height="574" border="0" vspace="0" style="width: 600px height: 574px "//pp  油类检测方法可分为以下几种: 1)重量法。已颁布的相关标准有国际标准化组织(ISO)、欧洲标准化委员会(CEN)、美国环保署(USEPA)、日本工业标准委员会(JISC)、中国;2)气相色谱法。如国际标准化组织(ISO)、欧洲标准化委员会(CEN),其检出限一般为0.1 mg/L;3)中红外激光光谱法。代表组织及国家为:美国材料与试验协会(ASTM);4)无溶剂膜萃取红外扫描法。代表组织及国家为:美国材料与试验协会(ASTM);5)红外分光光度计法。红外测定无溶剂膜萃取动植物油(ASTMD7575)由于其无排放的优势将是监测领域新趋势,但是目前由于其检出限比较高,无法满足过渡期要求,英国IP 426/98 标准利用四氯乙烯替代四氯化碳对油类进行分析监测,是目前为止最为经济实惠又最可取的途径。/pp  我国目前使用的监测方法标准是GB 18483-2001中的附录方法,方法主要内容为:利用采气泵将油烟吸附在油烟采样滤筒内,回到实验室后用四氯化碳萃取滤筒内油烟物质,利用红外测油仪对样品进行检测。该方法能够准确检测油烟含量,且灵敏度高,测定结果不受油烟样品品种的影响,一直在我国环境监测工作中起着重要作用。但是,红外分光光度法使用的四氯化碳是《关于消耗臭氧层物质的蒙特利尔议定书》附件B第二类受控物质,2010年已经完成其受控用途的淘汰,因此必须寻找四氯化碳的替代试剂。此外,多年实践表明,现有监测方法在实际工作中存在一定的局限性,如没有检出限、精密度和准确度等技术指标,没有油雾的测定方法等。鉴于上述问题,对现行标准分析方法进行修订势在必行。/pp  日前,生态环境部办公厅发布关于征求国家环境保护标准《固定污染源废气 油烟和油雾的测定 红外分光光度法(征求意见稿)》意见的函。该征求意见稿规定了测定固定污染源废气中油烟和油雾的红外分光光度法,适用于固定污染源废气中油烟和油雾的测定。/pp  其原理为:固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法测定。油烟和油雾含量均由波数分别为2930 cm-1 (CH2基团中C—H键的伸缩振动)、2960 cm-1(CH3基团中C—H键的伸缩振动)和3030 cm-1基团中C—H键的伸缩振动)、2960 cm-1(CH3基团中C—H键的伸缩振动)和3030 cm-1(芳香环中C—H键的伸缩振动)谱带处的吸光度A2930、A2960和A3030进行计算。/pp  当采样体积为 125 L(标干体积),萃取液体积为 25 ml 时,本方法油烟和油雾的检出限为 0.2 mg/m3,测定下限为 0.8 mg/m3。/pp  国家环境保护标准《固定污染源废气 油烟和油雾的测定 红外分光光度法(征求意见稿)》为首次发布,由生态环境部生态环境监测司、法规与标准司组织制订,起草单位包括:大连市环境监测中心。本标准验证单位:辽宁省环境监测实验中心、长春市环境监测中心站、吉林市环境监测站、鞍山市环境监测中心站、黑龙江省环境监测中心站和营口市环境监测中心站等。/p
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 日立实验|荧光分析法测定硫酸奎宁含量
    ▶#日立实验#荧光分析法某些物质的分子能吸收能量而发射出荧光,根据荧光的光谱和荧光强度,对物质进行定性或定量的方法,称为荧光分析法。荧光分析法具有灵敏度高、选择性强、需样量少和方法简便等优点,它的测定下限通常比紫外-可见分光光度法低2~4个数量级,在生化分析中的应用较广泛;既可依据发射光谱特征,又可依据激发光谱特征进行测试。摘要本实验采用日立F-4700荧光分光光度计对不同浓度硫酸奎宁溶液进行测试。实验原理1.硫酸奎宁的分子结构特征硫酸奎宁属生物碱类抗心率失常药,其分子具有喹啉环结构,可产生较强的荧光,可直接用荧光法测定其荧光强度,由校正曲线求出回归方程进而求出试样中奎宁的浓度。2.定量依据与方法2.1定量依据:在低浓度时,溶液的荧光强度与溶液中荧光物质的浓度呈线性关系。2.2定量方法:标准曲线法:配制一系列标准浓度试样测定荧光强度,绘制标准曲线,再在相同条件下测量未知试样的荧光强度,在标准曲线上求出浓度。测试条件测试结果配置不同浓度硫酸奎宁标准样品,测试其标准曲线如下结论本次实验采用荧光分析法对硫酸奎宁溶液进行定量测试。结果表明,日立荧光分光光度计测定硫酸奎宁溶液标准品线性良好,同时对未知浓度样品进行测试,结果准确,测试结果不受其它干扰物质影响,说明日立荧光分光光度计灵敏度高,满足用户需求。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl4)。 用 4 cm 比色皿,空气池做参比,在波数 2930 cm-1、2960 cm-1 和 3030 cm-1 处吸光度应分别不超过 0.34、0.07 和 0。5.5 无水硫酸钠(Na2SO4)。 在 500 ℃下加热 4 h,冷却后装入磨口玻璃瓶中,置于干燥器内保存。5.6 正十六烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 正十六烷(5.1),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算正十六烷标准贮备液准确浓度。5.7 正十六烷标准使用液:ρ=1.00×103 mg/L。 移取适量的正十六烷标准贮备液(5.6)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容, 混匀。5.8 异辛烷标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 异辛烷(5.2),再次称重(准确至 1 mg),加四氯乙烯(5.4)定容,混匀,计算异辛烷标准贮备液准确浓度。5.9 异辛烷标准使用液:ρ=1.00×1 03 mg/L。 移取适量的异辛烷标准贮备液(5.8)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。5.10 苯标准贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 苯(5.3),再次称重(准确至1 mg),加四氯乙烯(5.4)定容,混匀,计算苯标准贮备液准确浓度。5.11 苯标准使用液:ρ=1.00×10 3 mg/L。 移取适量的苯标准贮备液(5.10)于 100 ml 容量瓶中,用四氯乙烯(5.4)定容,混匀。 注:可直接购买市售有证标准溶液。5.12 油烟标准油。 在 500 ml 双颈蒸馏瓶中加入 300 ml 花生油,侧口插入量程为 500℃的温度计,在 120℃ 温度下敞口加热 30 min,然后在上口安装空气冷凝管,升温至 300℃,回流 2 h,即得标准油,放冷后取适量放入带聚四氟乙烯衬垫螺旋盖的 500 ml 样品瓶中。5.13 油烟标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油烟标准油(5.12),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油烟标准油贮备液准确浓度。5.14 油烟标准油使用液:ρ=100 mg/L。 移取适量的油烟标准油贮备液(5.13)于 250 ml 容量瓶中,用四氯乙烯(5.4)稀释至标线。5.15 油雾标准油。 分别用刻度移液管吸取 6.5 ml 正十六烷(5.1)、2.5 ml 异辛烷(5.2)和 1.0 ml 苯(5.3)移入 10 ml 容量瓶,立即塞紧混匀。5.16 油雾标准油贮备液:ρ≈1×104 mg/L。 将 100 ml 空容量瓶称重(准确至 1 mg),然后滴入约 1 g 油雾标准油(5.15),再次称重(准确至 1 mg),加四氯乙烯(5.4)至标线,混匀,计算油雾标准油贮备液准确浓度。5.17 油雾标准油使用液:ρ=100 mg/L。 移取适量的油雾标准油贮备液(5.16)于 250 ml 容量瓶中,用四氯乙烯(5.4)定容。 注:可直接购买市售有证油烟、油雾标准溶液。5.18 金属采样滤筒及聚四氟乙烯套筒。 金属滤筒材质:316 不锈钢,内部充填毛面玻璃微珠或 316 不锈钢纤维,滤筒清洗后用无油清洁空气吹干置于套筒内保存。当油烟或油雾浓度在 10 mg/m3 以上时,油烟和油雾采集效率应≥95%。5.19 玻璃纤维滤筒。 Φ28×70 mm ,对粒径 0.5 μm 粒子捕集效率不低于 99.9%,失重≤0.2%。经 400℃灼烧 1 h,冷却后进行检查,未变形或破碎的玻璃纤维滤筒放入带盖聚四氟乙烯柱形套筒密封待用。6 仪器和设备 6.1 能谱OIL3000B 红外测油仪。 配有 4 cm 带盖石英比色皿,仪器扫描范围:3400 cm-1 至 2400 cm-1。6.2 烟尘测试仪。 符合HJ/T 48 的要求。6.3 玻璃纤维滤筒采样管。符合HJ/T 48 的要求。6.4 金属滤筒采样管及配套滤筒。6.5 一般实验室常用仪器和设备。7 样品7.1 样品采集 采样布点、频次、采样工况按照 GB 18483、GB/T 16157、HJ/T 397 和其他相关标准要求进行。 选择合适的采样器,安装采样嘴及滤筒。采集油雾时选择玻璃纤维滤筒采样管(6.3) 或金属滤筒采样管(6.4),采集油烟时选择金属滤筒采样管(6.4)。采样前检查系统的气密性。连续采样 10 min,将采样后滤筒放入套筒内。7.2 样品的保存 样品采集后应尽快测定。样品若不能在 24 h 内测定,可冷藏(≤4℃)保存 7 d。7.3 试样的制备7.3.1 油烟的试样制备 在采样后的套筒中加入四氯乙烯(5.4)溶剂 12 ml,旋紧套筒盖,将套筒置于超声波清洗器,超声清洗 10 min,萃取液转移至 25 ml 比色管,再加入 6 ml 四氯乙烯(5.4)超声清洗 5 min,将萃取液转移至上述 25 ml 比色管。用少许四氯乙烯(5.4)清洗滤筒及聚四氟乙烯套筒二次,清洗液一并转移至上述 25 ml 比色管,加入四氯乙烯(5.4)至刻度标线,密封待测。7.3.2 油雾的试样制备7.3.2.1 若采用纤维滤筒采样,将采样后的滤筒剪碎后置于 50 ml 烧杯中,用 25 ml 四氯乙烯(5.4)在超声波清洗器中超声萃取 10 min,萃取液转移至 25 ml 比色管,密封待测。7.3.2.2 采用金属滤筒采样,参照 7.3.1 饮食业油烟的试样制备方法。7.4 空白试样的制备 用空白滤筒,按照试样的制备步骤(7.3)制备空白试样。 8 分析步骤8.1 校准8.1.1 校正系数的确定 分别量取 2.00 ml 正十六烷标准使用液(5.7)、2.00 ml 异辛烷标准使用液(5.9)和 10.00ml苯标准使用液(5.11)于 3 个 100 ml 容量瓶中,用四氯乙烯(5.4)定容至标线,混匀。正十六烷、异辛烷和苯标准溶液的浓度分别为 20.0 mg/L、20.0 mg/L 和 100 mg/L。用四氯乙烯(5.4)做参比溶液,使用 4 cm 比色皿,分别测定正十六烷、异辛烷和苯标准溶液在 2930 cm-1、 2960 cm-1 和 3030 cm-1 处的吸光度 A2930、A2960 和 A3030。代入公式(1)求解后,可分别得到相应的校正系数 X,Y,Z 和 F,输入仪器进行校准。 式中: ρ——四氯乙烯中目标物的含量(mg/L); A2930、A2960 和 A3030——各对应波数下测得的吸光度; X、Y、Z ——与各种C-H 键吸光度相对应的系数; F——脂肪烃对芳香烃影响的校正因子,即正十六烷在 2930 cm-1 与 3030 cm-1 处的吸光度之比。 能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化高xin技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
  • 涨知识!竟然可以利用光学方法探测金矿
    p style="line-height: 1.75em " 金(gold)是一种软的,金黄色的,抗腐蚀的贵金属。从传统的珠宝配饰、储备和投资的流通货币,到电子通讯设备、传感器,再到体内药物传输、外太空探测等科技前沿,金的应用可谓包罗万象。据统计,仅2013年,金的全球需求总量已超过400吨。 br/ 大自然中,大量的金以离子形式进入溶液,被植物根茎或是地下微生物吸附,发生还原反应,转化为低浓度的纳米金溶胶。金溶胶是金盐被还原成金单质后形成的稳定、均匀、呈单一分散状态悬浮在液体中的金颗粒悬浮液。而这些金纳米颗粒往往构成探测信号,预示着该处地下沉积着更多金元素。因此,探测到这些金纳米颗粒信号尤为重要。一般而言,金的地壳丰度约为1.3ppb。只要能探测到浓度为8ppm的金元素,则有可能发现金矿。 br/ 人们早已开始使用X射线荧光光谱法(XRF)来探测ppm(毫克/升)量级的金元素,该方法简便快捷。相比之下,采用电感耦合等离子体质谱(ICP-MS)和电感耦合等离子体原子发射光谱(ICP-AES)来探测ppb(微克/升)量级的金元素就不这么容易了。通常,研究人员需要从现场采集矿石样品,转移至实验室进行处理和分析。这将消耗时间和人力成本,增加金矿开采的工作量。/pp style="line-height: 1.75em text-align: center "br//pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/5a0d7abc-1deb-41e9-964a-c5651c22f7f1.jpg" title="PT160301000044fLiO.jpg"//pp style="line-height: 1.75em text-align: center "纳米金溶胶是一种以稳定形式存在的溶液中的金颗粒,为多相不均匀体系,根据颗粒直径不同,其颜色呈橘红色到紫红色。 /pp style="line-height: 1.75em " 最近,澳大利亚阿德莱德大学的研究人员发现,金具有独特的光学性质:局域表面等离子体共振(SPR)和对荧光团的催化效应。该性质将有利于金的传感和探测。据此发现,研究人员正在采用光吸收法和荧光法探测钻井工地中的金纳米颗粒。这种方法不需要额外采集和制备矿石样品。 br/ 为了找出探测ppb量级的金纳米颗粒的最佳方法,研究人员以不同浓度的金溶胶试样(溶质颗粒直径为5nm、20nm和50nm)为对象,分别使用光谱仪、手持式和便携式光谱仪进行检测,并研究在以上三种情况下SPR法和荧光法的检出限。 br/ 研究人员分别分析了吸收池和SC光纤(SCF)中的纳米金溶胶,该光纤呈三个气孔包裹中央实芯结构。使用SC光纤作为分析场所的好处是:取样量小,分析环境不受限制,如井底。 br/ 研究人员发现,就光吸收法而言,实验室光谱仪的测定下限比便携式光谱仪低七倍(取决于纳米颗粒尺寸)。就荧光法而言,两种光谱的测定下限相同。对比吸收池和SC光纤,SC光纤中50nm颗粒的测定下限约为吸收池中的一半,但对于5nm和20nm颗粒的测定下限相同。 br/ “我们已经确定了光吸收法和荧光法的测定下限。这两种光学方法简便快捷、可操作性强、应用广泛,可以用于生物样品中金的探测。”阿德莱德大学的Agnieszka Zuber 解释道,“除了检出限低,两种方法的最大优势在于其便携性。这将省去制备矿石样品的繁琐工序,分析时间将从原来的几天减少到几个小时。” br/ 研究人员还表示,该研究已获得阿德莱德深层勘探技术合作研究中心的支持。/ppbr//p
  • 钢铁研究总院分析测试培训中心将举办XRF、火花光谱、拉伸技术培训班
    钢铁研究总院分析测试培训中心冶培 字[2011] 11号X射线荧光光谱分析技术培训通知JS20110202 ATC 003 X射线荧光光谱分析技术各相关单位:  为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次的培训,其中“X射线荧光光谱分析技术培训班”的具体安排如下:  一、培训班次及安排  班次第二期检测技术培训(北京)主讲老师  JS20110202ATC 003 X射线荧光光谱分析技术邓赛文教授  详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com   二、培训时间、地点  报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅  培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心  三、主办单位  钢铁研究总院分析测试培训中心  四、培训内容  检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:  Ø XRF分析技术基本概念、原理、主要设备和定性与定量分析方法   Ø WD-XRF光谱仪、ED-XRF光谱仪的基本构成、各个部件的主要用途及特点。仪器校准与检定规程、期间核查等,介绍日常分析时仪器的校准,如仪器综合稳定性检定、仪器漂移校正等 所用仪器各个系统和部件的日常维护,软件的维护,常见故障的解决,仪器安装和工作的环境条件要求   Ø XRF主要的样品制备技术。XRF分析方法在相关测试领域中的分析方法标准、适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题   Ø 检出限计算方法,分析方法的精密度评定方法和分析结果的准确度评估方法,不确定度定义、分类及表示方法,了解XRF分析方法不确定度的评定。火花源原子发射光谱分析技术培训通知JS20110203 ATC 002 火花源原子发射光谱分析技术各相关单位:  为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次培训,其中“火花源原子发射光谱分析技术培训班”的具体安排如下:  一、培训班次及安排  班次第二期检测技术培训(北京)主讲老师  JS20110203ATC 002火花源原子发射光谱分析技术(直读光谱)高宏斌博士  详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com  二、培训时间、地点  报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅  培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心  三、主办单位  钢铁研究总院分析测试培训中心  四、培训内容  检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:  Ø SPARK/ARC-OES分析技术基本概念、光谱仪基本构成、主要部件的用途及特点   Ø 仪器操作技术:各个工作参数的设定及检查 分析程序的选择 校准曲线的标准化 控制样品的选择 仪器的校准 仪器各系统和部件的日常维护,常见故障的解决   Ø SPARK/ARC-OES分析方法标准、适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题 重复性(短期精密度)、稳定性(长期精密度)、极差、检出限、背景等效浓度、测定下限、重复性限、再现性限、临界差等相关参数的定义和计算   Ø SPARK/ARC-OES分析方法的评价和分析结果准确度的判定。金属材料拉伸试验技术培训通知JS20110201 ATM 001 拉伸试验技术(GB/T 228.1-2010)各相关单位:  为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次的培训,其中“金属材料拉伸试验技术培训班”的具体安排如下:  一、培训班次及安排  班次第二期检测技术培训(北京)主讲老师  JS20110201ATM 001 拉伸试验技术(GB/T 228.1-2010)高怡斐教授  朱林茂高工  邓星临教授  详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com   二、培训时间、地点  报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅  培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心  三、主办单位  钢铁研究总院分析测试培训中心  四、培训内容  检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:  Ø 金属材料拉伸试验的特点、分类以及拉伸试验技术的相关术语   Ø 讲解金属材料拉伸试验相关试验机的基本结构、检测/校准项目及相关要求,金属材料电子万能试验机、液压万能试验机、电液伺服试验机及引伸计、高温炉和环境箱的操作技术和维护保养、日常检查方法   Ø 讲解金属材料室温拉伸、高温拉伸、低温拉伸、液氦拉伸、弹性模量和泊松比(静态法)与薄板和薄带塑性应变比、拉伸应变硬化指数标准试验方法 了解各类拉伸试验结果主要影响因素   Ø 介绍金属材料高温拉伸、低温拉伸、液氦拉伸等相关标准,重点讲解最新发布的国家标准GB/T 228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》。作为金属材料领域应用最广泛的基础试验方法标准,新版标准GB/T 228.1-2010较2002版有较大变化,增加了方法A应变速率控制方法 修改了试验结果的数值修约方法 增加了拉伸试验测量不确定度的评定方法,并增加了计算机控制拉伸试验机使用时的建议,以及考虑试验机刚度(或柔度)后估算的横梁位移速率方法。培训班将详解新版国家标准的最新变化和试验方法,以及拉伸试验结果不确定度评定和数据处理方法。  附:2011年冶金及材料分析检测人员培训报名表.doc  相关信息:  培训证书  由全国分析检测人员能力培训委员会(NTC)组织考核,考核合格者将由NTC发放相应技术或标准的《分析检测人员技术能力证书》。该证书可作为实验室资质认定、实验室认可中检测人员的技术能力证明。  培训及考核费用  本次XRF、火花光谱、拉伸技术的培训费用各为1200元/人,含资料费、培训费   考核费用为500元/人,含NTC考核费、注册费及证书费。  如需提前支付培训费的请按下列帐号或地址汇款(报到时请携带相关凭据):  银行汇款:  收款单位:钢铁研究总院  地 址:北京市海淀区学院南路76号  开户银行:工商银行北京新街口支行  帐 号:0200002909003210486-16  邮局汇款:  地 址:北京市海淀区学院南路76号  邮 编:100081  收款单位:钢铁研究总院分析测试培训中心  联 系 人:齐 欣  食宿安排  培训考核期间食宿统一安排,费用自理。  报到联络电话:010-62183362 62182652  培训签约 “北京上园饭店” 住宿特惠价:  ¥ 240元/天(普通标准间,含双早)  地址:北京海淀区高粱桥斜街40号  酒店前台电话:010-51555599   钢铁研究总院分析测试培训中心  2011年5月9日  地址:北京市海淀区学院南路76号14信箱,100081  E-mail: training@analysis.org.cn  电话:010-62183362 62182652 62183851  传真:010-62182584 62182652
  • 水质硝基酚类标准正式实施,LC-MS/MS方法助您从容应对
    硝基酚类化合物(Nitrophenols)硝基酚类化合物是一类重要且常用的化工原料,作为原材料或中间体被广泛应用于炸药、医药、杀虫剂、染料、木材防腐剂和橡胶等生产中。伴随工业生产过程,含有该类化合物的废水随之排放至环境中。硝基酚类化合物容易在水体及土壤中残留累积,难以降解,污染环境,危害人类及动植物健康。今年4月24日起,中国环境保护标准《HJ1049-2019水质 硝基酚类化合物的测定 液相色谱-三重四极杆质谱法》正式实施,标志着对硝基酚类污染物更严格的监测与控制。下面,请看岛津为您带来水中硝基酚测定的解决方案。 岛津解决方案 参照标准进行前处理,地表水采用直接进样法,工业废水采用酸碱分配净化法。上机分析使用岛津超高效液相色谱仪LC-30A与三重四极杆质谱仪LCMS-8050联用系统,建立了水中硝基酚类化合物的分析方法,5 min内即可完成三种硝基酚类化合物的分析。 岛津三重四极杆质谱仪LCMS-8050 01 仪器条件表1. MRM参数*代表定量离子对。 02 标准溶液配制及样品前处理取三种硝基酚类化合物混合标准贮备液逐级稀释成系列标准溶液,并加入内标,混匀待测。对地表水样品,使用醋酸纤维滤膜(0.22 μm)过滤,取1.0 mL 滤液于棕色进样瓶中,加入10 μL内标使用液,涡旋混匀,上机分析。对工业废水,用氨水或甲酸调节样品pH值至7~9,取5 mL样品置于具塞离心管中,加入1 mL二氯甲烷-正己烷混合溶液,振荡5min,以4000 r/min的转速离心5 min。吸取3 mL上层水相溶液(有机相在下层),用醋酸纤维滤膜(0.22 μm)过滤,然后取1.0 mL滤液于棕色进样瓶中,加入10.0 μL内标使用液,混匀待测。 结果与讨论 线性与检出限 三种硝基酚在表2所示浓度范围内线性良好,方法检出限0.022-0.034 ng/mL,优于标准要求的0.4-0.6 ng/mL。 表2. 三种硝基酚线性范围、方法检出限和测定下限 精密度对低、中、高三个浓度的标准溶液连续进样6针,保留时间和峰面积的相对标准偏差分别在0.10~0.20%和0.85~3.30%之间,仪器精密度良好。 表3. 精密度结果 (n=6)实际水样测试与加标回收率 使用本方法分析了地表水和工业废水样品,结果见图1和表4。地表水样品三个不同浓度加标回收率在86.7%~94.5%之间,工业废水样品三个不同浓度加标回收率在87.0%~96.7%之间,满足标准要求,方法可靠。地表水加标回收样品色谱图见图2。地表水和工业废水加标回收结果见图3。 表4. 实际水样分析结果图1. 地表水样品insight色谱图图2. 地表水样品加标insight色谱图 (1.0 ng/ml) 图3. 地表水和工业废水三浓度水平加标回收率柱状图 结 论 使用岛津LCMS-8050建立了5 min内分析水中3种硝基酚类物质的方法,灵敏度比标准要求高一个数量级以上。无论是地表水还是基质复杂的工业废水,皆能轻松应对。客户的需求就是我们的使命,岛津的工程师们永远致力于为客户开发最新、最好的应用方法。 撰稿人:邝江濛 唐雪
  • 2017年第二批拟立项国标征求意见 含色谱、光谱等多项仪器方法(附全名单)
    4月24日,国标委发布“关于对2017年第二批拟立项国家标准项目征求意见的通知”,对221项新制定或修订的国家标准进行公示征求意见。征求意见截止时间为2017年5月11日。  本次拟立项国家标准涉及材料、电子电器、纺织品、科学仪器等多个领域,其中,多项检测标准涉及光谱、色谱、质谱等仪器。  值得注意的是,此次公示的标准中涉及到三项仪器标准或校准规范,包括:激光诱导击穿光谱法、液相色谱仪用自动进样器、气体分析仪校准方法通用规范。部分标准信息如下:  1、气体分析仪校准方法通用规范:本项目明确了使用气体标样对定量分析用气体分析仪输出值进行校准的通用规范。本项目适用于使用钢瓶装气体标样对各类定量分析用气体分析的校准工作。  2、液相色谱仪用自动进样器:本项目旨在建立统一的液相色谱自动进样器指标与其测试方法,用于描述该仪器设备进样的重复性、准确性、线性度、运行时间以及其他辅助功能的性能,它是对该设备的全面描述。在此基础上,对这些性能的测试方法也有着规范化定义。  3、激光诱导击穿光谱法:本标准规定了采用激光诱导击穿光谱法进行样品中化学元素的定性检测方法和定量分析方法。本标准适用于波长范围为190nm-600nm的由高能脉冲激光诱导产生的等离子体光谱。本标准主要技术内容包括:(1)范围 (2)规范性引用文件 (3)术语和定义 (4)检测原理和方法 (5)测量条件 (6)检测设备 (7)检测程序 (8)检测结果等。  附件:拟立项国家标准项目序号标准名称公示截止日期1小麦2017-05-112玉米2017-05-113焰火燃放安全技术规程2017-05-114建筑光伏玻璃组件色差检测方法2017-05-115气象资料分类与编码2017-05-116行业标准化经济效益评价第1部分:原则2017-05-117天气雷达站防雷技术规范2017-05-118暖冬等级2017-05-119中医药信息标准特征性描述框架2017-05-1110智能变电站继电保护和电网安全自动装置安全措施规范2017-05-1111继电保护和安全自动装置技术规程2017-05-1112转基因产品通用检测方法2017-05-1113动物细胞培养过程中生化参数的测定方法2017-05-1114鞋类拉链试验方法止端结合强力2017-05-1115公共安全人体生物特征识别应用术语2017-05-1116产品防伪标签内容核心元数据2017-05-1117固体废物玻璃化处理产物技术要求2017-05-1118信息技术生物特征轮廓的互操作性和数据交换第1部分:生物特征识别系统和生物特征轮廓的综述2017-05-1119信息技术穿戴式设备术语2017-05-1120数据中心资源利用第4部分:可再生能源利用率2017-05-1121信息技术大数据系统通用规范2017-05-1122信息技术大数据系统运维和管理功能要求2017-05-1123信息技术大数据基于参考架构下的接口框架2017-05-1124信息技术大数据分类指南2017-05-1125信息技术大数据存储与处理系统功能测试规范2017-05-1126信息技术大数据分析系统功能测试规范2017-05-1127信息技术大数据面向应用的基础计算平台基本性能要求2017-05-1128信息技术大数据开放共享第1部分总则2017-05-1129信息技术大数据开放共享第2部分政府数据开放共享基本要求2017-05-1130信息技术大数据开放共享第3部分开放程度评价2017-05-1131信息技术工业大数据术语2017-05-1132信息技术工业大数据参考架构2017-05-1133信息技术工业大数据工业订单元数据2017-05-1134信息技术工业大数据产品核心元数据2017-05-1135信息技术服务服务安全规范2017-05-1136地面通信网北斗卫星授时设备及应用接口第2部分:测试方法2017-05-1137地面通信网北斗卫星授时设备及接口规范第1部分:技术要求2017-05-1138麦角甾醇含量测定高效液相色谱法2017-05-1139汽车轮胎耐撞击性能评价方法2017-05-1140纳米制造-关键控制特性第3-1部分:发光纳米材料-量子效率2017-05-1141含银纳米颗粒生物组织样品中银含量的测定电感耦合等离子体质谱法2017-05-1142纳米科技术语第8部分:纳米制造过程2017-05-1143纳米技术适用于工程纳米材料的职业风险管理第2部分:分级控制方法应用2017-05-1144半导体纳米粉体材料紫外-可见漫反射光谱的测试方法2017-05-1145纳米技术-人造纳米材料毒理学筛选方法汇总与描述2017-05-1146柔性锂离子电池纳米器件耐弯曲性能测试方法2017-05-1147储能用石墨烯基复合电极材料的振实密度测试方法2017-05-1148纳米材料绿色制版用墨水2017-05-1149纳米材料绿色制版用版材2017-05-1150预糊化淀粉2017-05-1151外窗热工缺陷现场测试方法2017-05-1152新闻出版知识服务知识资源建设与服务工作指南2017-05-1153新闻出版知识服务知识资源建设与服务基础术语2017-05-1154新闻出版知识服务知识资源通用类型2017-05-1155新闻出版知识服务知识元描述通用规范2017-05-1156新闻出版知识服务知识应用单元描述通用规范2017-05-1157新闻出版知识服务知识关联通用规则2017-05-1158新闻出版知识服务主题分类词表描述与建设规范2017-05-1159机械电气安全机械电气设备第7部分:工业机器人技术条件2017-05-1160低压抽出式成套开关设备和控制设备2017-05-1161低压固定封闭式成套开关设备和控制设备2017-05-1162社区综合减灾公共信息标识规范2017-05-1163电工电子产品着火危险试验第45部分:着火危险评定导则防火安全工程2017-05-1164有机发光二极管照明术语和文字符号2017-05-1165染料产品中致癌染料的限量和测定.2017-05-1166微通道板试验方法2017-05-1167无色光学玻璃测试方法第× 部分耐碱稳定性2017-05-1168无色光学玻璃测试方法第× 部分耐磷酸稳定性2017-05-1169无色光学玻璃测试方法第× 部分耐气候稳定性2017-05-1170建筑用薄膜太阳能电池组件回收再利用通用技术要求2017-05-1171微束分析致密储层样品微纳米级孔隙结构CT成像分析方法2017-05-1172柴油机柱塞式喷油泵总成技术条件2017-05-1173新型墙体材料湿传导及相变呼吸功能的评价要求2017-05-1174常见畜禽动物源性成分检测方法实时荧光PCR法2017-05-1175常见过敏蛋白的测定液相色谱-串联质谱法2017-05-1176转基因苜蓿实时荧光PCR检测方法2017-05-1177转基因植物品系定量检测数字PCR法2017-05-1178电动汽车充换电设施术语2017-05-1179电动汽车非车载充电机电能计量2017-05-1180电动汽车交流充电桩电能计量2017-05-1181工业机械数字控制系统机器人用交流伺服驱动装置2017-05-1182工业机械数字控制系统机器人用交流伺服电动机2017-05-1183互联网数据中心(IDC)技术要求及分级分类准则2017-05-1184互联网数据中心(IDC)总体技术要求2017-05-1185移动通信网络面向物流信息服务的M2M终端技术要求2017-05-1186移动通信网络面向物流信息服务的M2M系统关键接口测试方法2017-05-1187气体分析仪校准方法通用规范2017-05-1188计量器具环境试验的通用要求2017-05-1189盲用数字出版物格式2017-05-1190全息防伪产品技术条件第7部分:真迹结构防伪技术条件2017-05-1191邮票鉴别技术条件2017-05-1192基于移动互联网的防伪溯源验证通用技术条件2017-05-1193食品追溯二维码通用技术规范2017-05-1194食品从业人员用工作服技术要求2017-05-1195数控装备互联互通及互操作通用技术要求2017-05-1196数控装备互联互通及互操作设备描述模型2017-05-1197数控装备互联互通及互操作面向实现的模型映射2017-05-1198数控装备互联互通及互操作数控机床对象字典2017-05-1199铅酸蓄电池用辅料技术规范2017-05-11100铅酸蓄电池清洁生产技术规范第1部分生产能力评估2017-05-11序号标准名称公示截止日期101铅酸蓄电池清洁生产技术规范第2部分极板生产2017-05-11102铅酸蓄电池清洁生产技术规范第3部分蓄电池组装2017-05-11103银耳栽培基地建设规范2017-05-11104袋栽银耳菌棒生产规范2017-05-11105核电用常规岛高压加热器技术条件2017-05-11106人民币硬币纸币兑换机技术条件2017-05-11107核电用常规岛低压加热器技术条件2017-05-11108太阳能光伏橡胶组件2017-05-11109化学品绝热储存试验方法2017-05-11110高关注化学物质评估判定导则2017-05-11111埋地钢质弯管聚乙烯复合带耐蚀作业技术规范2017-05-11112病媒生物防制操作规程船舶2017-05-11113病媒生物综合管理技术规范建筑工地2017-05-11114病媒生物综合管理技术规范医院2017-05-11115化学品热积累储存试验方法2017-05-11116气体分析气体中氮氧化物的测定光腔衰荡光谱法2017-05-11117混合气的制备分压法2017-05-11118玄武岩纤维分类及代号2017-05-11119电动汽车充电桩壳体用聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)专用料2017-05-11120气体标准样品技术通则2017-05-11121超声波电动机驱动与控制装置2017-05-11122胶鞋、运动鞋制造过程中固体废弃物回收处理规范2017-05-11123胶鞋、运动鞋N-甲基吡咯烷酮含量的测定2017-05-11124浸胶纱线和线绳定长度重量试验方法2017-05-11125钢质管道抗紫外线三层熔结粉末防腐外涂层技术规范2017-05-11126无机结合料稳定类材料单轴压缩弹性模量试验方法(中间段法)2017-05-11127道路用水性环氧树脂乳化沥青混合料2017-05-11128建筑幕墙面板抗地震脱落检测方法2017-05-11129植生混凝土2017-05-11130石英纤维织物增强有机树脂基复合材料高温力学性能试验方法2017-05-11131高原光伏发电设备检验技术规范2017-05-11132高海拔电气设备电场分布有限元计算导则2017-05-11133液相色谱仪用自动进样器2017-05-11134电动汽车驱动电机产品编码规则2017-05-11135电动汽车用电池管理系统功能安全要求2017-05-11136乘用车转向系统功能安全要求及试验方法2017-05-11137道路车辆先进驾驶辅助系统(ADAS)术语及定义2017-05-11138道路车辆车道保持辅助系统(LKA)性能要求及试验方法2017-05-11139道路车辆盲区监视系统(BSD)性能要求及试验方法2017-05-11140数字集成全变频控制恒压供水设备2017-05-11141家用激光显示系统光辐射安全特性评价要求2017-05-11142家用激光显示系统光辐射安全特性评价方法2017-05-11143制造执行系统(MES)控制系统软件互联互通接口规范第1部分:通用要求2017-05-11144制造执行系统(MES)控制系统软件互联互通接口规范第2部分:信息交换2017-05-11145制造执行系统(MES)控制系统软件互联互通接口规范第4部分:验证和确认2017-05-11146密码设备应用接口规范2017-05-11147信息安全技术工业控制系统安全管理基本要求2017-05-11148信息安全技术工业控制系统信息安全分级规范2017-05-11149信息安全技术工业控制系统现场测控设备通用安全功能要求2017-05-11150信息安全技术工业控制系统网络审计产品安全技术要求2017-05-11151信息安全技术工业控制系统安全防护技术要求和测试评价方法2017-05-11152工业控制系统信息安全检查指南2017-05-11153信息安全技术工业控制系统专用防火墙技术要求2017-05-11154多光路光轴平行性测试方法2017-05-11155激光诱导击穿光谱法2017-05-11156额定电压500kV及以下直流输电用挤包绝缘电力电缆系统第2部分直流陆地电缆2017-05-11157额定电压500kV及以下直流输电用挤包绝缘电力电缆系统第3部分直流海底电缆2017-05-11158额定电压500kV及以下直流输电用挤包绝缘电力电缆系统第4部分直流电缆附件2017-05-11159生物技术基本术语2017-05-11160建筑及居住区数字化技术应用基础数据元2017-05-11161纳米抗擦油墨2017-05-11162火箭人工影响天气作业点安全射界图绘制规范2017-05-11163数字版权唯一标识符2017-05-11164工业机器人生命周期对环境影响评价方法2017-05-11165工业机器人电磁兼容设计规范2017-05-11166工业机器人机器视觉集成技术条件2017-05-11167工业机器人柔性控制通用技术要求2017-05-11168多极磁性橡胶编码器2017-05-11169蓝光防护膜的光健康与光安全应用技术要求2017-05-11170CT自供电保护装置技术规范2017-05-11171基于PLC技术的变压器冷却回路控制装置技术要求2017-05-11172智能变电站光纤回路建模及编码技术规范2017-05-11173生物基材料定义、术语和标识2017-05-11174显控界面工效学用户测评技术指南2017-05-11175信息技术手势交互系统第1部分:技术要求2017-05-11176磷尾矿处理处置技术规范2017-05-11177湿法磷酸及磷肥生产中氟硅酸废液处理处置方法2017-05-11178农业社会化服务农资销售服务通则2017-05-11179不透性石墨设备腐蚀控制工程全生命周期要求2017-05-11180聚乙烯(PE)埋地燃气管道腐蚀控制工程全生命周期要求2017-05-11181耐蚀涂层腐蚀控制工程全生命周期要求2017-05-11182火电厂腐蚀控制工程全生命周期要求2017-05-11183海洋工程装备腐蚀控制工程全生命周期要求2017-05-11184热塑性弹性体预混料牌号规范2017-05-11185物联网感知控制设备接入第1部分:总体要求2017-05-11186信息技术系统间远程通信和信息交换高可靠低成本设备间媒体访问控制和物理层规范2017-05-11187信息技术手势交互系统第2部分:系统接口2017-05-11188信息技术虚拟现实头戴式显示设备通用规范2017-05-11189系统与软件工程接口和数据交换第1部分:企业资源规划系统与制造执行系统的接口规范2017-05-11190系统与软件工程软件测试组合测试方法2017-05-11191信息物理系统术语和概述2017-05-11192信息物理系统参考体系结构2017-05-11193供排水系统防雷技术规范2017-05-11194城市内涝风险普查技术规范2017-05-11195轮胎中禁用物质及限用物质的限量要求2017-05-11196农村生活有机废弃物堆肥技术标准2017-05-11197低影响开发雨水控制利用设施分类2017-05-11198低影响开发雨水控制利用设施运行与维护规范2017-05-11199农村产权流转交易林权交易服务规范2017-05-11200农业生产资料供应服务农资配送服务质量要求2017-05-11201农业社会化服务农机维修养护服务规范2017-05-11202农机社会化服务术语2017-05-11203取水定额第X部分:氨纶2017-05-11204取水定额第X部分:再生化学纤维(涤纶)2017-05-11205节水型企业化纤长丝织造行业2017-05-11206取水定额第× 部分酵母制造2017-05-11207取水定额第X部分:多晶硅生产2017-05-11208钢铁行业节水量计算方法2017-05-11209农村产权流转交易信息平台建设与维护2017-05-11210农村产权流转交易服务通则2017-05-112114,4′-二氨基二苯乙烯-2,2′-二磺酸(DSD酸)2017-05-11212信息技术系统间远程通信和信息交换低功耗广域网媒体访问控制层和物理层规范2017-05-11213纤维增强树脂基复合材料计算机断层成像(CT)检测方法2017-05-11214复合材料超声C扫描成像检测方法2017-05-11215定向纤维增强聚合物基复合材料超低温度拉伸性能试验方法2017-05-11216国民经济行业分类2017-05-11217消毒剂安全性毒理学评价程序和方法2017-05-11218消毒产品标签说明书通用要求2017-05-11219消毒剂实验室杀菌效果检验方法2017-05-11220消毒剂良好生产规范2017-05-11221食品中放射性核素行动水平2017-05-11关于对2017年第二批拟立项国家标准项目征求意见的通知  各有关单位:  经研究,国家标准委决定对2017年第二批拟立项国家标准项目公开征求意见,请登录国家标准委网站的计划公示网页http://ballot.sacinfo.org.cn:8080/stdpub/index?bId=661,查询项目信息和反馈意见建议。征求意见截止时间为2017年5月11日。  2017年4月24日
  • 生态环境部发布两项ODS测定标准 采用气质联用仪
    p  生态环境部发布两项测定消耗臭氧层物质(简称“ODS”)的测定标准,采用的仪器分别为气质联用仪和便携式气质。两项标准于2019年10月31日开始实施。/pp  一、img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201911/attachment/56864efc-9456-4dc3-9144-dc4ad66b88ed.pdf" title="组合聚醚中 HCFC-22、CFC-11 和 HCFC-141b 等消 耗臭氧层物质的测定 顶空 气相色谱-质谱法(HJ 1057-2019).pdf" style="font-size: 12px color: rgb(0, 102, 204) "组合聚醚中 HCFC-22、CFC-11 和 HCFC-141b 等消 耗臭氧层物质的测定 顶空/气相色谱-质谱法(HJ 1057-2019).pdf/a/pp  本标准规定了测定组合聚醚中二氟一氯甲烷(HCFC-22)、一氟三氯甲烷(CFC-11)和一氟二氯乙烷(HCFC-141b)等消耗臭氧层物质的顶空/气相色谱-质谱法。/pp  本标准适用于组合聚醚中HCFC-22、CFC-11和HCFC-141b等消耗臭氧层物质的测定。/pp  当取样量为1g时,本标准测定HCFC-22、CFC-11和HCFC-141b的方法检出限均为0.2μg/g,测定下限均为0.8μg/g。/pp  二、img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201911/attachment/5896492a-1332-4e04-a522-afffcf63c3c6.pdf" title="硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b 等消耗臭氧层物质的测定 便携式顶空 气相色谱-质谱法(HJ 1058-2019).pdf" style="font-size: 12px color: rgb(0, 102, 204) "硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b 等消耗臭氧层物质的测定 便携式顶空/气相色谱-质谱法(HJ 1058-2019).pdf/a/pp  本标准规定了测定硬质聚氨酯泡沫和组合聚醚中二氟二氯甲烷(CFC-12)、二氟一氯甲烷(HCFC-22)、一氟三氯甲烷(CFC-11)和一氟二氯乙烷(HCFC-141b)等消耗臭氧层物质的便携式顶空/气相色谱-质谱法。/pp  本标准适用于硬质聚氨酯泡沫和组合聚醚中CFC-12、HCFC-22、CFC-11和HCFC-141b的定性检测。/pp  当以硬质聚氨酯泡沫为检测对象时,在本标准规定的条件下,CFC-12、HCFC-22、CFC-11和HCFC-141b的方法检出限分布为2μg、2μg、2μg和0.6μg。/pp  当以组合聚醚为检测对象时,在本标准规定的条件下,CFC-12、HCFC-22、CFC-11和HCFC-141b的方法检出限分布为3μg、2μg、2μg和0.9μg。/p
  • 【标准解读】轻质油品中氯含量的测定 单波长色散X射线荧光光谱法
    X射线荧光光谱法是一个非常成熟的检测技术,它的原理是样品在X射线照射下产生元素特征X射线荧光,通过建立标准曲线来确定样品中元素浓度与强度的关系,在相同条件下测量未知样品,就可以得到样品的组成信息。XRF的优点是样品不需要前处理,分析速度快,可实现多元素的同时测量,但也有个缺点就是它的基体干扰严重。XRF在石化行业液体样品中测定方法的汇总NB/SH/T 0977-2019《轻质油品中氯含量的测定 单波长色散X射线荧光光谱法》标准规定了采用单波长色散X射线荧光光谱法(MWDXRF)测定轻质油品中氯含量的方法。本标准适用于汽油、柴油、石脑油、喷气燃料及馏分油等,也可用于测定氧质量分数小于5%的含氧汽油及生物柴油调和燃料。单色X射线激发去掉背景过程,简化基体校正,信噪比夜有所改善。氯含量测定范围为4.2mg/kg~430 mg/kg。另外与本标准中方法相同的标准还有NB/SH/T 0842-2017和NB/SH/T 0993-2019,分别是检测轻质液体燃料中硫的含量和汽油及相关产品中硅的含量。制定背景石油炼制过程中,油品中氯的存在会造成催化剂中毒;加工过程当中,氯的存在可能造成装置腐蚀,压缩机堵塞等;成品油使用过程中,氯的存在会造成储罐腐蚀、发动机磨损等。GB 17930-2016《车用汽油》规定,车用汽油中不得人为加入甲缩醛、苯胺类、卤素以及含磷、含硅等化合物,于是就需要一种快速、准确、灵敏的检测油品中氯含量的方法。现状分析国内外检测氯含量的标准方法方法1-5方法6-9检测样品含氯化合物转化为氯离子直接检测氯元素优点检测限较低无需前处理,操作简单方便缺点前处理复杂,使用大量试剂检测限较高制定过程标准在编制过程中主要参考了标准ASTM D7536-16,但又与有以下区别:1.适用范围从有芳烃类化合物扩大为轻质油品,包括汽油、柴油、石脑油、喷气燃料及馏分油等2.测定范围由0.7 mg/kg ~10.0 mg/kg变成了4.2 mg/kg~430 mg/kg3.按照GB/T 6683 给出了此方法的精密度公式4.增加了元素干扰适用范围参考以下标准,并结合精密度实验确定方法的适用范围。参考标准样品特点ASTM D7536芳烃类样品组成单一、馏分较窄,同时标样与样品的组成基本一致检出限为0.2 mg/kgASTM D7039轻质油品馏分较宽,样品组成相对复杂,杂原子较多,且标样与样品的组成并不完全一致测定下限为3.2mg/kgASTM D5808当氯含量小于5mg/kg时,优先选用库仑法(精密度更高)检测下限为0.5mg/kg采用XOS公司CLORA型号仪器在7个实验室对17个不同的样品(包括石脑油、汽油、馏分油、喷气燃料、柴油以及煤油)进行精密度实验,最终确定了测定范围是4.2 mg/kg -430 mg/kg,再分别对重复性和再现性进行测试,测试结果都在允差范围内。对不同类型的样品进行测定,回收率均在±10%以内;还与微库仑法进行了比对,相对偏差也在±10%以内。标准NB/SH/T 0977-2019主要内容仪器设备:分为MWDXRF、样品盒和样品膜。单波长色散X射线荧光光谱仪,包括 a)X射线源;b)入射光单色器;c) 光路;d) 固定道单色器;e)探测器。另外,样品盒建议一次性使用。要特别注意的是:建立标准曲线和测定样品时应在相同条件下进行。校准过程:建立标准曲线用工作溶液浓度应能涵盖待测试样的浓度,于是需要制定了高含量与低含量两条曲线。 试验过程:1.将试样从样品盒开口端倒入盒中,一般装入量为样品盒的3/4高度处,最小为5mm高度。2.将新的样品膜盖在样品盒开口端,并固定牢固。装好后要确保样品盒中的试样不渗漏,如有任何情况的渗漏均需重新制备样品。3.分析试样和用来建立校准曲线的标准工作溶液应使用相同批次的样品膜和样品盒。测定每一个样品都要使用新的样品膜,样品膜要绷紧,保证膜上没有气泡、褶皱,且保持干净,避免用手接触样品盒内壁、样品膜及仪器的X射线透光窗。4.试样倒入样品盒并用样品膜封好后,在样品盒上开一个小气孔以防止样品挥发造成样品膜弯曲。5.试样装入样品盒后,需立即分析。试样在样品盒中的存放时间越短越好。6.按照建立校准曲线的条件测定试样,得到试样氯荧光强度的总计数。用总计数值除以总计数时间,得到试样的Rs。元素干扰的考察:氧含量超过5%,干扰严重硫含量小于1%,无明显干扰氮含量小于2000mg/kg,没有明显干扰(作者:中国石化石油化工科学研究院 范艳璇工程师)
  • 如何对气相分子吸收光谱仪检出限进行测定
    如何对气相分子吸收光谱仪检出限进行测定1. 检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。 检出限除了与分析中所用试剂和水的空白有关外,还与气相分子吸收光谱仪的稳定性及噪声水平有关。在气相分子吸收光谱仪灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。则: D = 2N / S式中:N---噪声(mV或A);S---检测器灵敏度;D---检出限,其单位随S不同也有三种:Dg=2N / Sg,单位为mg/mlDv=2N / Sv,单位为ml/mlDt=2N / St,单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。他是分析方法的一个综合性的重要计量参数。2.检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。这里的零浓度样品是不含待测物质的样品。D.L = 4.6σ 式中:σ — 空白平行测定(批内)标准偏差(重复测定20次以上)。 2)国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。算出空白观测值的平均值Xb和标准偏差Sb。在一定置信概率下,被检出的最小测量值XL以下式确定: X L= Xb+ K’ Sb式中:Xb—— 空白多次测得信号的平均值; Sb—— 空白多次测得信息的标准偏差; K’ —— 根据一定置信水平确定的系数。 与XL-Xb(即K’ Sb)相应的浓度或量即为检出限:D.L = X L- Xb/ K = k’ Sb/ K式中:k——方法的灵敏度(即校准曲线的斜率)。 为了评估Xb和Sb,实验次数必须至少20次。1975年,IUPAC建议对光谱化学分析法取k’=3。由于低浓度水平的测量误差可能不遵从正态分布,且空白的测定次数有限,因而与k’=3相应的置信水平大约为90%。此外,尚有将 K’取为4、4.6、5及6的建议。3)美国EPASW-846中规定方法检出限:MDL=3.143δ (δ 重复测定7次)4)在某些分光光度法中,以扣除空白值后的与0.01吸光度相对应的浓度值为检出限。5)气相色谱分析的最小检测量系指检测器恰能产生与噪声相区别的响应信号时所需进入色谱柱的物质的最小量,一般认为恰能辨别的响应信号,最小应为噪声的两倍。 最小检测浓度系指最小检测量与进样量(体积)之比。6)某些离子选择电极法规定:当校准曲线的直线部分外延的延长线与通过空白电位且平行于浓度轴的直线相交时,其交点所对应的浓度值及为该离子选择电极法的检出限。光度分析中,虽然吸光度最小测读值为0.001,灵敏度也以A=0.001所相应的被测物浓度表示,但实际上惯常以A=0.05相应的被测物浓度作为有充分置信度的测定限,即最小能够可靠测定的浓度。这是因为,在吸光度A接近零的情况下,测定值与真实值之比即相对误差趋向无限大。 其次,由于比色皿的成对性不易做到完全匹配,尤其是使用已久的比色皿的成对性不易保证,因此吸光度很小的测量值在不同操作者、不同试验室之间常会不一致,除非操作者很有经验,十分注意比色皿成对性对测量的影响,并在每次测量时予以试验校正。 转载内容如涉及版权问题,请版权所有者及时通知我们,我们会尽快删除相关内容。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制