当前位置: 仪器信息网 > 行业主题 > >

超微量蛋白核酸分析仪

仪器信息网超微量蛋白核酸分析仪专题为您提供2024年最新超微量蛋白核酸分析仪价格报价、厂家品牌的相关信息, 包括超微量蛋白核酸分析仪参数、型号等,不管是国产,还是进口品牌的超微量蛋白核酸分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超微量蛋白核酸分析仪相关的耗材配件、试剂标物,还有超微量蛋白核酸分析仪相关的最新资讯、资料,以及超微量蛋白核酸分析仪相关的解决方案。

超微量蛋白核酸分析仪相关的论坛

  • 【原创】微量核酸蛋白定量的最新技术结晶 – NanoVue

    随着常规分子生物学研究的深入,越来越多的生物实验室日常需要测量的核酸、蛋白样品量也在不断地加大。传统的分光光度计虽然已经非常普及,但由于需要在测量后清洗比色杯,实际上消耗了不少宝贵的研究时间。同时,由于核酸样品的体积较小,即使使用昂贵的微量石英比色杯(容积数十ul左右),也往往需要对原始样品进行稀释,从而带来可能的操作偏差。对于一些稀有的样品来说,稀释即意味着测量后无法回收,同样也会对后续研究带来更高成本。因此,无需比色杯,仅需数ul即可测定样品浓度的超微量分光光度计现在受到很多实验室的关注和欢迎。NanoVue是GE Healthcare公司于2008年最新推出超微量分光光度计。GE Healthcare公司的分光光度计品牌Ultrospec和GeneQuant在市场上已经有了十多年的历史,在用户中有着很好的信誉和口碑。NanoVue在该系列仪器的基础上延续了出众的检测性能,同时大大改进了检测的光路设计,通过专利的检测技术使检测样品的体积最小仅需0.5ul, 190-1100nm的宽范围连续波长设计较市场上同类仪器宽了一倍左右,使得能够轻松检测核酸、蛋白样品和Cydye荧光染料标记物的浓度。仪器内置了RNA、DNA 和寡核苷酸浓度和纯度测定方法;寡核苷酸转换因子,分子量,理论Tm计算功能;包括一般紫外、Bradford、 Biuret、BCA、Lowry的蛋白定量法;以及波长扫描,动力学,标准曲线,多波长测定等扩展功能。除了强大的检测性能外,NanoVue还在许多操作性能上进行了精心的设计,能够给用户带来众多全新的体验,主要包括以下方面:1 唯一不需电脑就能在仪器面板上直接检测的超微量分光光度计。仪器配置了一块大面积高分辨率的背光液晶屏和操作面板。相对于点样后转去电脑控制,再回去仪器清洁的过程,NanoVue不仅节省了购买电脑的支出,同时点样,按键测量,擦拭一气呵成。可以通过整合的打印机直接打印分析数据。当然,如果需要在电脑上保存分析数据,NanoVue同样支持USB或蓝牙连接电脑,将珍贵的实验数据永久记录下来。2 通过特别设计的疏水点样表面,能够很容易回收稀有的样品,并且有效避免多个测量间的样品交叉污染,提高测量的准确性。NanoVue的点样表面具有专利设计,表面坚固而且光滑。不管是样品回收还是测量完直接擦去都非常简易,不会有任何样品粘附残留在点样面上。而且点样面耐用性也非常出众,保守估计可以至少测量20000个样品以上。3 最快的检测速度。NanoVue通过独特的光路设计,使得所有样品的检测都能够在5秒钟之内完成,把微量分光光度计的测量时间提升到了一个新的高度。而且NanoVue具备即开即用功能,避免了许多分光光度计开机需要预热的麻烦,真正做到省时省力。由此可见,NanoVue不仅性能出众,其易用性和灵活性也是目前超微量分光光度计中出类拔萃的。通过试用NanoVue的体验,使用者可以完全感受到,原来,核酸蛋白的测定可以这么简单,这么快速!目前,NanoVue已经正式在中国推出,欲了解更多的信息,请直接联系GE公司。

  • 尿微量蛋白(尿微量白蛋白/蛋白尿)试验

    尿微量蛋白(尿微量白蛋白/蛋白尿)试验(也称“白蛋白试验”,“尿微量白蛋白”和“蛋白尿”试验)何为尿微量白蛋白(白蛋白)试验?尿微量白蛋白试验是对尿液中的蛋白质进行测定的筛选试验。人体血液中有一种蛋白质称为白蛋白。在正常情况下,几乎无法在尿液中检测到。只有在肾脏受损,尤其是损伤早期,它可以优先于其他肾损伤标志物在尿液中被检测出,因此,尿微量白蛋白在诊断肾脏疾病、早期肾损伤等方面具有重要意义。此项试验有何目的?蛋白质是人体的基本构成“材料”,具备一些重要的功能和作用,可结合营养物质将其运输至各个组织,,并将人体中循环的体液量维持在适当水平。肾脏功能正常时,蛋白质几乎无法通过肾脏进入尿液(仅会排出血液循环产生的废料)。然而,如果人的肾功能受损或衰竭,该肾脏对蛋白质的过滤能力将有所下降,因而一些蛋白质将会透过肾脏而出现在尿液中,称为尿微量蛋白。尿微量白蛋白与蛋白尿有何不同?白蛋白是一种大量存在于血液中的典型蛋白质。因其分子个头小,当肾脏功能出现问题时,白蛋白是能够率先通过肾脏进入尿液的几种蛋白质之一。尿液中出现少量白蛋白的情况称为尿微量白蛋白。若肾脏功能受损严重,尿液中的白蛋白数量呈现出增长趋势,这种症状被改称为蛋白尿。尿微量白蛋白/蛋白尿有何症状?病症早期,并无明显症状或征兆显现。随着肾功能衰竭的加重,大量蛋白质出现在尿液中,手脚、腹部和面部可能出现肿胀。如果蛋白尿的情况加重,可能会造成永久性肾功能损伤,有些病人可能需要做透析或肾移植。不论上述症状是否存在,尿蛋白测定是确定有多少蛋白质进入尿液的唯一办法。蛋白尿还可能引发心血管疾病。血管受损除了会引发肾脏疾病外,还可能会造成窒息和心力衰竭。患蛋白尿(症)的高危人群有哪些?患有糖尿病、高血压、心血管疾病和其他类型肾脏疾病等慢性病的病人易出现蛋白尿。老年人、肥胖人群以及有肾脏疾病家族史的人群。其

  • 超微量紫外分光光度及吸光度不准确如何处理?

    各位好!有个问题想请教大家:具体情况如下:配制60mg/L 重铬酸钾溶液,用岛津UV2450(普通紫外分光光度计)测量235nm、257nm、313nm、350nm出的吸光值,然后计算吸光系数,结果符合药典要求。现在有一台超微量紫外分光光度计,加样量2ul左右,测试的吸光度比岛津偏低,计算出来的吸光系数自然就比药典要求低!现在有问题:1、超微量紫外分光光度计是否能够用重铬酸钾溶液衡量吸光准确度?2、是所有的紫外分光光度计(无论普通还是微量),只要在量程范围内,测试同一物质吸光度是否都要一致?个人理解是需要保持一致!3、超微量紫外分光光度计通常用于核酸和蛋白浓度测量,如果重铬酸钾吸光系数不准确,是否影响核酸和蛋白的测量结果?4、如何评价超微量紫外分光光度计的性能?5、测量蛋白溶液的浓度CV很好,但是测量重铬酸钾的吸光值总在变化(不同时间测试变化较大,偏差可大于5%),又是什么原因?虽然对于上面的问题,我认为只要是紫外分光光度计,原理一致,那么在量程内就应该保证结果一致!现在想听听大家的意见和看法!

  • 核酸蛋白检测仪应用和原理

    核酸蛋白检测仪是层析分析的主要装置,核酸蛋白检测仪配上层析柱、恒流泵、部分收集器、层析谱分析系统(根据需要选配)和电脑打印设备即构成一套完整的核酸蛋白检测仪分离层析系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。核酸蛋白检测仪分析系统广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。在生化分析、环保科学、食品研究、毒理研究、新药开发等领域中对核酸、蛋白检测、纯化和提取提供了一种独特的分析手段。

  • 牛奶蛋白质分析仪可以用于检测乳蛋白制品嘛

    牛奶蛋白质分析仪可以用于检测乳蛋白制品。以下是详细解释和相关信息:  功能与应用:牛奶蛋白质分析仪是一种专门用于分析牛奶及其制品中蛋白质含量的仪器。它基于先进的生化分析技术,如比色法、光谱法或电化学法等,能够准确、快速地检测样品中的蛋白质含量。  乳蛋白制品的检测:乳蛋白制品,如奶粉、酸奶、奶酪等,其蛋白质含量是产品质量和营养价值的重要指标。牛奶蛋白质分析仪可以有效地检测这些乳蛋白制品中的蛋白质含量,为生产厂家提供准确的质量控制手段。  优点与特点:  准确性高:牛奶蛋白质分析仪具有高灵敏度和高准确性,能够确保测量结果的可靠性。  快速便捷:该仪器操作简单,使用方便,可以快速得出测量结果,提高检测效率。  适用范围广:除了牛奶及其制品外,还可以用于其他含蛋白质样品的检测,如豆类制品、肉制品等。  在乳品工业中的重要性:随着乳品市场的不断扩大和消费者对乳制品质量要求的提高,牛奶蛋白质分析仪在乳品工业中的重要性日益凸显。它可以帮助乳品企业提高产品质量、降低生产成本,同时为消费者提供更加安全、健康的乳制品。  综上所述,牛奶蛋白质分析仪是一种功能强大、应用广泛的检测仪器,完全可以用于检测乳蛋白制品中的蛋白质含量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405271615421543_8284_6238082_3.jpg!w690x690.jpg[/img]

  • 【讨论】大家来讨论下这几台仪器--超微量分光光度计

    【讨论】大家来讨论下这几台仪器--超微量分光光度计

    超微量分光光度计的新选择 检测核酸或者蛋白样品浓度是最常用的实验操作之一,传统比色皿体积大,需要稀释较多样品,造成珍贵的核酸蛋白样品浪费,而且还要反复清洗比色皿,甚烦。好在有超微量分光光度计的出现。早在2004年生物通就已经大力推荐过基因有限公司引进的NanoDrop微量分光光度计,这种技术利用微量液体张力牵引形成光通路,从而替代比色皿,极具创新性和实用性,并得到2004年年度产品仪器类的创新大奖。(点此链接:Nanodrop:只要1微升就可以检测核酸/蛋白浓度 )这种首创无需比色皿稀释,只要1ul样品溶液即可直接检测核酸/蛋白/或者细胞浓度的新型分光光度计很快在国内科研用户中得到非常热烈的认同。 并非仅仅是个概念。Nanodrop ND-1000的高吸收光检测能力相当50倍于传统分光光度计,使得多数样本不需要稀释即可进行全光谱(220nm-750nm)检测,无需消耗品,即插即用无需预热,操作极为方便。可以进行核酸定量和纯度检测,蛋白A280检测,Bradford检测,蛋白BCA检测,细胞浊度检测等多种紫外/可见光检测。Nanodrop ND-1000令NanoDrop公司声名大振而迅速确立来其在超微量分光光度计市场的领导地位。 但是对于高通量实验,不说384孔,就是96孔,这么一个一个的加样-检测-清洁下来,不累死也要头晕眼花的。因此,顺应这种需求,NanoDrop公司又推出了NanoDrop ND-8000,可一次同时检测1-8个样本,使得检测速度立刻提升8倍----用8道排枪,只要6分钟可以检测96个样品,而且体积非常紧凑----差不多A4纸大小(32x24cm)。设想看检测96孔样品的浓度----可以节省多少样品,节省多少时间和清洗比色皿的精力阿!新技术真是令人喝彩! Nanodrop延续这个设计理念到荧光信号检测,推出了ND-3300荧光分光光度计。这个体积只有一本字典大小(20x14x12cm)的仪器却拥有强大的功能----3组LED(UV365,蓝光470和白光500-650)覆盖400-750nm全光谱荧光分析,不需更换滤光片,不论是自行研发或市售荧光染剂都可使用,如 PicoGreen、RiboGreen、Hoechst、FITC、Cy3-Alexa555、Cy5-Alexa647, quantum dots等等。只要1.5-2ul样本量,不需比色皿或者毛细管,无需稀释样品,检测发射光峰值波长的荧光强度和±20nm相对荧光输出,通过标准曲线定量。荧光范围可达10的5次方(0.1nmM-1000nM),采用2048像素CCD检测,内置滤光片去除395nm以下光波干扰,由于使用三组LED冷光源代替传统高能耗光源,NanoDrop ND-3300能耗超低----只需要电脑的USB接口供电,根本无需外置电源! NanoDrop ND-3300并不能完全替代传统扫描荧光分光光度计,也不适合检测浓度特别低的样品,其检测浓度下限是1pg/ul,不如酶标仪和传统荧光分光光度计。但是NanoDrop ND-3300能检测样品物质量却实在比酶标仪和传统荧光分光光度计小的多----以PicoGreen为例,ND-3300可以检测少至2pg的DNA样品(2ul,1ug/ul),酶标仪/读板机检测下限50pgDNA样品(浓度读数下限以0.25pg/ul为例);传统分光光度计下限则是25pgDNA样品(浓度读数下限0.025pg/ul为例)。所以生物通特别提示你注意“检测浓度”和“检测物质量”是不同的概念哦。 NanoDrop在快速超微量样品吸收光/荧光检测领域带来的令人耳目一新的变革,新技术可令每个研究人员直接感受到技术进步的愉悦,好用是很好用,这3台仪器价格不菲。2007年10月赛默飞世尔(Thermofisher)宣布收购Nanodrop公司,并将其产品收归Thermofisher旗下。 现在我们又多了一个新选择----GE Healthcare公司最新推出都NanoVue超微量分光光度计!这是一款非常容易操作的微量分光光度计,可以用来精确检测核酸、蛋白和细菌培养液的浓度。只要0.5-5l的样品加在一种全新设计的样品板上检测即可直接得到结果。由于全新的疏水点样表面使得样品检测完之后还可以用Tips直接回收样品,如果不需要当然也可以简单擦拭彻底清洁样品板,减少样品间交叉污染。检测时间5秒之内即可完成读数、出峰识别和检测峰确认。检测波长范围200nm-1100nm。核酸扫描的可视化功能使得可以检测样品中杂质的存在,对于RNA样品测定非常有用。Press-to-Read功能使得按下检测键后才打开光源检测,减少光源工作时间延长光源使用寿命。整体光学结构为固定化设计,避免搬动造成光路偏移。 NanoVue的设计上内置了很多功能,方便使用者的工作----既然要简化操作,当然是越方便越好!比如,仪器内置寡核苷酸引物的分析方法,只要键入66碱基以下的寡核苷酸序列即可计算获得转换因子(ug/ml),分子量理论吸光度(AU/umol)和理论Tm值。内置多种蛋白定量检测方法,包括Bradford, BCA, Lowry, Biuret和直接紫外法,最多可支持27个标准样品制作标准曲线并可以保存。此外,仪器可以自动测定所需光径也可手动调教以满足特殊要求。可以单点校正或者多点校正、自选波长测定目标样品浓度。大面积高分辨率液晶屏上可显示所有结果,包括标准曲线波长扫描图像,处处体现方便用户的宗旨。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903121121_138121_1631196_3.jpg[/img]

  • 【求助】微量定氮仪测蛋白数据不平行

    请各位高手发表一下看法:我用凯式微量定氮仪测蛋白,同一瓶消化液,容量瓶内的消化液已经应该均匀了,我都摇晃6次的,但在同一个时间段里测两个数据,结果不平行,请问是为什么啊?这种现象已经出现了100多次了,以前没这种情况的。最近一直为这个问题烦恼啊

  • 微量氮分析仪怎么校准

    各位老师, 现在有一台微量氮分析仪,是分析氩气中氮含量的,想请教一下有什么规范进行校准呢?

  • 关于用半微量蒸馏装置做蛋白空白的问题

    请教各位,我们在用半微量蒸馏装置做蛋白空白时需要半个多小时硼酸才变绿,这样对蛋白的结果有影响吗?而且我们做的结果要比别的公司做的结果偏低,也不知道是什么原因,请各位赐教一下,在此先谢了

  • 【分享】ZHD型紫外蛋白核酸检测仪使用说明

    ZHD型紫外蛋白核酸检测仪使用说明 一、系统简介 蛋白核酸检测仪是层析分析的主要装置,配上层析柱、恒流泵、部分收集器(根据需要选配)和电脑打印设备即构成一套完整的液相色谱分离系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。然而,目前国内生产的蛋白检测仪虽然种类繁多,但均采用记录仪描谱且预热时间较长。 ZHD型紫外蛋白核酸检测仪的研制成功,为科研和实验人员利用电脑系统实现核酸蛋白检测和分析提供了一种先进的手段,其特点是系统稳定、操作简便、电脑显示谱图、数据分析和打印谱图。 二、系统特点 本系列检测仪有别于其他检测仪,主要有以下特点: 1、预热时间短,一般做实验只要预热10分钟左右。 2、稳定性高,预热后每小时漂移一般小于0.001。 3、操作简洁,开机后仪器自动调整透光率(T)到100%,吸光度(A)调整到0.000。 4、透光率(T)和吸光度(A)对应准确,点两者误差小于1%。 5、双数据显示,仪器适时显示吸光度(A)和透光率(T)。 6、仪器带有电脑接口和记录仪接口(吸光度0—200mv)。 7、工作软件提供谱图采集、分析计算、保存、打印等功能,可将谱图插入文档(word)文件中。 8、一台电脑可配多台检测仪(由电脑有效端口数决定)。 三、 技术性能 1、通过测量选择菜单,在电脑屏幕上可描出吸光度(A)谱图,透过率(T%)谱图以及A-T%谱图。 2、通过图形平移、复读伸缩和压缩选择等菜单,可对谱图并进行幅度、宽度调整和谱图参数计算,预览满意后打印输出。 3、在描谱过程中,电脑会自动将图形左移(也可人工调整),电脑描谱最长时间为20小时。 4、采集数据自动保存。 四、主要参数: 1、波长:254nm,280nm(可根据用户需要调配)。 2、样品池100ul,光程3mm。 3、量程:吸光度(A):0--2.000 透光率(T):1%—100%。 4、分辩率:吸光度(A):0.001 透光率(T):0.1%。 5、电脑分析参数:峰高、峰宽、峰面积、峰面积比、保留时间、面积含量(归一化)、层析柱分辩率等。 6、电源220V±10%,50HZ。 7、主机重量:约3.5Kg。 五、系统安装与操作步骤 1、将仪器背板上的输出端通过一根串行口连接电缆与电脑主机的COM1或COM2串行口相连。 2、打开紫外蛋白核酸检测仪电源,仪器预热10分钟左右。 3、打开电脑后,将应用软件(ZHD.exe)复制到硬盘上。钦一下仪器面板上的复位按钮,待仪器显示0.000A和100%T后,双击ZHD.exe启动应用软件,系统进入采集(分析)状态。 4、在“测量选择”菜单下,用鼠标选择检测项目。 5、在“检测操作”菜单下点击“测量开始”,电脑开始采集。 6、要停止采集,点击“检测操作”下的“测量结束”菜单,然后关闭紫外蛋白酸检检测仪。 六、层析普工作站软件使用 1、 对硬件的基本要求: a、电脑在简体中文Windowsxp操作系统上运行; b、显示器分辩率为1024*768,小字体,256色配置; c、图形打印机; d、电脑系统必须正常工作,并保证串行口(COM2或COM1)有效; 2、系统连接无误后先让检测仪工作,再执行应用软件ZHD.exe; 3、 点击文件操作菜单下的“打开谱图”,出现文件操作对话框,打开随机盘上的数据文件(.ran),图形被打开,熟悉菜单操作。菜单介绍如下: a、“文件操作”菜单下有打开谱图、保存谱图、打印谱图、打印预览等; b、“检测操作”菜单下有测量开始、测量结束(测量结束后,系统在应用程序目录下生成“文件名.TXT”文件,此格式文件可在Excel软件中打开,并可转贴到Word文档中使用); c、“灵敏度选择”菜单下有A、T%、A-T%选项; d、“谱图平移”菜单后有向左慢移动 []和向右快移动[]; e、“谱图重绘”菜单:从起始点描谱;清理屏幕;释放压缩; f、“谱图全貌”菜单:在屏幕上观察全部谱图。 g、“参数选择”菜单:可对谱图进行参数分析计算。方法如下:在吸光度状态下,点击鼠标左键选取基线及时间范围(第一次点击选取第一点,第二次点击选取第二点),点击“选择参数”下拉菜单的峰高、标准差、半峰宽、峰底宽、峰面积、峰面积比、面积含量及保留时间等参数进行计算,还可间接计算出层析柱分辨率;双击鼠标左键,即可取消本次计算。 h、在吸光度(A)或透光率(T%)状态下,单击鼠标右键,屏幕显示该鼠标点的数值;双击鼠标右健,擦除屏幕显示数值。 七、注意事项: a、 更改波长方法:打开样品池挡板后,可见到滤光片的燕尾型支架和印字(245或280代表当前所使用的波长),用手将其轻轻抽出,换向后插入原位,再将样品池挡板装上,拧紧固定螺钉即可。 b、 在检测仪和电脑正常工作后才能运行应用软件; c、 应用软件执行后,十秒钟后不出现采集分析界面,说明电脑未收到数据,需检查系统连接是否正常; d、 在A—T%描谱过程中,开始1小时内,T%谱以实蓝线表示;1小时后(或点击“图形重绘” ),已描过的T%谱会以虚蓝线表示; e、 测量开始后(特别是出峰以后)不要按复位按钮。 f、 要停止采集,请点击“测量结束”后,先点击“EXIT”,再关闭检测仪。 g、 开始测量时,屏幕会弹出保存文件对话框,要求输入数据文件名及存放路径;之后,电脑自动保存数据。 I、基线选取要保证基线与所选峰必须要有两个焦点,并与其他峰无焦点。

  • 超微量分光光度计的简易操作

    超微量分光光度计是一种用于测量样品在特定波长下吸光度的仪器,通常用于生物化学分析、核酸和蛋白质浓度测定等。以下是超微量分光光度计的简易操作步骤: 超微量分光光度计的操作步骤 准备工作 确保仪器处于开机状态,预热时间通常为15-30分钟。 检查光源是否正常工作,确保没有故障指示灯亮起。 校准仪器 使用空白溶液(通常是缓冲液或水)进行零点校准。 将空白样品放置在测量平台上,按下“校准”或“零点”按钮,完成校准。 准备样品 准备待测样品,通常使用微量样品(如1-2μL)。 确保样品均匀且无气泡,以免影响测量结果。 样品测量 将样品滴加到测量池中,确保填充均匀。 合上测量池的盖子,避免外界光线干扰。 按下“测量”按钮,读取吸光度值。 记录数据 记录测量结果,包括吸光度和对应的波长。 根据需要,可以进行多次测量以确保数据的可靠性。 清洁仪器 测量完成后,及时用适当的溶剂清洁测量池,避免交叉污染。 关闭仪器并妥善存放。 注意事项 在操作过程中,确保双手干燥,避免样品污染。 使用的样品和溶剂应与仪器材料兼容,防止腐蚀或损坏。 定期对仪器进行维护和校准,以保持测量精度。 通过以上步骤,你可以顺利地使用超微量分光光度计进行样品分析。

  • 【分享】生物质谱在糖蛋白结构分析中的应用

    【分享】生物质谱在糖蛋白结构分析中的应用

    生物质谱在糖蛋白结构分析中的应用项目完成人:桑志红 蔡 耘项目完成单位:国家生物医学分析中心 随着人们对糖蛋白参与生命活动机理的日益深入了解,对天然糖蛋白及重组糖蛋白类药物的分析越来越受到重视。重组糖蛋白类药物的质量控制更是直接关系到药物的疗效及至人类的健康。九十年代以来,随着带有反射功能的基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF-MS)和纳升电喷雾串联质谱(nano-ESI-Q-TOF)等具有软电离方式的现代质谱 技术的发展,质谱以其高灵敏度和强有力的分析混合物的能力,提供了生物大分子的分子量、序列、一级结构信息以及结构转换、修饰等方面的信息,使糖基化分析有了重要的进展。 通常研究糖蛋白的方法是把蛋白链上的寡糖切下来,分别研究蛋白部分和寡糖部分的结构,因此无法研究与两部分共同相关的结构问题,也不能区分不同糖基化位点上切下来的寡糖。自90年代初,国外有人开始用质谱法研究糖蛋白的结构,同时描述了各个位点的不均一性。我们用建立的现代生物质谱技术研究糖蛋白一级结构的方法,将其应用与基因重组糖蛋白的结构分析。为糖蛋白结构分析及基因重组糖蛋白类药物的质量控制提供新的手段。一、 生物质谱研究糖蛋白结构方法的建立实验所用仪器为:1.德国BRUKER 公司的REFLEXIII型基质辅助激光解吸附电离飞行时间质谱仪,N2激光器,波长337nm,线性飞行距离150cm,加速电压2kv。2.英国Micromass 公司Q-TOF型电喷雾串联质谱仪。源温80°C,气体流速40L/h,枪头电压650V,检测频率2.4S,氩气碰撞池压力6*10-5mbar。1. 基质的选择,在MALDI-TOF-MS分析中,基质起着相当重要的作用。不同的基质对不同类的物质响应不同,a-氰基-4-羟基肉桂酸用于测定糖蛋白核糖核酸酶B效果相对较好。2. 糖蛋白分子量的测定,糖蛋白核糖核酸酶B由124个氨基酸组成,在34位Asn处连有一个高甘露糖型N-糖链。由于糖链的微不均一性,与普通蛋白质及核酸不同,其分子离子峰在MALDI-TOF-MS 质谱图上表现为一簇峰,各峰之间约相差一个糖基。正是由于这种微不均一性,使得其分子离子峰变宽,灵敏度降低。糖链分子量越大,峰越宽,灵敏度越低,所以一般只有糖链较短,蛋白的质量不太大的糖蛋白才能测定其平均分子量。用MALDI-TOF可直接测定糖蛋白核糖核酸酶B的平均分子量为 15208.6Da。http://ng1.17img.cn/bbsfiles/images/2011/03/201103211511_284179_1604317_3.jpg3. 糖含量的测定,采用O聚糖酶及内糖苷键酶F分别作用于核糖核酸酶 B,只有内糖苷键酶F能够是其分子量发生变化,表明核糖核酸酶B分子中不存在O-连接糖链存在着N-连接糖链。内糖苷键酶F切断N-糖链五糖核心最内侧的GlcNAc-GlcNAc糖苷键,得到含一个GlcNAc的肽链,减去GlcNAc,可以计算出准确的肽链分子量T=13695.6,与糖蛋白平均分子量之差为糖链的平均分子量G=1513.4,平均糖含量为:(糖链大小/糖蛋白分子量)×100%=9.95%。4. 糖基化位点的确定,研究糖基化类型及糖基化位点的策略:采用蛋白酶酶解与糖苷内切酶酶解相结合的方法,通过酶切前后含糖肽片的位移,结合网上数据库检索,可以确定糖基化类型和糖基化位点。以不同类型的糖苷内切酶作用于糖蛋白(N-糖苷键酶或O-糖苷键酶),在MALDITOF-MS 上观察其质量的变化,可以直接确定糖蛋白中是否含有响应类型的糖链,这是我们确定糖蛋白中糖苷键类型的基础。我们采用先将核糖核酸酶B还原烷基化,加Glu-C酶切,产物再用内糖苷肩酶F酶切,可观察到含糖肽段出现位移,将核糖核酸酶B的肽质量指纹图进行数据库检索,证实发生位移的肽段中含有N-糖链特异连接位点,由此确定34位Asn为糖基化位点。另外我们采用内糖苷键酶F及肽-N-聚糖酶F两种酶进行差位酶切法对含糖肽段进行验证,两种酶酶切后分子离子峰的差值除以GlcNAc的质量,结果就是N-糖基化位点的个数5. 质谱测定氨基酸序列, 我们对核糖核酸酶B肽质量指纹谱中的含糖肽段进行了串联质谱测定,首先在一级质谱图中选择离子4972.23,在串联质谱的碰撞活化室以氩气与其碰撞产生碎片,从碎片的质荷比推算出此肽片中的一段氨基酸序列,检索结果为核糖核酸酶B,从而判断其理论序列是否一致。6. 糖链结构的研究,凝集素对糖肽的亲和提取,进一步分析糖肽序列及糖链结构的关键是含糖肽段的提取。核糖核酸酶B中糖链为高甘露糖型,我们选用对其有特异性吸附的伴刀豆球蛋白对其进行提取利用这种简捷的亲和质谱的方法,对糖肽段进行了分析。建立了亲和质谱分析糖肽类物质的方法,为今后糖肽序列分析及糖链结构分析奠定了基础。二、基因重组糖蛋白人促红细胞生成素(rhEPO)的结构分析。 利用以上建立的方法,我们对样品重组人促红细胞生成素进行了分析,断定此样品为非完全糖基化,样品中只存在N-连接的糖链,无O-糖链。应用酶切法用肽-N-聚糖酶处理后,得到两个含糖肽段,进行数据库检索,测得38位及83位为N-糖基化位点,与文献报道相符,结果可靠。因此,该项课

  • 【资料】微量氧分析仪

    [center]微量氧气分析的理想选择 T10便携式/台式微量氧分析仪[/center]美国EXT公司的T10便携式微量氧分析仪采用最新技术的微量氧气分析技术,独特的一体化样品处理、调节、检测的气路设计,使您能够快速准确的得到您想要的氧气含量数据,有效控制您的产品品质!适合应用的气体领域氢气、氮气、氩气、氦气中微量氧气分析空分制氮、化工流程微量氧气热处理炉和电子行业中微量氧气分析各种工业气体、高纯气体及干燥压缩空气中的氧气含量分析独特优点传感器完全免维护传感器反应快速,寿命超长更换传感器非常方便校正简单,快速内置充电电池和外部220V电源供应,适合各种场合使用牢固的结构,结实耐用仪器提手,适合携带

  • 德国Implen超微量紫外-可见分光光度计

    德国Implen超微量紫外-可见分光光度计

    NanoPhotometerTM——超微量分光光度计最佳选择摘要:由于传统的紫外-可见分光光度计对样品量的需求较大,而且对所测样品的浓度有一定范围的限制,对于分子生物学实验者来说,对少量又珍贵的核酸蛋白质样品的稀释,无疑是一种糟蹋。为了满足和方便广大生物学科研者的实验需求,德国Implen 公司研发出一款通过改变光程从而达到扩大样品浓度检测范围的目的的超微量紫外—可见分光光度计,它所需上样量只有0.3-2ul,能够检测核酸浓度和纯度,蛋白质A280等,内置BCA,Bradford等多种实用检测方法。同时可使用常规比色皿,用于细胞(细菌)OD600的测量。关键词:超微量,分光光度计,光程,核酸蛋白质浓度,OD600。前言核酸纯度和蛋白质浓度的测定,是分子生物学实验的常规操作之一,传统的紫外—可见分光光度计对样品量的要求较高,一般在500ul(特殊比色皿)以上,而500ul的蛋白质或核酸,对科研人员来说可能是半年来所提取核酸(蛋白质)的总量,因此,常规分光光度计在进行核酸(蛋白质)浓度的测定具有很大的局限性。Implen (德国,慕尼黑) 公司研发的超微量紫外—可见分光光度计通过使用特制的超微量比色皿,使得只需0.3-5ul的上样量就能准确的检测出样品浓度。通过对光程的调节,不但能够检测低浓度的样品(0.2ng/ul),也能够检测高浓度的样品(18750ng/ul)。NanophotometerTM性能特点具有专利权的样品压缩技术:NanophotometerTM 利用两个光学平面镜将样品固定于上样孔(石英检测窗口和光学平面镜稀释盖)。这种改变光程的技术不依赖样品的表面张力,同时,在很大程度上减少了样品的蒸发,保证了很好的重复性,尤其是溶于易挥发溶剂中的样品。NanophotometerTM有6个不同稀释倍数的样品稀释盖,同时也可使用常规比色皿进行检测。 http://www.wblab.cn/uploadfile/image/20110927164135373.jpg http://www.wblab.cn/uploadfile/image/20110927164141959.jpg http://www.wblab.cn/uploadfile/image/20110927164145737.jpg 由于具有多个稀释倍数的能力,所以NanophotometerTM的检测浓度范围测非常广阔:dsDNA:2-19750ng/ul; ssDNA:2-13875ng/ul; RNA:2-15000ug/ul; Oligo:2-12375ng/ul。蛋白质浓度检测范围在0.04mg/ml至660mg/ml之间。因此,几乎所有样品都不需要稀释而直接可进行浓度测定(适合全波长扫描)。NanophotometerTM 的全波长扫描只需3.5s,每个样品所需要的时间不到5秒钟,快速的检测速度为大量的样品检测节省了宝贵时间。0.3ul的上样量: NanophotometerTM 特制的样品压缩技术,使得所需上样量非常少,仅需0.3ul的样品就可准确检测所测物质的浓度。 2ng/ul到1875ng/ul的检测范围(dsDNA):NanophotometerTM 特有的样品压缩技术能够将样品自动稀释为1:5,1:10,1:50,1:100和1:250五种倍数,无稀释误差,并减少手动稀释所浪费的时间,保证了样品的稳定性。由于缩短了光程,所以增大了浓度检测的范围。NanophotometerTM 的最小光程为0.04mm,是常规比色皿光程的二百五十分之一,因此比常规紫外—可见分光光度计所测浓度范围大250倍。下表为稀释倍数所对应光程:5→d=2 mm; 10→d=1 mm; 50→d=0.2 mm; 100→d=0.1 mm; 250→d=0.04mm全谱扫描仅需3.5s:NanophotometerTM 的波长范围190—1100nm,系统启动时间小于5s,且无需预热,全波长扫描时间(200—950nm)只需3.5s,宽的波长范围满足常规物质的测定,NanophotometerTM 内置多种波长扫描方法,有单波长扫描、比色测定、波长扫描(自定义范围)、动力学测定、标准曲线测定、多波长扫描(5个波长点)和吸光度比值(两个吸光度比值)。灵活的数据输出方式:NanophotometerTM 的数据输出方式有内置打印机、SD-RAM卡、USB或者蓝牙可供选择。内置打印机可以方便的将实验结果马上打印,方便重要数据的保存和分析;USB接口连接电脑,一些需要长久保留的数据可方便的储存到个人电脑中。卓越的设计:独特的人体工程学理念,超大的背光蓝色液晶显示器,自定义用户界面,易于清洗的可移动样品室,用户友好型操作界面和防滑的控制面板,即使带有内置打印机,也易于携带,可用于户外操作。终身无需校正:密封的光路系统且无拆换部件,采用独特的光程改变技术,使得该NanophotometerTM 超微量紫外—可见分光光度计具有很高的精度,且终身无需校正,免去了昂贵的校正费用,节省宝贵的时间。总结NanophotometerTM 的样品压缩技术使得其具有卓越的检测和稳定性能,在同类产品中,由于它改变光程的技术不依赖于被测溶液的表面张力,从而扩大检测范围,而且这种改变光程的方法不涉及机械磨损或机械疲劳,故光程的改变是非常精确的,终身无需校正。总的来说,Na

  • 如何选择一台性价比超高的超微量分光光度计

    传统分光光度计:样品体积要求大,绝大部分要50μL以上需使用比色皿每次换样品时,比色杯需要清洗,工作繁重光程一般为10mm,样品需要稀释,测量浓度范围小灯源一般由氘灯(紫外)和钨灯(可见)组成,寿命短需要预热半个小时以上显示吸光度值,不显示浓度值仪器体积大,质量重超微量分光光度计所需样品体积小,仅需1~2μL不需要比色皿,用移液枪直接将样品滴加到检测平台上,测量时样品自动形成液柱,检测完成后只需用干净的吸水纸将样品从检测平台上擦拭干净即可具有1mm和0.2mm两个光程(电机控制自动选择光程),样品无需稀释,测量范围可达到常规分光光度计的50倍氙气闪光灯为灯源,寿命长,性能稳定不需要预热,可随时检测显示吸光度值的同时,程序直接给出浓度值(核酸、蛋白和荧光染料)体积小:相当于一本字典大小,仅占16.5厘米实验室空间市场常见的欧美品牌市场上比较畅销的超微量分光光度计有:美国ThermoScientific的Nanodrop系列产品,英国Picodrop公司的CUBE和P200系列产品,美国QUAWELL的Q3000 5000 6000+系列以及其它一些品牌。(选自网络)

  • 【求助】微量氧分析仪

    今天遇到一台SYSTECH 911微量氧分析仪这样的现象:通高纯氮半小时示值零点零三,通10ppm标准气四小时示值十七,且变化缓慢,电池寿命80%,才用半年,请大家帮忙分析分析,谢谢

  • 下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量来确定大豆蛋白复合纤维含量,有点不可理解?

    下面这个是大豆与羊毛动物纤维,蚕丝二组分混合物分析方法,溶解大豆蛋白,利用蛋白含量占大豆蛋白复合纤维的比例来确定大豆蛋白复合纤维含量,有点不可理解?大豆蛋白复合纤维,目前是大豆蛋白和聚乙烯醇复合,仅仅用蛋白溶解后,剩余的聚乙烯醇的含量来‘推算’出来大豆蛋白复合纤维的含量,是有点欠妥,虽然规定了大豆蛋白复合纤维的蛋白含量,但是实际的大豆蛋白复合纤维中,大豆蛋白和聚乙烯醇含量的比例不一定的,也就是说比例不是那么固定的,这样的检测方法对检测公司来说是没有任何问题的,也是标准的一个进步,但对生产企业来说,确实是致命的,没有规定大豆蛋白复合纤维的配比必须是多少,这个检测很可能每批次大豆与羊毛动物纤维,蚕丝产品的标示和实际检测结果是不合格的。而实际生产添加的各成分是标准的?比如填充,大豆与羊毛动物纤维,蚕丝混合,生产企业是烘干后,按照回潮率计算,按重量比添加混合的,这样企业就根据这样的比例进行标示,这个是最准确的,也是最合理的?大家认为呢?[img=,690,172]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250916_01_2154459_3.png!w690x172.jpg[/img][img=,690,138]http://ng1.17img.cn/bbsfiles/images/2017/10/201710250913_01_2154459_3.png!w690x138.jpg[/img]

  • 【原创大赛】维纶基牛奶蛋白纤维和维纶基大豆蛋白纤维定性分析的研究

    维纶基牛奶蛋白纤维和维纶基大豆蛋白纤维定性分析的研究维纶基大豆蛋白纤维是迄今为止我国获得的唯一完全知识产权的纤维发明,在纺织行业得到了快递的发展,广泛的应用,但与维纶基大豆蛋白纤维一样由我国企业自主研发的维纶基牛奶蛋白纤维也申请到专利好几年了,但迟迟没有相关标准的出台,使这一我国自主研发的新型纤维得不到有效利用新型纤维的不断推出,为我们提供了更多的纤维原料,但同时由于国家标准的相对滞后,给检测工作者带来了很大的难题,下面就目前市场上两种新型蛋白复合纤维给予试验,进行定性分析。主要原理是在观察了维纶基牛奶蛋白纤维与维纶基大豆蛋白纤维显微结构和燃烧性状后,研究两者在常用化学试剂中的溶解性。试验结果表明,维纶基牛奶蛋白纤维与维纶基大豆蛋白纤维在88%甲酸和浓硝酸中都能够部分溶解;在沸腾水浴中,维纶基牛奶蛋白纤维与维纶基大豆蛋白纤维能够完全溶解于75%硫酸和98%硫酸牛奶蛋白纤维是再生蛋白质纤维,是以牛奶为原料经脱水、脱脂、分离、纯化、浓缩制成牛奶酪蛋白,与高分子化合物共混、共聚制成纺丝液,再经湿法纺丝而成;牛奶酪蛋白与聚乙烯醇制得的纤维称为维纶基牛奶蛋白纤维;牛奶酪蛋白与纤维素共聚制得粘胶基牛奶蛋白纤维。牛奶蛋白纤维含有多种氨基酸,具有良好的亲肤性和吸湿导湿性,抗菌防蛀,服用性强,受到消费者的青睐。维纶基牛奶蛋白纤维呈浅黄色,是由牛奶酪蛋白和聚乙烯醇大分子共混、共聚、醛化、揉和、脱泡,湿法纺成的纤维,克服了合成纤维吸湿性差和天然纤维强度低的不足,其比电阻介于天然纤维和合成纤维之间,吸湿性也优于聚乙烯醇纤维,在直接染料、弱酸性染料、活性染料和中性染料中都有良好的上染能力。本文在观察维纶基牛奶蛋白纤维和维纶基大豆蛋白纤维显微结构和燃烧性状后,研究两者在常用化学试剂中的溶解性,为纤维检测提供参数。大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成. 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。1 试验1. 1试验材料、仪器和试剂纤维细度成分显微分析仪,万分之一电子天平;SHA-C水浴振荡器;鼓风恒温烘箱; 索氏萃取器;酒精灯;具塞三角瓶若干。甲酸(88%);硫酸(75%);浓硫酸(98%);浓硝酸;1MOL/L次氯酸钠溶液;石油醚(馏程为40℃~60℃)。1.2试验方法显微结构试验:用纤维细度成分显微分析仪观察纤维的显微结构。 以下试验维纶基牛奶蛋白纤维与维纶基大豆蛋白纤维同一方法分别做一次燃烧性状试验:点燃酒精灯,用镊子夹取10mg左右纤维束,徐徐靠近火焰,观察试样对热的反应情况。将纤维移入火焰,观察纤维的燃烧情况;然后离开火焰,观察纤维的燃烧情况,并用鼻子闻试样燃烧刚熄灭的气味。最后,待试样熄灭冷却,观察残留物灰分的状态。预处理:取纤维5g左右,用定量滤纸包好,置于索氏萃取器中,用石油醚萃取1h,每小时至少循环6次,待试样中的石油醚挥发后,把试样浸入冷水中浸泡1h,再在(65±5)℃的水中浸泡1h,浸泡过程中时时搅拌。水(mL)与试样(g)之比为100:1。然后抽吸脱水,晾干。溶解性试验:准确称取试样1g置于具塞三角瓶中,加入100mL化学试剂,在搅拌条件下观察不同温度下纤维和试剂随时间的变化情况。待一定时间后,洗涤,抽吸排液,烘干。2 试验结果2.1显微结构在显微镜下观察维纶基牛奶蛋白纤维与维纶基大豆蛋白纤维的横截面呈腰圆形或哑铃形,纵向有沟槽,两种纤维在显微镜下几乎无差别,无法区分这两种纤维。2.2燃烧性状维纶基牛奶蛋白纤维与维纶基大豆蛋白纤维靠近火焰时现象都是熔融并卷曲;进入火焰,熔融、卷曲并燃烧;离开火焰,燃烧,有时会自然熄灭。燃烧过程中散发出蛋白质燃烧时所特有的臭味。纤维燃烧的一端形成黑褐色硬块。两种纤维在燃烧情况下,火焰颜色,气味几乎无差别,无法区分这两种纤维。2.3溶解性取维纶基牛奶蛋白纤维与和维纶基大豆蛋白纤维分别置于88%甲酸、75%硫酸、浓硫酸、浓硝酸和1MOL/L次氯酸钠溶液中进行溶解性试验, 品名/溶液88%甲酸[/ali

  • 【求助】EN-500微量氧分析仪

    我公司有台上海英盛的EN-500微量氧分析仪,好像默认是测以氮为背景气的当中微量氧的分析,请问,可不可以用来测氩中氧的分析

  • 天研|牛奶蛋白质分析仪的原理是什么

    牛奶蛋白质分析仪的原理主要基于光学测量技术,特别是光谱分析法。具体地说,它采用红外光谱法来测量牛奶中乳清蛋白和酪蛋白的含量。首先,将牛奶样品制成透明薄片,然后使用近红外光电传感器和光源对其进行扫描。牛奶中的蛋白质对特定波长的红外光有特定的吸收特性,通过测量这些吸收特性,可以分析出牛奶中蛋白质的种类和含量。此外,仪器会将牛奶光谱与事先建立的标准光谱进行比较,通过复杂的算法处理,从而得出各种蛋白质形态的含量。这种比较和计算过程确保了测量结果的准确性和可靠性。总的来说,牛奶蛋白质分析仪通过光学测量和光谱分析技术,能够快速、准确地测定牛奶中蛋白质的含量和种类,为乳制品生产、质量控制和科学研究提供了有力的支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291701212298_2595_6238082_3.jpg!w690x690.jpg[/img]

  • [推荐]蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用zz

    褚福亮,王福生, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室 北京市 100039项目负责人 王福生, 100039 ,北京市丰台路26号, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室. fswang@public.bta.net.cn电话:010-66933332 传真:010-63831870收稿日期 2002-08-15 接受日期 2002-09-03摘要新近广泛应用蛋白质芯片(ProteinChipâ Array)系统成功鉴定出了一些重要疾病(如肿瘤和危害性较大的传染病)新的、特异性的生物标记(biomarkers),后者不仅在生物医学的基础方面具有重要的科学价值,而且在临床疾病的诊断、治疗和预防发挥重要的指导作用,显示了良好的发展前景.本文就表面增强的激光解析电离-飞行时间-质谱(SELDI-TOF-MS)相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.此外,我们就蛋白质谱分析技术在病毒性肝炎、肝硬化和肝癌等一系列肝病方面的应用策略和前景进行了分析.褚福亮,王福生. 蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用.世界华人消化杂志 2002 10(12):1431-14350 引言人类基因组计划已经进入后基因组时代-即功能基因组时代[1],作为基因功能的直接体现者-蛋白质,及其之间的相互作用越来越引起基础和临床科学家们的关注[2-6] .因为要彻底了解生命的本质,只把基因测出来还是不够的,还必须要了解其在生物生长、发育、衰老和整个生命过程中的功能、不同蛋白质之间的相互作用以及他们与疾病发生、发展和转化的规律[7-14] .正因为如此,有关上述问题的蛋白质组学研究成了今天生命科学最重要的焦点之一[15] .为了阐明蛋白质在上述生命现象中的作用和相关机制,人们设计了许多新的方法技术,如:二维电泳、质谱分析、微距阵列、酵母双杂交和噬菌体展示等,这些方法在一些特定的情况下,虽然显示出了他们各自不同的优点,但是同样也存在着较大的局限性,难以开展大规模、超微量、高通量、全自动筛选蛋白质等方面的分析,因而设计更全面、同时研究多种蛋白质相互作用的技术,在功能基因组和蛋白组学的研究中建立一个更有效的技术平台,成为本领域中优先关注的问题[16] .近来,美国Ciphergen(赛弗吉)公司研制的ProteinChipâ Array的仪器,并建立了一种新的蛋白质飞行质谱-表面增强的激光解析离子化-飞行时间-质谱(surface-enhanced laser desorption/inionation-time of flight-mass spectra, SELDI-TOF-MS),已取得可喜的进展,筛选出了许多与疾病相关的新型生物标志,不仅为临床疾病的诊断和治疗等提供了新的选择,而且在基础科学、新药研制和疾病预防等方面具有广泛的应用前景[16-18] .本文就SELDI-TOF-MS相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.1 ProteinChipâ Array系统和SELDI-TOF-MS的特点1.1 蛋白质芯片系统的组成和原理 蛋白质芯片系统由三部分组成:蛋白质芯片、芯片阅读器和芯片软件.供研究用芯片上有6-10芯池,不同的芯片表面上的化学物质不同,芯片表面分为两大类:一类为化学类表面,包括经典的色谱分析表面,如:结合普通蛋白质的正相表面,用于反相捕获的疏水表面,阴阳离子交换表面和捕获金属结合蛋白的静态金属亲合捕获表面;另一类称为生物类,特定的蛋白质共价结合于预先活化的表面阵列,可以用来研究传统的抗体一抗原反应,DNA和蛋白质作用,受体、配体作用和其他的一些分子之间的相互作用[19] . 根据检测目的不同,可以选用不同的芯片,或者自己设计芯片.将样本和对照点到芯池上以后,经过一段时间的结合反应,用缓冲液或水洗去一些不结合的非特异分子,再加上能量吸收分子(energy absorbing molelule,EAM)溶液,使样本固定在芯片表面.当溶液干燥后,一个含有分析物和大量能量吸收分子“晶体”就形成了.能量吸收分子对于电离来说非常重要.经过以上步骤,就可经把芯片放到芯片阅读器中进行质谱分析. 在阅读器的固定激光束下,芯片上、下移动,使样本上每一个特定点都被“读”到.激光束的每一次闪光释放的能量都聚集在该区一个非常小的点上(focused laser beam,聚焦激光束).这样,每个区都含有丰富的,可寻址(addressable)的位置.蛋白质芯片处理软件精确控制激光寻读过程.当样本受到激发,就开始电离和解除吸附.不同质量的带电离子在电场中飞行的时间长短不同,计算检测到的不同时间,就可以得出质量电荷比,把他输入电脑,形成图像[19].Ball et al [20]采用一种称为人工神经网络(artifical neural network,ANN)的算法处理出现的成千上万的峰,鉴定出三个分子量为13 454、13 457和14 278的生物标记分子,使疾病预测率达到97.1 %.1.2 ProteinChipâ Array芯片和SELDI-TOF-MS的特点 新型蛋白芯片与以往的蛋白芯片不同之处:SELDI-TOF-MS,他是在MALDI(matrix-assisted laser desorption/inionation)[21,22]基础上,改进后实行表面增强的飞行质谱.SELDI-TOF-MS优于MALDI-TOF表现为他不会破坏蛋白质,或使样本与可溶的基质共结晶来产生质谱信号.对SELDI-TOF来说,可以直接将血清、尿液、组织抽取物等不需处理直接点样检测[40] 由于一部分非特异结合的分析物被洗去,因而出现的质峰非常一致,有利于后期分析[23,24] . 与二维电泳相比:二维电泳分析蛋白质的分子量在30 KDa以上时电泳图谱较清楚,对在组织抽提物中占很大比例的低丰度的蛋白质不能被检出;其次,二维电泳胶上的蛋白质斑点很大一部分包含一种以上的蛋白质;而且,二维电泳耗时长,工作量大,对象染色转移等技术要求高,不能完全实现自动化.而SELDI-TOF在200 Da-500 KDa区间都可以给出很好的质谱,对一个样本的分析在几十分钟内就可以完成[19],处理的信息量远远大于二维电泳;对于低丰度物质,即使浓度仅attomole(10-18)的分子,只要与表面探针结合,就可以检测到,这也是二维电泳所不具备的[24,25] . 对于微距阵蛋白芯片来说,需要一种不破坏折叠的蛋白质构象的固定技术,再与另外的蛋白质反应,经检测莹光来观察蛋白质之间的作用[26] .而基于SELDI-TOF-MS的ProteinChip分析蛋白质不需溶解、不需染色、廉价、针对性强. 因而蛋白质芯片仪具有以下优势:(1)可直接使用粗样本,如:血清、尿液、细胞抽提物等[27] .(2)使大规模、超微量、高通量、全自动筛选蛋白质成为可能;(3)他不仅可发现一种蛋白质或生物标记分子,而且还可以发现不同的多种方式的组合蛋白质谱,可能与某种疾病有关[28] (4)推动基因组学发展,验证基因组学方面的变化,基于蛋白质特点发现新的基因.可以推测疾病状态下,基因启动何以与正常状态下不同,受到那些因素的影响,从而跟踪基因的变化[2,14,15] . 其存在的问题:对于不同的样本,根据检测的目标采取或者设计几种芯片,理论上可以把所有的相同性质蛋白质捕获,但是实际上仍有少量的分子没与表面探针结合.使用SELDI-TOF-MS,仅能给出蛋白质的分子量,不能给出C端、N端的序列,也没法知道蛋白质的构型,因此需要将蛋白质充分纯化后,用蛋白酶消化芯片上的蛋白质,分析肽段,再用生物信息学方法鉴定蛋白质序列[18,24] .另外,在国内,该芯片费用较高,分析质谱需要大量后续工作支持.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制