当前位置: 仪器信息网 > 行业主题 > >

超监界流体萃取色谱系统

仪器信息网超监界流体萃取色谱系统专题为您提供2024年最新超监界流体萃取色谱系统价格报价、厂家品牌的相关信息, 包括超监界流体萃取色谱系统参数、型号等,不管是国产,还是进口品牌的超监界流体萃取色谱系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超监界流体萃取色谱系统相关的耗材配件、试剂标物,还有超监界流体萃取色谱系统相关的最新资讯、资料,以及超监界流体萃取色谱系统相关的解决方案。

超监界流体萃取色谱系统相关的论坛

  • 【转帖】超临界流体萃取技术

    1、技术原理 超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。 2、工艺流程超临界流体萃取的工艺流程如下:3.萃取装置 超临界萃取装置可以分为两种类型,一是研究分析型,主要应用于小量物质的分析,或为生产提供数据。二是制备生产型,主要是应用于批量或大量生产。 超临界萃取装置从功能上大体可分为八部分:萃取剂供应系统,低温系统、高压系统、萃取系统、分离系统、改性剂供应系统、循环系统和计算机控制系统。具体包括二氧化碳注入泵、萃取器、分离器、压缩机、二氧化碳储罐、冷水机等设备。由于萃取过程在高压下进行,所以对设备以及整个管路系统的耐压性能要求较高,生产过程实现微机自动监控,可以大大提高系统的安全可靠性,并降低运行成本。4.超临界流体萃取的特点 超临界流体萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,是100%的纯天然;(3)萃取和分离合二为一,当饱含溶解物的CO2-SCF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本;(4)CO2是一种不活泼的气体,萃取过程不发生化学反应,且属于不燃性气体,无味、无臭、无毒,故安全性好;(5)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;(6)压力和温度都可以成为调节萃取过程的参数。通过改变温度或压力达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离,因此工艺简单易掌握,而且萃取速度快。

  • 【资料】超临界流体萃取法——毛细管气相色谱法分析牡丹皮及制剂中丹皮酚的含量

    超临界流体萃取法——毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析牡丹皮及制剂中丹皮酚的含量第二军医大学长征医院药材科 (上海 200003) 缪海均 柳正良* 李云华* 邵元福*第二军医大学药学院[B]摘要[/B] 本文采用超临界流体萃取法(supercritical fluid extraction,SFE)提取中药牡丹皮及其成方制剂中丹皮酚,以氯仿作改性剂,在温度90℃,压力4000 psi下,二氧化碳动态萃取体积3 ml 静脉萃取时间5 min为最佳。该法简便快速,萃取完全。用大孔径毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法作含量监测,结果:相关性好(r=0.9999),中药与制剂的回收率分别为97.8%,RSD=2.35%(n=3);100.3%,RSD=1.89%(n=3)。结果准确,灵敏,分辨率好。为中药有效成分的提取和质量控制提供了有效可靠的方法。[B]关键词[/B] 超临界流体萃取法; 牡丹皮; 丹皮酚; 毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法中药的成分极其复杂,在定量分析中,样品的提取是非常关键的,超临界流体萃取是近代分离领域中出现的先进的样品制备技术,将传统的蒸馏和有机溶剂萃取结合在一起,利用超临界流体的优良溶解能力,达到分离、纯化的目的。丹皮酚(paeonol)是毛茛科植物牡丹(Paeonia suffruticosa Andr)的主要挥发性有效成分,具有祛风镇痛、降压、止血、抗炎症、抗菌、抑制血小板凝集等多种药理作用 [1] 。本文用超临界二氧化碳流体对牡丹皮及其成方制剂中丹皮酚的萃取条件进行了系统的研究,筛选出压力、温度、CO 2动态萃取量、静态萃取时间和改性剂加入量等五变量的最佳条件,用大孔径毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定了丹皮酚的含量,其结果准确、灵敏,分辨率好。[B]1 实验部分[/B]仪器、试剂和药品 仪器:100DX、100DM注射泵,SFX210超临界萃取器(美国ISCO公司),HP5890series II[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](美国HP公司),NEC Pewermate 325(日本)。试剂:二氧化碳(99%)(上海酒精总厂),其余试剂均为分析纯。药品:丹皮酚标准品(中国药品生物制品检定所),药材及成方制剂购于长海医院。

  • 超临界流体萃取

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理(一). 超临界流体定义  任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取本文摘自:www.wolsen.com.cn

  • 【资料】-超临界流体萃取效果的影响因素

    [b]超临界流体萃取效果的影响因素[/b]影响超临界流体萃取效果的因素主要有:(1)萃取条件,包括压力、温度、时间、溶剂及流量等;(2)原料的性质,如颗粒大小、水分含量、细胞破裂及组分的极性等。 [b]⑴萃取压力的影响[/b] 萃取过程中,SF密度的变化直接影响萃取效果。萃取压力是影响SF密度的重要参数。压力的变化能显著提高SF溶解物质的能力。根据萃取压力的变化,可将SFE分为3类:(1)高压区的全萃取。高压时,SF的溶解能力强,可最大限度地溶解所有成分;(2)低压临界区的萃取,仅能提取易溶解的成分,或除去有害成分;(3)中压区的选择萃取,在高低压之间,可根据物料萃取的要求,选择适宜的压力进行有效萃取。当压力增加到一定程度后,则溶解增加缓慢,这是由于高压下超临界相密度随压力变化缓慢所致。另外,压力对萃取效果的影响还与溶质的性质有关[b]⑵温度的影响[/b] 温度对萃取效果的影响较为复杂。,可以从两个方面来考虑:一方面,在一定压力下,升高温度;由于升高温度作为萃取剂CO2的分子间距增大,分子间作用力减小,密度降低,溶解能力相应下降。另一方面,在一定压力下,升高温度被萃取物的挥发性增强,分子的热运动加快,分子间缔和的机会增加,从而使溶解能力增大。因此,温度对超临界萃取率的影响应综合这两个因素来考虑。:升高温度,分子的热运动加快,分子的缔和的机会增加,从而使溶解度的增加起了一定的主导作用。在实际生产中,超临界CO2萃取的温度控制为大于临界温度,但不宜太高,一般为31.5℃~85℃ 是最佳操作温度。 [b]⑶萃取剂流量、萃取时间的影响[/b] 在超临界流体萃取过程中,萃取剂流量一定时,萃取时间越长,收率越高。萃取刚开始时,由于溶剂与溶质未达到良好接触,收率较低。随着萃取时间的加长,传质达到某种程度,则萃取速率增大,直到达到最大之后,由于待分离组分的减少,传质动力降低而使萃取速率降低。萃取剂的流量主要影响萃取时间。一般来说,收率一定时,流量越大,溶剂、溶质问的传热阻力越小,则萃取的速度越快,所需要的萃取时间越短,但萃取回收负荷大,从经济上考虑应选择适宜的萃取时间和流量。 [b]⑷物料性质的影响[/b] 物料的粒度影响萃取效果,一般情况下,粒度越小,扩散时间越短,有利于SF向物料内部迁移,增加了传质效果,但物料粉碎过细会增加表面流动阻力,反而不利于萃取。对于多孔的疏松物料,粒度对萃取率影响较小,菌体脂肪存在于细胞内,萃取脂肪时,应考虑使细胞破壁。水分是影响萃取效率的重要因素。物料中含水量较高时,其水分主要以单分子水膜形式在亲水性大分子界面形成连续系统,从而增加了超临界相流动的阻力,当继续增加水分时,多余的水分子主要以游离态存在,对萃取不产生明显的影响。而当含水量较低时,水分子主要以非连续的单分子层形式存在。可见,破坏传质界面的连续水膜,使溶质与溶剂之间进行有效的接触,形成连续的主体传质体系就可减小水分的影响。超临界流体的极性是影响萃取速率的又一因素。在弱极性的溶剂中,强极性物质的溶解度远小于非极性物质,可萃取性随极性增加而降低,如超临界CO2是一种非极性溶剂,因此,它非常适用于弱极性物质的萃取。通过使用不同的夹带剂来改变COz的极性,使萃取范围扩大,可萃取极性较强的物质。来源:中国色谱网[em61]

  • 加压流体萃取仪的具体操作步骤

    加压流体萃取仪是一种用于提取和分离化合物的实验室设备。利用高压气体或液体对样品进行物理冲击,使目标化合物从固体或液体基质中释放出来,并通过进一步的分离步骤得到纯化的目标化合物。 加压流体萃取仪通常由以下主要部分组成: 1.压力控制系统:用于控制加压流体的压力,以实现对样品的物理冲击。常见的压力控制系统包括手动调压阀、电动调压阀和计算机控制的自动调压系统。   2.流体供应系统:用于提供加压流体,如气体或液体。常见的流体供应系统包括气瓶、液体储存罐和流体输送管道。 3.样品处理系统:用于接收样品并将其置于加压流体中进行处理。样品处理系统通常包括样品容器、阀门和连接器等部件。 4.分离系统:用于将目标化合物与基质分离。常见的分离系统包括过滤器、离心机和色谱柱等。 5.检测系统:用于检测和分析目标化合物的性质和纯度。常见的检测系统包括光谱仪、质谱仪和色谱仪等。 加压流体萃取仪的操作步骤一般如下: 1.准备样品:将待提取的样品研磨成粉末或悬浮在适当的溶剂中。 2.设置压力控制系统:根据需要调整压力控制系统,以实现对样品的适当物理冲击。 3.添加溶剂:将适当的溶剂添加到样品中,以帮助目标化合物的释放和分离。 4.启动流体供应系统:打开流体供应系统,使加压流体流入样品处理系统中。 5.进行提取:将样品置于加压流体中,使其受到物理冲击,从而释放出目标化合物。 6.分离目标化合物:通过分离系统将目标化合物与基质分离,得到纯化的目标化合物。 7.检测和分析:使用检测系统对目标化合物进行检测和分析,以确定其性质和纯度。

  • 【资料】超临界流体色谱法测定固体在二氧化碳中的溶解度

    [size=5]超临界流体色谱法测定固体在二氧化碳中的溶解度[/size] 来源: 作者:赵锁奇,杨光华,王仁安摘要:开发了一种测定超临界二氧化碳中大分子溶质的溶解度的方法 这一方法将微型超临界流体萃取(Micro-SFE)直接与超临界色谱(SFC)相耦合.超临界流体色谱采用FID作为检测器,实验中两者具有阿一压力、温度及同样的CO流速。使用了模型溶质萘、联苯和菲来验证此方法,井得到了温度在308~330K.压力8.0~12.0MPa间溶质的等压溶解度曲线,实验结果与文献值相符,定量显示了在溶剂近临界区域固体/超临界流体二元系的相平衡特性 这一方法适用于重溶质在CO2中溶解度的测量。关键词:固体;溶解度;二氧化碳;超临界流体萃取;超临界流体色谱l 前 言近二十年不少研究者发表了相当数量的超临界流体中不同固体的平衡溶解度数据,常用模型化合物来考察温度、压力和超临界流体的密度对溶解度的影响.并用以建立超临界流体相平衡的理论。二氧化碳因其不可燃、无毒且价格低廉的特性成为最为常用的溶剂,而且二氧化碳有相对低的临界温度(31.2℃)和临界压力(72.9atm),显然有利于热敏性物质的分离。Francis测定过25℃下近临界二氧化碳中数百种溶质的溶解度.Tsekhanskaya等测定了超临界二氧化碳中固体萘的溶解度。McHugh发表了超临界CO2中萘和联苯的溶解度数据,Kurnik ,Schmitt和Reid则测定了包括CO2在内的超临界流体中数种有机化合物的溶解度数据。他们的工作中所用的仪器主要为中型的动态超临界流体萃取器。King,McHugh对超临界流体相平衡的静态和动态测定方法作了详细的评述。Bruno综述了溶质溶解度的四种测定方法,即动态流动法、静态(平衡)法、色谱溶解度法和光谱法。超临界流体色谱使用超临界流体作为流动相,起源于六十年代,自八十年代中期开始得到迅速发展,但主要是用于分析工作。八十年代超临界流体色谱开始用于测定热力学性质,如两相中溶质的偏摩尔体积和偏摩尔焓、固定相与流动相之间溶质的分配系数Staeh使用超临界流体萃取和薄层色谱来测定超临界流体中固体的溶解度,这对测定溶解度的压力闽值并获得密度变化对溶解度的影响的定性说明,无疑是有益的Saito和Skelton等报道了直接耦合的超临界流体萃取/超临界流体色谱,这一类系统使用紫外检测器,利用紫外吸收来测定复杂物质的溶解度,对无紫外吸收的溶质就显得无能为力了。Smith等将毛细管超临界流体色谱与质谱联合用于测定溶液中溶质的量,这种方法可以对宽范围的固体样品作出较快的测量,但难于用于液体样品。Battle等作了若干超临界流体色谱中溶质的保留机理的假设,以此为基础测定了固体芳烃的溶解度。相对于中型的超临界流体萃取来说,微型超临界流体萃取具有一定的优越性,如它便于建造和操作,所用样品量少.操作费用低,而且可以直接与分析仪器相衔接.如紫外、红外、核磁共振仪、质谱等.所用操作时间少。本文的目的是发展一种直接测定大分子固体或液体在超临界流体CO2中溶解度的新方法,该方法应较为简便地确定稀溶液范围内的定量结果。研究中建立了将超临界流体微萃取与超临界流体色谱系统直接连接到氢离子火焰检测器(FID)的实验装置,之所以选择氢离子火焰检测器是因为它是一种通用型宽线性范围的检测器,比起其它检测器.如TLC和紫外检测器,它有较高的灵敏度。实验选择了萘,联苯和菲作为模型化合物来验证方法的可靠性并研究这三种溶质-二氧化碳体系在超临界区的相平衡特征。

  • 加压流体萃取-液相色谱法测定土壤中的苯并芘

    前言:近年来国家环境保护力度不断加大,继水十条和大气十条之后,今年环保部也推出了土十条,相应的一些土壤中污染物的检测新标准也已出台,而环境中多环芳烃的监测一直是环监的重点之一。苯并[[font=times new roman]α[/font]]芘作为其中最常见的一类,[color=#333333]是一种高活性的[/color]间接致癌物[color=#333333]和突[/color]变原,在土壤和大气颗粒物中都容易残留。加压流体萃取技术是近年来发展起来的一种在高温、高压条件下快速处理固体或半固体样品的方法,与常用的索氏提取、超声提取、微波萃取技术等方法相比,具有节省溶剂、快速、回收率高、健康环保、自动化程度高等明显优势。本实验参考了方法HJ 784-2016和HJ 783-2016,简要介绍了使用高效快速溶剂萃取系统(HPSE)萃取土壤中的苯并[[font=times new roman]α[/font]]芘,并用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]进行检测的一系列方法。实验方法简便,回收率较高且平行性良好。适用于土壤中苯并[[font=times new roman]α[/font]]芘的检测。1[size=12px]、[/size]实验部分:1.1仪器与试剂HPSE-E高效快速溶剂萃取系统ET便携式氮吹浓缩系统LC600 二元高压梯度高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]苯并[[font=times new roman]α[/font]]芘标准储备液(10[font=times new roman]μ[/font]g / mL,溶剂为甲醇)甲醇(色谱纯);二氯甲烷(色谱纯);正己烷(色谱纯);乙腈(色谱纯);弗罗里硅土(置于马弗炉中300℃烘4h,冷却后贮于玻璃瓶中干燥器内保存);硅藻土(置于马弗炉中300℃烘4h,冷却后贮于玻璃瓶中干燥器内保存)1.2标准溶液处理移取10[font=times new roman]0μ[/font]L的苯并[[font=times new roman]α[/font]]芘标准储备液至10mL的容量瓶,用乙腈定容至刻度,配成浓度100ng/mL的溶液,作为待测标准溶液。1.3土壤样品处理取研细过筛后的环境土样10g,与7g硅藻土混合均匀,装填至预加了5g弗罗里硅土的34mL的萃取罐中。同样方法装填好两个萃取罐,然后置于HPSE中(双通道运行,可同时萃取两个样品),萃取溶剂为正己烷-二氯甲烷 (1:1,体积比) 混合溶液,系统压力10Mpa,萃取温度100℃,加热平衡时间2min,静态萃取时间5min,冲洗体积60%,N[sub]2[/sub]吹扫60s。循环运行两次。收集液用ET便携式氮吹浓缩系统浓缩至尽干,用乙腈定容至1mL,作为样品待测溶液。1.4样品加标处理按1.3方法装填样品过程中,加入1mL的1.2方法所配标准溶液至34mL的萃取罐中,然后按照1.3中设置的参数进行萃取,循环两次,萃取液收集后,用ET便携式氮吹浓缩系统浓缩至尽干,用乙腈定容至1mL,作为样品加标待测溶液。标记为待测液1和2,同法再次重复实验四次,待测。1.5色谱条件 色谱柱:C18,5μm,4.6mm*250mm; 柱温:25℃;流速:1.0mL/min;进样量:20 μL; 流动相:乙腈:水=80:20;检测波长:290nm。2[size=12px]、[/size]结果与讨论:2.1苯并[[font=times new roman]α[/font]]芘标准液的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[align=center]图1苯并[[size=13px]α[/size]]芘标准液的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[/align]2.2 样品萃取液的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[align=center]图2样品萃取液的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[/align]2.3样品加标萃取液的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[align=center]图3样品加标萃取液的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[/align]2.4 加标样品的回收率[align=center]表1加标样品回收率[/align][table][tr][td=1,2][align=center]名称[/align][/td][td=10,1][align=center]5 组平行样回收率/%[/align][/td][td][align=center]RSD%[/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][td][align=center]6[/align][/td][td][align=center]7[/align][/td][td][align=center]8[/align][/td][td][align=center]9[/align][/td][td][align=center]10[/align][/td][/tr][tr][td][align=center]苯并[[font=times new roman]α[/font]]芘[/align][/td][td][align=center]92.2[/align][/td][td][align=center]91.5[/align][/td][td][align=center]90.6[/align][/td][td][align=center]95.1[/align][/td][td][align=center]88.9[/align][/td][td][align=center]91.1[/align][/td][td][align=center]95.9[/align][/td][td][align=center]92.6[/align][/td][td][align=center]93.7[/align][/td][td][align=center]94.9[/align][/td][td][align=center]2.4[/align][/td][/tr][/table]3、 结论:由表1可知,利用高效快速溶剂萃取系统萃取土壤中的苯并[[font=times new roman]α[/font]]芘,加标回收率在88.9%~95.9%之间,五组实验的重复性RSD为2.4%,两个并联的通道也有很好的平行性。本实验参考了方法HJ 784-2016和HJ 783-2016,但在实验过程中做了一定的改变。首先用二氯甲烷替代了丙酮,考虑到一是检测物质单一,二氯甲烷和正己烷完全满足需求,能够降低实验的毒性,二是溶剂极性减弱,萃取出的极性干扰物相应减少。其次是在萃取罐中直接加入了弗罗里硅土,用来吸附一些极性干扰物,达到了在萃取和净化同时进行的目的,节省了实验时间。综上所述,加压流体萃取法提取土壤中的苯并[[font=times new roman]α[/font]]芘这一实验中,高效快速溶剂萃取系统能够高效、稳定地达到实验的要求,可以提供领域范围内的良好应用。参考标准:1、HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法2、HJ 783-2016 土壤和沉积物 有机物的提取 加压流体萃取法

  • 讨论超临界流体萃取在农残检测中的应用

    最近读了一些关于超临界流体萃取(SFE)的文章。觉得这是很有发展前途的萃取方法。也有一些超临界流体萃取在农残检测方面应用的文章发表。但总体觉得这项技术运用在农残检测方面还不多。主要是超临界流体萃取装置一般都很庞大,适合于大生产,不太适合检测。在这3D打印都深入到毛孔的时代,就没有人研发出小巧玲珑,适合检测用的萃取装置?希望大家都来讨论讨论。

  • 【资料】《超临界流体萃取技术研究与应用进展》

    超临界流体萃取技术研究与应用进展赵东胜, 刘桂敏, 吴兆亮( 河北工业大学化工学院, 天津300130)摘要: 综述了超临界流体萃取的基本原理, 以及提高超临界流体萃取效率的方法, 包括加入夹带剂、利用高压电场和超声波等。并对超临界流体萃取技术在生物化工、食品、医药和环保行业的最新应用情况作了介绍。关键词: 超临界流体萃取; 萃取效率; 夹带剂; 应用中图分类号: TQ 028.8 文献标识码: A 文章编号: 1008- 1267( 2007) 03- 0010- 03下载链接:http://www.instrument.com.cn/download/shtml/155631.shtml

  • 【转帖】二氧化碳超临界流体萃取!

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理 (一). 超临界流体定义  任何一种物质都存在三种相态-[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取。

  • 安谱系列产品之一:固相萃取(SPE)

    安谱系列产品之一:固相萃取(SPE)

    安谱固相萃取(Solid Phase Extraction)简介固相萃取(SPE)是一种广泛使用的样品前处理技术,适用于样品的分离或纯化。在过去的20多年里,固相萃取技术发展非常迅速,SPE的使用不但增加了色谱系统的使用寿命,同时提高了分析物的定量限。使用固相萃取法能避免液-液萃取所带来的许多问题,比如,不完全的相分离,较低的定量分析回收率,昂贵易碎的玻璃器皿和大量的有机废液。与液-液萃取相比,固相萃取更有效,容易达到定量萃取、快速和自动化,同时也减少了溶剂用量和工作时间。SPE主要用于从各类复杂的基质中提取目标分析物,使目标物在色谱分析前达到浓缩或纯化的目的,各类基质包括生物流体(血液和尿液)、水样、土壤、食品等。固相萃取小柱CNW可提供两个系列的SPE小柱:CNWBOND 系列包括硅胶基质和吸附类型的SPE小柱,这两类小柱是使用最广泛的SPE。CNWBOND 系列的SPE小柱纯度高、重现性好,使样品的纯化效果达到最佳以便可直接用于下一步的色谱进样分析。Poly-Sery 系列是聚合物基质的SPE,包括了不同功能性基团修饰的共聚物类型。这种类型的小柱由于其快速的操作、高稳定性、强保留性和选择性、以及更广的pH耐受性等特殊的性质,越来越多地被现代SPE技术所采用,使您的方法开发变得更简单、更快捷、更高效。一些常用的小柱填料基质反相正相离子交换硅胶C18氨基SCX 强阳离子C8氰基WCX 弱阳离子苯基PSASAX 强阴离子C4硅胶WAX 弱阴离子无机吸附材料   -

  • 加压流体萃取仪的五大优势体现

    加压流体萃取仪是一种用于提取样品中目标成分的高效、快速、环保的分析仪器。采用高压流体作为提取溶剂,通过高速离心力将目标成分从样品中分离出来,从而实现对目标成分的快速、准确、高纯度的提取。工作原理是先将样品和提取溶剂加入萃取池中,然后通过高压泵将高压流体注入萃取池,使样品充分与提取溶剂接触,目标成分溶解在提取溶剂中。接着,通过高速离心机将提取溶剂中的固体颗粒分离出来,得到含有目标成分的提取液。最后,通过控制系统对提取液进行收集、处理和分析,从而得到目标成分的含量。广泛应用于环境监测、食品安全、药物分析、石油化工等领域,是实验室分析的重要工具。 加压流体萃取仪具有的优点:      1.高效:由于采用高压流体作为提取溶剂,使得样品与提取溶剂的接触更加充分,从而提高了提取效率。同时,高速离心分离技术使得目标成分的提取速度更快,大大缩短了分析时间。      2.快速:整个操作过程自动化程度高,操作简便,大大提高了分析速度。此外,由于采用了高压流体和高速离心分离技术,使得目标成分的提取和分离过程更加迅速。      3.环保:采用非有机溶剂作为提取溶剂,避免了有机溶剂对环境和人体的危害。同时,高压流体的使用减少了溶剂的使用量,降低了对环境的污染。      4.高纯度:由于采用了高压流体和高速离心分离技术,使得目标成分的提取和分离过程更加干净,从而保证了提取液的高纯度。      5.广泛的应用范围:适用于各种类型的样品,如固体、液体、气体等,可以满足不同领域的分析需求。

  • 加压流体萃取仪的组成部分及特点

    加压流体萃取仪(PressurizedFluidExtractionPFE)是一种利用高压流体作为萃取剂,对样品进行高效、快速、准确提取的仪器。以下是对加压流体萃取仪的详细介绍: 主要组成部分 加压流体萃取仪的主要组成部分包括高压泵、萃取容器、过滤器、离心机等。高压泵是设备的核心部件,负责提供足够的压力以驱动流体流动:萃取容器用于放置样品和溶剂:过滤器用于去除流体中的固体颗粒,保证萃取液的纯净度 离心机则用于将萃取液中的固体颗粒与液体分离,得到目标物质。 特点与优势 1.高效快速:相比传统的萃取方法,加压流体萃取仪可以在较短时间内完成提取过程,大大提高了工作效率。 2.提取效果好:高压和高温的条件可以增加物质的溶解度和扩散速率,使得目标物质更容易被提取出来,提高了提取效果。 3.绿色环保:使用的溶剂量相对较少,减少了化学废物的产生,符合绿色化学的理念。 4.自动化控制:配备了先进的自动化控制系统,可以对提取过程进行精确控制,保证提取的稳定性和可重复性。 5.多功能性:可以进行多种类型的提取,包括固相萃取、液液萃取、液相微萃取等,并可根据不同需求选择操作参数。

  • 超临界流体色谱SFC

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 【我们不一YOUNG】+土壤样品萃取技术之超临界流体萃取法

    利用超临界流体在物理、化学方面的特性,根据样品类型、目标物的沸点、分子量等选择适当的操作条件可以有选择性地把目标化合物萃取出来。由于全过程不使用或少使用有机溶剂,避免了萃取过程中溶剂对人体的损害和对环境的污染。在所有的超临界流体中,CO2由于其合适的临界条件以及物理、化学特性而最为常用,己经在土壤和沉积物中PCBs的萃取中得到了广泛应用。并且,SFE-CO2将萃取与分离合二为一,不需回收溶剂,操作方便;在萃取的同时,可实现萃取液的浓缩和定容,避免了浓缩步骤。如果SFE的条件优化的合适,可以将SFE的萃取物直接注射进GC/MS进行分析而不需要进一步净化。SFE作为上世纪80年代才发展起来的一种新技术,仍然存在许多不成熟的地方,如超临界流体的萃取压力较高,萃取能力小而且能耗较大。因此,如何解决高压带来的一些不利因素,使得该技术可以可靠、安全地生产是非常重要的。

  • 超临界流体色谱

    超临界流体色谱

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 【转帖】二氧化碳超临界流体萃取概述

    二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。   传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。 一. 超临界流体萃取的基本原理 (一). 超临界流体定义  任何一种物质都存在三种相态-[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力 超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取。二、超临界流体萃取的特点 1.萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂, 操作方便;不仅萃取效率高,而且能耗较少,节约成本。  2.压力和温度都可以成为调节萃取过程的参数。临界点附近,温度压力的微小变化,都会引起CO2密度显著变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此工艺流程短、耗时少。对环境无污染,萃取流体可循环使用,真正实现生产过程绿色化。  3.萃取温度低, CO2的临界温度为31.265℃ ,临界压力为 7.18MPa, 可以有效地防止热敏性成分的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。  4. 临界CO2 流体常态下是气体, 无毒, 与萃取成分分离后, 完全没有溶剂的残留, 有效地避免了传统提取条件下溶剂毒性的残留。同时也防止了提取过程对人体的毒害和对环境的污染, 100%的纯天然。 5.超临界流体的极性可以改变, 一定温度条件下, 只要改变压力或加入适宜的夹带剂即可提取不同极性的物质, 可选择范围广。

  • 『基础四』二氧化碳超临界流体萃取概述及其它~~

    二氧化碳超临界流体萃取概述    二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。   传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。

  • 二氧化碳超临界流体萃取概述 (值得看看)

    二氧化碳超临界流体萃取概述    二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。   传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。

  • [讨论](Thar总裁的SFC training的下载)大家来谈谈使用先进的SFC(超临界流体色谱)的问题吧。

    本人最近在学习超监界流体色谱的仪器,感觉超临界流体萃取与化学法萃取相比是最干净的提取方法,且有很多无法比拟的优点。欢迎大家来谈谈使用SFC(超临界流体色谱)的问题吧,希望共同交流共同进步。可以关于SFC的优缺点及相关仪器的使用过程中的问题,还有自己使用过程的想法和经验交流。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=25547]Thar总裁的SFC training[/url]

  • 【分享】超临界流体萃取技术在粮食农药残留检测中的应用

    粮食中农药残留问题是目前食品安全中的主要问题之一,作为食品的基础原料,其重要性已经受到人们的高度认可。目前,不论从技术内容还是从基础研究方面,超临界流体萃取技术在粮食农药残留中的分析应用都已经获得了较多进展。本文主要通过举例介绍未添加和添加改性剂的两类超临界流体在各种粮食农药残留检测中的研究现状,并简要分析其发展趋势。

  • 加压流体萃取仪的操作步骤

    加压流体萃取仪的工作原理是利用高压泵将溶剂或混合溶剂注入到样品中,通过高压作用下的流体流动,使目标物质从样品基质中溶解出来。然后,通过过滤、离心等步骤将目标物质与基质分离。这种方法可以有效地提高目标物质的浓度,减少后续分析过程中的干扰,提高分析的准确性和灵敏度。 加压流体萃取仪广泛应用于环境监测、食品安全、药物分析、生物化学等多个领域。在环境监测中,可以用来提取土壤、水样中的污染物:在食品安全领域,可以用来提取食品中的添加剂、农药等残留物:在药物分析中,可以用于提取药物中各种化合物:在生物化学中,可以用来提取蛋白质、核酸等生物大分子。 1.正确选择萃取液和萃取条件,可根据需要进行反复试验,以确定最佳的提取条件。 2.样品制备和样品处理应严格按照实验要求,以免影响提取效果和准确度。 3.安装和使用仪器时需注意相关安全事项,特别是在涉及高压液体的操作时要格外谨慎。 综上所述,加压流体萃取仪是一种高效、经济、高灵敏度的实验室工具,其工作原理和优势使其在多个领域得到广泛应用。随着科技的不断发展,加压流体萃取技术有望得到更进一步的优化和改进,为不同领域的提取分离技术提供更多可能性。

  • 【金秋计划】+超临界流体色谱(SFC)在热力学方面的研究

    [font=&][size=16px][color=#333333]随着色谱技术的成熟,超临界流体色谱SFC不仅作为分析分离工具得到良好应用,而且作为热力学研究的重要手段用于研究超临界流体中溶质的热力学性质。基于色谱热力学的基本关系,从溶质在色谱系统中的保留行为推测溶质在超临界流动相中的溶解度,从而得到溶质在超临界流体中的溶解度。类似地可以得到溶质在超临界流体中的无限稀偏摩尔体积、溶质在流动相和固定相上的分配系数等。[/color][/size][/font]

  • EDGE全自动加压流体萃取仪介绍

    EDGE全自动加压流体萃取仪 EDGE ——革命性萃取技术 萃取应用是把目标分子从样品基体上完整分离出来的过程,同时能够保证目标化合物形态的完整性。美国 CEM 公司发明了 EDGE 革命性萃取技术 , *结合了加压流体萃取法和固相离散萃取技术,全自动过程包括试剂添加、萃取、过滤、冷却和分离过程,萃取效率高,重复性好,符合 USEPA 3545 标准方法,而且比通常的加压流体萃取技术 ASE 大幅度地缩短了萃取时间,速度提高了 6 - 20 倍 , 成为科研实验室的*仪器。 EDGE 萃取仪基本技术特点: 符合标准:US EPA 3545,3545A,HJ 783 PFE 加压流 体萃取法,特别适用于土壤和沉积物、 有机物的提取 Q-Cup 技术,*结合加压流体萃取+固相离散萃取 提取 30g 样品只需 5min,20-40mL 萃取液 样品基体影响小,可以萃取固体、半固体、含水分的样品一键式操作,实现萃取、过滤、分离、冷却和冲洗全自动过程 一次性处理 12 个样品,双样品架共放置 24 个样品 Q-Cup 萃取单元技术 Q-CupTM *的开放单元设计,在压力流动萃取基础上同时产生固相离散萃取的双效应,过程中动态压力振荡迫使试剂上下双向循环,增进了化合物析出效率,实现大量样品的快速萃取和过滤。溶剂用量少,单样品只需20ml溶剂,萃取速度提高到过去加压流体萃取ASE的6倍,5min 即完成萃取。Q-Cup 单元是由抗污染高强度铝合金制成,可以进行高效加压加热,单元由可拆装的部件构成,便于拆装和清洗。 传统的方法如索氏提取,非常耗时且需要使用大量的溶剂。自动化方法往往需要繁琐的样品制备过程。EDGE 是目前可达到的zui快的样品萃取系统,使用少量的溶剂即可实现样品萃取。Q-Cup 样本架由两个容易组装的部件构成,在几秒钟内即可准备好样品。 EDGE 一键式操作和全自动工作过程 EDGE 使用 Q-Cup 技术,*结合加压流体萃取和固相离散萃取两种效应,大大提高了萃取产量和效率。EDGE 使样品制备非常容易,Q-Disc ?滤膜置于 Q-Cup 底部,并将底盖旋好。可以迅速提取 1-30g 的土壤样品,如需要可以通过加入 NaSO4进行样品干燥。EDGE 仅使用 40mL 溶剂即可萃取反应,进行包括动态压力振荡离散萃取、样品浸润和系统清洗。工作腔快速加热,2min 内温度即可达到 180℃。 1)自动样品加载 自动进样器将 Q-Cup 加载至工作腔,并自动加盖加压密封。 2)双向自动溶剂添加 溶剂分别从 Q-Cup 的底部和顶部双向自动加入,浸润样品。 3)自动加热和双向压力萃取腔 自动加热,增加工作腔萃取压力,并形成双向试剂循环,动态压力振荡迫使溶 剂离散于化合物之间,加速萃取过程,完成萃取条件。 4)自动萃取液提取收集 一旦完成萃取, 在线自动过滤净化,萃取残渣与萃取液直接分离,样品将会通 过 Q-Cup 滤膜过滤而出,通过冷却盘管,zui终进入收集瓶。 5)自动清洗功能 残渣与萃取液直接分离自动过滤收集后,仪器自动进行清洗。 https://img63.chem17.com/caa32adb4eb7dc448f56baafb4beccdadecf2a20b809fcf120bb8ac33b7029803567bf7216426a47.jpg EDGE全自动加压流体萃取仪 EDGE全自动加压流体萃取仪技术规格 1.技术方法加压流体萃取法( PFE),结合固相离散萃取(DSPE)2.Q-Cup萃取单元 技术由高强度铝合金罐体结构及滤片和螺纹盖组合而成, 一次性完成试剂添加、萃取、过滤、分离、冷却和冲洗全过程3.适合标准 US EPA 3545,3545A,HJ 783,适用于土壤和沉积物、有机 物、药物、食品和聚合物的快速萃取4.温度范围0-100-200℃5.振荡压力0-2000psi(约13.8MPa)6.样品批量一次性处理12个样,双样品架共放置24个样品7.收集瓶40ml、60ml或其他规格的玻璃接收瓶8.萃取体积11ml、22ml、34ml、66ml或其它规格

  • 【资料】超临界流体色谱分析番茄红素

    [size=5]超临界流体色谱分析番茄红素[/size] 来源: 作者:齐国鹏,赵锁奇摘 要:以超临界C02作为流动相,在压力15.0~20.0MPa,温度25~50%,携带剂乙醇或正己烷的浓度分别为0~30%和0~20%的范围内考察了番茄红素及其氧化产物在C18色谱柱上的保留值的变化规律,确定了最佳的分离条件。对超临界丙烷萃取的番茄红素原料、萃取产物及萃余物进行了定量分析,考察了重复性及平行性。结果表明:在优化条件下,番茄红索的保留时间在3min以内,定量结果的重复性与平行性好。关键词:超临界流体色谱,番茄红素1 引 言番茄红素属于类胡萝卜素的一种,广泛分布于番茄、西瓜、葡萄等各种植物体中,作为多烯芳香烃,番茄红素是很强的抗氧化剂,可以消除血管中的自由基,淬灭单线态氧,对于抑制癌症有一定的效果。近年来,对番茄红素的分析方法的研究也日益增多。常用的方法是HPLC、TLC和紫外分光光度法等。这些方法各有特点,HPLC准确度较高,但有机溶剂耗费多;TLC设备要求不高,但分析时间长、精密度差;紫外分光光度法比较简单,但由于p.胡萝卜素等的干扰,容易产生较大的误差。利用超临界流体色谱分析胡萝卜素已有报道,LesellierE列和Aubert 利用超临界流体色谱对α-胡萝卜素和β-胡萝卜素进行了分析。但采用超临界流体色谱专门分析番茄红素还未见报道。超临界流体具有高的扩散性和较强的溶解能力,有机溶剂用量少,操作温度低等优点,本文通过考察色谱柱温度、超临界流体的压力、超临界流体的组成及携带剂浓度等因素对番茄红素分离的影响,为研究番茄红素建立一种有力的分析分离方法。2 实验部分2.1 仪器与试剂本实验室自行组装的超临界流体色谱仪,包括:两台ISCO 260DM 型注射泵输送二氧化碳,一台ISCO100DM型注射泵输送携带剂,三台泵由一台控制器控制,可以准确控制柱前压和携带剂的流量;冷冻机(重庆四达实验仪器厂)冷冻二氧化碳到一6℃;恒温箱(海安石油仪器厂);TSP-100高压UV-VIS检测器(美国TSP公司);Rhendyne 7125形六通进样阀配20μL定量管等部分。二氧化碳(北京氦普北分气体工业有限公司,纯度99.99%);无水乙醇(北京化工厂,分析纯);正己烷(北京化工厂,分析纯)。2.2 样品及处理样品包括:番茄红素标准品,β-胡萝卜素,室温下放置半个月后的氧化的番茄红素标准品,加入β-胡萝卜素的氧化番茄红素标准品;超临界丙烷萃取番茄产品,萃取的番茄原料,萃余物。将上述样品分别称取适量溶于正己烷中。2.3 色谱条件Spherisorb Ctg色谱柱(中国科学院大连化学物理研究所,尺寸:250mm×4.5mm,10μm填料);流动相为二氧化碳-乙醇,二氧化碳-正己烷;检测波长:472nm;进样量:20μL;温度、压力、流动相流速及组成以下说明。3 结果与讨论3.1 番茄红素的定性分析本实验所用的番茄红素的样品为超临界丙烷萃取番茄产品,其中主要的杂质为β-胡萝卜素,同时由于番茄红素易于氧化,所以对番茄红素、番茄红素氧化物、胡萝卜素进行了定性分析。在相同的色谱条件下,分别注入番茄红素标准液、氧化后的番茄红素标准溶液、加入β-胡萝卜素的番茄红素标准溶液。结果如图可看出,番茄红素及其氧化物,β-胡萝卜素的保留时间随极性的减小而增加。3.2 最佳条件的确定为了保证番茄红素的定量准确,通过考察压力、温度、流动相组成及浓度对番茄红素与其氧化物分离的影响,确定了番茄红素分离的最佳条件。3.2.1 柱前压的影响 改变柱前压,当柱前压由17.0MPa增加到20.0MPa时,番茄红素及其氧化物的容量因子逐渐减少,两者的保留时间都缩短,但番茄红素与其氧化物可以实现分离。3.2.2 柱后压的影响 当柱前压、温度及携带剂流速不变,将柱后压由15MPa增加到19MPa,番茄红素与其氧化物的容量因子均减小,但番茄红素与其氧化物的相对保留值随柱后压的增加而减小,分离度也有减小的趋势。3.2.3 温度的影响 容量因子随温度增加的变化趋势如图看出,随温度升高,番茄红素与其氧化物的容量因子降低。番茄红素与其氧化物的相对保留值在室温时最大。由图也可看出,分析温度较低时,番茄红素与其氧化物的保留时间较长,但分离度较大,所以,分离的温度可选择室温。3.2.4 携带剂的影响 当乙醇浓度由5%增加到8%时,番茄红素容量因子减小很快,当浓度增大到16%时,番茄红素与其氧化物的相对保留值减小,乙醇合适的浓度为8%~10%。若以正己烷做携带剂,变化趋势与乙醇相同,番茄红素与其氧化物的相对保留值与乙醇作为携带剂时的值相差不大,大约1.2。但在相同的浓度下,正己烷做携带剂分离番茄红素的容量因子比乙醇小。3.3 番茄红素的定量分析3.3.1 绘制番茄红素的标准工作曲线配制一系列浓度的番茄红素标准溶液,分别取20μL的上述标准溶液进色谱,并根据浓度.峰面积作标准曲线,标准曲线方程为Y =一0.049+7.42×0.0000001X(Y的单位为g/L),拟合度为0.9990,线性关系较好。线性范围:3~240mg/L。3.3.2 超临界萃取番茄红素样品色谱图 选好适当的色谱分离条件,取20μL番茄红素产品的正己烷溶液进色谱,将产品中番茄红素的峰面积代入标准曲线,即可求出溶液中番茄红素的浓度,并求出产品中的番茄红素含量。3.3.3 精密度及平行性测定 分别称取适量的同一批番茄产品、原料、萃余物各2份,溶于10mL的正己烷中。取各份上述溶液平行测定4次,结果列入表可以看出,测量结果的相对标准偏差均在6%以内,具有良好的精密度,且结果的平行性也很好。结合含量及总量进行物料恒算可以看出,原料中的番茄红素总量与产品及萃余物中番茄红素的总量较吻合,得到的结果可靠、准确。4 结 论(1)使用超临界流体色谱,在C18色谱柱上定性分析番茄红素,可通过改变温度、压力、携带剂浓度来改善分离条件。本研究确定的优化条件为柱前压20.0 MPa,柱压降在3.0~4.0MPa,分离的温度选择室温,携带剂浓度在8%~10%。番茄红素的保留时间大约3min,分析时间短于HPLC。(2)超临界流体色谱定量番茄红素,相对标准偏差在6%以内,结果的重复性和平行性较好。References1 Cheng Jian(成坚),Zeng Qingxiao(曾庆孝).Food and Fermentation lndustr/ez(食品与发酵工业),1999,26(2):75~782 Wang Qiang(王强),Han Yashan(韩雅珊),Dai Yunqing(戴蕴青).Chinese J.Chromatogr.(色谱),1997,15(6):534~535

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制