当前位置: 仪器信息网 > 行业主题 > >

金属粉末燃烧速率试验仪

仪器信息网金属粉末燃烧速率试验仪专题为您提供2024年最新金属粉末燃烧速率试验仪价格报价、厂家品牌的相关信息, 包括金属粉末燃烧速率试验仪参数、型号等,不管是国产,还是进口品牌的金属粉末燃烧速率试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金属粉末燃烧速率试验仪相关的耗材配件、试剂标物,还有金属粉末燃烧速率试验仪相关的最新资讯、资料,以及金属粉末燃烧速率试验仪相关的解决方案。

金属粉末燃烧速率试验仪相关的资讯

  • 3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末
    3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末越来越多的金属零件是通过3D打印来生产的。这个新技术为具有复杂结构零件的生产提供了可能性,特别是一些无法使用常规方法生产的零件。此外,模型可以通过技术图纸实现,而无需使用定制的工具。三维打印零件的质量很大程度上受到原材料的质量影响。为了降低生产成本,金属粉末需要经常被回收。经过多次使用,氧、氮和氢的含量和相关的力学性能可能改变。因此,分析金属粉末中氧、氮和氢的含量,可以确保3D打印产品的质量。各种应用于3D打印行业的金属粉末都可以使用inductar® ONH cube进行分析。仪器:inductar® ONH cube 氧氮氢分析仪技术细节:载气:氦气样品质量:100-1000mg金属粉末原料的钛和不锈钢粉末以及再生的钛和不锈钢粉末的测试结果参照下表。再生粉末与原料的氧、氮和氢含量相比,变化很大,尤指是氧的含量,由于颗粒的粒度极小同时具有非常大的比表面积,颗粒很容易被氧化。甚至ppm级别的含量变化都可以改变3D打印粉末的性能。因此,分析需要使用精度高,检测限低的检测方法。采用inductar ONH cube进行元素分析是十分好的分析选择。inductar ONH cube 氧氮氢分析仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,氧氮氢分析。特点:无需配备石墨电极清扫刷进行清扫,提高做样效率可编程气体分流,通过睡眠模式进入省气模式无需配备动力气以及外置水冷机,可单坩埚完成测试,节省成本专利的球夹连接,实现免工具维护
  • 客户案例 | 合金材料研究中金属粉末自动称量分装应用
    探索未来的关键材料!合金材料研究正在掀起科技浪潮,为我们的生活带来无限可能。其应用前景非常广阔,无论是在航空航天、汽车制造、电子产品、可再生能源还是医疗领域,高性能的合金材料都是推动进步的核心力量。随着科技的飞速发展,对合金材料的需求和性能要求不断提升,研究人员正致力于开发出更多高性能、低成本、环境友好的的新型合金材料,以满足不断变化的应用需求。对于晶泰科技的客户——合金材料研究实验室的研究人员而言,精确的金属粉末称量是影响他们研究的重要因素之一。整个研究中金属粉末称量面对各种挑战,如流动性差的粉末、静电吸附、环境因素影响以及潜在的安全风险。为了应对挑战,客户选择使用晶泰科技 ChemPlus® 桌面型固体加样仪,来确保金属粉末加样称量的精准性,为合金材料研究提供坚实的基础。客户在合金材料研究实验过程中,选择了 3 种代表性的金属粉末,设置了 50/1000/2000mg 3 个目标加样量,记录 ChemPlus® 桌面型固体加样仪对于不同粉末在不同目标加样量下的称量数据:平均加样值、加样偏差、加样时间等。&bull 测试粉末样品:3 种(因研究保密性,不展示具体粉末名称,有相似需求的客户,晶泰科技提供样品免费测试服务,可联系我们);&bull 目标加样量:50mg、1000mg 和 2000mg;&bull 每种粉末样品分装到定制实验小瓶。表1.三种金属粉末自动加样称量实验数据经过对测试数据的综合分析,我们得出以下结论:ChemPlus® 桌面型固体加样仪在称量合金材料研究中具有代表性的三种金属粉末方面表现出高度的准确性和稳定性。具体的性能表现如下:&bull ChemPlus® 能够有效处理吸潮结块、流动性差以及易氧化的金属粉末,在测试过程中表现出良好的操作性,没有出现堵塞现象表明其适用性广泛,能够满足多样化的实验需求。&bull 在进行加样称量时,ChemPlus® 对于所有预定目标重量的偏差控制在了 0.1mg 的精确范围内,反映出其突出的称量精度。&bull 当进行中量程加样操作时,ChemPlus® 能够以更快的速度达成目标加样,展示出较高的友好性和快速精确的加样称量能力。&bull 将 ChemPlus® 系统置于手套箱内进行操作,能够顺利执行金属粉末 C 的自动加样称重任务,并且支持与其他系统的集成。综上所述,ChemPlus® 桌面型固体加样仪在精确控制金属粉末加样过程中展现出了高效性和可靠性,适用于进行合金材料研究中金属粉末加样称量。&bull 高通量:可放置多种固体原料和接收容器,全面提升效率;&bull 适用范围广:样品无需特殊处理,覆盖吸潮结块、较大颗粒、蓬松、流动性差的粉末;&bull 智能算法参数调节:自适应加粉算法,多类型粉末智能识别;&bull 压电陶瓷激振技术:多类型粉末出粉更流畅;&bull 除静电:有效降低静电效应,加样更准确;&bull 成本可控:耗材价格低廉,节省成本;&bull 占地小:整机尺寸小,桌面型;&bull 兼容性广:可兼容多种实验室常用尺寸小瓶;&bull 数据追踪:条形码或二维码样品管理,支持审计追踪;&bull 简易交互软件:可视化操作软件,易上手使用。ChemPlus® 这款结构紧凑的桌面型固体加样仪,帮助客户合金材料研究实验室,提高了金属粉末加样称量的效率、精准性和安全性,为研究人员节省了宝贵的科研时间。ChemPlus® 适用性非常广泛,支持多种固体原料和兼容不同接收容器,无需人工值守,自动完成重复耗时的称重固体加样操作;同时,ChemPlus® 自动化粉末加样技术能够处理多种粉末,覆盖吸潮结块、较大颗粒、蓬松、流动性差的粉末,自适应加粉算法,多类型粉末智能识别,无需针对特定粉末进行设置或者优化加样参数;自动化高通量的加样,避免研究人员直接接触可能具有毒性或易燃性的粉末。在此客户案例中也为客户定制专属实验小瓶和托盘;并且支持集成到无水无氧体系手套箱中。
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 图像分析法在3D打印金属粉末粒度及形状表征领域的应用
    2021年6月1日,《增材制造 金属粉末性能表征方法》(GB/T 39251-2020)[6]正式实施, 该标准中明确要求按照《粒度分析 图像分析法 第2部分:动态图像分析法》(GB/T 21649.2- 2017)[3]来检测并计算金属粉末颗粒投影的球形度值。早在2018年,德国最大的学术组织德 国工程师协会(Verein Deutscher Ingenieure,VDI)在《Additive manufacturing processes, rapid manufacturing Beam melting of metallic parts Characterisation of powder feedstock》(VDI 3405 Part 2.3)[13]中已将动态图像分析法列为增材制造金属粉末粒度及粒形分析的首选方法;美国材料试验协会(American Society of Testing Materials,ASTM)在《Additive manufacturing — Feedstock materials — Methods to characterize metal powders》(ASTM 52907:2019)[12]中, 也将动态图像分析法列为金属粉末粒度分析的方法之一。此次GB/T 39251的实施,代表着我国在金属粉末表征领域与国际同步。 自1999年动态图像法被发明至今已有22年的发展历程,技术层面已经十分成熟,得益于其“所见即所得”的直接测量方法,如今在亚微米-毫米尺度内正被越来越多的用户推崇, 用于颗粒粒度与粒形表征。本文使用图像分析法,激光衍射法和筛分法分别测量了金属粉末的粒度与形状,从形状分析灵敏度、与传统方法对比以及对大颗粒的检测灵敏度等方面对测量结果进行了对比分析,论证了图像分析法在该领域的应用优势。 1. 动态图像法分析原理说明:1 分散态的颗粒;2 颗粒运动控制装置;3 测量区域;4 光源;5 光学系统;6 景深;7 图像采集 设备;8 图像分析设备;9 显示 图1 动态图像法流程图 动态图像分析流程:粉末样品在(2)颗粒运动控制装置的控制下,均匀分散地进入(3) 测量区域,(4)光源发射的可见光经(5)光学系统转变为平行光,平行光照射到粉末颗粒 后形成的颗粒投影被(6)图像采集设备拍摄捕捉,颗粒图像传输至(8)图像分析设备,统 计分析得到最终结果(9)。图2 基于双摄像头成像技术的Microtrac MRB动态图像分析仪Camsizer X2,分析范围0.8μm-8mm 2 . 动态图像法在增材制造领域的应用优势 增材制造金属粉末粒度一般在20μm-80μm之间并且分布尽可能窄,同时卫星颗粒、非球形颗粒、超大颗粒或熔结颗粒的含量应尽可能低,以提高粉末烧结性能并且避免成型缺陷。 另外,3D打印过程中仅有少部分粉末用于部件成型,另有大部分粉末需要回收利用,回收粉末是否仍然满足打印质量要求是金属粉末质量检测的重要课题。传统方法一般使用筛分法或 气流分级法分级金属粉末得到所需粒度段,使用激光衍射法和筛分法测定金属粉末粒度分布,使用扫描电镜观察金属粉末球形度。 2.1 快速准确定量分析颗粒形状 利用气雾法在不同生产条件下得到原始粉末,并使用筛分法筛选出<60μm的1#与2#合 金粉末,使用SEM扫描电镜观察1#与2#合金粉末,得到图3样品图片,使用动态图像分析仪 Camsizer X2检测1#与2#合金粉末,得到图4的粒度分布与粒形分布曲线。图3 1#、2#合金粉末的扫描电镜图像图4 1#与2#合金粉末的粒度频率分布曲线(左)与球形度曲线(右)分析仪器:Microtrac MRB德国麦奇克莱驰 Camsizer X2 如图4所示,1#与2#样品粒度分布几乎完全重叠,但其球形度SHPT分布曲线呈现明显差 异,其中1#样品SHPT曲线整体更靠近右侧,表明1#样品的颗粒形貌更加规则。 表1 具有相同粒度分布的两个金属粉末样品的动态图像分析结果从表1中可知,1#与2#样品的D10、D50、D90值偏差仅有1μm左右,使用激光粒度仪根 本无法检测出两个样品的差异;使用SEM观察颗粒形状,如图3所示,虽然直观感觉1#样品 的形貌比2#样品更加规则,但SEM无法量化表征粒形数值,只能作为参考展示和定性分析; 使用动态图像法检测两个样品,球形度SPHT平均值分别为0.9166和0.8596,如果把球形度值 0.9作为球形颗粒认定标准的话,1#与2#样品SPHT>0.9的球形颗粒占比分别为65.88%和 38.02%。动态图像分析仪仅用时4-5分钟,就统计了超过1000万颗颗粒信息,得到极佳的具 有统计代表性的结果。 2.2 粒度粒形同步分析 Microtrac MRB动态图像分析仪Camsizer X2采用两个420万像素的高分辨率摄像头,每 秒钟可拍摄超过300张图像,软件统计每一张图像中的每一颗颗粒粒度及形状数据。 使用Camsizer X2检测金属粉末得到颗粒投影原始灰度图像,如图5所示,使用图像分析 功能提取出两颗颗粒的粒度与粒形数据如表2所示。图5 动态图像法单颗粒投影原始图像 表2 单个颗粒粒度与粒形数据动态图像法拍摄统计每一颗颗粒的粒度及粒形数据,基于真实的颗粒测量,所见即所得, 不受样品折射率、遮光率的影响,不受筛网变形影响,检测结果比激光粒度仪和筛分仪更加 可靠。但是在新颁布的国家标准中,粒度分布测定方法仅列出了激光衍射法与筛分法,笔者 分析是在标准制定过程中,考虑到目前图像法分析仪的市场占有率远远低于激光粒度仪,出 于方法普遍性而做出的选择。在德国VDI和美国ASTM标准中,均将图像法列为粒度和粒形 分析方法之一,在后续的标准修订中我们应该改进。 2.3 与传统方法的对比 根据样品不同、检测方法不同、应用方向不同,颗粒粒径有多种不同定义,如图6所示。 图 6 常用的颗粒粒径定义 Xc min:颗粒弦长,从 64 个不同方向测量颗粒在该方向上的最大弦长 Xc,取 64 个弦长值中最小的一 个作为颗粒弦长 Xc min,Xc min常用于和筛分法结果对比。 Xarea:等效球径,与颗粒投影面积相等的圆形的直径,Xarea 常用于和激光衍射法结果对比。 XFe max:颗粒长度,从 64 个不同方向测量颗粒在该方向上的费雷特直径 XFe,取 64 个费雷特直径中最大的一个作为颗粒长度 XFe max,即颗粒的最大卡规径。 动态图像法根据颗粒投影所占据的像素数量与位置,一次进样可以检测图 6 中 3 种不 同的粒径定义。 2.3.1 动态图像法与激光衍射法的对比 激光粒度仪一般基于米氏理论或弗朗霍夫理论,利用颗粒对光的散射现象,根据散射光 能的分布计算被测颗粒的粒度分布:当样品颗粒的散射光分布与某一大小的球形颗粒的分布 一致时,即认为样品颗粒大小等于该球形颗粒的直径。即激光粒度仪所测粒径为图6中的等 效球径Xarea,对于大部分非规则的颗粒样品,激光粒度仪测量结果存在系统性偏差。 分别使用动态图像分析仪与激光粒度仪测量4种不同形状的金属粉末,得到图7的粒度累积分布曲线。图7 激光粒度仪与动态图像分析仪粒度累积分布曲线对比 动态图像分析仪器:Camsizer X2(Microtrac MRB) 激光粒度分析仪器:Sync(Microtrac MRB) 红色曲线:Xc min 颗粒弦长;绿色曲线:Xarea 等效球径;蓝色曲线:XFe max 颗粒长度;黑色曲线:激光粒度 使用动态图像分析仪可以同时得到颗粒弦长Xc min、等效球径Xarea与颗粒长度XFe max三条 曲线,如果样品是球形颗粒,如图7中Sample1与Sample2所示,3条曲线差距很小;如果样品 中含有非球形颗粒,如图7中Sample3与Sample4所示,3条曲线就会呈现明显差异,并且样品 越不规则,3条曲线差异越明显。激光粒度仪无法区分颗粒宽度与长度,其检测结果一般位 于动态图像分析仪的颗粒弦长与颗粒长度之间。Sample2为通过53μm孔径筛网的金属粉末,所有颗粒的弦长均应小于53μm,只有部分 颗粒的长度可能大于53μm。如图7所示,Sample2的红色曲线Xc min上限D100<53μm,只有 蓝色曲线XFe max检测到少量>53μm的颗粒,而黑色曲线激光粒度数据显示有超过5%的颗粒 >53μm,与实际存在误差。这表明,激光粒度仪对颗粒粒度上限的检测精度不够准确,图像分析仪可以准确检测粒度上限D100,更接近真实结果。 2.3.2 动态图像法与筛分法的对比 筛分法作为一种经典的颗粒分级与粒度分布测量方法,被广泛应用于金属粉末的质量控制,此次实施的国家标准中,建议>45μm的金属粉末可以采用筛分法来测定粒度及粒度分布。筛分法的优点是检测范围宽、重复性好、设备成本低,缺点是检测效率低,人为误差大, 受筛网变形影响大。目前所用的筛网一般是金属丝编织筛网,网孔大小指方形网孔编织丝线 间的垂直距离。理论上标准球形颗粒通过筛网的最小孔径等于其颗粒直径,非球形颗粒通过 筛网的最小孔径约等于其颗粒弦长,如图4所示。 分别使用筛分法和动态图像法测量某粒度区间位于100μm-5mm的宽分布塑料颗粒,得到图8所示曲线。图8 宽分布塑料颗粒动态图像法与筛分法一致性曲线,横坐标为筛网目数 动态图像法分析仪器:Camsizer P4(Microtrac MRB) 筛分法分析仪器:AS200C(Retsch GmbH) 如图8所示,即使是粒度分布非常宽的样品,动态图像分析仪Camsizer也能够准确检测, 检测结果Xc min与筛分法结果高度一致,可以直接替代筛分法用于金属粉末的粒度和粒度分布测定。 实际筛分过程中,由于筛网的产地不同、标准不同、质量不同等多方面因素,再加上筛分过程中的人为误差,常常会产生非常大的筛分误差。为减小筛分误差,首先应选用经过计量认证的不易变形的标准筛网,其次,应使用振动筛分仪器在标准程序下进行筛分。 2.4 超大颗粒的检测灵敏度 增材制造金属粉末中少量大颗粒的存在会很大程度上影响粉体流动性和铺粉效率,从而影响成型件的结构强度,容易形成空隙和划痕,所以需要对金属粉末的粒度分布,尤其是超大颗粒的含量进行严格的控制。传统的激光粒度仪由于分析原理限制,对于超大颗粒的检测灵敏度仅为 2%左右。德国麦奇克莱驰 Microtrac MRB 的动态图像分析仪 Camsizer X2 采用 双摄像头技术,拍摄区域宽,分析精度高,对超标颗粒检测灵敏度可达 0.01%。 在约5克<80微米的金属粉末样品(图9 上左)中加入约0.005克(0.1%)的超过200μm 的大颗粒(图9 上中),使用Camsizer X2检测该混合样品得到图9下粒度分布曲线。‍图9 动态图像分析仪Camsizer X2对超大颗粒的检测灵敏度 如图9下所示,Camsizer X2准确检测到0.1%的超大颗粒。继续添加不同组分的超大颗粒, 验证Camsizer X2对大颗粒含量的识别精度,得到如表3结果: 表3 Camsizer X2对不同组分大颗粒的检测精度即使低至0.005%含量的超大颗粒,Camsizer X2也能够准确识别,依靠其双摄像头成像 技术,Camsizer X2超宽的检测范围不会漏拍任何颗粒。 3. 静态图像分析法在增材制造领域的应用 此次实施的标准中,显微镜法也是测量粉末球形度的方法之一。显微镜配备测量软件, 即为一台静态图像分析仪器,方法依据《粒度分析 图像分析法 第1部分:静态图像分析法》 (GB/T 21649.1 2008)[4]。图10 德国麦奇克莱驰Microtrac MRB静态图像分析仪Camsizer M1 静态图像分析仪Camsizer M1配备最多6个不同倍数的放大镜头,可以清晰拍摄细至0.5 微米的颗粒,检测上限可达1.5毫米,完全覆盖金属粉末的粒度范围。 与动态图像法一样,静态图像法同时检测颗粒的多项粒度与粒形参数,如图13所示。分 别使用动态图像分析仪Camsizer X2与静态图像分析仪Camsizer M1检测粒度区间位于38-53 μm和90-106μm的颗粒样品,对比两种方法的优劣,得到图11所示粒度频率分布曲线与表 4检测数据。‍图11 动态图像分析与静态图像分析结果 动态图像分析仪:Camsizer X2 (Microtrac MRB) 静态图像分析仪:Camsizer M1 (Microtrac MRB) 表4 动态图像分析与静态图像分析检测结果静态图像分析仪样品统计量少,容易产生取样误差,适合窄分布的样品。由于颗粒统计量少,所以大颗粒对静态图像分析仪检测结果影响较大,如图11所示,90-106μm样品的静 态图像分析曲线连续性较差,为了增加颗粒统计数量提高统计代表性,静态图像分析仪检测 时间一般在10分钟以上。 由表4可知,窄分布细颗粒样品的动态图像与静态图像检测结果一致性较好,宽分布粗颗粒样品一致性较差;动态图像比静态图像分析时间短,颗粒统计量大。 同时,静态图像分析要求颗粒应以合适浓度均匀分散在载玻片上。Camsizer M1配备专门的粉末分散装置M-jet,使用10-70kPa的负压均匀分散粉末,避免由于分散不均造成的颗粒 堆叠、黏连现象,分散效果如图12所示。图12 采用M-jet分散的金属粉末总览图 Camsizer M1采用透射光与入射光两种光源,能够从多角度拍摄分析金属粉末,在软件中分别读取入射光颗粒图像与透射光颗粒图像,见图13。图13 Camsizer M1入射光(左)与透射光(右)拍摄的金属粉末原始图像 由于颗粒处于静止状态,并且光学系统性能更加优秀,静态图像分析仪的成像质量一般远远优于动态图像分析仪。Camsizer M1的入射光图像(图13 左)能够拍摄颗粒表面细节, 观察卫星颗粒、熔结颗粒以及异形颗粒的状态,有助于更深层次了解金属粉末。 总结 图像分析法在亚微米-毫米尺度内正被广泛应用于粉体粒度分布与颗粒形貌的分析,完美适用于增材制造金属粉末。 图像分析法分为动态图像分析与静态图像分析两种,动态图像法的优势是统计代表性好、 检测时间短,检测结果可以与激光衍射法和筛分法对比,适用于金属粉末的快速准确质检; 静态图像法的优势是图像清晰度高,可以观察更多金属粉末的表面细节,适用于研发,但静态图像法检测时间长、统计代表性有待提高,取样量少容易产生取样误差,摄像头的聚焦范围窄,不适用于宽分布样品的检测分析。参考文献 1. Microtrac MRB. 066 Metal Powders with Lazer Diffraction and Image Analysis Sync X2 EN 2. 郭瑶庆, 严加松, 舒春溪,等. 催化裂化催化剂形貌分析方法的建立[J]. 工业催化, 2020(3):73-77. 3. GB/T 21649.2-2017,粒度分析 图像分析法 第2部分:动态图像分析法[S]. 4. GB/T 21649.1-2008,粒度分析 图像分析法 第1部分:静态图像分析法[S]. 5. GB/T 15445.6-2014,粒度分析结果的表述 第6部分:颗粒形状和形态的定性及定量表述[S]. 6. GB/T 39251-2020,增材制造 金属粉末性能表征方法 7. 罗章, 蔡斌, 陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 [J]. 沉积学报, 2016, 34(005):881-891. 8. 涂新斌, 王思敬. 图像分析的颗粒形状参数描述[J]. 岩土工程学报, 2004, 26(5):659-662. 9. 杨启云, 吴玉道, 沙菲,等. 选区激光熔化用Inconel625合金粉末的特性[J]. 中国粉体技术, 2016(3):27-32. 10. [1]刘鹏宇. 典型选区激光熔化粉末的特性及其成型件组织结构的研究[D]. 兰州理工大 学. 11. Nan D , Zz A , Jl B , et al. W–Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders - ScienceDirect[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82:310-316. 12. EN ISO/ASTM 52907-2019,Additive manufacturing - Feedstock materials - Methods to characterize metal powders[S]. 13. VDI 3405 Blatt 2.3:2018-07 Additive manufacturing processes, rapid manufacturing - Beam melting of metallic parts - Characterisation of powder feedstock[S].作者:王瑞青 德国麦奇克莱驰 Microtrac MRB
  • 美国金属粉末工业联合会发布新版标准
    美国金属粉末工业联合会(MPIF)最近发布了2010新版金属粉末和粉末冶金制品检测方法标准及标准35,粉末冶金自润滑轴承材料标准。检测方法标准共130页,包含了39个关于专业术语以及金属粉末、粉末冶金零件、金属注射成型(MIM)零件、金属过滤器和粉末冶金设备的推荐检测方法标准。自润滑轴承标准共28页,包括有一个扩散合金化铁-青铜轴承的新的材料部分,油浸渍效率新资料,青铜轴承的修正资料以及数据表的修改。  除了增加了一个新标准――粉末冶金材料的总碳含量测定试样制备(硬质合金除外),新版的测试方法标准对10个标准进行了修改。   两版标准都参照了相关的ASTM和ISO标准。   检测方法标准可提供平装、电子版以及CD-ROM格式,每份75美金。轴承标准也同样提供这3种格式,每份35美金。
  • 新标准图文解析-增材制造金属粉末性能表征方法
    本文由马尔文帕纳科应用专家张瑞玲女士供稿 自2021年6月1号起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项推荐国家标准开始实施!该标准主要规范了金属粉末性能的表征方法,检测项目主要包括:外观质量、化学成分、粒度及粒度分布、颗粒粒形、流动性、密度、夹杂物及空心粉。 马尔文帕纳科作为材料表征领域的专家,其先进的分析检测技术为增材制造行业提供粒度、粒度分布、颗粒形貌等贯标解决方案。涉及技术及仪器包含:ü 激光衍射法:Mastersizer3000超高速智能激光粒度仪ü 动态图像法:Hydro Insight 智能颗粒图像分析仪ü 静态图像法(显微镜法):Morphologi-4 全自动粒度粒形分析仪 一、粒度及粒度分布检测的必要性 为什么增材材料要对粒度及粒形分布进行检测呢?这是因为其工艺性质决定的。增材制造是在金属粉末层熔融过程中,先使金属粉末层分布于制造平台上,然后使用激光或电子束选择性地熔化或熔融粉末。熔化后,平台将被降低,并且过程将持续重复,直到制造过程完成。未熔融粉末将被去除,并根据其状态重复使用或回收。 粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动性和堆积密度。粒度会直接影响这些特性,是该工艺的关键技术指标,例如,对于选择性激光熔融工艺(SLM),最佳粉末粒度在 15-45 μm;而对于电子束熔融工艺(EBM),最佳粉末颗粒则应在 45-106 μm(对于 EBM)范围内。图1 层叠增材制造工艺的粉末床工艺图图1展示了SLM工艺中金属粉末床如何形成和扫描激光金属形成2D形貌。持续不断的新的粉末床为最终的3D金属部件提供原材料。金属部件的结构一致性和完成件的表面平整度与粉末的化学特性和堆积密度息息相关。 粉末的堆积密度是由颗粒大小和形状控制的。如图2,粉末中大颗粒过多降低填料的密度,而小颗粒过多则降低填料的流动性。只有当大颗粒和小颗粒比例最优时,填充密度最大,大颗粒中的小空隙被小颗粒填满,流动性和堆积密度达到最佳值。 图2 堆积密度和颗粒大小的关系 为了保证厚度的均一,通常会选择较窄的粒径分布。颗粒的填充和流通性对于金属粉末3D打印技术非常重要,这也是我们为什么要优化粒度及其分布,以实现所需的大颗粒和小颗粒的比例,这点非常重要。 堆积密度会影响熔融池的连续性,较低的堆积密度会导致熔融不连续,完成件表面粗糙,导致结果的一致性降低。图3 堆积密度影响的熔融池分析 如图3所示,粉末床在于激光接触时的熔融池模拟图像,熔融池的温度与粉末的组分和由堆积密度控制的熔融池的连续性直接相关,如果堆积密度高,就会形成一个连续的熔融池,生产出表面光滑、结构稳定的完成件。 二、新国标中的粒度及粒度分布的相关指标 2021年6月1日开始实施的系列标准中对于各种金属粉末的粒度及粒度分布,做了具体的推荐要求,涉及金属粉末粒度分析的标准如下所示:ü GB/T 38970-2020《增材制造用钼及钼合金》ü GB/T 38971-2020《增材制造用球形钴铬合金粉》ü GB/T 38972-2020《增材制造用硼化钛颗粒增强铝合金粉》ü GB/T 38974-2020《增材制造用铌及铌合金粉》ü GB/T 38975-2020《增材制造用钽及钽合金粉》 三、金属粉末粒度分布测试技术:激光衍射法 关于粒度及粒度分布,在6月1日施行的GB/T39251-2020 等6项国家标准中,推荐是使用激光衍射法,具体标准参考 GB/T 19077。这是因为激光衍射法且具备样品用量少、制备简单、测量速度快、重现性好等优点,除此之外,激光衍射发广泛适用于所有增材制造用金属粉末的粒度分布检测,该技术测试覆盖范围宽(马尔文帕纳科激光粒度仪测量范围达到0.01 μm ~3500 μm,完全覆盖增材制造行业金属粉末的粒径范围)。图4 激光衍射测量原理图 激光衍射测量是一种非常常用的测试粒径大小及分布的方法----特别是面对较小的粒度范围时。 在激光衍射测量中,激光束穿过分散的颗粒样品,测试散射光强度的角度变化。因为较大的颗粒有较小的角度和较大的散射光强,而较小的颗粒则有较大的角度和较小的散射光强。激光衍射分析仪运用米氏理论,根据所测量的散射光的角度依赖性来计算样品颗粒的粒度分布。 马尔文帕纳科粒度及粒度分布解决方案马尔文帕纳科 Mastersizer 3000 超高速智能激光粒度仪高度自动化,可实现按钮操作,并且只需很少的手动输入即可提供高产量分析,并且有非常广泛的动态范围0.01 至~3500 µm ,可以精确测量金属粉末的粒径分布。并且还可以很容易的在干法和湿法之间切换,测试金属粉末湿分散和干分散的粒径大小。图5 Mastersizer 3000 超高速智能激光粒度仪图6 钛合金粉末湿法和干法测量叠加图 图 6显示了在 Mastersizer 3000 上使用湿法和干法分散制备的金属粉末的测量结果,可以看到湿法和干法结果一致。其实,如果优化了分散程序且采样具有可比性,干湿法应具有等效结果。从趋势表也可以看出,干法和湿法结果一致性非常好。从GB/T 39251-2020 《增材制造 金属粉末性能表征方法》中,关于金属粉末粒度要求来看,这应该属于I 类金属粉末材料,适用于粉末床熔融(选区激光熔融)增材制造 。四、金属粉末颗粒形貌测试技术:动态图像法/ 静态图像法 目前测试颗粒大小和形貌的技术主要有三种:ü SEM技术:分辨率高,但统计颗粒数目不多,可作为定性技术;ü 动态图像技术:可以提供很多的颗粒数量,但图像质量较差,对于小颗粒的形貌还有区分颗粒的表面结构,较为困难;ü 静态图像技术:可以兼顾分辨率和颗粒数量,可以定性,也可以定量。 国标中对于各种金属粉末的颗粒形状,也就是粉末的微观形貌、球形度的表征方法推荐使用动态颗粒图像分析法和显微镜法(静态图像法)。粉末球形度以一定数量粉末颗粒投影界面的圆形度检测值的平均值进行近似表征。 马尔文帕纳科动态颗粒图像分析解决方案最新推出的 Hydro Insight 动态颗粒图像分析仪采用高速高分辨率摄像机实时采集动态颗粒图像,搭配 Mastersizer 3000 超高速智能激光粒度仪可以提供颗粒的分散和单个颗粒实时的图像,并且可以定量测试样品的分布数据,还有32个尺寸和形状的相关指标,如圆度、椭圆图、不透明度、平均直径、长宽比,可以帮助了解颗粒的大小和形状是如何影响了材料的性能。方便您更好地了解您的材料,简化故障排除,并助力快速开发新方法。图7 Hydro Insight 动态图像分析仪(左)金属粉末样品中少量的大颗粒或者小颗粒用激光衍射的方法很难捕捉到信号,Hydro Insight 动态颗粒形貌分析仪可以对单个颗粒进行成像,并提供数量分布,并且可以看到颗粒的形貌。帮助我们看到这些大颗粒是否真实存在,以及它的外观,是高度球形的颗粒,卫星颗粒还是高度不规则的颗粒。图8 Hydro Insight 呈现的大颗粒形貌图9 动态图像法颗粒分布累积曲线马尔文帕纳科静态图像分析解决方案马尔文帕纳科还提供静态图像法高效颗粒形貌测量工具——Morphologi 4 全自动粒度粒形分析仪,用于测量从0.5 微米到数毫米的颗粒粒度和形状。使用伸长率、圆度、凸度等参数报告形状信息,以量化颗粒不规则性和表面粗糙度。与手动显微镜和电子显微镜相比,自动成像更高效,可提供数万颗粒的统计数据。图10 Morphologi 4-ID 全自动粒度粒形分析仪 Morphologi 4 全自动粒度粒形分析仪粒度测量范围从0.5μm到1300μm,采用整体式干粉分散装置,优化的显微镜光学器件和高信噪比CMOS相机,从样品分散到结果分析,均实现自动化SOP控制。图11 钛合金粉末球形度分析示意图 由于80-95%的金属粉末在增材制造的整个周期中都没有使用,昂贵的金属粉末回收利用也是增材制造行业中的关注重点。 为减少制造过程中降解的粉末导致零件质量的下降,避免导致灾难性的零件故障,关注原始材料和回收材料形貌的微妙偏差就显得尤为重要。 Morphologi 4 粒度粒形分析仪对原始粉末和使用多次后的粉末进行检测,为您揭示回收粉末材料与原始粉末的细微差异,进一步解析造成粉体流动性和堆积密度不同的原因。图12 钛合金球形度分析统计结果,红色为原始粉末,绿色为使用8次的粉末,蓝色为使用16次的粉末图13 样品的圆当量粒度分布图,红色是原始粉末,蓝色为使用8次的粉末,黑色为16次的粉末关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。 通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。 这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 莱驰科技邀你来WorldPM现场测金属粉末球形度
    ?两年一届的世界粉末冶金大会暨展览会在亚、美、欧三大洲轮流举行,继日本横滨、美国奥兰多、德国汉堡之后,2018世界粉末冶金大会暨展览会(WORLDPM2018)将于9月17-19日首次在华举行。主办单位为中国金属学会(CSM)和中国粉末冶金产业技术创新战略联盟(CPMA),支持单位有亚洲粉末冶金协会(APMA)、台湾粉体及粉末冶金协会(TPMA)、欧洲粉末冶金协会(EPMA)和美国金属粉末工业联合会(MPIF)。预计届时将会有超过450篇论文、200个展位和1000名以上的参会人员。 Retsch Technology(莱驰科技)期待着与您相见,一起切磋粉末冶金行业的仪器使用心得。现场将展示Retsch Technology(莱驰科技)最新的干湿两用粒度粒形分析仪Camsizer X2,采用专利的双CCD镜头,依据ISO13322-2动态图像分析技术标准,测量范围0.6um-8mm,现场演示做样,可检测金属粉末的球形度、粒度分布、透明度、纵横比、对称性等,对于易团聚的粉体颗粒测试重复性佳,可与筛分结果进行拟对。动态图像法是德国增材制造行业的标准首选方法。针对测量金属粉末的球形度和粒度分布,我们将与您面对面进行深入交流。展会时间:2018年9月17日至19日展会地址:北京国家会议中心(北京市朝阳区天辰东路7号)展位号:A115交通:地铁15号线奥林匹克公园站 我们诚邀您参加2018世界粉末冶金大会暨展览会(WORLDPM2018)!Retsch Technology(莱驰科技)期待在北京与您相见!
  • 3D打印的基石——粉末材料的性能表征方法
    一、 概述在金属3D打印技术中,粉末材料作为“基石”,很大程度上决定了最终打印成品的质量和性能。金属3D打印技术的未来发展,也与材料本身的性能密切相关,包括材料的粒径、孔隙率、密度、流动性等。金属3D打印大多采用选择性激光烧结(SLS)与选择性激光熔化(SLM)技术,打印过程中均涉及铺粉这一关键步骤,要求形成均匀的粉层,因此需要考察金属粉末的成堆状态和流动性能,这也将影响最终烧结成件的表面粗糙度和抗拉强度等关键性能指标。二、 材料性能评价按照最新国标GB/T 39251-2020《增材制造 金属粉末性能表征方法》的要求,3D打印用金属粉末的粒径、孔隙率、有效密度、振实密度和流动性等特性都需要进行检测。因此,选择最合适的表征方法确定相关参数,并建立金属粉末原料的数据库尤为重要,可为材料研发和生产环节提供指导。金属粉末由于其固有属性,通常粒径较小、孔隙率较低、流动性较好,对表征方法的灵敏度和适用性都提出了一定的要求。本文将针对上述3D打印用金属粉末的关键参数表征技术进行介绍。1. 亚筛分法测量金属颗粒粒径测试原理:利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定特征表面积SSA和平均粒径。应用领域:符合ASTM B330-12标准,用于测量金属粉末以及相关化合物的粒径。全自动亚筛分粒径分析仪MIC SAS II(点击图片了解仪器详情)2. 压汞法计算孔隙率测试原理:在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。应用领域:孔隙率会显著减低材料的抗压强度与疲劳性能,无法满足材料的正常使用需求。压汞法可用于计算多孔材料或打印产品的总孔体积、孔径分布和孔隙率等参数。AutoPore V系列高性能全自动压汞仪(点击图片了解仪器详情)3. 气体置换法获得有效密度测试原理:使用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度,即有效密度。应用优势:气体置换法测密度比液体浸透法更准确,重复性更好;可测量材料或小型成件的有效密度。全自动气体置换法真密度仪ACCUPYC II 1345(点击图片了解仪器详情)4. 全自动振实密度分析测试原理:使用刚性球状颗粒作为替代介质,紧密裹覆在材料外表面并填充材料间隙,精确测出样品的包裹体积并算得密度。替代介质的颗粒很小,在混合过程中与样品表面紧密贴合,但不会进入样品孔隙。应用优势:与传统的振实密度相比,全自动振实密度分析仪能够更快速、更安静地获取更高重复性的精确结果;可测量材料或小型成件的振实密度。GeoPyc 1365全自动包裹密度分析仪(点击图片了解仪器详情)5. 流动性测试原理:使用独特的技术测量粉体在运动状态下流动的阻力。精密的桨叶旋转向下穿越粉体,建立精确的颗粒相互作用模式,粉体对桨叶所施加的阻力则代表了颗粒间相对运动的难易程度,即粉体的流动性能。同时集成自动化剪切盒,也能够测量密度、可压性和透气性等整体属性。应用优势:符合ASTM D7891标准,用于测量金属粉末的流动性。相比现有技术(霍尔流速计所用漏斗法)更加自动化,该技术灵敏度更高,能够精确表征批次间的微小差异,评价不同供应商和制造方法的影响以及评估原料筛分前后的差异。FT4粉体流变仪(点击图片了解仪器详情)三、 小结通过上述现代化评价手段,有助于优化3D打印用金属粉末的性能,从而实现重复利用;同时可避免因检测技术的不适用性而花费大量金钱和时间,减少成品的不合格率,帮助企业降本增效。作者:麦克默瑞提克(上海)仪器有限公司
  • 弗尔德仪器亮相最IN的上海国际粉末冶金展览会
    上海国际粉末冶金展览会(PM CHINA 2019) 中国粉末冶金行业一年一度的品牌盛会,云集数百家国内外驰名企业,集中展示世界领先的粉末冶金技术、注射成形技术、高精度零部件制造技术、3D打印技术、高性能材料等,为粉末冶金相关行业提供先进的解决方案和优质的产品服务。 3月25日,上海国际粉末冶金展览会开幕首日,迎来了盛大的第八届上海国际注射成形高峰论坛,诚邀行业大咖打造一场高规格、高水平的注射成形行业交流盛宴。受主办方邀请,弗尔德科学仪器事业部总经理董亮先生亮相2019上海国际注射成形高峰论坛,“华山论剑”,娓娓道来弗尔德仪器先进的研磨筛分技术、粒度粒形分析技术、元素分析技术以及热处理技术,全心全意为粉末冶金注射成形技术提供一流的仪器解决方案。弗尔德科学仪器事业部总经理董亮先生 作为2019上海国际粉末冶金展览会的参展商,弗尔德仪器展出了旗下众多品牌,包括研磨筛分设备品牌德国Retsch(莱驰)、粒度粒形分析仪品牌Retsch Technology(莱驰科技)、元素分析仪专业品牌德国Eltra(埃尔特)和热处理先进品牌CarboliteGero(卡博莱特盖罗)。如果你正在寻找粉末冶金注射成形、价格制造中创新、高新的解决方案,弗尔德仪器展位将是你不容错过的精彩。 从颗粒粒径粒形分析、元素分析、热处理、微观结构分析到硬度测试,弗尔德科学仪器事业部整合全球专家的建议和服务,为增材制造及粉末注射成型工艺提供创新、高效的解决方案。使用动态图像法测定金属粉末颗粒的粒径粒形 图像分析技术为颗粒粒径分析提供了一种直接测定方法。基本原理很简单:所见即所得。该方法分析时间短、分辨率高、重复性好。Retsch Technology干湿两用多功能粒径及形态分析仪Camsizer X2可以同时测定颗粒粒径粒形信息,功能强大。粉末冶金领域需要的样品颗粒通常粒度分布较宽,以便用较小粒度的颗粒填充大颗粒之间的间隙,从而使粉末更容易装入模具。不规则形状通常有利于烧结过程,因为它增加了颗粒之间的接触。然而颗粒不能太不规则,因为这会使压实更加困难。 对于增材制造,需要的样品颗粒球形度好且粒度分布均匀、较窄,以形成光滑、均匀的粉末层,确保准确烧结。平均颗粒粒径通常在10-50 μm之间。由于过大颗粒或非常不规则的颗粒可能会导致成品缺陷,因此需要非常精确地检测这些样品颗粒。Camsizer X2甚至可以准确检测到这些少量不需要的颗粒。干湿两用多功能粒径及形态分析仪Camsizer X2金属粉末及零件的粉碎筛分 在粉末冶金过程中,原料再利用是一个重要领域。德国Retsch提供了一系列适用于金属粉末筛选和金属零件粉碎的仪器,这些金属粉末和零件可以重新引入到生产过程中。 Retsch振动筛分仪,如振动筛分仪AS200 control,非常适合用于3D打印之前对烧结金属粉末进行筛分,或在打印后将未使用的金属粉末进行分离,以回收细颗粒再次使用。振动筛分仪AS200 control是AS 200系列的经济型产品,质量可靠。在短的筛分时间后可获得1至17个组分。振动筛具有性能和时间的数字设置和显示功能,确保对黑色金属和有色金属(如金、碳化钨或贵金属)进行合适的筛分。振动筛分仪AS200 control 金属注射成型用于生产形状复杂的金属零件。生产每个阶段都可能产生性能不理想的中间部件。这些不理想的中间部件可以被粉碎,作为回收再利用的原材料。像Retsch的BB 500 XL这样的颚式破碎机可以在几分钟内粉碎有缺陷的生坯、棕坯或硬质金属零件。颚式破碎机BB 500 XL金属粉末的化学元素分析 对于金属原材料及最终的粉末成品,为了监测样品的纯度等品质,都需要进行成分及含量检测。3D 打印用金属粉末对纯净度要求很高,除测定主要元素及杂质元素外,氧、氮、氢含量也有要求。 增材制造业常用的一些金属材料,如,钛合金、钴铬合金、镍合金、哈氏合金、铝合金以及钢类等,都非常适合用德国Eltra(埃尔特)氧/氮/氢分析仪Elementrac ONH-p进行检测。测量时,样品无需进行前处理,粉末样品包裹在胶囊中称重后即可直接进样。氧/氮/氢分析仪Elementrac ONH-p MIM/CIM/3D打印工艺热处理技术 MIM/CIM工艺流程中,需要使用粘结剂,使其与金属或陶瓷粉末混合成喂料方便成形。在烧结前需要去除这些粘接剂,这个过程叫排胶。排胶是否彻底,对成品的质量影响很大。CarboliteGero(卡博莱特盖罗)热壁炉——GLO系列,能满足此应用。其加热元件位于炉膛外侧,整个炉膛相当于一个容器。加热元件直接加热炉膛外侧,并向内传导热量,整个炉膛壁是热的,所以叫做热壁炉,也可选配带氢气供气系统的全自动控制系统。GLO退火炉 烧结是MIM工件成形前的最后一个工艺,是一个把粉状物料转变为致密体的传统工艺过程。粉体成形后,通过烧结得到的致密体是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。烧结和前道排胶工艺是否彻底,都直接影响显微结构中的晶粒尺寸、气孔尺寸及晶界形状和分布,进而影响材料的性能。烧结的最终目的是增加产品的密度,密度常被用于衡量产品质量的手段。 根据烧结的温度、真空度、气氛以及样品装载量和装载方式, CarboliteGero(卡博莱特盖罗)的多款设备能满足不同要求的烧结工艺。烧结温度远高于排胶温度,其炉膛为双层中空结构,中间的夹层通冷却水,加热元件与保温材料位于炉膛内,这类炉子我们称为冷壁炉。无论炉膛内的温度有多高,整个炉膛外壁是冷的。其大致可分为:冷壁箱式炉、冷壁钟罩式炉等。HTK排胶烧结一体炉HBO钟罩式气氛烧结炉MIM工艺的炉型选择示意图
  • 弗尔德仪器盛装出席2017上海国际粉末冶金工业展览会
    上海国际粉末冶金工业展览会(简称PM CHINA)创办于2008年,已经成功连续在上海光大会展中心举办了九届。全球制造业正加速向中国转移,汽车行业、机械制造、金属行业、航空航天、仪器仪表、五金工具、工程机械、电子家电及高科技产业等迅猛发展,为粉末冶金行业带来了不可多得的发展机遇和巨大的市场空间。粉末冶金是一种非常理想的加工工艺,它生产出来的产品不管是性能还是质量都是非常优异的,得到了各个行业的认知、认可和广泛应用。2017年4月26至28日,弗尔德仪器盛装亮相上海光大会展中心举办的2017第十届上海国际粉末冶金展览会暨会议(PM China 2017),与更多更专业的观众一起汇聚和交流粉末冶金行业的新产品、新应用。 在此次展会中德国RETSCH(莱驰)展出的筛分仪采用电磁振荡驱动,这是RETSCH的一项专利技术(EP 0642844)。这种驱动机制能产生三维的抛掷运动效果,使得被筛分的物料能均一分布在整个筛分面上。广泛应用于科研与开发,原材料、中间产品及最终产品的质量控制以及生产监控等领域。在粉末冶金领域RETSCH的产品致力于原材料的回收。振荡筛分仪AS200control可用于3D打印过程中筛分剩余的金属粉末,筛分出的金属粉末就可继续重新再利用到接下来的3D打印过程中。 德国Retsch(莱驰)的BB500 XL特别适合煤矿,钢铁厂和矿业。BB500 XL整体构造坚固,功率强劲,以其卓越的破碎率著称。由于研磨腔倾角大,破碎动能效率高可以一次处理最大110mm的进样尺寸,最终出样细度90%小于0.5mm。漏斗为防回溅设计,研磨腔为楔形构造,颚板每分钟来回摆动780下。一个撞击循环中,固定的颚板间隙保证了出样细度。两个重力飞轮带给颚板额外的撞击力。创新式的双轮旋转设计延长了使用寿命。一旦样品被处理到小于间隙尺寸,就会掉落至收集槽。间隙设定为连续式标尺,优化了出样细度。 BB500 XL — 一次粉碎至精细粉末应用案例:粉末冶金件的破碎粉末冶金件(PM件)尺寸精度高,合金成分组成广泛,密度范围可从多孔轻质到高致密变化。试验中,4公斤预烧结PM件(50-100mm进样尺寸)使用BB500 XL 粉碎,最终出样细度84%应用举例:矿物颗粒 动态图像技术采用的是直接测量的原理,“所见即所得”,它可以给出依据不同粒度定义而得到的粒度分布曲线。如图所示:蓝色(XA)曲线是依据等效球径得到的粒度分布,红色(Xw)曲线是依据投影宽度得到的粒度分布,绿色(XL)曲线是依据投影长度得到的粒度分布,桔红色曲线为激光粒度仪所测结果,由此可见,激光法的测量结果与等效球径分布曲线较为接近,但是激光法所得到的粒度分布更宽,在大颗粒的测量上有比较大的误差,桔红色曲线显示样品有约5%的颗粒超过0.5mm,而事实上筛分的结果并非如此,投影宽度(Xw)的分布曲线也验证如此。这是因为,激光衍射法是一种间接测量的方法,它无法从信号上区分颗粒的投影宽度和投影长度,因此原则上激光法可满足于球形颗粒的粒度分析,但对于非球形或不规则颗粒的分析结果则可能有比较大的误差。 金属粉末中的碳、氢、氧、氮、硫的各元素含量会对产品的质量起到很大的影响,比如延展性或防腐蚀性,因此无论是在生产过程中还是最后的质量控制方面,都需要对上述元素含量进行精确的分析和测定。ELTRA提供的ONH-p和CS-800可以对五元素进行快速准确的分析,也适合其他如陶瓷等无机物样品的分析。 CarboliteGero(卡博莱特盖罗)是弗尔德集团建立的专业马弗炉品牌,拥有了全系列炉类产品,加热温度从室温至3000°C,容积从3L至14000L,应用领域覆盖实验室至工业,包括各类气氛炉类产品。广泛应用于各种实验室、中试及工业领域,是为数不多的有能力基于工程学、材料科学、排胶、烧结、金属/陶瓷注射成型(MIM/CIM)、钎焊领域的经验,为用户提供个性化的应用高要求的加热炉制造公司。下图为用户定制的GPC 13/300B,配反应罐,符合AMS 2750E Class 1、A类仪表配置。用于排胶和烧结工艺(Ref. no. 735056)。 除了仪器的展示,弗尔德仪器还在展会上介绍2017年全球回馈活动,填写展会反馈表即可参加抽奖,奖品为VR游戏机或者迷你3D打印机! 现在就登陆http://win.verder-scientific.com/cn了解详情吧!
  • 德国新帕泰克将于9月13-15日参展深圳粉末冶金、陶瓷展
    一、技术背景 ▍ 金属粉末的粒度评价 金属粉末的粒度分布影响其压实过程及压制品的致密度,另外,其目标粒度分布也因最终应用工艺的不同而不同,如堆焊、烧结、3D打印等。 对于金属粉末的粒度分布检测,需要: &diams 适用于高比重物料的分析&diams 具有耐磨性&diams 具有良好的结果重复性和重现性 采用干法粒度检测,可以避免湿法检测因为颗粒比重大而引起的沉底漏检情况,并且避免了后续的溶剂处理过程,方便快捷。 在细节上,针对分散管的设计,德国新帕泰克干法分散系统RODOS提供不同材质作为选择,以保证仪器的长期使用:整体硬化钢、碳化钨以及碳化硼材质。 HELOS&RODOS 检测结果两种不同类型金属粉末的测量结果——高度重复性 ▍ 磁材粉末的粒度分布评价 磁性材料粒度的大小与分布会影响磁体的剩磁(Br)、最大磁能积(BH)和内矫顽力(iHc);过多的细颗粒或粗颗粒不仅会影响生产过程,也会影响最终产品的质量。 磁材材料因其特殊的性质,在湿法检测中,及时使用特殊溶剂、引入超声能量也很难将其彻底分散。在实际测试过程中,对干法仪器的分散能力要求也非常高: &diams 分散能量在4.5bar以上&diams 通过分散管的颗粒需实时检测,无二次输送造成再次团聚&diams 具有良好的结果重复性和重现性 HELOS&RODOS 检测结果红色:干法检测,重复性佳,分散效果好蓝色、绿色:湿法检测,分散效果差 二、参展信息 目前德国新帕泰克干法激光粒度分析仪HELOS&RODOS已经成为磁材行业的粒度检测标杆,在金属粉末的粒度与粒形检测领域均有很多成功案例。 在此背景下,德国新帕泰克应邀参加9月13-15日于深圳举办的相关展会并携针对性的技术方案与相关行业客户展开现场交流。 展会名称:深圳国际粉末冶金、硬质合金及先进陶瓷展 2020第18届深圳国际小电机及电机工业、磁性材料展览会 展会日期:2020年9月13-15日 展会地点:深圳会展中心(福田区福华三路) 德国新帕泰克参展展位号:2号馆 C196 三、现场仪器 激光粒度仪 HELOS&RODOS 欢迎携样品现场检测交流。
  • 繁花三月,您是否在国际粉末冶金展上与弗尔德仪器不期而遇?
    3月27日,2018上海国际粉末冶金展在上海光大会展中心圆满落幕!本届上海国际粉末冶金展共有415家展商,展期三天共迎来专业观众达18219人。为了寻找粉末注射成型加工制造中创新高效的解决方案,众多观众被弗尔德仪器展位深深吸引,我们能够为粉末冶金行业提供一流的颗粒粒度粒形分析、元素分析、热处理产品。在国际粉末冶金展现场,弗尔德仪器展出了德国Retsch(莱驰)三维振动筛分仪AS 200 control、CarboliteGero(卡博莱特盖罗)标准型箱式炉CWF 11/13和德国Eltra(埃尔特)氧/氮/氢元素分析仪ELEMENTRAC ONH-p。展出仪器吸引了众多观众驻足洽谈,并对弗尔德仪器针对粉末冶金行业的解决方案称道不已。在粉末冶金领域,CarboliteGero(卡博莱特盖罗)是增材制造行业知名的热处理炉供应商。在金属注射成型(MIM)应用领域中,CarboliteGero(卡博莱特盖罗)供应两种排胶炉(催化排胶和热力排胶)以及烧结炉。排胶和烧结这两种工艺可以分别在两台炉内进行,也可以使用排胶烧结一体炉。金属注射成型需要在硝酸催化下排胶,EBO炉是专门为严苛的催化排胶工艺而设计的,能够对温度曲线和气体压力实现精确控制,从而达到最好的排胶效果。在粉末冶金领域,Retsch(莱驰)的筛分设备可用于原料回收,如三维振动筛分仪AS 200 basic系列能够帮助处理3D打印工艺中金属粉末的分级,进而回收过细粉末颗粒。在粉末冶金过程中,为了确保最终产品的高质量,质量控制至关重要。德国Eltra(埃尔特)推出的碳硫分析仪CS-i可以测定金属粉末中的碳、硫含量。在烧结过程中,其他化学元素,如空气中的氧(锈蚀)和水分的氢(氢脆),这些元素可能会降低产品的质量,所以需要使用氧/氮/氢元素分析仪ONH-p进行检测分析。Retsch Technology(莱驰科技)提供创新的动态图像法设备可以测量粉末颗粒、悬浮物的粒度粒形,这些信息是粉末冶金工艺中金属粉末的流动性、可压缩性、孔隙度及烧结性能的关键参数。CAMSIZER X2性能强大,动态分析范围600nm-8mm。双高清分辨率摄像头每秒可捕捉三百多张照片,提供精度和重复性优良无比的粒度粒型分析。所见即所得,一切皆呈眼前,毫无保留。至此,2018上海国际粉末冶金展圆满落幕,感谢各位对弗尔德仪器的支持与厚爱!一路上有您,我们会不断推陈出新,为粉末冶金行业提供更加全面高效的解决方案。期待下一届上海国际粉末冶金展与您不见不散!
  • 弗尔德仪器祝贺2018世界粉末冶金大会暨展览会在北京圆满落幕
    作为世界粉末冶金领域两年一度的“奥林匹克”盛事,继日本横滨、美国奥兰多、德国汉堡相继举办之后,首次选址中国,业界人士怎能错过品牌建设、形象推广的大好机遇。九月的北京是世界粉末冶金的舞台九月的粉末冶金人才是主角2018世界粉末冶金大会(WorldPM2018)9月17日-19日在北京隆重举行。世界粉末大会每两年召开一次,是粉末冶金行业最高级别的国际会议。这是备受瞩目的世界粉末冶金大会第一次来到中国,由中国金属学会(CSM)和粉末冶金产业技术创新战略联盟(CPMA)联合主办,吸引了来自瑞典、日本、美国、德国、英国、澳大利亚、中国等32个国家和地区的专家学者1000余人共聚北京,探讨世界粉末冶金工程及技术的可持续发展。此次会议的主题是:打造高端平台,加强行业交流,共享最新成果,实现合作共赢。来自国家科技部、中国科学院、中国工程院、国家外专局等部委和科研机构的领导出席会议,共同见证此次全球粉末冶金行业最高规格、最具权威的学术会议。增材制造(3D打印)、金属粉末制备及工艺、高合金及复合材料等15个相关主题会场,7个兴趣主题会场,91场学术报告和570多篇专业论文,分享着世界粉末冶金技术和产业发展的最新进展和发展战略。同期举办的世界粉末冶金展览会与大会相辅相成,展示了粉末冶金领域的最新技术和产品。弗尔德仪器携旗下四大品牌德国Retsch(莱驰)、Carbolite Gero(卡博莱特盖罗)、德国Eltra(埃尔特)、Retsch Technology(莱驰科技)一同参与此次盛会。本次大会的召开,对加强世界各国粉末冶金行业之间的交流与合作,促进全球粉末冶金事业的发展,起到了积极的推动作用。粉末冶金技术是全球公认的绿色、高效、低碳、可持续性制造技术,越来越受到世界各国制造业和政府的高度重视,在各国经济发展中占有十分重要的地位。粉末冶金技术和产品在国防军工、能源交通、高端装备、石油石化、新一代电子元器件、新型医疗器械等行业发挥着不可替代的重要作用。如今,纳米技术、增材制造技术也进入了粉末冶金的新兴领域。中国的粉末冶金技术和产业经过数十年的发展,取得了举世瞩目的突破和成就,为国民经济和国防军工的发展做出了重要贡献。Retsch Technology(莱驰科技)专业从事粒度及粒形分析测试仪器的研发和制造,采用双镜头专利的动态图像分析技术,可精确分析可流动性的颗粒、粉体、胶体、悬浊液、磁性材料等样品的粒度及形态。弗尔德仪器把Retsch Technology(莱驰科技)的Camsizer X2带来了展台现场,设计基于广受欢迎的Camsizer并进一步优化精细样品的测量条件(从0.6μm到8mm),不仅提高了光学解析度,更提供多样的的进样方式适用有色金属行业的应用,此仪器吸引了很多粉末专家的关注和兴趣,按下手中的照相机,纷纷向技术人员询问产品性能。来自德国的莱驰科技粒度仪专家Joerg Westermann先生与参会专家进行深入讨论。中国粉体网的记者也对远道而来的Joerg Westermann先生进行采访。在有色金属粉末冶金过程中,为了确保最终产品的高质量,质量控制至关重要。德国Eltra(埃尔特)推出的碳硫分析仪CS-i可以测定金属粉末中的碳、硫含量。在烧结过程中,其他化学元素,如空气中的氧(锈蚀)和水分的氢(氢脆),这些元素可能会降低产品的质量,所以需要使用氧/氮/氢元素分析仪ONH-p进行监测分析。 ?此次世界粉末冶金全球峰会的召开,将带动中国的粉末冶金行业以更加前瞻的眼光、更加深度的合作融入世界粉末冶金的发展大潮。弗尔德仪器在此次大会上与来自世界各国粉末冶金领域的专家学者进行了深入交流,世界粉末冶金大会WorldPM2018圆满落幕,弗尔德仪器衷心地感谢各位客户的关注和支持!弗尔德仪器会在粉末冶金行业为您提供更高质量、更高水平的解决方案。
  • 飞纳电镜邀您参加 2017 特种粉末冶金及复合材料制备/加工第二届学术会议
    为推动我国新材料产业的科技创新,提升特种粉末冶金及复合材料领域的技术进步和学科发展,搭建科研院所、高等院校、企事业单位、设备制造商之间的学习、交流、合作平台。中国有色金属学会、中南大学、中国科学院金属研究所、西北有色金属研究院、株洲硬质合金集团有限公司等单位定于2017年12月7-9日在湖南省长沙市共同举办“2017特种粉末冶金及复合材料制备/加工第二届学术会议”。 介绍 材料工业是支撑国民经济发展的基础产业,是发展先进制造业和高技术产业的物质基础,在航天航空、海洋、军工、国防、核能、汽车工业等更是不可缺少。加快推动技术创新,引领材料工业升级换代,支撑战略性新兴产业发展,保障国家重大工程建设,促进传统产业转型升级,建设制造强国具有重要的战略意义。本次会议旨在促进学术界、产业界、企业界的沟通与联系,为与会人员提供多种形式的交流机会,会议将围绕难熔金属、高温合金、粉末冶金、硬质合金、高性能合金、金属基与陶瓷复合材料、摩擦材料、结构材料、表面涂层与防护技术、制备与加工技术等最新进展情况展开讨论。 飞纳电镜对粉末冶金材料的分析 微观形貌+成分高效检测设备不锈钢粉末金属粉末3D打印金属粉末铜粉铜锡合金粉飞纳电镜的展位号:7期待您的参与!
  • OPTON微观世界 | 第41期 扫描电镜观察不同电解液温度下纯铜粉末表面形貌变化
    背景介绍铜粉是粉末冶金中基础原料之一。也是我国大量生产和消费的有色金属粉末,在现在工业生产中起着不可替代的作用,由于铜及其粉末具有良好的导电导热性能,耐腐蚀性能,表面光洁和无磁性等特点。因而被广泛应用于摩擦材料,金刚石工具,电碳制品,含油轴承,电触头材料,导电材料,机械零件等行业。铜粉的制备方法主要有电解法,雾化法,氧化还原法等。本实验采用电解法制备纯铜粉末,电解液采用0.06mol/L硫酸铜溶液和0.2mol/L硫酸,用铜或者不锈钢做阴极,铜做阳极。制取铜粉的基本工艺:本实验通过改变电解液温度来研究铜粉表面形貌变化。采用ZEISS的Sigma500型号电镜拍摄并观察其表面形貌,对比图片如图1: 图1 不同电解液温度铜粉形貌结果表明:电解法制备的铜粉比表面积大,结晶粉末一般为树枝状,压制性较好。图a1、a2,b1、b2,c1、c2三组图片,电解液温度分别为15°、30°、45°,为了观察整体铜粉形貌以及局部形貌,每组都是在2000X,5000X进行拍摄,通过对比三组图片,能够看出提高电解液温度,扩散速度增加,晶粒长大速度也增大,树枝晶逐渐变大变粗。
  • 展会快讯!上海新诺诚邀您参加2024深圳国际增材制造、粉末冶金与先进陶瓷展览会
    展会快讯!上海新诺诚邀您参加2024深圳国际增材制造、粉末冶金与先进陶瓷展览会亲爱的朋友们,8月28日至30日(下周三至周五),上海新诺诚挚邀请您参加2024深圳国际增材制造、粉末冶金与先进陶瓷展览会。深圳国际会展中心,上海新诺在13号馆E150 展位静候您的到来。这里有前沿技术、众多企业、精彩演讲,一同探索行业新未来,期待与您共襄盛举。展会地址:深圳市宝安区福海街道和平社区展城路1号展会介绍2023 年第二届深圳国际粉末冶金展览会圆满落幕,众多国内外企业参展,吸引大量专业观众。2024 年 8 月 28 - 30 日,展会将在深圳国际会展中心(宝安新馆)再度举办。展览涵盖粉末冶金与先进陶瓷高性能原材料、烧结及后处理技术等丰富内容。展品范围广泛,从各类原材料到机械设备,再到部件产品、3D 打印设备及材料和检测仪器,为行业搭建优质展示平台。此次展览为中外展商搭建优质平台,展示创新产品、服务及解决方案。展品涵盖广泛,包括高性能原材料,如各类金属粉末、碳化物、氮化物等;机械设备有烧结、成型、制粉等设备及气体供应装置;部件产品丰富多样,涵盖烧结零件、电工合金等;还有 3D打印设备及材料;检测仪器更是种类齐全,涵盖化学成分、物理性能等分析仪器。关于新诺新诺仪器集团有限公司成立于2008年9月,总部位于上海市闵行区浦江高科技园,初期为科研人员提供一站式解决方案。2014年5月开始专注于粉末成型领域的产品研发、生产和制造,主营:压片机、热压机、等静压机、红外/荧光光谱仪配套设备以及各种冷热压模具。随着公司实力和品牌影响力的不断提升,粒度仪、电池等新材料研发相关设备也不断问世。2023年12月投资箱体实验工厂上海医诺凯生物技术有限公司,致力于国产替代,助力科研,为培养人才和解决国外“卡脖子”问题作出贡献,为中国科学仪器产业崛起奋力前行。
  • 飞纳电镜与您相约 2018 特种粉末冶金及复合材料制备/加工第三届学术会议
    为了推动材料产业的技术创新,引领材料工业升级换代,2018 年 12 月 21 日 - 23 日,“2018 特种粉末冶金及复合材料制备/加工第三届学术会议”旨在促进学术界、产业界、企业界的沟通与联系,围绕材料产业的进展展开讨论。时间:2018 年 12 月 21 日 - 23 日地点:长沙市融程花园酒店分会场设置先进粉末冶金材料分会场高温、难熔金属及硬质合金材料分会场金属基、陶瓷基复合材料分会场高性能轻合金材料分会场增材制造和特种制造分会场表面涂层与防护分会场数值模拟仿真、性能检测与微结构表征分析技术分会场先进凝固科学与技术分会场放电等离子烧结 (SPS) 技术分会场台式扫描电镜在粉末冶金领域的应用一、粉体形貌、粒度观察 同样是黑色的金属粉末,在高倍下呈现出不同的微观结构,这些微观结构将影响金属粉的烧结、力学性能等 铜锡合金粉末在高倍下展现出不同形貌,有的呈树枝状 (左),有的呈多孔疏松结构(右)二、烧结件缺陷检查使用飞纳电镜软件 “超大视野自动全景拼图” 进行烧结件缺陷检查。45张扫描电镜图拼成一张大图,实现大面积杂质位置自动寻找三、金属粉体粒度统计飞纳电镜的颗粒统计分析测量系统软件可以轻松获取、分析图片,并生成报告。借助该软件,用户可以收集到大量亚微米颗粒的形貌和粒径数据。凭借远超光镜的放大倍数,颗粒软件全自动化的测量,可以把工业粉末的设计、研发和品管提升到一个新台阶。 借助颗粒系统软件,用户可随时获得数据。因此,它加快了分析速度,并提高了产品质量。了解更多精彩内容,欢迎大家到飞纳电镜展位与飞纳工程师一起探索。飞纳电镜展位号:10号
  • 新诺仪器日程安排|“2023年全国粉末冶金学术会议”即将召开,学术盛会不容错过!
    会议日程10月27日(星期五)全天(一)领导致辞及讲话1. 山东省科协主席、中国工程院院士凌文2. 国家新材料产业发展专家咨询委员会主任、中国工程院院士干勇3. 烟台市人民政府领导4. 相关主管部门领导(二)主会场大会报告(上午)1. 新时期结构材料发展战略——中国工程院院士、国家新材料产业发展专家咨询委员会主任、中国工程院原副院长 干勇2. 智能制造的数字化转型与质量控制——中国工程院院士、山东省科协主席 凌文3. 质量基础支撑全产业链高质量发展——中国工程院院士、 国际钢铁工业分析委员会终身荣誉主席、CSTM标委会主任委员 王海舟 4. 粉末冶金增材制造在先进核反应堆应用的研究——中国科学院院士、北京科技大学 葛昌纯5.中国粉末冶金产业发展现状与展望——联盟理事长、中国钢研科技集团有限公司董事长 张少明 6. 粉末冶金流变成形技术及其在惰性阳极制造中的应用研究——联盟副理事长、中南大学原副校长 周科朝大会报告(下午)7. 碳纳米相增强铜基粉体材料的界面结构与性能调控——昆明理工大学副校长 易健宏8. 复合粉体与高性能涂层——中国钢研科技集团有限公司副总经理 于月光9. 粉末冶金制品抗疲劳制造技术与应用——北京科技大学教授 曲选辉10. 异构钛基金属-金属复合材料的设计及强化机理——中南大学教授 刘咏11. 中国粉末冶金零件产业发展面临的挑战——东睦新材料股份有限公司副总经理 曹阳12. 面向聚变堆应用的W/Cu材料连接技术及研究进展——合肥工业大学教授 程继贵13. 增材制造钛合金的超声滚压表面强化技术的研究——华南理工大学教授 肖志瑜14. 3D打印现状与趋势——浙大城市学院教授 汤慧萍10月28日(星期六)全天(三)平行分会场1、分会场1召集人:曹阳、王林山、张德金地点:烟台金海岸希尔顿酒店2层多功能厅领域:A铁、铜基粉末冶金材料及制品2、分会场2召集人:王铁军、严彪、刘一波地点:烟台金海岸希尔顿酒店2层1号会议室领域:A难熔金属及硬质合金、B磁性材料和电工材料3、分会场3召集人:曲选辉、宗贵升、陈宏霞地点:烟台金海岸希尔顿酒店2层3号会议室领域:A 金属增材制造 (3D 打印) 技术、B 粉末注射成形技术、C 粉末冶金表面技术4、分会场4召集人:程继贵、熊翔、肖志瑜地点:烟台金海岸希尔顿酒店2层2号会议室领域:A 粉末制备、成形及烧结、B 有色及稀有金属粉末冶金、高温合金、C 摩擦及减磨材料、多孔材料、D 新材料、新技术、新产品、新装备点击下方通知报名参会《关于参加“2023年全国粉末冶金学术会议”的通知》2023全国粉末冶金学术会议10月26-28日 山东 &bull 烟台组织单位主办单位粉末冶金产业技术创新战略联盟中国机械工程学会粉末冶金分会中国有色金属学会粉末冶金及金属陶瓷学术委员会中国金属学会粉末冶金分会中国机械通用零部件工业协会粉末冶金分会中国钢结构协会粉末冶金分会中国有色金属加工工业协会粉末冶金分会中国材料研究学会粉末冶金分会承办单位粉末冶金产业技术创新战略联盟协办单位新之联伊丽斯(上海)展览有限公司金属粉体材料概念验证平台支持媒体知领(CKCEST)、粉末冶金商务网、《粉末冶金工业》、《粉末冶金技术》、《粉末冶金材料科学与工程》、《中国冶金报》等。会议时间和地点时间2023年10月26-28日地点山东烟台会议安排报到时间2023年10月26日,全天报到同期会议2023年10月26日,召开2023 年标准工作推进会和粉末冶金产业技术创新战略联盟三届二次理事会,具体事项见各分会议通知。会议时间2023年10月27日,大会开幕式及大会报告2023年10月28日,分会场论坛报到地点烟台金海岸希尔顿酒店紫金宫宴会厅会务联系人成煜于水酒店地址山东省烟台市福山区宁波路1号
  • 会议进行时新诺仪器受邀2023年全国粉末冶金学术会议 10.26-28日 新诺敬请期待您的光临
    新诺仪器集团有限公司受邀参加2023年全国粉末冶金学术盛会,助力科研,新诺可是认真的,为培养人才和解决国外“卡脖子”问题作出贡献,欢迎各位老师和同学们莅临参观指导。会议时间2023年10月26-28日会议地点山东烟台主办单位粉末冶金产业技术创新战略联盟中国机械工程学会粉末冶金分会中国有色金属学会粉末冶金及金属陶瓷学术委员会中国金属学会粉末冶金分会中国机械通用零部件工业协会粉末冶金分会中国钢结构协会粉末冶金分会6中国有色金属加工工业协会粉末冶金分会中国材料研究学会粉末冶金分会承办单位粉末冶金产业技术创新战略联盟协办单位新之联伊丽斯(上海)展览有限公司金属粉体材料概念验证平台会议日程10月27日(星期五)全天(一)领导致辞及讲话1. 山东省科协主席、中国工程院院士凌文2. 国家新材料产业发展专家咨询委员会主任、中国工程院院士干勇3. 烟台市人民政府领导4. 相关主管部门领导(二)主会场大会报告(上午)1. 新时期结构材料发展战略——中国工程院院士、国家新材料产业发展专家咨询委员会主任、中国工程院原副院长 干勇2. 智能制造的数字化转型与质量控制——中国工程院院士、山东省科协主席 凌文3. 质量基础支撑全产业链高质量发展——中国工程院院士、 国际钢铁工业分析委员会终身荣誉主席、CSTM标委会主任委员 王海舟4. 粉末冶金增材制造在先进核反应堆应用的研究——中国科学院院士、北京科技大学 葛昌纯5.中国粉末冶金产业发展现状与展望——联盟理事长、中国钢研科技集团有限公司董事长 张少明6. 粉末冶金流变成形技术及其在惰性阳极制造中的应用研究——联盟副理事长、中南大学原副校长 周科朝大会报告(下午)7. 碳纳米相增强铜基粉体材料的界面结构与性能调控——昆明理工大学副校长 易健宏8. 复合粉体与高性能涂层——中国钢研科技集团有限公司副总经理 于月光9. 粉末冶金制品抗疲劳制造技术与应用——北京科技大学教授 曲选辉10. 异构钛基金属-金属复合材料的设计及强化机理——中南大学教授 刘咏11. 中国粉末冶金零件产业发展面临的挑战——东睦新材料股份有限公司副总经理 曹阳12. 面向聚变堆应用的W/Cu材料连接技术及研究进展——合肥工业大学教授 程继贵13. 增材制造钛合金的超声滚压表面强化技术的研究——华南理工大学教授 肖志瑜14. 3D打印现状与趋势——浙大城市学院教授 汤慧萍10月28日(星期六)全天(三)平行分会场1、分会场1召集人:曹阳、王林山、张德金地点:烟台金海岸希尔顿酒店2层多功能厅领域:A铁、铜基粉末冶金材料及制品2、分会场2召集人:王铁军、严彪、刘一波地点:烟台金海岸希尔顿酒店2层1号会议室领域:A难熔金属及硬质合金、B磁性材料和电工材料3、分会场3召集人:曲选辉、宗贵升、陈宏霞地点:烟台金海岸希尔顿酒店2层3号会议室领域:A 金属增材制造 (3D 打印) 技术、B 粉末注射成形技术、C 粉末冶金表面技术4、分会场4召集人:程继贵、熊翔、肖志瑜地点:烟台金海岸希尔顿酒店2层2号会议室领域:A 粉末制备、成形及烧结、B 有色及稀有金属粉末冶金、高温合金、C 摩擦及减磨材料、多孔材料、D 新材料、新技术、新产品、新装备助力科研,新诺相伴!新诺仪器新款波段加压自动压片机和新一代波段升温双平板热压机将在此次会议亮相展示,新诺仪器作为仪器行业的供应商,将始终秉承助力科研领域的发展,一如既往的支持广大科研人员的创新研究,为广大用户提供更加优质的服务!新诺仪器自动压片机-智能自动,液晶显示屏,波段加压-波段保压-自动补压-定时泄压,模具压强自动换算,带油缸超位开关,带防护罩,可根据用户需求定制特殊规格压片机。新诺仪器手动热压机,新一代程序波段升温-双平板加热,300℃/500℃,一体式结构,上加热板固定,测试稳定性好,采用进口隔热板。
  • 美国发布首套航天材料增材合金粉末标准
    p style=" text-indent: 2em " 近日,& nbsp SAE(国际自动机工程师学会)旗下的AMS-AM(航空航天材料增材制造委员会)发布了行业首套航天材料规范,四项技术标准主要与激光粉末熔合(LPBF)技术及3D打印合金材料相关。 /p p style=" text-indent: 2em " 此次规范的发布源于美国的联邦航空管理局(FAA)在2015年提出的,成立标准委员会并制定相关文件,协助发展增材制造并指导认证用于生产零部件的材料,这也包括了几乎不能有任何质量问题的大型商用飞机。此次发布规范的四项粉末标准具体是,从AMS7000到AMS7003,包括LPBF法生产镍合金部件的耐腐蚀耐热性能,应力消除,热等静压和固溶退火,还有金属粉末的组成和生产工艺要求,激光熔接工艺几项。 /p p style=" text-indent: 2em " 该委员会还将继续制定包括金属和其他聚合物的增材规范,毫无疑问行业门槛已经开始有了,并且将不断提升。 /p p style=" text-indent: 2em " SAE总部位于美国宾州,由航空航天、汽车和商用车辆行业的工程师和相关技术专家组成的,前身即美国汽车工程师学会。 /p
  • 阿美特克SMP部门Eighty Four和Reading Alloys将于北京举行的2018世界粉末冶金大会上亮相
    p style=" text-align: center " strong 2018年9月17-19日阿美特克SMP团队在A215展位与您会面 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/uepic/4a9afd29-b159-4570-8586-ddb02860e010.jpg" title=" Stainless Steel Powder Experts to Showcase Specialty Alloys at World Conference on Powder Metallurgy in China.jpg" alt=" Stainless Steel Powder Experts to Showcase Specialty Alloys at World Conference on Powder Metallurgy in China.jpg" width=" 500" height=" 281" / /p p   阿美特克Specialty Metal Products(SMP)两家位于美国宾夕法尼亚州的业务部门, strong 阿美特克SMP /strong strong Eighty Four /strong 和 strong Reading Alloys /strong ,将于 span style=" color: rgb(255, 0, 0) " 2018年9月17-19日在北京举行的世界粉末冶金大会上参展 /span 。由于他们在适用于要求最高纯度和耐温性关键应用的定制特种不锈钢和其他高合金金属粉末方面的独特灵活性,两家公司均建立了良好的声誉。 /p p   阿美特克SMP Eighty Four将突出其在先进不锈钢粉末生产方面的世界优势地位,包括满足严苛客户要求的300和400系列粉末。这些粉末采用专有的水雾化工艺生产,可适于各种应用,包括热喷涂,钎焊,添加剂制造和金属注射成型。 /p p   中国是阿美特克SMP的关键市场,尤其是中国汽车行业,其中AMETEK是制造高温不锈钢粉末的先驱,用于需要耐热材料制造的高性能发动机部件。 /p p   Reading Alloys是世界前列的气体雾化和高纯钛粉生产商,采用氢化/脱氢(HDH)工艺定制,用于一系列关键的医疗和电子应用。 /p p    em span style=" color: rgb(79, 129, 189) " “中国和亚洲是重要且不断增长的市场。我们以优质、定制的特种金属粉末为亚洲汽车,航空和工业市场提供支持。2018世界粉末冶金大会为我们提供了一个推广我们独特的钛和雾化金属粉末产品组合的绝佳机会,” /span /em span style=" color: rgb(79, 129, 189) " AMETEK特种金属产品亚洲区销售经理Mike Hsieh评论道。 /span /p p   另外,本活动为AMETEK SMP提供了一个很好的机会,来介绍新近任命的AMETEK SMP中 span style=" color: rgb(79, 129, 189) " 国区销售经理Michael Zhu /span ,他将与Mike Hsieh一同于A215展位亮相。 /p
  • 春节中的化学:烟花何以五彩缤纷
    一、爆竹中的化学   中国民间有&ldquo 开门爆竹&rdquo 一说。即在新的一年春节到来之际,家家户户开门的第一件事就是燃放爆竹,以&ldquo 噼里啪啦&rdquo 的爆竹声除旧迎新。春节燃放爆竹的同时,民间还喜欢放烟花。烟花没有爆竹清脆的声响,但却有变幻无穷、色彩纷呈的图案。绚丽多彩的烟花与声声爆竹相辉映,将节日的夜空装点得热闹非凡。   我国人民燃放烟花爆竹已有二千多年历史。每逢喜庆日子,人们为了增加节日的欢乐气氛,燃放烟花爆竹。   爆竹的主要成分是什么?烟花在空中爆炸时,为什么会绽放出五彩缤纷的火花?燃放烟花爆竹可以增加节日的喜庆气氛,但是近几年来,我国许多大、中城市相继做出禁止燃放烟花爆竹的决定。这是为什么呢?   爆竹的主要成分是黑火药,含有硫磺、木炭粉、硝酸钾,有的还含有氯酸钾。制作烟花时是在火药中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色,所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。   当烟花爆竹点燃后,木炭粉、硫磺粉、金属粉末等在氧化剂的作用下,迅速燃烧,产生二氧化碳、一氧化碳、二氧化硫、一氧化氮、二氧化氮等气体及金属氧化物的粉尘,同时产生大量光和热、而引起鞭炮爆炸。纸屑、烟尘及有害气体伴随着响声及火光,四处飞扬,使燃放现场硝烟弥漫,硫氧化物、氮氧化物、碳氧化物等严重污染空气。这些气体对人的呼吸道及眼睛都有刺激作用。燃放鞭炮不仅污染空气,飞扬的纸屑、烟尘落在地面上,还会影响清洁卫生。同时爆炸声如雷贯耳,据测定单个闪光雷爆炸时,其噪声至少在130分贝(dbA)以上,成为噪声公害。此外,每逢春节,由于燃放鞭炮而引起火灾,炸伤手臂、面部或眼睛的事故屡见不鲜。因此,禁止燃放烟花爆竹,对于保护环境,维护人民的正常生活秩序,都是十分有利的。   二、五彩缤纷的烟花   过春节时,家家户户都喜欢烟花。烟花是由筒壳体(纸、塑料、薄金属片等材料制成),烟火剂,封口物质,附件(如尾翼底座、横担、轴、杆),点火装置(如引线、擦火板、电点火头等)组成。它利用烟火剂燃烧或爆炸时产生的光、色、音响、气动、发烟等效应,使烟花成为一种供观赏品。   烟花是在火药(主要成分为硫黄、炭粉、硝酸钾等)中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色(即&ldquo 焰色反应&rdquo ),所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。   除了金属和金属化合物外,人们还会在烟花里加入不同剂量的氧化剂、助光剂和黏合剂。氧化剂在燃烧时会产生大量氧气,起到助燃和使烟花颜色更加鲜艳的作用 助光剂能大大提高烟花的亮度 黏合剂则用来将粉末状的化合物组成大小不一的光剂颗粒。如果把这些颗粒按一定的规则排列,就可以制成不同图案的烟花。如&ldquo 向阳花&rdquo 中间一圈放上发黄色光的颗粒,周围放上发绿色光的颗粒,到天空爆炸后,就会形成一朵绿叶扶衬的向日葵,美丽极了。   烟花的颜色是由于不同金属灼烧,发生焰色反应颜色不同造成的。烟花是利用各种金属粉末在高热中燃烧而构成各种夺目的色彩的。使用不同金属就能产生不同效果,发出不同颜色的光芒   焰色反应:   钠(Na):黄 锂(Li):紫红 钾(K):浅紫 铷(Rb):紫   铯(Cs):紫红 钙(Ca):砖红色 锶(Sr):洋红 铜(Cu):绿   钡(Ba):黄绿   烟花爆竹的种类   按燃烧效果不同,可将烟花产品分为以下十类:   (1)喷花类:燃放时以喷射火苗、火花为主的产品   (2)旋转类:燃放时烟花主体自身旋转的产品   (3)升空类:燃放时,由定向器定向升空的产品   (4)吐珠类:从同一筒体有规律地发射多珠的产品   (5)线香类:用装饰纸或薄纸筒裹装烟火药或在铁丝、竹杆、纸片上涂敷烟火药形成的线香状产品   (6)地面礼花类:放置在地面,从筒体内发射并在空中爆发出焰药效果的产品   (7)烟雾类:产生烟雾效果为主的产品   (8)造型玩具类:产品外壳制成多种形状,燃烧时或燃烧后能模仿所造形象或动作的产品   (9)小礼花弹类(直径不大于38mm):弹体从发射管中发射到空中后,能爆发出各种花型图案或其他效果的产品。
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 催化燃烧技术终结者——红外气体分析技术
    催化燃烧技术传感器应用广泛并且价格便宜,但易被污染中毒、缺乏安全自检、要求定期维护、标定以及使用寿命短。红外气体传感器这些年发展迅速,克服了以上催化燃烧的缺点,符合IEC61508安全标准,在检测碳氢化合物气体时可提供快速可信的检测结果。本文将就两种传感器的不同优缺点作出比较,以供大家了解。催化燃烧 催化燃烧最早起源于十九世纪六十年代采矿业,早期简单的铂丝线圈传感器由于能耗大、零点漂移严重不适于连续操作。 当前催化燃烧检测器连接两个铂丝线圈,每个都包裹着氧化铝粘土。检测单元包裹着催化剂,可燃气通过时可促进氧化发热。 催化燃烧优点 1、 检测器价格低廉、供应广泛; 2、 可使用各种可燃气,如果方法正确,可用于特殊物质检测; 3、 装置简单,除了标准气,没有其他特殊的维护装备; 催化燃烧缺点 1、 易中毒,如果暴露在有机硅、铅、硫和氯化物组分中,将失去对可燃气的作用; 2、 易产生烧结物,阻止可燃气与传感器接触; 3、 没有自动安全防护装置; 4、 在某些环境下灵敏度会下降(特别是硫化氢和卤素); 5、 需要至少12%的氧气浓度,在氧气浓度不足情况下工作效率明显下降; 6、 如暴露在可燃气体浓度过高的环境下,会被烧坏; 7、 使用时间越长,灵敏度越低; 8、 寿命有限,最长3-5年; 9、 需定期进行气体测试和标定;红外技术 包含一个原子以上的气体能吸收红外光,这样碳氢化合物和一些气体比如二氧化碳、一氧化碳能通过红外技术进行检测。二氧化碳气体分析示意图 为了区分红外吸收,气体和其他物质比水,需要额外增加一个波长宽带为2.7-3um的传感器。碳氢化合物在此范围没有吸收峰。这可以阻止错误报警发生和减小干扰物质的信号。双光束设计就是被用来防止光学组分污染造成错误报警。 红外技术优点 1、 较快的反应速率:响应时间一般小于7秒; 2、 自动故障操作:电源错误、信号错误、软件错误都能反馈给控制系统; 3、 对污染性气体的信号抗干扰能力强; 4、 寿命长,一般大于10年; 5、 维护成本低; 6、 无需氧气; 7、 高浓度可燃气体条件下,不会烧坏; 8、不会烧结,相应的问题也不会发生; 红外技术缺点 购买价格高于催化燃烧检测器 催化燃烧需要定期测试(通过标气)。有些海洋石油平台通常每六周需测试一次,每3-5年需要更换一次,这样需要耗费大量的成本。 不会烧结的红外气体检测仪器可自我检测,比检测如灯、传感器、窗口、软件等这些不可恢复的问题,从而大大降低出现问题的可能性。较少的零点、量程漂移及高灵敏度意味着红外气体检测仪器的校准和常规维护少,一般为6-12个月。 同时,红外传感器的价格近年已经显著下降,虽然价格还是高于催化燃烧检测器,但实践经验表明,红外传感器的成本可通过减少维护成本来降低。故红外气体传感技术取代催化燃烧技术大势所趋。 四方仪器自控系统有限公司,以自主知识产权的红外传感器核心技术为依托,成功研制红外烟气、沼气、煤气、尾气、天然气等节能减排仪器仪表,并已广泛应用于电力、钢铁、有色金属、煤化工、石油化工、垃圾焚烧、厌氧发酵、机动车及发动机检测、石油天然气勘探、煤层气综合利用、空分、节能环保部门、科研院校及民用等领域。 红外传感器可检测特征吸收峰位置的吸收情况,以确定某种气体的浓度。这种传感器过去都是大型的分析仪器,但近些年,随着以MEMS技术为基础的传感器工业的发展,这种传感器的体积已经由10升,45公斤的巨无霸,减小到2毫升(拇指大小)左右。 微型红外传感器 使用无需调制光源的红外传感器使得仪器完全没有机械运动部件,实现免维护,有效降低维护成本,从而降低工业过程气体的监测成本。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
  • 弗尔德仪器参加第十九届国际冶金及材料分析测试学术报告会
    2018年10月15日-10月18日,2018(第五届)国际材料与试验发展高端论坛在北京国家会议中心隆重召开。众多院士、千余名国内外相关领域著名专家、学者、技术人员齐聚一堂,围绕“材料与试验技术创新及标准化、实验室能力验证助力材料产业高质量提升”的主题研讨材料研究、试验技术、结果评价及标准化等最新进展。?同期,由国际钢铁工业分析委员会与中国金属学会分析测试分会联合主办的第十九届国际冶金及材料分析测试学术报告会(ICASI’2018 & CCATM’2018)也顺利召开。?作为冶金及材料分析测试领域内最具权威性、最具影响力、最大规模的学术报告会暨展览会,吸引了国内外相关领域的专家、学者、技术人员及仪器设备厂商参加,充分展示了国内外冶金及材料领域分析方法及测试技术的最新进展。?弗尔德仪器受邀助力第十九届国际冶金及材料分析测试学术报告会CCATM2018成功召开,引得业界众多专家学者、用户莅临培安仪器展区参观交流,与用户进行了深刻的沟通交流。在粉末冶金领域,Carbolite?Gero(卡博莱特?盖罗)在金属注射成型(MIM)应用领域中,Carbolite?Gero(卡博莱特?盖罗)供应两种排胶炉(催化排胶和热力排胶)以及烧结炉。排胶和烧结这两种工艺可以分别在两台炉内进行,也可以使用排胶烧结一体炉。排胶都需要清洁燃烧装置,用丙烷燃烧后再用压缩空气排走挥发的胶。Carbolite Gero在定制炉方面非常有经验,可以根据客户的需求定制HB系列。可以提供气体循环系统,提高温度均匀性。可选择在炉内添加样品热电偶仪测试加热曲线。通过串口连接,数据会按照步骤记录。炉子可以用欧陆控制器手动控制。在粉末冶金领域,Retsch(莱驰)的筛分设备可用于原料回收,如三维振动筛分仪AS 200 basic系列能够帮助处理3D打印工艺中金属粉末的分级,进而回收过细粉末颗粒。 在粉末冶金过程中,为了确保最终产品的高质量,质量控制至关重要。德国Eltra(埃尔特)推出的碳硫分析仪CS-i可以测定金属粉末中的碳、硫含量。新款Elementrac CS-i专为精确测定碳、硫元素含量而研发,它采用高频感应炉通入纯氧燃烧样品,同时配备最多4个高灵敏度的红外检测池来测定碳、硫含量,测量范围可以根据用户的具体要求进行调整。在烧结过程中,其他化学元素,如空气中的氧(锈蚀)和水分的氢(氢脆),这些元素可能会降低产品的质量,所以需要使用氧/氮/氢元素分析仪ONH-p进行检测分析。Retsch Technology(莱驰科技)提供创新的动态图像法设备可以测量粉末颗粒、悬浮物的粒度粒形,这些信息是粉末冶金工艺中金属粉末的流动性、可压缩性、孔隙度及烧结性能的关键参数。CAMSIZER X2性能强大,动态分析范围600nm-8mm。双高清分辨率摄像头每秒可捕捉三百多张照片,提供精度和重复性优良无比的粒度粒型分析。所见即所得,一切皆呈眼前,毫无保留。至此,第十九届国际冶金及材料分析测试学术报告会圆满落幕,感谢各位对弗尔德仪器的支持与厚爱,弗尔德仪器将为粉末冶金行业提供更加全面高效的解决方案。
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。   前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。   “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。   据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。   据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 莫帝斯锥形量热仪等燃烧测试仪器中标中原工学院
    中原工学院是一所以工为主,以纺织服装为特色,工、管、文、理、经、法多学科协调发展的高等学校。学校始建于1955年,原隶属于纺织工业部;1998年学校划转河南省管理;2000年更名为中原工学院。学校分南区、北区和西区三个校区,占地1560亩,建筑面积57.2万平方米。学校现有教职工1550人,其中专任教师1029人,具有高级职称教师450人,博士学位教师239人。学校有二级学院20个,55个本科专业,各类在校生3万余人,其中:本科生18792人、研究生435人,留学生30余人,专科生1841人,成教生14737人。 近年来,由于办学成绩显著,学校深受上级主管部门和社会的厚爱。2004-2006年,中原工学院连续三年专利受理量位居河南省高校第一名;2005年,顺利通过教育部本科教学工作水平评估并在全国介绍经验;2006年,在河南省委高校工委、省教育厅组织的德育评估中获“优秀”;2007年,被评为全国发展最快的大学之一; 2013年,与百度营销大学签署“合作共建百度互联网营销实验室协议”,成为河南省唯一“百度互联网营销人才培养基地”。学校先后被河南省委、省政府授予河南省文明单位、河南省思想政治工作先进单位、教师培训年工作先进单位等称号,被评为河南公众最满意的十佳本科院校、河南最具影响力的十大教育品牌、河南考生心目中最理想的高校和全省大中专毕业生就业工作先进集体。在全省第20次高校党建工作会上,学校被授予全省高校党建工作先进单位称号;2012年,校党委被省委授予2010-2012年度全省创先争优活动先进基层党组织称号。 此次中原工学院筹备阻燃试验室,订购了大批质量优良,功能先进的阻燃测试仪器,经过多家对比,以及激烈竞争,最后选定莫帝斯燃烧技术(中国)有限公司提供的锥形量热仪、TPP热防护性能测试仪、全面罩燃烧测试仪和抗熔融金属溅沫冲击测试仪。 其中,莫帝斯燃烧技术(中国)有限公司提供的锥形量热仪,与同类厂家相比,具有明显的技术优势,无论是产品设计外观,还是产品性能,都有显著的产品优势,该产品设计,融合了英国FTT、美国GOVMARK以及韩国FESTEC的设计风格和理念,产品软件具备各个传感器自我校准的功能,同时具有系统自我校准和自检的功能,如C系数校准,C系数日志查看,同时提供黑色PMMA标准试样,进行整机的准确度校准,这些设计,弥补了国内该产品的不足,完全可媲美发达国产的同类产品。 www.motis-tech.comwww.firetester.com.cn
  • 雷尼绍参加6月12-16日在北京新中国国际展览中心举办的CIMES展会
    公司介绍 雷尼绍公司(Renishaw plc) 是世界计量和光谱分析仪器领域的领导者。我们开发的创新产品可显著提高客户的经营业绩 &mdash 从提高制造效率和产品质量、极大提高研发能力到改进医疗过程的功效。 主要产品包括坐标测量机用触发式测头、扫描测头、坐标测量机改装、比对仪、机床触发式测头和激光测头、直线光栅、圆光栅、直线磁栅、磁旋转编码器、磁芯片编码器、拉曼光谱仪、激光校准、牙模扫描仪和神经外科机器人。 展会预览介绍 世界计量领域的领导者雷尼绍公司,将在2012年6月12-16日举行的第十一届中国国际机床工具展览会 (CIMES2012) 上推出一系列新型产品,包括Equator&trade 多功能比对仪、PH20全自动五轴旋转测座、XL-80激光干涉仪、XR20-W无线型回转轴校准装置以及QC20-W无线球杆仪等,并将首次在中国展出一系列快速成型制造技术和新型车床工件检测头。展会期间,雷尼绍还定于6月13日和14日下午举办两场技术交流会,为您介绍最新测量技术与应用。(展位号:W1-C201) 展品介绍 Equator&trade &mdash 多功能比对仪 全新的专利Equator&trade 比对仪能够降低购买、维护和夹具成本,可对多种工件预编程,而且可在几分钟之内对设计变更进行重新编程。Equator是传统专用比对测量的全新替代方案,它前所未有地填补了市场空白。它不仅是一款新型比对仪,还标志着雷尼绍首个比对仪产品线的问世。 激光干涉仪及球杆仪 1. XR20-W无线型回转轴校准装置 XR20-W无线型回转轴校准装置集雷尼绍独有的先进轴承和光栅技术以及蓝牙(Bluetooth® )无线技术等特点于一体。与现有的RX10相比,雷尼绍XR20-W更为小巧轻便。它的重量仅约1公斤,在使用便利性和灵活性方面具有极大的优势。XR20-W回转轴校准装置包括&ldquo 内置&rdquo 反射镜,反射镜壳体的背面另带有准直光靶。这些特性确保设定速度更快,并大大降低准直误差和由此导致的测量误差。 2. QC20-W新型无线球杆仪 采用全新设计开发的直线位移传感器和蓝牙 (Bluetooth&trade ) 无线技术。一次安装设定即可测量XY、YZ、ZX三个正交平面内的空间精度。具有使用方便和耐用性强的优点。Ballbar20系统软件功能大幅增强,测试和报告的灵活性更强。 3. XL-80全新轻型激光干涉仪测量系统 采用稳定可靠的激光波长进行测量,可溯源至国家标准和国际标准。提供4 m/s最大的测量速度和50 kHz记录速率。即使在最高的数据记录速率下,系统准确性可达到± 0.5 ppm(线性模式)和1纳米的分辨率. 机床测头 1.RLP40全新超小型车床工件检测测头 2.OLP40全新超小型车床工件检测测头 提供无线电或光学信号传输技术,使车削中心的工件找正和工件检测精确、简单而可靠。测头直径仅为40 mm,长度为58.3 mm,具有1 µ m的单向重复性,可以减少设定时间、降低废品率并节约夹具成本,同时改善过程控制。密封等级达IPX8,能够适应典型的车床和车削中心的极端环境。技术成熟的测头盖防护系统可防止切屑和碎屑进入。 3.RMP600 新型紧凑型触发式测头 雷尼绍RMP600是一种紧凑型高精度触发式测头,采用无线电信号传输,不仅具有自动工件找正测头的所有优点,还能够在各种加工中心上测量复杂的三维工件几何特征。RMP600触发式测头结构坚固,采用成熟的半导体电子元件和抗干扰信号传输方式,能够适应极恶劣的机床环境。RMP600采用独创的RENGAGE&trade 应变片技术,能够比标准机械式测头实现更高的精度水平,因而适用于各种要求高精度测量的应用场合。 3. 位置编码器 1. RESOLUTE&trade 绝对式直线光栅及圆光栅系统 世界上第一款能够在36 000转/分转速下达到27位分辨率的绝对式直线光栅。真正的绝对式精细栅距光栅系统,具有优异的抗污能力和超凡的技术指标。 2. TONiC&trade 超小型直线光栅和圆光栅 具有超凡的速度、精度、稳定性和可靠性,成本低,安装简单。 坐标测量机用测头 PH20坐标测量机用新型全自动五轴测座 运用独特的&ldquo 测座碰触&rdquo 方法进行快速触发测量和快速五轴无级定位,确保实现最佳工件测量。简洁小巧的设计既适用于新购的坐标测量机,也适用于大多数现有的用于触发测量的坐标测量机改造。可搭配各式TP20模块,自定旋转角度,精度好,效率高。 快速成型制造 AM250激光熔化快速成型机 雷尼绍的激光熔化工艺是一种新兴的制造技术,主要用于医疗(整形外科)行业和航空航天、高科技工程以及电子领域。激光熔化是全数字快速成型制造工艺,利用激光聚焦能量将金属粉末熔化制成三维实体。 它采用创新的快速成型制造过程,能够通过高能光纤激光直接根据3D CAD生产全致密金属零件。各种微细金属粉末在严格控制的环境中经过完全熔化后制成工件,金属层厚度从20微米到100微米不等。 进一步了解,请点击: http://www.renishaw.com.cn/
  • 雷尼绍参加5月31日-6月3日在上海新国际博览中心举办的DMC展会
    公司介绍 雷尼绍公司(Renishaw plc) 是世界计量和光谱分析仪器领域的领导者。我们开发的创新产品可显著提高客户的经营业绩 &mdash 从提高制造效率和产品质量、极大提高研发能力到改进医疗过程的功效。 主要产品包括坐标测量机用触发式测头、扫描测头、坐标测量机改装、比对仪、机床触发式测头和激光测头、直线光栅、圆光栅、直线磁栅、磁旋转编码器、磁芯片编码器、拉曼光谱仪、激光校准、牙模扫描仪和神经外科机器人。 展会预览介绍 第十四届中国国际模具技术和设备展览会(DMC2012)将于2012年5月31日-6月3日在上海新国际博览中心举行。雷尼绍将在此次展会上重点推出一系列过程控制解决方案,从序前机床校准的新技术到在线和离线序后测量,以满足人们对精益生产日益增长的需求,并将首次在中国展示一系列快速成型制造技术和最新的增量式和绝对式光栅系统。全新推出EquatorTM比对仪、XR20-W无线型回转轴校准装置以及QC20-W无线球杆仪系统.,包括用于坐标测量机的PH20全自动5轴旋转测座。(展位号:E2 B008) 展品介绍 Equator&trade &mdash 多功能比对仪 全新的专利Equator&trade 比对仪能够降低购买、维护和夹具成本,可对多种工件预编程,而且可在几分钟之内对设计变更进行重新编程。Equator是传统专用比对测量的全新替代方案,它前所未有地填补了市场空白。它不仅是一款新型比对仪,还标志着雷尼绍首个比对仪产品线的问世。 激光干涉仪及球杆仪 1. XR20-W无线型回转轴校准装置 XR20-W无线型回转轴校准装置集雷尼绍独有的先进轴承和光栅技术以及蓝牙(Bluetooth® )无线技术等特点于一体。与现有的RX10相比,雷尼绍XR20-W更为小巧轻便。它的重量仅约1公斤,在使用便利性和灵活性方面具有极大的优势。XR20-W回转轴校准装置包括&ldquo 内置&rdquo 反射镜,反射镜壳体的背面另带有准直光靶。这些特性确保设定速度更快,并大大降低准直误差和由此导致的测量误差。 2. QC20-W新型无线球杆仪 采用全新设计开发的直线位移传感器和蓝牙 (Bluetooth&trade ) 无线技术。一次安装设定即可测量XY、YZ、ZX三个正交平面内的空间精度。具有使用方便和耐用性强的优点。Ballbar20系统软件功能大幅增强,测试和报告的灵活性更强。 3. XL-80全新轻型激光干涉仪测量系统 采用稳定可靠的激光波长进行测量,可溯源至国家标准和国际标准。提供4 m/s最大的测量速度和50 kHz记录速率。即使在最高的数据记录速率下,系统准确性可达到± 0.5 ppm(线性模式)和1纳米的分辨率. 机床测头 1.RLP40全新超小型车床工件检测测头 2.OLP40全新超小型车床工件检测测头 提供无线电或光学信号传输技术,使车削中心的工件找正和工件检测精确、简单而可靠。测头直径仅为40 mm,长度为58.3 mm,具有1 µ m的单向重复性,可以减少设定时间、降低废品率并节约夹具成本,同时改善过程控制。密封等级达IPX8,能够适应典型的车床和车削中心的极端环境。技术成熟的测头盖防护系统可防止切屑和碎屑进入。 3.RMP600 新型紧凑型触发式测头 雷尼绍RMP600是一种紧凑型高精度触发式测头,采用无线电信号传输,不仅具有自动工件找正测头的所有优点,还能够在各种加工中心上测量复杂的三维工件几何特征。RMP600触发式测头结构坚固,采用成熟的半导体电子元件和抗干扰信号传输方式,能够适应极恶劣的机床环境。RMP600采用独创的RENGAGE&trade 应变片技术,能够比标准机械式测头实现更高的精度水平,因而适用于各种要求高精度测量的应用场合。 位置编码器 1. RESOLUTE&trade 绝对式直线光栅及圆光栅系统 世界上第一款能够在36 000转/分转速下达到27位分辨率的绝对式直线光栅。真正的绝对式精细栅距光栅系统,具有优异的抗污能力和超凡的技术指标。 2. TONiC&trade 超小型直线光栅和圆光栅 具有超凡的速度、精度、稳定性和可靠性,成本低,安装简单。 坐标测量机用测头 PH20坐标测量机用新型全自动五轴测座 运用独特的&ldquo 测座碰触&rdquo 方法进行快速触发测量和快速五轴无级定位,确保实现最佳工件测量。简洁小巧的设计既适用于新购的坐标测量机,也适用于大多数现有的用于触发测量的坐标测量机改造。可搭配各式TP20模块,自定旋转角度,精度好,效率高。 快速成型制造 AM250激光熔化快速成型机 雷尼绍的激光熔化工艺是一种新兴的制造技术,主要用于医疗(整形外科)行业和航空航天、高科技工程以及电子领域。激光熔化是全数字快速成型制造工艺,利用激光聚焦能量将金属粉末熔化制成三维实体。 它采用创新的快速成型制造过程,能够通过高能光纤激光直接根据3D CAD生产全致密金属零件。各种微细金属粉末在严格控制的环境中经过完全熔化后制成工件,金属层厚度从20微米到100微米不等。 进一步了解,请点击: http://www.renishaw.com.cn/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制