当前位置: 仪器信息网 > 行业主题 > >

简易稳态工况法检测系统

仪器信息网简易稳态工况法检测系统专题为您提供2024年最新简易稳态工况法检测系统价格报价、厂家品牌的相关信息, 包括简易稳态工况法检测系统参数、型号等,不管是国产,还是进口品牌的简易稳态工况法检测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合简易稳态工况法检测系统相关的耗材配件、试剂标物,还有简易稳态工况法检测系统相关的最新资讯、资料,以及简易稳态工况法检测系统相关的解决方案。

简易稳态工况法检测系统相关的论坛

  • 【“仪”起享奥运】部长信箱关于稳态与非稳态噪声区分问题的回复

    [b][color=#4f6ef7]来信:[/color][/b]按照《工业企业厂界环境噪声排放标准》(GB12348-2008) 的规定,稳态噪声指在测量时间内,被测声源的声级起伏不大于3dB(A)的噪声。被测声源的声级起伏大于 3dB(A)的噪声为非稳态噪声。请问是指最大值 Lmax与最小值Lmin 之差还是指噪声打印条中的 SD 值? 针对此标准中没有明确,环境监测人员存在一些争议。[b][color=#4f6ef7]回复:[/color][/b]按照《工业企业厂界环境噪声排放标准》(GB 12348-2008),稳态噪声是指在测量时间内,被测声源的声级起伏不大于3dB(A)的噪声。建议比较测量值的最大值Lmax和最小值Lmin,其差值不大于 3dB(A) 的噪声判断为稳态噪声,相反,其差值大于3dB(A) 的噪声判断为非稳态噪声。对于稳态噪声和非稳态 噪声,依据监测标准规范中的具体规定进行不同测量时段的监测。

  • 【原创】PTI 稳态/瞬态荧光光谱仪交流

    去年年底实验室买了一台美国PTI光谱仪,因为之前的HITACHI和PE的不能满足一些实验的要求了。跟大家聊聊,交流一下心得。厂家宣称他们灵敏度最高,信噪比可以达到10000:1以上(水的拉曼峰),可以达到Am级别的微弱信号。上次他们工程师来调试时,开始灵敏度只能到8000多,几次测下来都差不多这个值,后来推测可能是染料没除净的问题,把比色皿放到酒精里泡了一晚后,重新擦干净就好多。达到了13000多,所以在测试时一定要注意比色皿的洁净度。由于我们学校在南方,湿气也比较大吧,空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量也不是很好,加上用了半年多,确实有些影响。在保存时如果有条件的话,不要放在湿气太重的环境。瞬态配的是激光器,单色性还不错,强度也比较高。最低据说可以到100ps,不过还没做过这么低的。检测起来还是很快的,只要几分钟,在原单位用过一台德国的,觉得太慢了,测量起来要大半天,不过数据好像要比PTI稍准点。使用了一段时间,暂时还没什么毛病,大体情况就是这样,仅供参考。但毕竟是个大物件,还是要考虑好。后面是当时厂家提供的一些指标。PTI推出的QuantaMaster系列荧光稳态测量系统具有测量可靠、灵敏度高、使用方便、配制灵活等优点,系统信噪比一般为6000:1,最高可达10000:1,数据采集速度可达1000 点/秒, 波长范围从紫外到近红外,样品所处的环境温度可调。除常规的荧光稳态测量外,还可进行各向异性(偏振)、双发射、化学和生物发光等方面的测量。通过扩展和升级,可实现电致发光、磷光、荧光寿命、荧光比率和比率成像等的测量。在稳态光谱测量中,通过使用光子计数技术,提供最高的微弱信号检出能力,可对荧光物质进行定性检测和定量分析。主要应用 1、光物理与光化学、光合作用机理2、分子反应动力学3、突变筛选4、缩氨酸结合动力学5、FRET动力学6、发射光谱和荧光淬灭7、荧光量子产率、荧光偏振及导向性8、蛋白质结构与折叠的研究9、DNA测序研究 、ds-DNA中的染料探针10、膜的渗透性及结构研究、膜的流动性和脂相转移11、药物与生物体系相互作用的检测12、溶剂-溶质相互作用13、麻醉过程研究 主要规格:★ 信噪比(水的拉曼峰):6000:1 最高可达 10000:1★ 数据采样率:每个通道1000点/秒~1点/100秒 ,可同时采集★ 波长范围:180~24000nm 连续可调(由选用的光栅和灯泡决定)★ 波长带宽:0~25nm 连续可调★ 检测范围:185~650nm (使用1527型PMT,可扩展至NIR)★ 波长分辨率:0.2nm★ 波长精度:+/-0.5nmPTI推出的TimeMasterTM系列荧光寿命测量系统采用了先进的频闪分时测量技术和非线性时标据采集技术,具有测量速度快、精度高、灵敏度高、使用方便、配制灵活等优点,是目前测量速度最快、最先进的荧光寿命测量系统。该系统能够探测7pM荧光素的寿命,最短测量寿命可达100ps。激发光源可采用激光、弧光脉冲及LED灯以满足不同的应用。通过扩展和升级,可实现电致发光、磷光、荧光稳态、荧光比率和比率成像等的测量。PTI推出的QuantaMaster系列荧光稳态测量系统具有测量可靠、灵敏度高、使用方便、配制灵活等优点,系统信噪比一般为6000:1,最高可达10000:1,数据采集速度可达1000 点/秒, 波长范围从紫外到近红外,样品所处的环境温度可调。除常规的荧光稳态测量外,还可进行各向异性(偏振)、双发射、化学和生物发光等方面的测量。通过扩展和升级,可实现电致发光、磷光、荧光寿命、荧光比率和比率成像等的测量。在稳态光谱测量中,通过使用光子计数技术,提供最高的微弱信号检出能力,可对荧光物质进行定性检测和定量分析。 主要应用 1、光物理与光化学、光合作用机理2、分子反应动力学3、突变筛选4、缩氨酸结合动力学5、FRET动力学6、发射光谱和荧光淬灭7、荧光量子产率、荧光偏振及导向性8、蛋白质结构与折叠的研究9、DNA测序研究 、ds-DNA中的染料探针10、膜的渗透性及结构研究、膜的流动性和脂相转移11、药物与生物体系相互作用的检测12、溶剂-溶质相互作用13、麻醉过程研究 上图,通过激发光谱来监测使用Fura-2滴定的Ca2+的变化 主要规格:★ 信噪比(水的拉曼峰):6000:1 最高可达 10000:1★ 数据采样率:每个通道1000点/秒~1点/100秒 ,可同时采集★ 波长范围:180~24000nm 连续可调(由选用的光栅和灯泡决定)★ 波长带宽:0~25nm 连续可调★ 检测范围:185~650nm (使用1527型PMT,可扩展至NIR)★ 波长分辨率:0.2nm★ 波长精度:+/-0.5nm PTI推出的TimeMasterTM系列荧光寿命测量系统采用了先进的频闪分时测量技术和非线性时标据采集技术,具有测量速度快、精度高、灵敏度高、使用方便、配制灵活等优点,是目前测量速度最快、最先进的荧光寿命测量系统。该系统能够探测7pM荧光素的寿命,最短测量寿命可达100ps。激发光源可采用激光、弧光脉冲及LED灯以满足不同的应用。通过扩展和升级,可实现电致发光、磷光、荧光稳态、荧光比率和比率成像等的测量。 主要应用 1、蛋白结构和折叠;2、核酸动态特性与结构;3、光合作用机理;4、激发态特性;5、层面研究;6、膜的渗透性与离子转移;7、膜的动态特性和结构;8、分子距离和旋转动态特性;9、溶剂与溶质的相互作用;10、微胞结构与反应动力学;11、污染物质的探测与辨别;12、聚合物结构和动态特性;13、药与生物系统的相互作用;14、混合荧光物质的探测与辨别。 主要规格:★ 灵敏度:可测量7pM荧光物质的寿命★ 寿命测量范围:100ps~10s (依靠所用光源及检测器)★ 激光波长范围:235~990nm (依靠所使用染料而定)★ 脉冲宽度:800ps★ 脉冲能量:在500nm、5Hz时,每个脉冲220mj★ 检测范围:185~650nm (使用1527型PMT,可扩展至NIR)★ 波长分辨率:0.2nm★ 波长精度:+/-0.5nm

  • 质监局通报中sd值、稳态噪声等问题

    [size=18px][color=#333333][color=#333333]河北省市场监督管理局[/color][/color][/size][size=18px][color=#333333][color=#333333]关于2019年度生态环境监测机构[/color][/color][/size][size=18px][color=#333333][color=#333333]专项监督检查结果的通告中有一条是“噪声SD值大于3dB仍按照稳态噪声监测”,意思是不是稳态噪声测量1min,非稳态噪声应该测代表性的时段或整个工作时段。[/color][/color][/size][size=18px][color=#333333][color=#333333]如果是这样的话,想问下稳态噪声实际操作中是怎么判断的。[/color][/color][/size][font=-apple-system, BlinkMacSystemFont, 微软雅黑, &][color=#333333][font=仿宋_GB2312]1、向噪声仪器厂商爱华咨询,对方讲sd值大于3肯定是非稳态噪声,sd小于3不一定是稳态噪声。[/font][/color][/font][font=-apple-system, BlinkMacSystemFont, 微软雅黑, &][color=#333333][font=仿宋_GB2312]2、向当地环境监测站咨询,说判断是不是稳态噪声的依据是噪声打印小条上Lmax与Lmin的差值,差值大于3属于非稳态噪声,差值小于3属于稳态噪声。[/font][/color][/font][font=-apple-system, BlinkMacSystemFont, 微软雅黑, &][color=#333333][font=仿宋_GB2312]另外请教一个实际工作中的问题,如检测变电站厂界噪声,根据我们以往的检测经验,Lmax与Lmin的差值很难小于3。如果检测小条上的Lmax与Lmin的差值大于3,是非稳态噪声,测量时间为1min可不可以,可不可以解释说变电站噪声稳定,这1min就是变电站噪声的代表性时段。[/font][/color][/font]

  • 稳态/瞬态荧光光谱仪的使用与维护

    稳态/瞬态荧光光谱仪的使用与维护

    [align=center][font=黑体]稳态[/font][font='Times New Roman',serif]/[/font][font=黑体]瞬态荧光光谱仪的维护与管理[/font][/align][font=宋体]摘要:稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪(型号:[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体])是一款功能模块化的测试光致发光的光谱仪,专注于稳态及时间分辨光谱测试,主要应用于光物理、化学、材料科学和生命科学等方面,已成为各学科领域不可或缺的重要技术表征手段。本文系统介绍稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪相关附件的维护以及光谱仪的管理,为光谱仪的开发、应用及使用管理提供借鉴。[/font][font=宋体]关键词:光谱仪[/font][font=宋体]维护[/font][font=宋体]管理[/font][font='Times New Roman',serif] [/font][font='Times New Roman',serif]一、 [/font][font=宋体]稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪相关附件的维护[/font][font=宋体]光源简介及维护:稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪主要由激发源(光源)、样品仓和检测器组成。其中,光源分为稳态光源和瞬态光源。稳态光源一般是光谱及能量连续输出的氙灯,主要用于稳态谱、量子产率的测试。瞬态光源为频率可调、具有特定脉宽的脉冲输出光源,主要有微秒灯、纳秒灯和皮秒脉冲激光器等,主要用于荧光寿命的测试。以本院购买的[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]光谱仪系列为例,配备三种标准光源:连续氙灯(稳态光源)、[/font][font='Times New Roman',serif]μF2[/font][font=宋体]微秒脉冲氙灯、[/font][font='Times New Roman',serif]nF920[/font][font=宋体]纳秒灯以及皮秒级脉冲激光器[/font][font='Times New Roman',serif](EPLs)[/font][font=宋体]。[/font][font=宋体]稳态光源氙灯在启亮以后会发热,长时间使用后,一定要关灯进行散热,散热结束方可关闭氙灯电源。氙灯使用寿命一般在[/font][font='Times New Roman',serif]1000[/font][font=宋体]小时,在使用寿命达到以后,要及时更换氙灯。相对而言,瞬态光源中的微秒灯和脉冲激光器维护较简单,禁止频繁开、关灯源。同时,在频率由最大切换至最小(或由最小切换至最大)过程中,建议缓慢切换。纳秒灯俗称氢灯,在使用过程中,首先观察氢压是否在[/font][font='Times New Roman',serif]0.39-0.43bar[/font][font=宋体]范围内,如果氢压过高,需要进行泄压操作。如果氢压过低,需要重新灌注氢气进行升压。方法如下:将阀门缓慢打开与大[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]通,即可进行泄压。灌注氢气加压过程需阀门一端接通油泵进行抽真空操作,一端与氢气源接通进行灌注,反复两端拧动阀门,进行抽气、充气,待氢气灌注以后,调节压力至[/font][font='Times New Roman',serif]0.39-0.43bar[/font][font=宋体]。纳秒灯长久使用以后,纳秒灯电极很容易氧化,体现出来的是,及时氢压符合要求,纳秒灯也无法启亮。此时,设备管理员需取出电极打磨,然后重新安装。方法如下:先泻氢压,拔下光纤,打开纳秒灯仓门,分别取下尖头电极和平头电极,用砂布打磨电极至光亮,然后依次安装电极(两电极相隔[/font][font='Times New Roman',serif]1 mm[/font][font=宋体]),通过观察仓可以观察到四个像(两个实像、两个虚像),安装成功的成像效果如图所示(可以通过手机拍照显示):[/font][align=center][font='Times New Roman',serif][img=,169,]file:///C:/Users/Lenovo/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png[/img][/font][/align][font=宋体]检测器简介及维护:[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]内含高增益光电倍增管[/font][font='Times New Roman',serif](PMT)[/font][font=宋体]检测器,适用于稳态谱和时间分辨过程中的光子计数收集。最常用到的是紫外[/font][font='Times New Roman',serif]-[/font][font=宋体]可见检测器,其对应光谱检测范围[/font][font='Times New Roman',serif]200-980nm[/font][font=宋体]。检测器使用前通常都需要降温,以减少黑暗计数率,提升信噪比,紫外[/font][font='Times New Roman',serif]-[/font][font=宋体]可见检测器有自带半导体制冷片,可提供[/font][font='Times New Roman',serif]-20 ℃[/font][font=宋体]的工作温度。需要注意的是检测过程中,样品实际信号不能超过检测器的最大阈值。另外,[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]还配备有近红外检测器,因近红外检测器的噪音较高,需要外加液氮制冷达到[/font][font='Times New Roman',serif]77 k[/font][font=宋体]的工作温度降低噪音信号,对应光谱检测范围[/font][font='Times New Roman',serif]300-1700nm[/font][font=宋体]。近红外检测器使用前,需要使用液氮降温[/font][font='Times New Roman',serif]2-3[/font][font=宋体]小时。[/font][font=宋体]样品仓内配备有固体支架、液体支架,根据实际实验需要,更换不同的支架来进行测试。定期清理样品仓,保证样品仓的干净、整洁。[/font][font=宋体]二、稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪的管理[/font][font=宋体]由于[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]的功能较多,并且,随着科研的发展,科研需求呈现多样化,因此,如何在满足多样化需求的前提下提高仪器的使用效率,并减少设备故障,是需要思考的重要问题。[/font][font='Times New Roman',serif]FLS1000[/font][font=宋体]主要采取以下培训管理模式:[/font][font=宋体]([/font][font='Times New Roman',serif]1[/font][font=宋体])集中培训,自行测试[/font][font=宋体]集中组织学生实地参观,进行实物观摩培训学习,面对实物,分模块详细介绍光谱仪的基本构造(激发源、样品仓、检测器)、工作原理、功能、附件的操作特点等,详细讲解样品制备并进行操作流程演示,根据样品的形状(粉末、液体、薄膜)介绍三种制样和上样方法,两种样品支架的安装方法和注意事项。重点介绍如何根据测试不同项目选择不同的激发源和检测器。[/font][font=宋体]根据不同的测试项目,首先讲解荧光光谱(激发和发射光谱)的测试采集,实物演示激发源的选择和开启、上样,详细讲解参数设置、信号调节以及条件优化等。然后,讲述荧光寿命的测试,从荧光寿命的定义出发,引导学生思考寿命衰减测试与光谱测试的不同,从而更深入的理解如何设置和调节参数,如何优化测试条件。此两项测试属于基础测试,操作简单,参数优化较容易。在此基础上,针对有测试需求的学生,进一步讲解磷光光谱和长寿命测试方法,着重讲解门控法测试磷光光谱的原理。有关磷光的测试,测试效果很大程度上依赖于磷光的强弱和寿命长短,信号调节、参数设置和优化相对而言较为困难。[/font][font=宋体]关于低温、变温光谱与寿命测试,着重讲解演示如何将常温系统进行升级拓展,变装成低温、变温系统,并引导学生进行对比,透彻理解低、变温测试与常温测试的异同点。[/font][font=宋体]([/font][font='Times New Roman',serif]2[/font][font=宋体])重点培训,专人专时测样[/font][font=宋体]量子产率测试是一项极为精确的测试,所用到的附件[/font][font='Times New Roman',serif]-[/font][font=宋体]积分球是影响测试结果的关键性因素,而在测试过程中,由于静电作用或经验不足,粉尘或者样品粉末极容易附着于积分球内,造成积分球污染,一方面影响测试结果,另一方面,给仪器维护带来不便。通过前期的试运行一年,发现量子产率测试的总时长短,测试时间分散,测试人员较多。基于此,对于使用积分球测试量子产率,提出了重点培训,专人、专时测样的培训管理制度。每课题组或单位指派两名学生,重点培训量子产率测试方法,从原理、测试方法、注意事项、数据分析等方面全面培训并考核。例如:每月月初和月中分别固定两天,不做任何其他测试,专门用于测试量子产率。该课题组内所有需要测试量子产率的样品,由重点培训人带领送样人在固定的时间共同完成。重点培训,专人、专时测样的管理模式,按需求重点培训一批专业度高、熟练度高的专业人员,并将测试时间集中,减少积分球短时间多频次暴露,很大程度上减少了积分球污染的可能。同时,重点培训人带领送样人共同测试有效解决了因沟通不及时导致测试效率低等问题。[/font][font=宋体]([/font][font='Times New Roman',serif]3[/font][font=宋体])上机考核[/font][font=宋体]根据科研实际情况,模块化选择考核项目,从开机、原理、参数调节、注意事项等方面考察用户知识掌握情况和实践水平,针对关键性步骤反复强调和指导,并根据实际测试过程学生碰到的疑难问题,将实践中总结的经验传授给学生。最后经专业技术教师考核,认定学生已掌握理论知识和实践操作流程,实践操作符合规范,能规范完成各项测试并完成数据分析的学生可以获得独立上机操作的权限。作为专业技术教师,[/font][font='Times New Roman',serif]“[/font][font=宋体]授之鱼不如授之以渔[/font][font='Times New Roman',serif]”[/font][font=宋体],在培训和考核过程中,教师的作用,一方面让学生成功获得规范测试的能力,更重要的是,要让学生学会分析问题和解决问题的能力。每位学生的科研方向和需求不同,碰到的问题各异,实验测试是解决问题的一种手段,要让学生知其然更知其所以然,从根源上分析问题并解决问题。通过考核获得独立上机权限的同学帮带新同学,帮助新同学完成培训。这种[/font][font='Times New Roman',serif]“[/font][font=宋体]老带新[/font][font='Times New Roman',serif]”[/font][font=宋体]的培训模式发挥了学生的主观能动性,增强了学生的责任意识和团结合作的意识,同时,也减轻了专业技术教师的压力,更有利于仪器新功能开发和拓展工作的开展。培训完成以后,经过教师考核合格的学生可以获得独立上机操作的权限。通过这种[/font][font='Times New Roman',serif]“[/font][font=宋体]传[/font][font='Times New Roman',serif]-[/font][font=宋体]帮[/font][font='Times New Roman',serif]-[/font][font=宋体]带[/font][font='Times New Roman',serif]”[/font][font=宋体]的培训考核模式,不断培训更多的学生,让更多学生成为测试小能手。[/font][font='Times New Roman',serif]三、 [/font][font=宋体]结语[/font][font=宋体]本文介绍了稳态[/font][font='Times New Roman',serif]/[/font][font=宋体]瞬态荧光光谱仪的附件结构及维护方法,并结合研究院实际介绍了管理模式,提高仪器使用效率的同时,降低了仪器故障率,为光谱仪的开发、应用及使用管理提供借鉴。[/font]

  • 【“仪”起享奥运】部长信箱关于稳态噪声定义问题的回复

    [b][color=#4f6ef7]来信:[/color][/b]GB12348-2008中给出了稳态噪声的定义:在测量时间内,被测声源的声级起伏不大于3dB(A)的噪声。目前,环境监测行业对这句话的理解有不同的看法。麻烦老师给我们说明一下,这个定义应如何理解?[b][color=#4f6ef7]回复:[/color][/b]按照《工业企业厂界环境噪声排放标准》(GB 12348-2008),稳态噪声是指在测量时间内,被测声源的声级起伏不大于3dB(A)的噪声。建议比较测量值的最大值Lmax 和最小值Lmin,其差值不大于3dB(A)的噪声判断为稳态噪声;相反,其差值大于3dB(A)的噪声判断为非稳态噪声。对于稳态噪声和非稳态噪声,依据监测标准规范中的具体规定进行不同测量时段的监测。

  • 太阳能热水系统检测设备能效等级检定

    太阳能热水系统检测设备能效等级检定

    太阳能热水系统检测设备能效等级检定太阳能空气集热器在准稳态下照射到太阳能空气集热器上的太阳能辐射量等于工质带走的热量和集热器散失到环境周围热量之和。根据这个基本原理,建立太阳能空气集热器测试条件下的热平衡方程。在稳态条件下运行的太阳能空气集热器的瞬时效率定义为集热器实际获得的有用功率与集热器接收的太阳辐射功率之比。太阳能热水系统检测设备试验条件在试验期间,集热器采光面上的总日射辐照度应不小于700W/m2;实验期间总太阳辐照度变化应不大于50W/m2。集热器采光口上的直接日射入射角应保持在该入射角±2.5。的范围内。集热器周围环境的平均风速应在2-4m/s之间。当集热器进口温度等于室外环境温度时,空气流量应根据集热器总面积设定在约0.01m3/(m2?s)。在每个试验周期内,流量应稳定在设定值的±1%以内。[img=太阳能热水系统检测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205110921091413_9131_4136176_3.jpg!w690x690.jpg[/img]太阳能热水系统检测设备测试方法如下:1)在被测集热器安装到集热器试验台架上之前,测量集热器的长度和宽度,并测量集热器采光口的长度和宽度;2)按照集热器试验台架操作规程对试验台架进行操作;3)按照太阳热水器热性能试验系统的操作步骤打开计算机控制程序,预设系统各控制点参数,观察室外各控制点参数情况,确定满足2.3中规定的实验条件;4)具体操作步骤:用遮阳布遮住集热器,调节集热器试验台架,使集热器的太阳入射角在整个瞬时效率试验期间始终为零;合上风机开关,调节空气风量至要求值;开启电加热,控制太阳能空气集热器的进口温度到规定值,移去集热器上的遮阳布;5)太阳能热水系统检测设备需要记录的参数:集热器采光口上的总日射辐照度;集热器采光口上的漫射日射辐照度;环境空气速度;环境空气温度;集热器进口工质温度;集热器出口工质温度;空气流量。在稳态测量期内测得的参数若满足表1规定的范围,则本工况的试验可结束。若不满足规定的范围,则继续进行试验,直至满足规定的范围要求。上一工况试验结束后,调节电加热器,控制太阳能空气集热器的进几温度到下一工况规定的值,进入下一工况的试验,步骤和要求同上一工况。4个工况的试验都完成后结束试验。[img=太阳能热水系统检测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205110923023655_1907_4136176_3.jpg!w690x690.jpg[/img]太阳能热水系统检测设备结论1)按照本测试条件和要求,完全可进行太阳能空气集热器热性能的测试,得出的实验结果符合太阳能空气集热器的基本传热规律;2)与液体为传热工质的太阳集热器相比,太阳能空气集热器的效率截距较低,比一般的液体集热器低20%以上,这是因为空气的比热容小于液体的比热容,太阳能空气集热器工质(空气)带走有效热量少,太阳能空气集热器的效率截距较低;3)与液体为传热工质太阳集热器相比,太阳能空气集热器的瞬时效率随入口空气温度增加下降更快,即空气集热器的热损系数较大,当集热器归一化温差达0.067时,太阳能空气集热器的热性能已经为零,所以,太阳能空气集热器的工作温度不宜过高,否则,集热效率很低,甚至为负值;4)从2)、3)分析可知,太阳能空气集热器的工作温度不宜过高,对于太阳能空气集热器研究与开发,应重点放在优化集热器结构、加强集热器保温方面,而不应放在提高集热器瞬时效率截距方面。

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

  • 稳态强磁场实验装置测试系统产出新成果

    近期,中国科学技术大学朱弘教授小组利用稳态强磁场实验装置电子自旋共振等测试系统,研究了压缩应变(La,Ba)MnO3薄膜中的磁晶各向异性,其研究结果近期发表于《应用物理学杂志》(Journal of Applied Physics)。 中国科学院强磁场科学中心的科学实验测试系统包括输运实验测试系统、磁性实验测试系统、磁光实验测试系统、极低温实验测试系统、高压实验测试系统和组合显微系统。朱弘小组此次实验就是利用磁性实验测试系统中的“电子顺磁共振谱仪”,进行了一系列研究。其实验结果表明,在Sr或Ca掺杂的锰氧化物铁磁薄膜中容易磁化轴沿拉伸应变方向。该工作利用转角铁磁共振技术,发现在Ba掺杂的薄膜中情况正相反,易磁化方向对应面内的压缩应变方向。实验得到面外共振位置高达12千奥斯特(kOe),表明除了形状各向异性外,磁晶各向异性非常可观,且是易面的。这种磁晶各向异性“异常”的表现反映了锰氧化物与Bethe-Slater曲线的物理内容相一致。(La,Ba)MnO3和Co、Ni相同,易磁化轴沿压缩方向;而另两种掺杂的锰氧化物(LaCa),(LaSr)和a-Fe一样表现相反。 强磁场科学中心成立于2008年4月30日,是国家发改委支持的“十一五”国家重大科学工程。中心的长远预设目标包括强磁场的产生、强磁场下的物性研究以及依托强磁场实验装置进行科学技术发明,其实验设施包括磁体装置和科学实验测试系统。2010年,部分磁体装置及测试系统建成,已开始先期投入试运行并陆续向用户开放,基本实现“边建设边运行”。 稳态强磁场实验装置项目建设总目标是建立40T级稳态混合磁体实验装置和系列不同用途的高功率水冷磁体、超导磁体实验装置,使我国的强磁场水平跻身于世界先进行列。目前四台超导磁体中的SM3与配套核磁共振谱仪完成联调,并已开展了多项结构生物学和药物学方面的研究,SM2已调试成功,正与组合显微测试系统SMA联调。磁体装置方面,强磁场中心现已成功研制出国内首台铌三锡管内电缆导体的超导磁体以及我国首台井式真空充气保护大型铌锡线圈热处理炉系统。http://www.cas.cn/ky/kyjz/201208/W020120820347280715931.jpg

  • 室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    目前国内外常用的稳态法导热仪,普遍都是非真空密封形式,也就是被测样品完成处于实验室的温湿度环境条件下。在稳态法导热仪使用过程中,往往会出现导热仪的冷板温度低于室温的情况。 我们曾经遇到过多次这种情况并专门进行过验证试验,即采用真空型稳态法导热仪,仅关闭真空腔而不抽真空,在上海这种常年湿度较大的地区,如果冷板温度低于室温,稳态法的较长测试时间会导致导热仪冷板上冷凝很多水珠,甚至会出现大面积积水,如图1和图2所示,从而对被测样品、测试结果和仪器产生严重影响,如图3所示。[align=center][color=#990000][img=,690,307]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025172089_727_3384_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#cc0000]图1 样品和冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,376]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025327354_6419_3384_3.jpg!w690x376.jpg[/img][/color][/align][align=center][color=#cc0000]图2 模拟试验中的冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025446891_7590_3384_3.jpg!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图3 受潮后的被测样品[/color][/align] 对于这类问题,常用以下三种方式解决: (1)设法降低室内湿度,如开空调; (2)将导热仪整体放置在一个密闭罩内,将导热仪与外界湿气尽量隔离,如图4所示。[align=center][color=#cc0000][img=,483,300]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026004471_4897_3384_3.jpg!w483x300.jpg[/img][/color][/align][align=center][color=#cc0000]图4 日本某实验室带气密罩的热流计法导热仪[/color][/align] (3)真空型(或气密型)稳态法导热仪,如图5所示。[align=center][color=#cc0000][img=,500,388]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026530374_1132_3384_3.jpg!w500x388.jpg[/img][/color][/align][align=center][color=#cc0000]图5 上海依阳真空型高温热流计法导热系数测试系统[/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align]

  • 稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    [size=14px][color=#ff0000]摘要:针对气凝胶和超级绝热材料(VIP)等超低导热系数材料的测试,常用的稳态法热导仪往往会在测量精度和灵敏度方面表现出不足。为考核稳态法导热仪的超低导热系数测试能力,本文提出了一种简便可行的考核方法,通过对一系列不同厚度的样品进行导热系数测试,最终根据导热系数随厚度的变化来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]在隔热材料的研发和生产过程中,隔热材料的导热系数测试结果经常会受到质疑,特别是隔热材料导热系数小于空气(0.026W/mK)的气凝胶和超级绝热材料(VIP),这些超低导热系数的测试结果往往存在较大误差。隔热材料低导热系数的测试普遍采用稳态法(防护热板法和热流计法),对应于低导热系数测试不准确现象,相应的稳态法导热仪往往会存在以下问题:(1)稳态法导热仪的测量精度和灵敏度不够,无法准确测量低导热和超低导热系数,无法准确测量超低导热系数以及导热系数的微小变化,无法满足材料研发和生产中工艺和配方调整和评价需要。(2)由于缺乏导热系数在0.02W/mK左右(或更低)的标准参考材料,对于已有的稳态法导热仪,如何判断仪器的低导热系数测试能力,由此来大致判断测量结果的准确性。为解决上述问题,本文将提出一种简便可行的考核方法,通过对一系列不同厚度的隔热材料样品进行导热系数测试,根据导热系数随厚度的变化情况来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/size][size=18px][color=#ff0000]二、评估方法和考核试验[/color][/size][size=16px]考核试验的依据是稳态法的导热系数测试结果不应随样品的厚度发生而改变,如果发生改变,则说明导热系数测试产生误差。由此可用来判断导热仪的误差范围和测试极限。气凝胶软毡考作为考核试验样品,单层软毡厚度略大于10mm,通过多层叠加来实现不同厚度。测试采用了热流计法导热仪,样品为300mm边长的正方形,样品厚度分别为10、20、30、40和50mm,样品的平均温度为30℃,冷热面温差为20℃,结果如图1所示。[/size][align=center][size=14px][img=气凝胶超低热导率测试,600,380]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251654466502_5355_3384_3.png!w690x437.jpg[/img][/size][/align][size=14px][/size][align=center]图1 不同厚度气凝胶软毡导热系数测试结果[/align][size=16px]从图1测试结果可以看出,在厚度20~40mm范围内,测试结果不会随厚度变化而改变,导热系数平均值为0.02045W/mK。随着厚度降低到10mm,导热系数测试结果有变小的趋势,此时说明样品太薄使得厚度测量和厚度均匀性给样品内部热流场均匀性所带来的误差影响变大。从图1测试结果还可以看出,当厚度增大到50mm时,导热系数测试结果有变大的趋势,这种现象说明随着样品厚度的增大,样品热阻也随之增大,稳态时流经样品厚度方向上的热流量变小,热流传感器对小热流的测量出现误差变大的现象。同时样品厚度增大使得样品内部热流场均匀性所带来的误差影响变大。在图1所示的测试结果中,尽管对薄样品和厚样品的测试结果偏离了平均值,但偏差还是没有超出导热仪的±5%的误差范围,这证明了此热流计法导热仪完全具备准确测试0.02W/mK导热系数的能力。[/size][size=18px][color=#ff0000]三、导热系数测试下限分析[/color][/size][size=16px]根据上述考核试验测试得到相同材料不同厚度下的导热系数,可以依据傅里叶稳态传热定律推算出流经样品的热流密度,如表1所示。如果假设热流计法导热仪中热流计的灵敏度为10uV/(W/m2),那么就可以得到相应的热流计电压输出值。这里选择10uV/(W/m2)作为热流计的灵敏度,是因为目前普遍的热流计灵敏度都在这个数值以下。另外,选择此灵敏度主要仅是为了更方便的描述如何进行导热系数测试下限判定,其他灵敏度也能说明问题。[/size][align=center]表1 根据不同厚度样品的热导率测试结果推算出的热流密度和热流计电压输出值[/align][align=center][size=14px][img=气凝胶超低热导率测试,690,202]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251655508891_6096_3384_3.png!w690x202.jpg[/img][/size][/align][size=16px]按照傅里叶传热定律,如果假设样品的导热系数保持不变并与样品厚度无关,那么随着样品厚度增加,样品热阻会线性增大,流经样品的热流密度会线性减小,对应的热流计输出信号(电压值)也会线性减小。从表1的推算结果也显示了这种变化过程,但不同的是由于热流计电压输出测试仪表的测量精度有限,在大厚度、高热组和小热流密度时,电压信号测量会带有明显误差。由此可见,在低导热系数测试中,主要测量误差来源是热流计的灵敏度。根据表1,如果假设103uV是电压测量仪表的准确测量下限,对应10uV/(W/m2)灵敏度的热流计,热流计准确测量热流密度的下限为10W/m2,可准确测量的最大热阻为1.95m2K/W。由此,可以根据这个可测热阻值1.95m2K/W,推算出20mm最佳厚度样品的可准确测量的最低导热系数为0.02/1.95=0.0102W/mK。如果设定可接受的误差范围为±5%,那么10uV/(W/m2)灵敏度的热流计法导热仪,其测试下限为0.0102×0.95=0.0097W/mK,约为。由此可见,上述的热流计法导热仪的导热系数测试下限基本为0.01W/mK,且误差在5%的误差范围内。那么对于真空绝热材料(VIP),这类材料的导热系数一般在3~8W/mK之间,那么用此灵敏度的导热仪测试将会带来巨大误差。由此可见,为了保证测量超低导热系数的绝热材料,必须进一步提高热流计的灵敏度。由此也可以得出同样的结论,采用稳态保护热板法导热仪测量超低导热系数,关键之一是必须进一步降低护热板的漏热。[/size][size=18px][color=#ff0000]四、总结[/color][/size][size=16px]对于稳态法热导率测试,通过对一些列不同厚度但材质相同的样品进行测试,可以大致判断出稳态法热导率测试仪器的测试能力,特别是判断导热仪是否具备超低导热系数测试的能力,并用此方法对稳态法导热仪进行考核。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • 工作场所非稳态噪声

    各位大神们, 有没有做过GBZ/T 189.8-2007工作场所噪声的测定,对于非稳态的噪声具体是怎么测的呢?最好贴一张原始记录看看。http://simg.instrument.com.cn/bbs/images/default/em09502.gif

  • 【分享】科研级稳态瞬态荧光光谱仪综合功能

    产品技术特点说明:[B]光源[/B]垂直安装氙灯,避免水平安装的下垂、受热不稳定和短寿命。非球面反射镜能保证全部波长线形聚焦到狭缝,提高光源能量利用率,避免透镜聚焦的色差。稳态采用连续氙灯,磷光寿命采用变频闪烁氙灯的双光源自动控制灯室,给您最优化的数据。[B]狭缝[/B]软件自动控制,带宽0-30nm, 最小步进0.05nm,保证最大的分辨率和数据再现性。[B]激发单色仪[/B]经典的Czery-turner设计安装,采用非球面的反射镜,保证光栅衍射光斑适应狭缝高度。平面刻线光栅,330nm/750nm闪耀角保证紫外区到红外区(200-1100nm)的最大光能量。最高的杂散光抑制率1E-10,提供最好的固体及散光样品测量信号。双单色器耦合的双光栅单色器,专利的单驱联动控制双光栅技术,软件即可完成双光栅的波长校正。最小扫描步进0.02nm,提供最精细的扫描数据。所有光学元件来自SPEX工厂。它是哈勃望远镜的光学元件供应商。[B]光栅在轴扫描[/B]激发单色仪和发射单色仪都采用光栅在轴扫描设计,光栅表面和旋转轴处在一个平面,保证全波段准确性。[B]参比检测器[/B]一个光电二极管在激发光源到达样品前对光源强度进行监控,实时修正入射能量变化。带有NIST标准光源获取的校正文件。[B]样品仓[/B]样品仓提供几乎所有您需要的附件的安装。采用挡板隔离光学部件,避免粉尘和样品污染,延长仪器使用寿命。[B]发射单色仪[/B]所有激发单色仪的特点同样具备,500nm/1000nm闪耀波长保证可见和红外区的最大效率。采用NIST标准光源获取的校正文件,去除来自光栅和检测器的响应系数。[B]检测器[/B]采用光子计数检测器,保证极微弱信号的采集。出厂的优化设置,提供最大的计数速率,最大消除暗噪声。标准配置为R-928P光电倍增管,满足 200-850nm要求;室温使用,减少由于供电或环境造成的数据波动。红外区采用电子制冷R-10330-75P光电倍增管,满足950-1700nm(瞬态900-1700nm)的测试要求。都能够实现TCSPC荧光寿命的配置升级。[B]数据采集和处理[/B]采用FluoroEssence软件,对于主机可以进行完全的自动控制;整个控制软件耦合在最为著名的ORIGIN软件中,提供最强大的数据处理功能;[B]T型光学系统[/B]具有稳固而且双波长同时测定的特点[B]全反射聚焦光路[/B]:a)对波长无歧视,没有采用透镜造成的色差和波长损失。b)色差对固体样品测量的影响:固体属于表面荧光,由于色差,固体表面的不可移动性,不同波长入射,光斑大小及光学密度有变化,造成被测量样品不同的波长光斑覆盖范围不同,定量的光致发光量子产率会有较大的偏离。而且这种表观的荧光光谱是无法校正的。[B]荧光寿命拟合功能[/B]从2009年起,开放全部的拟合软件功能:软件来自IBH公司享誉全球多年的Datastation数据采集软件 和DAS6拟合软件。a)1-5 exponentialsb)Lifetime Distribution c)Fit to exponential series d)Anisotropy e)Froster-type Energy transfer f)Yokota-Tanimoto energy transfer g)Micellar Quenching h)Globals i)Batch Analysis

  • 求教稳态瞬态荧光光谱仪

    实验室打算买一台稳态瞬态荧光光谱仪,打算做半导体材料、催化剂的稳态光谱,及半导体的荧光寿命,不知哪家的仪器好呀。调研过EI和JY,请各位大虾指点,先谢了

  • 求教稳态瞬态荧光光谱仪

    实验室打算买一台稳态瞬态荧光光谱仪,打算做半导体材料、催化剂的稳态光谱,及半导体的荧光寿命,不知哪家的仪器好呀。调研过EI和JY,请各位大虾指点

  • 新能源汽车电池检测设备说明

    新能源汽车电池检测设备是在新能源汽车电池测试中使用的,电池汽车电池的工况是比较复杂的,所以其测试是很有必要的。  新能源燃料电池汽车的运行并不是一个稳态情况,频繁的启动、加速和爬坡使得汽车动态工况非常复杂。燃料电池系统的动态响应比较慢,在启动、急加速或爬陡坡时燃料电池的输出特性无法满足车辆的行驶要求。在实际燃料电池汽车上,常常需要使用燃料电池混合电动汽车设计方法,即引入辅助能源装置通过电力电子装置与燃料电池并网,用来提供峰值功率以补充车辆在加速或爬坡时燃料电池输出功率能力的不足。另一方面,在汽车怠速、低速或减速等工况下,燃料电池的功率大于驱动功率时,存储富余的能量,或在回馈制动时,吸收存储制动能量,从而提高整个动力系统的能量效率。  辅助动力装置扩充了动力系统总的能量容量,增加了车辆一次加氢后的续驶里程 扩大了系统的功率范围,减轻了燃料电池承担的功率负荷。许多插电混合的燃料电池汽车也经常采用这样的构架,这种插电式混合动力汽车将有效的减少氢燃料的消耗。另外,辅助动力装置的存在使得系统具备了回收制动能量的能力,并且增加了系统运行的可靠性。燃料电池和辅助动力装置之间对负载功率的合理分配还可以提高燃料电池的总体运行效率。  需要注意,燃料电池不适合作为动力系统的单一驱动能源,必须选用辅助能源系统合理补充驱动电动汽车所需的能量,覆盖功率波动,提高峰值功率,吸收回馈能量,改善燃料电池输出功率的瞬态特性,目前各大汽车开发商采用了辅助动力,来提高燃料电池汽车的性能。为此,无锡冠亚推出的新能源汽车电池检测设备,立志帮助各电池厂家进行电池测试工作,使得新能源汽车能够高效运行。  所以说,新能源汽车的电池是其新能源汽车运行的核心,因此,新能源汽车电池检测设备决定其电池的性能也是其高效运行的的重要保证。

  • 半导体热沉恒温台降温效果差原因说明

    半导体热沉恒温台是半导体行业进行控温的设备之一,如果降温效果不好的话,就会影响无锡冠亚半导体热沉恒温台的使用,那么有哪些因素影响半导体热沉恒温台的降温效果呢?  这种情况的发生和半导体热沉恒温台冷量损失大有关。由于半导体热沉恒温台设备、管路的隔热厚度不够或隔热层受到损坏,导致半导体热沉恒温台冷量损失增大,影响降温效果。在半导体热沉恒温台运行中,一旦发现隔热层外表面有湿润或结霜的部位,就说明半导体热沉恒温台隔热材料的厚度不够或已经受潮,这时要及时增加或更换半导体热沉恒温台隔热材料。此外,半导体热沉恒温台蒸发器水箱盖不严密,空气处理室或密封门封条损坏,送风管道及房间门窗泄漏等。都会使冷量损失增大,要及时采取应对措施。  每一台半导体热沉恒温台安装的时候,在蒸发器以及管道上都会包一层保温棉,以防冷量损失。如果半导体热沉恒温台机组在制冷速度慢的情况下,企业先要检查管道隔热层的厚度是否不够,或者隔热层是否有损坏。一定要记得包保温棉,并且保证厚度足够!  检查半导体热沉恒温台 制冷系统中是否存在空气。在安装半导体热沉恒温台时,不管是机组内部,还是水泵,或者是管道,不可以存在有空气,哪怕只有一点点空气,那半导体热沉恒温台是无法正常运行的。此外,水泵的内部有一层膜,安装前一定要记得全部撕掉。不然,水没有办法流通或者流通很慢,直接影响半导体热沉恒温台 运行。    检查半导体热沉恒温台压缩机的运动部件是否有磨损,或者是间隙增大,导致输气量下降。压缩机是半导体热沉恒温台 的心脏,压缩机一旦出现问题,半导体热沉恒温台无法运转。因此,压缩机的定期检查及保养工作不可忽略。  半导体热沉恒温台压缩机效率差也是一方面原因。半导体热沉恒温台在长期运行中,运动部件的磨损、配合间隙增大或密封不严,都会使压缩机实际输气量下降,制冷量减小。要检查制冷压缩机。如果维修不好要及时更换。系统内有空气也会导致这一情况的发生。这时排气压力、温度升高,耗电量增加,制冷量下降。    半导体热沉恒温台的降温效果和各个因素息息相关,在运行无锡冠亚半导体热沉恒温台的时候尽量避免这些故障为好。

  • 锅炉水位检测与控制系统

    锅炉水位检测与控制系统主要包括水位的检测、显示、排污阀门和报警控制等环节。锅炉水位测控过程主要有:锅炉水位进入磁翻板接液内层、磁浮子的检测和进水阀门控制。系统通过磁翻板或翻柱主体检测锅炉内液位。当锅炉内水位下降至设定的下限水位值时,启动翻板显示报警系统;反之,水位上升超过上限水位设定值时,则启动上限报警,该磁浮子液位计可设置多个报警点,满足系统上多方面控制要求。该水位系统采用磁敏液位传感器测量锅炉内水位。磁敏液位传感器(UHZ-10C00液位计)的输出端可外接PC+PCL机自动化控制设备,驱动LED显示器,并可向远传装置发出4~20mA电信号或无线通讯输出信号。经过处理后,反馈给报警系统通过继电器动作控制电磁阀并报警。 燃气锅炉是一个大惯性、大滞后系统,为验证确保锅炉水位控制效果,在系统完成后通过数据进行验证,控制过程中响应初始阶段的超调大约12%,响应速度快,在300s内达总测量峰值,随后420s后达稳态。水位期望值与实际值最大误差为0.15cm,最大相对误差在0.5%以内,满足精度要求。通过试验证明,该磁浮子液位传感器具有良好稳态性能和动态性能。 测试次数 期望数位/cm 实测水位/cm 误差/cm 1 20 20.12 +0.12 2 25 25.07 +0.07 3 30 29.98 -0.02 4 35 35.09 +0.09 5 40 40.15 +0.15 表中 水位期望值和实测值及其误差本文提出一种用于锅炉水位智能控制系统,可达到水位控制的预期要求,能够实现锅炉水位实时显示、控制及报警,且该装置测量量程宽泛、准确度高、性能稳定、重复性好、操作简单、界面直观,完全可满足液位量值化传递需要。

  • 稳态噪声怎么去判定?

    各位大神好!标准上说稳态噪声是声级起伏不大于3dB(A)。这个3dB(A)是不是仪器上Lmin值和Lmax值之差?谢谢!

  • 非稳态样品XPS原位实时分析

    该作品简要阐述了非稳态样品主要包含易氧化样品和活性中间体样品XPS测试方法。基于四川大学分析测试中心的两台XPS仪器,通过改进测试条件和方法,设计改装仪器设备,实现特殊材料的XPS表征。首先介绍了易氧化样品测

  • 荧光稳态瞬态国外论文集

    荧光稳态瞬态国外论文 想要的可以把邮箱留给我,我发给你们 我的邮箱是kristy_li@163.com[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=30913]论文[/url]

  • 【原创】JY 稳态/瞬态荧光光谱仪FluoroLog-3最新功能介绍

    【原创】JY 稳态/瞬态荧光光谱仪FluoroLog-3最新功能介绍

    [b]只要发光,您就可以用FLuoroLog检测稳态方面[/b]:为您提供激发谱、发射谱、同步谱、EEM三维谱及动态扫描;[b]测量对象[/b]:无论块体、粉体、液体或气体,无论微量还是常量,无论是在线(远程测量)还是温度控制,无论是常规还是微区空间分辨、时间分辨,无论是化学发光、生物发光或光纤导入的射线发光,简单透射荧光及角度依赖性等等,可以为您提供解决方案。瞬态方面:可以选配频域技术,提供快速的荧光寿命测量,在比较的常规配置下,满足20ps-10s范围寿命的获取。选取TCSPC的单光子计数测量技术,最新的迷你NanoLED光源,密集覆盖从250nm-1310nm的范围加之1MHz的闪烁频率和竞争力的价格,为TCSPC带来全新的形象。技术特点:[b]全反射光学系统[/b]无论灯室还是单色仪,全部采用反射式光学结构,以避免透镜带来的色差及光损失。透镜聚焦的焦距是波长的函数,在全色光经过透镜后会在轴向分布聚焦点,这种色差带来的光学强度的相关响应,是无法采用校正来消除的。对于全波段的定量,特别是光致发光绝对量子产率的测定特别重要。[b]光栅在轴扫描[/b]所有光栅采用在轴扫描,光栅扫描转动时光栅表面和旋转轴在一个平面,保证全波段的波长准确性。[b]模块化功能,模块化结构[/b]结构模块化、功能模块化,为您的需要定制打造,细节的满足您的科研要求,预留可能的升级空间,为将来的科研预留扩展。[b]多功能的样品仓[/b]样品仓提供几乎所有您需要的附件的安装。采用挡板隔离光学部件,避免粉尘和样品污染,延长仪器使用寿命。预留激光器、电缆及气氛接口,全面适合您的需求。可选的T型光学系统,用于双波长测试及更宽的波长升级需要。[b]软件部分[/b]稳态软件耦合在最为著名的数据图谱处理软件Origin中,最新版本的Fluoressence软件及升级包,彻底克服耦合中不稳定现象,让您充分享受数据轻松处理的快乐。全球公认的Datastation 和DAS6瞬态数据采集及数据拟合软件,满足您荧光寿命测试的需求[b]优异的光学元件及降噪的设计理念[/b]所有光学元件来自Horiba Jobin Yvon旗下Spex工厂,它是世界上最为著名的光学元件供应商,也是哈勃望远镜的元件供应商。采用高质量光学元件降低光学噪声,而不依赖单纯的电子增益,特别有利于采集来自固体及散光材料的真实发光信号。[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101520_175149_1609847_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制