当前位置: 仪器信息网 > 行业主题 > >

高精度高精度薄膜测厚仪

仪器信息网高精度高精度薄膜测厚仪专题为您提供2024年最新高精度高精度薄膜测厚仪价格报价、厂家品牌的相关信息, 包括高精度高精度薄膜测厚仪参数、型号等,不管是国产,还是进口品牌的高精度高精度薄膜测厚仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度高精度薄膜测厚仪相关的耗材配件、试剂标物,还有高精度高精度薄膜测厚仪相关的最新资讯、资料,以及高精度高精度薄膜测厚仪相关的解决方案。

高精度高精度薄膜测厚仪相关的论坛

  • 高精度测厚仪哪个好

    在选择高精度测厚仪这样大型的机械设备时,往往都通过比较做出选择,知名品牌也是参考的一点,但是设备的质量也尤为重要。大成精密高精度测厚仪就符合这两点的厂家,在国内来说,他们做的是相当不错的,自主研发生产,质量高,得到了得到了消费者的大力认可,下面我们就来介绍一下,它好在哪些方面吧:   1、操作简单方便  简单方便的设备仪器不管是谁,都会非常喜欢的。如果设备仪器的操作比较繁琐或是需要专业人员来操作。厂家就会考虑很多方面,一来操作繁琐要对工作人员进行一系列的培训,二来请来的专业人员所需要的成本就会有所上升,利益就会相应减少。高精度测厚仪操作十分简单方便,这是厂家选择他们的其中一个理由。  2、能连接数据进行打印  测厚仪有电脑连接接口,在使用的时候可以购买相关软件,从而实现对测两次数据的储存打印,而且相关的软件还能够对测量数据进行统一,用专业的方式显示出来,从而让我们更加简单的了解测量数据机器所具有的特点。  http://www.dcprecision.cn/Uploads/201601/56a1a0aa23fb3.jpg  3、采用国外进口的优质元件  专业的测厚仪传感器部件通常采用的都是国外进口的优质元件,这些优质传感器元件能够让测厚仪的测厚分辨率比普通测厚仪增加很多,这种仪器对于零点一微米的距离都能精准的测量。然而测厚仪里面的优质传动元件也是确保测厚仪工作稳定性和准确性的重要因素。  激光测厚仪是近年来开发出的高科技实用型设备,是用于热轧生产线上实时在线式连续测量成材厚度的非接触式测量设备。它有效地改善了工作环境,具有测量准确、精度高、实用性好、安全可靠、无辐射、非接触式测量等人工测量及其它测量方法无法比拟的优点,并为轧制钢材厚度控制提供了准确的信息,从而提高了生产效率和产品质量,降低了劳动强度。  使用大成精密激光测厚仪以来,具不完全统计,因板厚误差造成的废品率下降了50%以上,创经济效益近千万元,受到各级部门和工作人员的肯定与赞赏。

  • 高精度涂层测厚仪的测量原理

    [url=http://www.dscr.com.cn/show.asp?id=175]涂层测厚仪[/url]是一种常用的检测仪器,具有测量误差小、可靠性高、稳定性好、操作简便等特点,被广泛用于制造业、金属加工业、化工业等领域中。特曾测厚仪的原理是什么呢?下面小编就来具体介绍一下,希望可以帮助到大家。  磁感应测量原理  采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪,分辨率达到0.1um,允许误差达1%,量程达10mm。  磁性原理测厚仪可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。  电涡流测量原理  高频交流信号在测头线圈中产生电磁场,测头靠近导体时,就在其中形成涡流。测头离导电基体愈近,则涡流愈大,反射阻抗也愈大。这个反馈作用量表征了测头与导电基体之间距离的大小,也就是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。非磁性测头采用高频材料做线圈铁芯,例如铂镍合金或其它新材料。与磁感应原理比较,主要区别是测头不同,信号的频率不同,信号的大小、标度关系不同。与磁感应测厚仪一样,涡流测厚仪也达到了分辨率0.1um,允许误差1%,量程10mm的高水平。  采用电涡流原理的测厚仪,原则上对所有导电体上的非导电体覆层均可测量,如航天航空器表面、车辆、家电、铝合金门窗及其它铝制品表面的漆,塑料涂层及阳极氧化膜。覆层材料有一定的导电性,通过校准同样也可测量,但要求两者的导电率之比至少相差3-5倍(如铜上镀铬)。虽然钢铁基体亦为导电体,但这类任务还是采用磁性原理测量较为合适。  迪斯凯瑞GT-100高精度涂层测厚仪可无损地直接测量磁性材料(如钢、铁、合金和硬磁性钢)等物体表面上的非磁性覆盖层厚度(如:油漆、塑料,陶瓷,橡胶,铜,锌、铝、铬、铜等)。非磁性金属基体上非导电覆盖层的厚度(如铜、铝、锌、锡等基底上的珐琅、橡胶、油漆镀层)。

  • 高精度计数秤的参数有哪些?

    高精度计数秤的参数高精度计数秤型号最大称量分度值最大可读精度ACS-3-SC713kg0.05g1/60000ACS-6-SC716kg0.1g1/60000秤盘尺寸:275mm*220mm接口:DC接口,RS232接口(选配),RJ45以太网接口(选配)电源:4V/4A电子秤专用蓄电池http://www.xiangshanscale.com/uploads/sc71/sc71canshu.pnghttp://www.xiangshanscale.com/uploads/chanpinsucai/chanpinmiaoshu.png使用中航电测高精度130mm传感器,品质符合世界标准新款高精度计数秤ACS-SC71称重可读性高达1/60000精度;内部解析精度高达1/600000具有抗静电,高频干扰,读数稳定具有LCD三窗白色背光液晶显示,字幕清晰易读取计数秤ACS-SC71具有运送保护,过载保护设计高精度计数秤采用触摸式薄膜按键,容易操作,防水性能佳超低功耗,一次充电可使用180小时具有电池低电压报警功能,可降低电池过量放电损坏几率高精度计数秤ACS-SC71外壳采用ABS耐冲击塑料;秤盘采用ABS塑料载物盘和不锈钢材料托盘双盘结构,应对各种使用场合,经久耐用,使用寿命长

  • 薄膜测厚仪的知识你知道吗?

    薄膜测厚仪的知识你知道吗?

    随着科技的发展,市场上出现了很多高科技的产品,随着各式各样的产品出现,对我们生活、工作中带来巨大的影响,下面小编要为大家普及薄膜测厚仪知识,希望能给您带来帮助!  薄膜测厚仪的应用范围很广,可以进行诸多产品的测量,所以,它被广泛应用于各个行业;在产品检测方面有着非常突出的应用,有时候可以超乎人们的想象,有些没有使用过它的工作者,从它的身上得到了非常多的好处。有了它,能够提高用户的检测效率,使得生产工作进一步加快,建议那些还没有尝试过的客户,可以去尝试一下,应该会得到很有效的帮助。 http://ng1.17img.cn/bbsfiles/images/2016/04/201604051141_589010_3085714_3.jpg  薄膜测厚仪帮助实现高精度的测量,就算是非接触式的测量也可以,大家都知道,在某些行业进行精确测量是非常重要的一件事情,更好的产品由此而生,测量出了偏差,一切就都不行了。大成精密薄膜测厚仪作为专门检测产品厚度的设备,它在这方面的能力就非常强,可以实现高效的检测服务。  薄膜测厚仪的出现,大大提高了产品的生产效益,尤其是在自动化生产线上,如此高科技又好用的设备,如果你的车间还没有配备相关的设备,建议大家为提高生产为检测车间配备一台测厚仪,时代在前进,使用高效的设备,打造更好的产品,这才是保证不落后的方法。

  • 板带与薄膜状态产品的动态非接触高精度激光在线测厚的方法与实现

    板带与薄膜状态产品的动态非接触高精度激光在线测厚的方法与实现

    [b]一、 概述 [/b]自从上世纪60年代激光产生以后,其高方向性和高亮度的优越性就一直吸引着人们不断探索它在各方面的应用,其中,工业生产中的非接触、在线测量是非常重要的应用领域,它可以完成许多用接触式测量手段无法完成的检测任务。普通的光学测量在大地测绘、建筑工程方面有悠久的应用历史,其中距离测量的方法就是利用基本的三角几何学。在上世纪80年代末90年代初,人们开始激光与三角测量的原理相结合,形成了激光三角测距器。它的优点是精度高,不受被测物的材料、质地、型状、反射率的限制。从白色到黑色,从金属到陶瓷、塑料都可以测量。[b]二、 激光三角测量的原理[/b]激光三角测量法是人们将激光与三角测量的原理相结合的产物,其原理如下图示:[img=,520,354]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151451_01_2318341_3.gif[/img]它是将激光作光源,用线阵CCD作光电转换器,用玻璃透镜将被测物上的光斑聚焦成点,再成像到线阵CCD上,线阵CCD上的光电信号再移到计算机处理,从而得到距离信号。这就是激光三角测量的基本原理。[b]三、 第一代激光三角测厚仪的原理[/b]有了激光三角位移传感器,就为激光测厚仪垫定基础,其设计原理如下图所示,[img=,479,373]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151452_01_2318341_3.jpg[/img][b][color=#333333]第一代激光测厚仪原理[/color][/b]从上图可得:厚度为:[img=,97,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151519_01_2318341_3.jpg[/img][b][img=,12,23]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/b]公式中,[b]t[/b]表示厚度,[b]z[/b]是上下两个测头间的距离,[b]x[/b]是上测头到被测物上表面的距离,[b]y[/b]是下测头到被测物下表面的距离,只要[b]z[/b]是恒定的,则,上下测头测量出[b]x,y,[/b]就可以通过上面的公式算出厚度[b]t[/b],这样,用两个激光位移传感器就可以做出测厚仪。[b]四、 第一代激光三角测厚仪的误差分析[/b]1、上面的厚度公式中我们假设z是恒定的,则,在静止状态下系统误差就是上下测头的测量误差,我们令其表达式为:[img=,82,21]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151523_01_2318341_3.jpg[/img]2、实际上,在高精度测量时,z并不是恒定的,因为,上下测头是装在U形支架上,而随着温度的变化,U形支架是会变形的,扫描宽度越宽其变形量就越大,所以,其在静止状态下的误差表达式应为:[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151523_02_2318341_3.jpg[/img],见下图示,当温度变化时。1)假若U形支架的上臂向上变形一微米,下臂向下变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151524_01_2318341_3.jpg[/img]2)假若U形支架的上臂向下变形一微米,下臂向上变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151524_02_2318341_3.jpg[/img]3)假若U形支架的上臂向上变形一微米,下臂向上变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151524_03_2318341_3.jpg[/img]4)假若U形支架的上臂向下变形一微米,下臂向上变形一微米,则,[img=,109,22]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151525_01_2318341_3.jpg[/img]5) 假若U形支架的上下臂向其它方向变形,则,误差比较复杂。[img=,502,356]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151500_01_2318341_3.jpg[/img]1、 上面分析是假设静止状态时的测量误差表达,而实际上激光测厚仪是要求能做到在线,动态扫描测量的,我们再来分析动态测量时的误差情况。我们知道,线阵测头的输出值是一段时间的测量结果的平均值。在动态测厚过程中,激光焦点在被测物表面扫描,由于激光散斑的原因,表面反射光强存在剧烈的起伏,导致一些采样点的信号强度过低,成为无效数据而[b][color=red]剔除[/color][/b],若单测头每次平均需m个数据,之间会剔除n个数据,则需要增加测n个数据,总数据量为m+n个,这可形象地用下图表示。[img=,224,164]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151501_01_2318341_3.jpg[/img][img=,210,135]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151501_02_2318341_3.jpg[/img]由于上下表面的数据是独立的,因此,上下表面数据序列中被剔除的数据也是独立的(见上图中的一个箭头表示一个剔除数据)。如果物体不动或高度不变,则剔除数据的位置没有什么影响,但当物体抖动量较大时,被剔除数据的位置对平均值的影响将立刻显现出来,例如当表面上升时(下图)[img=,265,178]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151504_01_2318341_3.jpg[/img][img=,265,178]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151506_01_2318341_3.jpg[/img]剔除数据的位置靠前则m个数据的平均值偏大,反之则偏小。由于上下两个测头内部对剔除数据的操作是独立的,无法进行协调,因此,物体抖动必然导致厚度测量结果的较大起伏!这种误差的统计估计如下:由上图可知,两个测头的数据错位范围为(-n,+n),处于各种错位情形的概率均等,则由概率论知,均方差为[img=,30,45]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151526_01_2318341_3.jpg[/img]个数据,若物体移动速度为V,单次采样时间为T,则造成的上下两测头的厚度测量的概率误差为[img=,78,45]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151527_01_2318341_3.jpg[/img],例如,若v=10mm/s, T=10ms, n=2, 则e=0.115mm!若上下测头组合仪取p个数平均,则厚度误差均方差下降为[img=,88,49]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151527_02_2318341_3.jpg[/img],若p=20,则e=0.026mm!对于高精度测量仍然是无法容忍的!由于激光散斑是无法消除的,因此,被测物速度越大,误差越大,因此原理上,上下独立测头不适宜抖动物体的测厚![b]一、 结论[/b]从上面的分析,我们可以知道:用激光位移传感器构成的测厚仪存在着原理上的缺陷,其误差的产生都是随机的,所以,无法进行补偿,故,在高精度测量时不能满足测量要求。[b]二、 第二代激光测厚系统原理简介[/b]第二代激光三角测厚仪是重新设计发展而来,它克服了第一代由于U形支架变形、振动等导致测量精度不高,由于采用二个光电转换部件导致工作不同步而导致上下两测头的测量点不重合,及由此导致测量精度不高,测量精度不稳定等不足。第二代激光测厚仪从测量原理上做了重新设计,不再采用两个位移传感器分别测量上下测头到被测物的上下表面的距离来算出厚度,而是直接测量被测物的厚度,避免了U形支架变形、振动等导致测量误差,大大提高了测量精度,而且不怕振动,并且安装使用更简单,工作更稳定,测量精度更高(+/-0.0015mm),它无环境污染,对人无伤害,对被测物无污染无接触,同时第二代激光三角测厚仪有完整的数据输出接口,这为涂布机的日后闭环自动控制打下了基础,详见原理图[img=,619,391]http://ng1.17img.cn/bbsfiles/images/2017/08/201708151508_01_2318341_3.jpg[/img] [b][img=,195,20]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] [color=#333333]第二代激光测厚仪原理[/color][/b]上述原理图的工作原理:上下二个激光器将激光束分别打在被测物的上下表面,形成二个光斑,无衍射光学系统将这二光斑成像到面阵CCD或DSP等光电转换部件上,则,这二个光斑在面阵CCD或DSP等光电转换部件上的光斑的像之间的距离就是被测物厚度的映射,通过图像处理技术就能算出被测物的厚度。[b] [/b]从上面的原理图可知,U形支架上安装的不是激光位移测头,而是激光器,仅作为光源用,上下激光器照射到被测物的上下表面形成上下二个光斑,将这两个光斑通过一个无衍射光学系统成像到面阵CCD上,则,这二个光斑之间的距离就是被测物的厚度,这样直接测量的是被测物的厚度,这就避免了由于U形支架的变形和上下测头的测量误差还有抖动等因素的影响,第二代系统只有一个误差,就是无衍射光学系统的测量误差,而这个误差不是随机产生的,是可以补偿的,同时我们的单镜头面阵ccd测厚仪,由于是上下光斑同时测量,若出现上下任一光斑太暗,则该组上下光斑数据作废,保证了用于厚度数据的上下光斑的一一对应性!从原理上避免了第一代测厚仪的多项误差。故,第二代激光测厚系统比第一代激光测厚系统有无比优异性能。

  • 高精度计重秤ACS-ZC71计重桌称6kg/0.1g6万分之一精度包邮

    高精度计重秤型号最大称量分度值最大可读精度ACS-3-ZC713kg0.05g1/60000ACS-6-ZC716kg0.1g1/60000秤盘尺寸:275mm*220mm接口:DC接口,RS232接口(选配),RJ45以太网接口(选配)电源:4V/4A电子秤专用蓄电池http://www.xiangshanscale.com/uploads/chanpinsucai/chanpinmiaoshu.png使用中航电测高精度130mm传感器,品质符合世界标准新款高精度计重秤ACS-ZC71称重可读性高达1/60000精度;内部解析精度高达1/600000具有简易计数功能,可当计数秤使用具有大尺寸LCD白色背光液晶显示,字高25.4mm,字幕清晰易读取ACS-ZC71具有运送保护,过载保护设计高精度计重秤采用触摸式薄膜按键,容易操作,防水性能佳超低功耗,一次充电可使用180小时具有电池低电压报警功能,可降低电池过量放电损坏几率高精度计重秤ACS-ZC71外壳采用ABS耐冲击塑料;秤盘采用ABS塑料载物盘和不锈钢材料托盘双盘结构,应对各种使用场合,经久耐用,使用寿命长 微电脑处理功能具有四段数位滤波设定,可在恶劣的称重环境使用自动归零功能扣重、预扣、自动扣重功能智慧ACAI可自行判断单重大小,执行自动平均,求得更精确的单重数值最大累计到999,999,999,999具有省电模式(BACKLIGHT AUTO ON)具有开机电压侦测,可显示当前电池电压,预知电池可使用时间应 用高精度计重秤ACS-ZC71广泛适用于工矿企业、科研机构、大专院校、黄金珠宝、建筑、地质勘探、道路建设、农牧业、商业流通领域的精密称量,尤其适应大中型企业的物料管理。

  • 短程分子蒸馏器的升级改造以实现高精度的真空控制

    短程分子蒸馏器的升级改造以实现高精度的真空控制

    [align=center][img=通过超高精度真空控制提高分子蒸馏分离纯度的方法,550,392]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040202188410_3231_3221506_3.jpg!w690x492.jpg[/img][/align][color=#990000]摘要:为了提升蒸馏纯度,针对现有分子蒸馏中气体流量计式真空度控制系统存在精度较差和响应速度慢的问题,本文提出了更高精度的真空度控制解决方案。解决方案采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,可实现任意设定真空度下±0.5%的控制精度,同时对温度等因素所带来的真空度变化有极快的响应,可保证分子蒸馏过程中真空控制的高精度和稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px]一、问题的提出[/size][/color]分子蒸馏是一种特殊的液-液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出,由此达到物质分离的目的。短程蒸馏器是一个工作在0.001~1mbar(0.1~100Pa)绝对压力下热分离技术过程,它较低的沸腾温度,非常适合热敏性和高沸点物。在分子蒸馏工艺中,真空度的控制精度决定了分离物质的纯度,目前绝大多数分子蒸馏设备中真空度控制系统普遍还都采用液环真空泵与旋片式真空泵结合气体流量计的技术,这种通过气体流量计调节进气流量的方法无法实现高精度的真空度稳定控制,具体是以下几方面原因:(1)分子蒸馏过程的真空度变化范围一般为0.1~100Pa,这种高真空范围对气体流量计的真空漏率有较高要求,一般气体流量计很难满足要求,必须使用专门用于高真空的气体流量计。(2)气体流量计的调节精细度普遍较粗,如果要实现高精密的气体流量调节,同样要使用高档更精密的气体流量计。(3)通常气体流量计的响应速度比较慢,很难实现在1秒之内完成全闭到全关的动作时间。(4)多数分子蒸馏中的真空传感器普遍采用精度较差的数字皮拉尼电阻规和电热偶规等。(5)绝大多数调节气体流量计的PID控制器精度较差,多为12位AD和DA转换器,极少用到16位的AD和DA转换器,PID控制器的精度是决定分子蒸馏真空度控制精度的关键。为了提升蒸馏纯度,针对上述现有分子蒸馏中气体流量计式真空度控制系统存在的问题,本文提出了更高精度真空度控制的解决方案。解决方案将采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,由此可实现分子蒸馏工艺中任意设定真空度下±0.5%的控制精度,并对温度等因素所带来的真空度变化有极快的响应,有效保证分子蒸馏过程中真空度的高精度和高稳定性。[size=18px][color=#990000]二、解决方案[/color][/size]通过上述分析可以看出,限制现有短程分子蒸馏工艺真空度控制精度的主要因素分别是:(1)气体质量流量计调节精度和响应速度。(2)真空度传感器的测量精度。(3)PID控制器的测量和控制精度。为解决上述问题,本文提出的具体解决方案是采用相应的三个替换装置,如图1所示。[align=center][color=#990000][img=短程分子蒸馏高精度真空度控制装置,690,282]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040201378335_1412_3221506_3.jpg!w690x282.jpg[/img][/color][/align][align=center][color=#990000]图1 短程分子蒸馏高精度真空度控制装置[/color][/align]如图1所示,为提高蒸馏纯度,实现高精度真空度控制,解决方案采用了以下三个装置:[color=#990000](1)采用高速电动针阀代替气体质量流量计[/color]分子蒸馏高真空度控制的基本原理是调节蒸馏器的进气流量和出气流量并达到一个动态平衡,所以这里的技术关键是如何实现进气流量的精密调节。尽管气体质量流量计可以进行进气流量调节,但采用的是电磁阀技术,有着较大的迟滞现象和较慢的响应速度,这些都会影响真空度的控制精度。解决方案中所采用的高速电动针阀是一种高速步进电机驱动的纯机械式针型阀,在大幅度减少迟滞误差的同时,还将整体响应时间缩短到了800微秒,同时精细步长可实现阀门的快速精密调节。驱动控制只需采用0-10V的模拟电压,整体结构简单且可靠性强。多个规格的电动针阀具有不同的气体流量调节能力,可满足不同容积的蒸馏器的真空度控制,同时还可以采用FFKM全氟醚橡胶密封提高耐腐蚀性。[color=#990000](2)采用薄膜电容规代替皮拉尼电阻规和电热偶规[/color]薄膜电容规的测量精度要远高于皮拉尼电阻规和热偶规,在任意真空度下其精度都可以达到±0.25%。那么对于短程蒸馏器0.001~1mbar(0.1~100Pa)的真空度量程内,可直接选择一只1Torr的薄膜电容规即可满足全量程的真空度测量,如果为了保证0.1~1Pa范围内的测量精度,还可以再补充一只0.1Torr的薄膜电容规。这样,通过两只不同量程的薄膜电容规可覆盖全真空度范围内的准确测量。[color=#990000](3)采用超过精度真空控制器代替普通精度PID控制器[/color]在任何PID反馈式闭环控制系统中,无论传感器和执行器精度多高,最终的控制精度都需要控制器的精度予以保证,为此,在解决方案中采用了超高精度的PID真空控制器。此超高精度PID真空度控制器具有24位AD和16位DA,采用了双精度浮点运算可实现0.01%的最小输出百分比,这是目前国内外最高技术指标的工业用PID控制器。采用此真空控制器可充分发挥电动针阀执行器和薄膜电容规真空传感器的精度优势,而且此系列控制器具有单通道和双通道不同型号。单通道控制器是可编程PID控制器,突出特点是可以进行不同量程双真空计的自动切换来实现全量程自动控制。双通道控制器是一种定点控制器,两个通道可以分别独立控制真空度和温度。[size=18px][color=#990000]三、结论[/color][/size]新型的真空控制系统对短程分子蒸馏工艺的真空度控制过程进行了优化,对其中的真空度控制系统做出了以下三方面的改进:(1)采用电动针阀代替气体质量流量计,提高了进气流量调节执行器的精度。(2)采用薄膜电容规代替拉尼电阻规和电热偶规,提高了真空度测量的精度。(3)采用真空控制器代替传统的PID控制器,提高了PID控制精度,并扩展了控制功能,可实现双传感器自动切换和两个工艺参数同时控制。总之,通过以上改进可大幅提高短程分子蒸馏工艺的真空度控制水平,通过大量考核试验和实际应用已经证明,此解决方案成熟度很高,在全真空度范围内可轻松实现±0.5%的控制精度,如果采用更高精度的真空计,此解决方案可进一步达到±0.1%的控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高精度一乎面加工与检浏

    高精度平面主要包括平晶、平行平晶、标准平面和分划板等。高精度平面的平面度一般γ/20,平行度<2′′。 1高箱度平面的加工方法 a古典抛光法 在一般抛光机上采用柏油模、分离器抛光.这种方法与操作者的技能有较大关系, b.蟹钳式分离器加工法 它在很人程度上减小了倒翻力矩的挤压作用,同时也采用新型抛光模(如混合模、聚四氟乙烯抛光模等),明显提高了加效率利和精度。 c.环形抛光模加工法 它用校正板和夹持器代替分离器.不仅能保持分离器的功能,又使抛光速度趋于均匀。采用了膨胀系教很小的玻璃作为基底,其上涂以聚四氟乙烯塑料为抛光膜层,加上校正板的连续自动修正作用,所以可在连续加工中保持抛光模的面形稳定.能获得γ/10~γ/200的面形精度和平行度为1"~0.1"的平行平晶.也可加工棱镜、多面体等。 d.离子抛光法 一般是将氢等惰性气体原子在真空中用高频放电方法使之离子化,由高压场使离子加速,轰击光学玻璃表面。通常能以原子为单位去除表面材料,形成所需要的抛光面。这种方法可获得高精度的光学表面,井能通过控制程序进行自动加工。 e.电子计算机控制撇光法 用计算机控制光学磨具在零件表面上的运动轨迹、进给速度和压力等工艺因素达到修磨零件表面的目的。这种方法的优点是工具位置、停留时间、运动轨迹及操作参数等均可实现最优化、加工精度可达γ/80,适合于高精度大型光学零件的最后修磨加工。2.高精度平面的检测 测试方法有液面法、等倾干涉法、多光束干涉法、阴影法和三面法等。

  • 高精度的非接触工况控制

    国产小盲区超声波物/液位仪是最新专为小盲区,精度高的工况控制制造的通用型超声波物/液位计,吸取了国内外多种物/液位仪优点,克服了超声测控盲区大,精度低的不足,实现了完善的物/液位测控.数据传输和人机交流功能。主芯片采用进口工业级单片机,数字温度补偿和超宽电压输入稳压等数十块相关专用集成电路。具有抗干扰性强,可任意设置上下限节点及在线输出调节,并带有现场显示,可选择模拟量,开关量及RS485输出,方便的与相关设施接口。本机是防水外壳,壳体小巧且前端为防腐型不锈钢,它不必接触工业介质就能满足大部分物位测量要求,特别适合小盲区, 高精度的非接触工况控制要求。主要性能最大量程:1m 盲区: 0.06m 可选两组开关限位工 作 频 率 :40KHz~430.0KHz输出信号:4~20mA (其它方式可选)最大负载阻抗:300Ω最小显示分辨率:1mm 最大误差:小于±1.5mm工作温度:-20℃~80℃ 工作压力:常压显示 :四位八段:LED外形尺寸:工作电压:DC12—36V 功耗1.5W安装方式:外直管螺纹M30×1.5

  • 彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制

    [size=16px][color=#339999]摘要:针对晶体生长和CVD等半导体设备中对0.1%超高精度真空压力控制的要求,本文对相关专利技术进行了分析,认为采用低精度的真空度传感器、调节阀门和PID控制器,以及使用各种下游控制方法基本不太可能实现超高精度的长时间稳定控制。要满足超高精度要求,必须采用0.05%左右精度的传感器和相应精度的PID控制器,结合1s以内开合时间的高速电动针阀和电动球阀,同时还需采用上游进气控制模式。另外,本文提出的超高精度解决方案中,还创新性的提出了进气混合后的减压恒压措施,消除进气压力波动对超高精度控制的影响。[/color][/size][align=center][size=16px][img=彻底讲清如何实现各种单晶炉的0.1%超高精度真空压力控制,690,290]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071124469579_383_3221506_3.jpg!w690x290.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 在晶体生长和CVD等半导体设备领域,普遍要求对反应腔室的真空压力进行快速和准确控制。目前许多半导体工艺设备的真空压力基本在绝对压力10~400Torr的真空度范围内,通过使用下游节流阀(电动球阀或电动蝶阀)的开度自动变化来调节抽气速率基本能达到1%以内的控制精度。但对于有些特殊晶体生长等生产工艺,往往会要求在0.1~10Torr真空度范围内进行控制,并要求实现0.1%的更高精度控制。[/size][size=16px] 最近有用户提出对现有晶体生长炉进行技术升级的要求,希望晶体炉的真空压力控制精度从当前的1%改造升级到0.1%,客户进行改造升级的依据是宁波恒普真空科技股份有限公司的低造价的压力控制系统,且技术指标是“公司研发的压力传感器和控制阀门及配套的自适应算法,可将压力稳定控制在±0.3Pa(设定压力在100~500Pa间)”。[/size][size=16px] 我们分析了宁波恒普在真空压力控制方面的两个相关专利,CN115113660A(一种通过多比例阀进行压力控制的系统及方法)和CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),认为采用所示的专利技术可能无法实现100~500Pa全量程范围内0.1%的长时间稳定的控制精度,最多只可能在个别真空点和个别时间段内勉强内达到。本文将对这两项专利所设计的控制方法进行详细技术分析说明无法达到0.1%控制精度的原因,并提出相应的解决方案。[/size][b][size=18px][color=#339999]2. 专利技术分析[/color][/size][/b][size=16px] 宁波恒普公司申报的发明专利“一种通过多比例阀进行压力控制的系统及方法”,其压力控制系统结构如图1所示,所采用的控制技术是一种真空压力动态平衡控制方法中典型的下游控制模式,即固定进气流量,通过调节排气流量实现真空压力控制。[/size][align=center][size=16px][color=#339999][b][img=01.通过双比例阀进行压力控制的系统的示意图,500,244]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071128351485_5277_3221506_3.jpg!w690x338.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 通过双比例阀进行压力控制的系统的示意图[/b][/color][/size][/align][size=16px] 在动态平衡法控制中,这种下游模式的特点是: (1)非常适用于10~760Torr范围内的高气压精确控制,抽气流量的变化可以很快改变真空腔体内部气压的变化,不存在滞后性,这对于高精度的高压气体控制非常重要,因此这种下游控制模式也是目前国内外绝大多数晶体炉的真空压力控制方法。 (2)并不适用于0.1~10Torr范围内低气压控制,这是因为在低气压控制过程中,抽气速率对低气压变化的影响较为缓慢,存在一定的滞后性,调节抽气速率很难实现低气压范围内的真空度高精度控制。因此,对于低气压高真空的精密控制普遍采用的是上游控制模式,即调节进气流量,利用了低气压对进气流量非常敏感的特性。 宁波恒普公司所申报的发明专利“一种通过多比例阀进行压力控制的系统及方法——CN 115113660A”,如图1所示,所采用的下游控制模式是通过分程(或粗调和细调)形式来具体实现,即通过次控制阀开度改变抽气口径大小后,再用主控制阀开度变化进行细调,本质还是为了解决抽气速率的精细化调节问题。 这种抽气速率分段调节的类似方法在国内用的比较普遍,较典型的如图2所示的浙江晶盛公司专利“一种用于碳化硅炉炉腔压力控制的控压装置——CN210089430U”,采用的就是多个分支管路进行下游模式控制,多个分支管路组合目的就是调节抽气口径大小。[/size][align=center][b][size=16px][color=#339999][img=02.下游控制整体结构示意图,500,450]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071129101289_1324_3221506_3.jpg!w690x621.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图2 下游多支路真空压力控制结构示意图[/color][/size][/b][/align][size=16px] 宁波恒普公司另一个实用新型专利CN217231024U(一种碳化硅晶体生长炉的压力串级控制系统),如图3所示,也是采用下游控制模式。[/size][align=center][b][size=16px][color=#339999][img=03.晶体生长炉的压力串级控制系统的结构示意图,450,361]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071132344137_9996_3221506_3.jpg!w690x555.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图3 下游串级控制系统结构示意图[/color][/size][/b][/align][size=16px] 在晶体生长和其他半导体工艺的真空压力控制中,国内外普遍都采用下游控制模式而很少用上游控制模式,主要原因如下:[/size][size=16px] (1)绝大多数工艺对气氛环境的要求是高气压(低真空)范围内控制,如10~500Torr(绝对压力),且控制精度能达到1%即可。这种要求,最适合的控制方法就是下游模式。[/size][size=16px] (2)绝大多数半导体工艺都需要输入多种工作气体,而且各种工作气体还要保持严格的质量和比例,所以进气控制基本都采用气体质量流量计。如果在质量和比例控制之后,再对进气流量进行控制,一是没有必要,二是会增加技术难度和设备成本。[/size][size=16px] (3)在下游控制模式中安装节流阀(电动蝶阀)比较方便,可以在真空泵和腔体之间的真空管路上安装节流阀,而且对节流阀的拆卸和清洗维护也较方便。[/size][size=16px] 国内有些厂家在下游模式中采用上述分程控制方法的动机主要是为了规避使用高速和高精度但价格相对较贵的下游节流阀(电动蝶阀),这种高速高精度下游节流阀主要是具有1秒以内的全程闭合时间,直接使用这种高速蝶阀就可以在高气压范围内实现低真空度控制。而绝大多数国产真空用电动球阀和电动蝶阀尽管价格便宜,但响应速度普遍在几十秒左右,这使得压力控制的波动性很大。所以为了使用国产慢速电动蝶阀,且保证控制精度,只能在下游管路上想办法。[/size][size=16px] 如果采用高速电动球阀或电动蝶阀,且真空计和控制器达到一定精度,则采用任何形式的下游模式控制方式都可以在低气压范围内轻松实现1%的控制精度,但无法达到0.1%的控制精度。而如果采用低速阀门和上述专利所述的控制方法,也有可能达到1%控制精度,但更是无法实现更高精度0.1%的真空压力控制。[/size][b][size=18px][color=#339999]3. 超高精度真空压力控制方法及其技术[/color][/size][/b][size=16px] 晶体生长炉的真空压力控制也是一种典型的闭环PID控制回路,回路中包括真空泵、真空计、电动阀门和PID控制器。其中真空泵提供真空源,真空计作为真空压力测量传感器,电动阀门作为执行器调节进气或出气流量,PID控制器接收传感器信号并与设定值进行比较和PID计算后输出控制信号给执行器。[/size][size=16px] 这里我们重点讨论在0.1~10Torr的低气压(高真空)范围内实现0.1%超高精度的控制方法和相关技术。依据动态平衡法控制理论以及大量的实际控制试验和成功应用经验,如果要实现上述低压范围内(0.1~10Torr)的高精度控制,必须满足以下几个条件,且缺一不可:[/size][size=16px] (1)真空泵要具备覆盖此真空度范围的抽取能力,并尽可能保持较大的抽速,由此在高温加热过程中的气体受热膨胀压力突增时,能及时抽走多余的气体。[/size][size=16px] (2)真空计和PID控制器要具有相应的测量和控制精度。[/size][size=16px] (3)采用上游控制模式,并需采用高速电动针阀自动和快速的调节进气流量大小。[/size][size=16px] 国内外晶体生长炉和半导体工艺的真空压力控制,普遍采用的是薄膜电容真空计,价格在一万元人民币左右的这种进口真空计,测量精度基本在0.25%左右。这种真空计完全可以实现0.5 ~ 1%的控制精度,但无法满足更高精度控制(如0.1%)中的测量要求,更高精度的真空度测量则需要采用0.05%以上精度的昂贵的薄膜电容真空计。[/size][size=16px] 同样,对于PID控制器,也需要相应的测量精度和控制精度。如对于0.25%精度的真空计,采用16位AD、12位DA和0.1%最小输出百分比的PID控制器,可以实现1%以内的控制精度,这在相关研究报告中进行过专门分析和报道。若要进行更高精度的控制,则在采用0.05%精度真空计基础上,还需采用24位AD、16位DA和0.01%最小输出百分比的PID控制器。[/size][size=16px] 宁波恒普公司在其官网的压力控制技术介绍中提到,采用恒普自己研发的压力传感器和控制阀门及配套的自适应算法,在绝对压力100~500Pa范围内可将国内外现有技术的±3Pa压力波动(控制精度在1%左右)提升到±0.3Pa(控制精度在0.1%左右),控制精度提高了一个数量级。我们分析认为:在绝对压力100~500Pa的低压范围内,如果不能同时满足上述的三个条件,基本不太可能实现0.1%的超高精度控制。[/size][b][size=18px][color=#339999]4. 超高精度真空压力控制技术方案[/color][/size][/b][size=16px] 对于超高精度真空压力控制解决方案,我们只关心前述条件的第二和第三点,不再涉及真空泵内容。[/size][b][color=#339999] (1)超高精度真空计的选择[/color][/b][size=16px] 目前国际上能达到0.05%测量精度的薄膜电容真空计有英福康和MKS两个品牌,如图4所示。这类超高精度的真空计都有模拟信号0~10V输出,数模转换是20位。[/size][align=center][b][size=16px][color=#339999][img=04.超高精度薄膜电容真空计,550,240]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130184466_8776_3221506_3.jpg!w690x302.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图4 超高精度0.05%薄膜电容真空计 (a)INFICON Cube CDGsci;(b)MKS AA06A[/color][/size][/b][/align][size=16px][b][color=#339999] (2)超高精度PID控制器的选择[/color][/b] 从上述真空计指标可以看出,真空计的DAC输出是20位的0~10V模拟型号,那么真空压力控制器的数据采集精度ADC至少要20位。为此,解决方案选择了目前最高精度的工业用PID控制器,如图5所示,其中24位AD、16位DA和0.01%最小输出百分比。所选控制器具有单通道和双通道两种规格,这样可以分别用来满足不同真空度量程的控制,双通道控制器可以用来同时采集两只不同量程的真空计而分别控制进气阀和抽气阀实现真空压力全量程的覆盖控制。另外PID控制器还具有标准的RS485通讯和随机配套计算机软件。[/size][align=center][b][size=16px][color=#339999][img=05.高速电动阀门和超高精度PID调节器,650,237]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071130375986_9640_3221506_3.jpg!w690x252.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图5 超高精度PID真空压力控制器和高速电动阀门[/color][/size][/b][/align][size=16px][b][color=#339999] (3)高速电动阀门选择[/color][/b] 高速电动阀门主要包括了真空用电动针阀和电动球阀,都有极小的漏率。如图5所示,其中电动针阀用于微小进气流量的快速调节,电动球阀用于大排气流量的快速调节,它们的全程开启闭合速度都小于1s,控制电压都为0~10V模拟信号。[b][color=#339999] (4)超高精度0.1%压力控制技术方案[/color][/b] 基于上述关键部件的选择,特别是针对0.1~10Torr范围内的0.1%超高精度真空压力控制,本文提出的控制系统具体技术方案如图6所示。[/size][align=center][b][size=16px][color=#339999][img=06.超高精度真空压力控制系统结构示意图,600,325]https://ng1.17img.cn/bbsfiles/images/2023/04/202304071131004546_6716_3221506_3.jpg!w690x374.jpg[/img][/color][/size][/b][/align][align=center][b][size=16px][color=#339999]图6 超高精度真空压力控制系统结构示意图[/color][/size][/b][/align][size=16px] 如前所述,在0.1~760Torr的真空压力范围内,分别采用了量程分别为10Torr和1000Torr的两只超高精度真空计,并分别对应上游和下游控制模式来进行覆盖控制,真空源为真空泵。[/size][size=16px] 在10~750Torr范围内,采用下游控制模式,即控制器的第一通道用来控制电动针阀的进气开度保持固定,第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动球阀的开度变化实现准确控制。[/size][size=16px] 在0.1~10Torr范围内,采用上游控制模式,即控制器的第二通道用来控制电动球阀的进气开度保持固定(一般为全开),第二通道用来检测真空计信号,并根据真空压力设定值自动PID调节电动针阀的开度变化实现准确控制。[/size][size=16px] 由于电动针阀调节的是总进气流量,所以在具体工艺中需要将多种工作气体先进行混合后再流经电动针阀,而且多种工作气体通过相应的气体质量流量计(MFC)来控制各种气体所占比例,然后进入混气罐。在0.1~10Torr范围内的超高精度控制中,进气压力的稳定是个关键因素。为此,解决方案中增加了一个减压恒压罐,并采用正压控制器对混合后的气体进行减压,使恒压罐内的压力略高于一个大气压且恒定不变。[/size][size=16px] 解决方案中的超高精度PID控制器具有RS485接口并采用标准的MODBUS通讯协议,可以通过配套的计算机软件直接对控制器进行各种设置和操作运行,并显示、存储和调用各种控制参数的变化曲线,这非常便于整个工艺控制过程的调试。工艺参数和过程调试完毕后,可连接PLC上位机进行简单的编程就能与工艺设备控制软件进行集成。[/size][size=16px] 综上所述,本文设计的解决方案,结合相应的超高精度和高速的传感器、电动阀门和PID控制器,能够彻底解决超高精度且长时间的真空压力控制难题,可以满足生产工艺需要。[/size][b][size=18px][color=#339999]5. 总结[/color][/size][/b][size=16px] 晶体生长和半导体材料的生产过程往往需要较长的时间,工艺过程中的真空压力控制精度必须还要考虑长时间的控制精度,仅仅某个真空度下或短时间内达到控制精度并不能保证工艺的稳定和产品质量。[/size][size=16px] 在本文的解决方案中,特别强调了一是必须采用相应高精度和高速的传感器、执行器和控制器,二是必须采用相应的上游或下游控制方式,否则,如果仅靠复杂PID控制算法根本无法通过低精度部件实现高精度控制,特别是在温度对真空压力的非规律性严重影响下更是如此,这在太多的温度和正压控制中得到过证明,也是一个常识性概念。[/size][size=16px] 对于超高精度的真空压力控制,本文创新性的提出了稳定进气压力的技术措施,其背后的工程含义也是先粗调后细调,尽可能消除外界波动对控制精度的影响,这在长时间内都要求进行超高精度稳定控制中尤为重要。[/size][size=16px] 这里需要说明的是,实现超高精度控制的代价就是昂贵的硬件装置,如超高精度的电容真空计。尽管在高速电动阀门和超高精度PID控制器上已经取得技术突破并降低了价格,但在薄膜电容真空计方面国内基本还处于空白阶段。除非在超高精度电容真空计上的国内技术取得突破,可以使得造价大幅降低,否则将不可避免使得真空压力控制系统的成本增大很多,而目前在国内还未看到这种迹象。[/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~[/size][/align]

  • 【原创】薄膜测厚仪

    【原创】薄膜测厚仪

    电容性薄膜测厚仪 http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646126_2244676_3.jpg 名称属性 测厚仪组成部分发射探头 1个接受探头 1个电脑控制转换器 1个工业触摸屏 1个操作柜 1台U型探头支架 1个技术指标检测厚度: 10um-20mm检测精度:土0.1um检测宽度:根据产品宽度循环测厚设定在线速度 max:60m\min作业环境海拔低于1500米,三相380v电。适用于POF、牛奶包装膜、彩印膜、大棚膜等各类薄膜产品。

  • 真空压力控制技术在低温恒温器高精度温度恒定中的应用

    真空压力控制技术在低温恒温器高精度温度恒定中的应用

    [color=#990000]摘要:针对低温恒温器中低温介质温度的高精度控制,本文主要介绍了低温介质减压控温方法以及气压控制精度对低温温度稳定性的影响,详细介绍了低温介质顶部气压高精度控制的电阻加热、流量控制和压力控制三种模式,以及相应的具体实施方案和细节。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=left][size=18px][color=#990000]1. 引言[/color][/size][/align] 在低温恒温器中,低温介质(液氦和液氮等)温度波动产生的主要原因是沸腾的低温介质顶部气压(真空度)的变化。因此,为了实现低温介质内部的温度稳定,就需要对低温介质顶部的气压进行准确控制。 国内外针对低温恒温器的温度控制大多采用以下三种技术途径: (1)主动控制方式:在浸没于低温介质的真空腔里直接引入加热电路,利用温度计对真空腔温度的实时监测数据,与目标温度值进行比较后来控制加入到加热电路中的电流。 (2)被动控制方式:对低温介质顶部气压进行控制,使低温介质温度稳定。 (3)复合控制方式:复合了上述两种控制方式,在浸没于低温介质的真空腔里直接引入加热控制电路之外,还同时对低温介质上部的气压进行控制。 电阻加热控温方式已经是一种非常成熟的技术,本文将主要针对低温介质顶部气压控制方式,介绍气压控制精度对低温温度稳定性的影响,以及高精度气压控制的实现途径和具体方案。[align=center][img=真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2021/12/202112080959307199_6660_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#990000]图1 液氦饱和蒸气压与温度关系曲线[/color][/align][size=18px][color=#990000]2. 气压控制精度与温度稳定性关系[/color][/size] 以液氦为例,液氦的饱和蒸汽压与对应温度变化曲线如图1所示。 由图1可以看出,在很小的温度范围内,上述曲线可以用直线段来描述,所以可以得到4K左右的温度范围内,气压大约100Pa的波动可引起1mK左右的温度波动。由此可以认为,如果要实现1mK以下的波动,气压波动不能超过100Pa。[size=18px][color=#990000]3. 顶部气压控制的三种模式[/color][/size] 低温介质顶部气压控制一般采用三种模式:电阻加热、流量控制和压力控制。[size=16px][color=#990000]3.1 电阻加热模式[/color][/size] 在低温恒温器的恒温控制过程中,电阻加热模式是在低温介质中放置一电阻丝加热器,如图2所示,真空计检测顶部气压变化,通过PID控制器改变加热电流大小来调节和控制顶部气压,将顶部气压恒定在设定值上。从图2可以看出,电阻加热模式比较适合增加顶部气压的升温控温方式,但无法实现减压降温。[align=center][color=#990000][img=真空度控制,690,569]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000054776_8294_3384_3.png!w690x569.jpg[/img][/color][/align][align=center][color=#990000]图2 电阻加热模式示意图[/color][/align][size=16px][color=#990000]3.2 流量控制模式[/color][/size] 流量控制模式是一种典型的减压降温模式,如图3所示,真空泵按照一定抽速连续抽取低温恒温器来降低顶部气压,真空计、电动针阀和PID控制器构成闭环控制回路,通过电动针阀调节抽气流量使顶部气压准确恒定在设定真空度上。由此可见,流量控制模式比较适合降低顶部气压的降温控温方式,但无法实现增压升温。[align=center][color=#990000][img=真空度控制,690,504]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000399321_2525_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 流量控制模式示意图[/color][/align] 另外流量控制模式中,真空泵的连续抽气使得低温介质的无效耗散比较严重。[size=16px][color=#990000]3.3 压力控制模式[/color][/size] 压力控制模式是一种即可增压也可减压的控温模式,如图4所示,当采用真空泵抽气时为减压模式,当采用增压泵时为增压模式,由此可实现宽温区内温度的连续控制。所采用的调压器自带一路进气口(大气压),结合真空泵在对顶部气压进行恒压控制的同时,可有效避免低温介质的大量无效耗散。[align=center][color=#990000][img=真空度控制,690,518]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000533816_3012_3384_3.png!w690x518.jpg[/img][/color][/align][align=center][color=#990000]图4 压力控制模式示意图[/color][/align] 另外,这里的增压方式也可以采用低温介质中增加电加热器来实现。[size=18px][color=#990000]4. 其他实施细节[/color][/size] 在上述三种控制模式实施过程中,还需特别注意以下细节: (1)真空计的选择 真空计是测量顶部气压变化的传感器,是决定低温恒温器温度控制稳定性的关键,所以一定要选择高精度真空计。 目前高精度真空计一般为电容薄膜规,一般整体精度为0.2%。 如前所述,在液氦4K左右的恒温控制过程中,要求气压波动不超过100Pa,及±50Pa,如果对应于100kPa的气压控制,则真空计的精度要求需要高于±0.05%。由此可见,对于温度波动小于1mK的恒温控制,还需要更高精度的真空计。 (2)PID控制器的选择 在恒温控制过程中,PID控制器通过A/D转换器采集真空计的测量值,计算后再将控制信号通过D/A转换器发送给执行器(电动针阀、调压器和加热电源等)。为此,要保证能充分发挥真空计的高精度和控制的准确性,需要A/D和D/A转换器的精度越高越好,至少要16位,强烈建议选择24位高精度的PID控制器。 (3)调压器的配置 调压器是一种集成了真空压力传感器、控制器和阀门的压力控制装置,但真空压力传感器的精度远不如电容薄膜规,控制器精度也比较低。为此在使用调压器时,要选择外置控制模式,即采用电容薄膜规作为控制传感器。 另外,需要特别注意的是,调压器中控制器的A/D和D/A转换器精度较低,因此对于高精度和高稳定性的顶部气压控制而言,不建议采用控压模式,除非采用特殊订制的高精度调压器。[hr/]

  • 高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    高精度压强(真空度)和温度同时控制技术在光谱测量及光谱仪中应用的实施方案

    [align=center][color=#990000][img=光谱仪压强控制,690,398]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808077473_8105_3384_3.png!w690x398.jpg[/img][/color][/align][color=#990000]摘要:光谱测量和光谱仪是检测监测中的重要技术手段,为了得到满意的测量精度,光谱仪要求配套高精度的压强和温度传感器、执行机构和PID控制器,并需具有适用范围广、精度高、易集成和成本低的特点。本文将针对光谱仪压强和温度控制的特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size] 光谱测量作为定性、定量的科学分析方法,以其测量精度高、响应速度快的优势成为各种检测监测研究中的重要技术手段,但在实际应用中样品气体的压强和温度变化会对测量结果产生严重的影响,以下是光谱测量中的温压控制方面国内外所做的一些研究工作以及所表现出来的影响特征:[color=#990000](1)压强控制范围[/color] 不同的光谱测量和光谱仪对压强控制范围有着各自不同的要求,如使用气体吸收池的红外光谱仪,吸收峰的强度可以通过调整试样气体的压强(或压力)来达到,一般压强范围为0.5~60kPa。在采用可调谐二极管激光吸收光谱(TDLAS)技术测量大气中二氧化碳浓度时,就需要6~101kPa范围内的稳定压强。在X射线光谱分析仪检测器内压强的精确控制中,要使得工作气体的密度稳定来保证检测器的测量精度,一般压强控制在一个大气压附近或者更高,而激光诱导击穿光谱仪的工作压强最大可达275kPa。由此可见,光谱仪内工作气体的压强控制范围比较宽泛,一般在0.1~300kPa范围内,这基本覆盖了从真空负压到3倍大气压的4个数量级的压强范围。[color=#990000](2)压强控制精度[/color] 在光谱测试中,观察到的谱线强度与真实气体浓度之间的关系取决于气体样品的压强,所以压强控制精度直接决定了光谱测量精度。如美国Picarro公司的光谱分析仪中的压强控制精度±0.0005大气压(波动率±0.05%@1大气压)。文献[1]报道了设定压强为6.67kPa时对吸收池进行控制,经过连续四小时控制,压强波动为±3.2Pa,波动率为±0.047%。文献[2]报道了样品池内气体压强同样被控制在6.67kPa时压强长期波动幅度为7Pa,波动率为±0.047%。文献[3]报道了激光红外多通池压强控制系统的稳定性测量,目标压强设定为60Torr,在150~200s时间内最大波动为±0.04Torr,波动率为±0.067%。文献[4]专门报道了光谱测量仪器的高精度温压控制系统的设计研究,目标压强值为18.665kPa,42小时的恒压控制,最大偏差为5.33Pa,波动率为±0.014%。文献[5]介绍了X射线光谱仪中探测器的恒压控制结果,在工作气体恒压在940hPa过程中,波动小于±2hPa,波动率为±2%。文献[6]介绍了X射线光电光谱仪在0.05~30mbar压强范围内的恒压控制技术,在设定值为0.1mbar时,恒定精度可达±0.001mbar,波动率为±1%。[color=#990000](3)温度控制精度[/color] 在光谱测试中,谱线强度与真实气体浓度之间的关系还取决于气体样品的温度稳定性,而且温度的稳定性同时也会影响压强的稳定性。文献[2]报道了样品池内气体温度控制在室温(24℃)时,温度短期波动为±0.01℃,长期温漂为±0.025℃,波动率为±0.1%。文献[4]报道的光谱测量仪器的高精度温度控制系统中,温度控制在45℃,42小时内的温度波动为±0.0015℃,波动率小于±0.004%。 综上所述,由于样品气体的压强和温度变化是影响测量结果的主要因素,所以在光谱测量以及各种光谱仪中,对样品气体的压强和温度调节及控制有以下几方面的要求: (1)压强控制范围非常宽泛(0.1~300kPa),但相应的测量和控制精度则要求很高,这就对压强测量传感器、控制阀、真空泵和相应的控制器提出了很高的要求,并且这闭环控制系统中的四个组件必须相互匹配,否则很难得到满意的结果。 (2)同样,在温度的高精度控制过程中,也应选择合适的温度传感器、加热装置、电源和控制器,并在温度闭环控制系统中四者也必须相互匹配。 (3)在压强和温度这两个闭环控制系统中,都会用到高精度控制器,为了降低实验成本和光谱仪造价,希望能用一个具有2路同时PID自动控制功能的高精度控制器。 (4)针对不同的光谱测量和光谱仪,其测试结构并不相同,这就要求温压控制系统中的各个部件具有独立性,由此有利于测试装置和光谱仪结构和合理布局和集成。 总之,为了得到光谱测量的满意精度,要求配套高精度的压强和温度传感器、执行机构和PID控制器,并具有适用范围广、精度高、易集成和成本低的特点。本文将针对这些特点,结合上海依阳公司的创新性产品,给出高精度和高性价比的光谱测量和光谱仪温压测控方案。[color=#990000][size=18px]2. 光谱仪压强和温度一体化测控方案[/size]2.1. 控制模式设计(1)压强控制模式[/color] 针对光谱仪上述的压强测控范围(0.1~300kPa),最佳方案是针对具体使用的压强范围选择相应的测控模式,如图2-1所示,针对低压范围建议采用上游控制模式,针对高压范围建议采用下游测控模式,也可以采用上下游同时控制的双向控制模式。[align=center][color=#990000][img=光谱仪压强控制,690,217]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808325845_3021_3384_3.png!w690x217.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-1 压强控制的三种模式[/align] 针对低压采用上游控制模式,可以重复发挥真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制。针对高压(如1个大气压左右)采用下游控制模式,可以有效控制真空泵的抽速,使得真空腔体内的压强可以快速准确的实现恒定控制,同时还避免了进气口处的样品气体和其他工作气体的流量太大。 如果对进气流量和腔体压强有严格规定并都需要准确控制,则需要采用双向控制模式,双向控制模式可以在某一恒定压强下控制不同的进气流量,但双向控制模式需要控制器具有双向控制功能,这对控制器提出了更高的能力要求。以上三种控制模式的特点更详细介绍,请参考文献[7]。[color=#990000](2)温度控制模式[/color] 同样,温度测控模式也要根据不同的温度范围和控温精度要求进行选择,如在室温附近且控温精度较高的情况下,则需要具有加热和制冷功能的双向控制模式,只有这种模式才能保证足够高的控温精度。如果在高温范围内,也建议采用双向控制方式,即以加热为主同时辅助一定的冷却补偿,以提高控温精度和快速的温度稳定。[color=#990000]2.2. 传感器的选配[/color] 传感器的精度是保证压强和温度测控准确的关键,因此传感器的选择尤为重要。 对于上述范围的压强控制,强烈建议采用目前精度最高的薄膜电容真空计[8],这种真空计的测量精度可以达到其读数的0.2%,全量程内具有很好的线性度,非常便于连接控制器进行线性控制,并具有很高的分辨率和很小的温漂。在实际选型中,需要根据不同的压强范围选择合适量程的真空计,如对于上述0.1~300kPa的压强范围,可以选择2Torr和1000Torr两种规格的真空计,由此对相应压强量程实现准确的覆盖。 对于温度控制而言,当温度不高的范围内,强烈建议测量精度最高的热敏电阻温度传感器,较高温度时也建议采用高温型的热敏电阻或铂电阻温度传感器。如果加热温度超过了热敏电阻和铂电阻传感器的使用范围,则建议采用热电偶型温度传感器。这些温度传感器在使用前都需要进行计量校准。[color=#990000]2.3. 执行机构的选配[/color] 压强控制执行机构是决定能否实现高稳定性恒定控制的关键。如图2-2所示,强烈建议采用线性度和磁滞小的步进电机驱动的电动针阀,不建议采用磁滞和控制误差都较大的比例电磁阀。电动针阀可以布置在进气口和出气口处,也可以根据上游或下游控制模式的选择布置一个电动针阀。如果光谱仪的真空腔体庞大,电动针阀就需要更换为口径和流速更大的电控阀门,以便更快的实现压强恒定控制。详细指标可参见文献[8,9]。[align=center][color=#990000][img=电动针阀和电动调节阀,690,369]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030808519287_4900_3384_3.png!w690x369.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-2 小流量电动针阀和大流量电动阀门[/align] 温度控制的执行机构建议采用具有帕尔贴效应的半导体热电片,这种热电片具有加热制冷双向工作模式,配合高精度的热敏电阻和控制器可以实现超高精度的温度控制,非常适合光谱仪小工作腔室的控温。 如果光谱仪工作腔室较大且温度在300℃以下,建议采用具有加热制冷功能的外排式循环浴进行加热,这种循环浴同样具有加热制冷功能,可达到较高的控温精度。 如果光谱仪工作在更高温度,则建议采用电阻丝或光加热方式,同时配备一定的通风冷却装置以提高加热的热响应速度,从而保证温控的稳定性和速度。[color=#990000]2.4. 控制器的选配[/color] 控制器是实现高精度和高稳定性压强和温度测控的最终保障。在压强控制设计中,控制器需要根据所选真空计和执行机构进行选配,选配的详细介绍可参见文献[10]。根据文献的计算可得认为,如果要保证压强测控的精度,必须采用至少16位以上的A/D模数采集器。同样,温度测控的精度保证也是由模数采集器的位数决定。因此,对于光谱仪中压强和温度的控制,建议采用了目前上海依阳实业有限公司开发的精度和性价比最高,并结合了PID参数控制功能的24位A/D采集的控制器,详细内容可参见文献[11]。 按照上述的选型,最终压强和温度的测控方案如图2-3所示。[align=center][color=#990000][img=光谱仪压强和温度控制框图,690,291]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030809355503_6326_3384_3.png!w690x291.jpg[/img][/color][/align][color=#990000][/color][align=center]图2-3 光谱仪压强和温度测控方案示意图[/align] 特别需要指出的是,上述的压强和温度控制,基本都采用了双向控制模式,而我们所开发的这款高精度控制器恰恰具有这个功能。另外,在光谱仪实际应用中,压强和温度需要同时进行控制,可以采用两台控制器分别进行控制,但相应的光谱仪整体体积增大、操作变得繁复并增加成本。而目前所建议使用的高精度控制器则是一台双通道的PID控制器,两个通道可以独立同时进行不同PID参数的控制和PID参数自整定,并且每个通道都具有双向控制功能,这有效简化了控制器并降低了仪器尺寸和成本。[size=18px][color=#990000]3. 总结[/color][/size] 综上所述,通过对光谱测量和光谱仪的压强和温度测控要求的分析,确定了详细的温压测控技术方案,并详细介绍了方案确定的依据以及相应所选部件的技术参数指标。 整个技术方案完全能满足光谱测量和光谱仪对压强和温度测控的要求,并具有测控精度高、功能强大、适用范围广、易集成和成本低的特点。除了薄膜电容真空计为进口产品之外(也可选国产真空计),方案中的所有选择部件和仪表都为国产制造。[color=#990000]4. 参考文献[/color](1)牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008μm波段对δ13CO2的研究[J]. 物理学报, 2017(02):136-144.(2)孙明国, 马宏亮, 刘强,等. 参数主动控制的痕量气体实时在线测量系统[J]. 光学学报, 2018, v.38;No.434(05):344-350.(3)许绘香, 孔国利. 采用Ziegler-Nichols-PID算法的激光红外多通池压强控制系统研制[J]. 红外与激光工程, 2020(9).(4)周心禺, 董洋, 王坤阳,等. 用于光谱测量仪器的高精度温压控制系统设计[J]. 量子电子学报, 2020, v.37 No.194(03):14-20.(5)Elvira V H , Roteta M , A Fernández-Sotillo, et al. Design and optimization of a proportional counter for the absolute determination of low-energy x-ray emission rates[J]. Review of Scientific Instruments, 2020, 91(10):103304.(6)Kerherve G , Regoutz A , D Bentley, et al. Laboratory-based high pressure X-ray photoelectron spectroscopy: A novel and flexible reaction cell approach[J]. Review of Scientific Instruments, 2017, 88(3):033102.(7)上海依阳实业有限公司,“真空度(气压)控制:上游模式和下游模式的特点以及新技术“,知乎:https://zhuanlan.zhihu.com/p/341861844.(8)上海依阳实业有限公司,“真空压力控制装置:电动针阀(电控针型阀)”:http://www.eyoungindustry.com/2021/621/29.html.(9)上海依阳实业有限公司,“微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制装置的国产化替代”,知乎:https://zhuanlan.zhihu.com/p/377943078.(10)上海依阳实业有限公司,“彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制”,知乎:https://zhuanlan.zhihu.com/p/343942420.(11)上海依阳实业有限公司,“高精度可编程真空压力控制器(压强控制器和温度控制器)”:http://www.eyoungindustry.com/2021/618/28.html.[align=center]=======================================================================[/align][align=center] [img=,690,345]https://ng1.17img.cn/bbsfiles/images/2021/07/202107030804374064_8626_3384_3.jpg!w690x345.jpg[/img][/align]

  • 玻璃生产窑内压力高精度控制解决方案

    玻璃生产窑内压力高精度控制解决方案

    [align=center][img=玻璃窑炉精密压力控制解决方案,600,293]https://ng1.17img.cn/bbsfiles/images/2023/10/202310131721313475_1541_3221506_3.jpg!w690x338.jpg[/img][/align][size=16px][b][color=#333399]摘要:在玻璃生产中对玻璃窑炉中窑压的要求极高,通常需要控制微正压[/color][color=#333399]4.7Pa(表压),偏差控制在±0.3Pa,而窑炉压力还会受到众多因素的影响,所以实现高稳定性的熔窑压力控制具有很大难度,为此本文提出了新的解决方案对现有玻璃窑炉压力控制系统进行改进。解决方案采用不同口径双蝶阀并联结构进行排气,并通过使用高速蝶阀、高精度压力传感器和超高精度分程式压力控制器,可大幅度提高窑炉压力的控制精度和稳定性。[/color][/b][/size][align=center][size=16px][color=#333399][b]=====================[/b][/color][/size][/align][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 窑炉是玻璃生产制造过程使用的重要设备之一,担负着熔化原材料、调节玻璃液气泡等缺陷。在玻璃生产中对玻璃窑炉中窑压的要求极高,通常需要控制微正压4.7Pa(表压),偏差控制在±0.3Pa,因此需要极其精确的窑压检测和灵敏准确的窑压控制。在玻璃生产中,影响窑炉压力主要有以下几方面的因素:[/size][size=16px] (1)窑炉温度需控制在上千摄氏度的高温环境才能使原材料熔制成均匀、无气泡的玻璃液,如此高温环境往往使部分原材料在窑炉熔化时易产生大量气体,导致窑炉内的玻璃液位波动大,使得窑炉内的压力不稳定,进而干扰生产工艺,影响玻璃液的品质。[/size][size=16px] (2)玻璃熔窑由于采用的热源不同,结构形式有较大差别,如火焰熔窑、电熔窑和火焰?电熔窑具有不同的结构,而且玻璃液与生产窑内部顶侧壁之间留有气体空间,受玻璃液进液量的影响,也会引起玻璃窑内气体空间的压力时常变化。[/size][size=16px] (3)在实际生产中,受外界天气变化、窑炉外部环境变化以及窑炉内部温度变化等多种的影响,导致窑炉内外的压力差产生波动,导致玻璃液位波动进而影响窑炉压力变化。[/size][size=16px] (4)此外,从玻璃窑炉中排出的烟气带有较高的热量,且国家对玻璃窑废气的环保标准越来越高,为了充分利用此部分热量和减少环境污染,达到节能减排的目的,现有的玻璃窑炉一般都连接有余热回收装置和除尘装置,这些装置对于玻璃窑炉中的压力稳定也会产生影响。[/size][size=16px] 目前,国内常用玻璃窑炉压力控制系统的典型结构如图1所示,其工作原理是通过控制器采集压力传感器与压力设定值进行比较后输出控制信号,控制信号分别驱动引风机改变功率和调节闸板开度来实现熔窑内的压力稳定。但这种引风机和闸板在排气烟道内的串联结构很难实现高稳定性的压力控制,为此本文提出了改进的解决方案,以更好实现玻璃熔窑内压力的长时间的稳定控制,并快速降低各种影响因素对压力稳定的影响。[/size][align=center][size=16px][color=#333399][b][img=现有玻璃窑炉的典型压力控制系统结构,600,333]https://ng1.17img.cn/bbsfiles/images/2023/10/202310131722577919_8122_3221506_3.jpg!w690x383.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 现有玻璃窑炉的典型压力控制系统结构[/b][/color][/size][/align][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 改进后的解决方案将采用以下几方面的技术措施来实现窑炉压力的稳定控制:[/size][size=16px] (1)图1所示的风机和调节闸板的串联结构使得烟道内的排气速率完全受到风机和闸板两者之一的最小流量限制,很难实现既要保持正压、又要控制压力微小波动。为此,解决方案将采用如图2所示的并联结构,即在主烟道上并联一个小口径的旁路烟道,这样既能保证以较大抽速使高温下的窑炉压力快速回归至微正压附近,同时又能采用旁路的较小抽速进行精细调节使压力稳定。[/size][align=center][color=#333399][b][img=改进后的玻璃窑炉高精度压力控制系统结构,600,350]https://ng1.17img.cn/bbsfiles/images/2023/10/202310131724197314_7449_3221506_3.jpg!w690x403.jpg[/img][/b][/color][/align][b][/b][align=center][b][color=#333399]图2 改进后的玻璃窑炉高精度压力控制系统结构[/color][/b][/align][size=16px] (2)使风机处于全速工作状态,而在主烟道和旁路烟道上分别增加不同口径、且具有较快响应速度(1秒以内)的电动通风蝶阀。这样,通过不同口径高速蝶阀的快速开度变化,可以对窑炉压力进行快速调节并达到稳定。[/size][size=16px] (3)压力传感器的测量精度是决定玻璃窑炉内部压力稳定控制的关键要素之一,因此本解决方案采用了0.1%的高精度压力传感器,压力测量范围尽可能的小,如0~100Pa(表压)。[/size][size=16px] (4)决定窑炉压力稳定控制的另一个关键因素是压力控制器的测量精度、控制精度和控制模式,为此本解决方案选择了VPC2021系列超高精度压力控制器,其具有24位AD、16位DA和最小输出百分比为0.01%,这是目前工业用PLC根本无法实现的测控精度。另外,VPC2021系列压力控制器具有分程控制功能,可同时对两个不同口径通风蝶阀进行快速控制,且控制器同时还具有PID参数自整定功能、标准的MODBUS通讯协议和相应的计算机测控软件。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,解决方案通过采用不同口径双蝶阀并联结构,可在排气方式上既能实现大流量排气,又能进行微小排气流量的调节,从结构上保证了窑炉压力的稳定性控制。另外,通过采用高速蝶阀、高精度压力传感器和超高精度分程式压力控制,从自动控制方面更进一步的保证了压力控制精度,比传统的PLC控制具有更好的控制精度和稳定性。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 高精度半导体恒温箱保养说明

    高精度半导体恒温箱是半导体行业常用的设备之一,作为比较常用的设备,其保养也是相当重要,那么无锡冠亚高精度半导体恒温箱的保养有哪些要点呢?怎么进行保养比较好呢?  高精度半导体恒温箱由蒸发器出来的状态为气体的冷媒;经收缩机绝热收缩后期,变成高温高压状态,被收缩后的气体冷媒,在冷凝器中,等压冷却冷凝,经冷凝后转变成液态冷媒,再经节流阀膨胀到低压,变成气液混合物。此中低温低压下的液态冷媒,在蒸发器中摄取被冷物资的热量,从头变成气态冷媒,气态冷媒经管道从头进来收缩机,开头新的轮回,这便是高精度半导体恒温箱轮回的四个过程。  高精度半导体恒温箱密封部位调养,鉴于装配式高精度半导体恒温箱是由若干块保温板拼而成,因而板之间存在必需的间隙,施工中这类间隙会用密封胶密封,为了避免空气和水份进来,因而在利用中对一些密封无效的部位实时修理.  高精度半导体恒温箱地面调养,通常小型装配式高精度半导体恒温箱的地面利用保温板,利用高精度半导体恒温箱时应为了避免地面存有大量的冰和水,假如有冰,处理时切不可利用硬物敲打,损害地面。  高精度半导体恒温箱装配完结或长久停用后再次利用,降温的速率要适宜:每日操纵在8-10℃为宜,在0℃时应保留一段时间。  高精度半导体恒温箱库板调养,留意利用中应留意硬物对库体的碰撞和刮划,鉴于不妨变成库板的凹下和锈蚀,严重的会使库体片面保温功能下降。  高精度半导体恒温箱的保养是离不开我们操作人员的细心操作,所以,我们在日常操作中也要善待我们的设备,不要太过粗暴。

  • 非接触高精度涂层测厚系统

    可测量范围是什么?测量的精度一般是多少??答:一般测量范围如下:l? 低热传导系数的涂层(如大多数聚合物)的测量范围是0,1μm-500μml? 高热传导系数的涂层(如金属)的测量范围是0,1μm-1mm测量精度:l? 可重复性是? 1μml? 测厚精度是? 3%以上数值可能随不同的应用而有所变化,但客户的需求和测量的准确性可能取决于样品,以及用于校准的测量技术的准确性。非接触高精度涂层测厚:在测量时间、测量距离、检测精度、激光安全防护等各类因素之间寻求一种平衡,建立更高精度的解决方案。

  • 气象专用高精度数字压力计

    高精度压力数字压力计以其量程的灵活匹配,最大限度满足客户需求。此设备标配为单通道单模块,还可以选装大气压参考模块以模拟表压和绝压。可根据用户具体需求定制。这个特点使LPG2500特别适合用于需要对不同量程的压力装置进行数据比对的场合。应用领域:实验室,工业现场等LPG2500高精度数字压力计可测量当前压力。精确定度可达到:0.01%,解决现场测量标准,比如:实验室测量当前大气压力,达到高精度要求。解决风洞微压测量和高压风洞测量。产品特点. 精确度最高达到:0.01%FS. 支持多通道. 人性化智能设计. 支持外部通讯. 可用于差压表测试等. 多精度可选择:0.01%、0.02%、0.05%. 工作最大压力范围可订制应用客户:理化研究所、中国物理所等。服务理念:系统软件终身免费服务;定期进行用户回访;免费系统使用培训提供7X24小时服务,服务热线:13520277456选购配件l 工业级仪表箱:工业级仪表箱用于 LPG2500的运输,也可作为LPG2500空运容器。箱子由高强度抗冲击材料做成,外观为黑色,包含一个把手和一个伸缩拉杆;箱体内部专门根据LPG2500定制的高密度EVC泡沫,并且箱体内具有设备备件的储存空间。仪表箱体结实的特性和在恶劣环境的对设备的保护,非常适合成为LPG2500运输的保护箱体。l 校准证书每台LPG2500出厂时可溯源至计量院,可代送国家计量单位出具证书。

  • 最新研发出的便携式高精度水中含油量监测仪不知道市场怎么样?

    最新研发出的便携式高精度水中含油量监测仪不知道市场怎么样?

    [align=left][/align][align=left]新研发的便携式高精度水中含油量分析仪是使用非接触式双光路紫外荧光法原理。[/align][align=left]免试剂监测方法,测量精度高、灵敏度高。量程:含油量(0-50ppm);检出限:0.1mg/L; 分辨率:0.01mg/L。[/align][align=left]目前国内红外测油仪比较多,不知道研发的这款紫外荧光法的仪器市场认可度和需求大不?请各位大神指教下。[/align]

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

  • 高精度形位测试系统

    高精度形位测试系统是想测发动机或试件经受温度变化后(如从70℃到-70℃)后,尺寸的变化,用于材料的性能研究。本人不知道到底用什么仪器设备可以测试,有哪位能指点一下啊?谢谢了!其中有用电子散斑、激光多普勒测试系统进行测试的,不是太清楚,请各位指教,谢谢了!

  • 【云唐推荐】高精度食品安全检测仪应用领域

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405090923504443_8618_5604214_3.jpg!w690x690.jpg[/img]  高精度食品安全检测仪的应用领域极为广泛,几乎涵盖了食品产业链的各个环节。以下将详细介绍几个主要的应用领域。  首先,高精度食品安全检测仪在食品生产企业中发挥着重要作用。在食品生产过程中,企业需要实时监控食品的质量和安全,以确保产品的合格率和消费者的健康。高精度食品安全检测仪能够快速、准确地检测出食品中的有害物质,如农药残留、重金属等,从而帮助企业及时发现并解决问题,保障食品的安全。  其次,高精度食品安全检测仪在食品流通环节中也扮演着重要角色。在食品流通过程中,食品可能会受到各种污染和不良因素的影响,如运输过程中的温度、湿度等。高精度食品安全检测仪能够快速检测出这些不良因素,从而保障食品在流通环节中的安全。  此外,高精度食品安全检测仪还在食品监管部门中得到了广泛应用。食品监管部门需要对市场上的食品进行定期检测和监督,以确保食品的安全和合格。高精度食品安全检测仪能够提供准确、可靠的检测结果,为食品监管部门提供有力的技术支持,保障食品市场的安全和稳定。  最后,高精度食品安全检测仪还在科研领域发挥着重要作用。食品科学研究者可以利用高精度食品安全检测仪进行食品中有害物质的深入研究和分析,为食品安全和食品科技的进步提供有力支持。  综上所述,高精度食品安全检测仪在食品生产、流通、监管和科研等领域都有着广泛的应用前景。随着科技的不断进步和人们对食品安全要求的不断提高,高精度食品安全检测仪将会发挥更加重要的作用,为保障人们的健康和食品安全做出更大的贡献。

  • 【云唐】高精度综合农药残留检测仪优势

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404120914418944_2982_5604214_3.jpg!w690x690.jpg[/img]  随着农业生产的快速发展,农药的使用越来越广泛,农药残留问题也日益引起人们的关注。为了保障食品安全和人民健康,高精度综合农药残留检测仪应运而生,其独特的优势在农药残留检测领域发挥着重要作用。  高精度综合农药残留检测仪拥有卓越的检测精度。通过采用先进的光学、电化学等技术手段,该仪器能够准确、快速地检测出农产品中的农药残留量,有效避免了传统检测方法中可能出现的误差和干扰。这种高精度检测不仅提高了检测效率,还为食品安全监管提供了更加可靠的数据支持。  高精度综合农药残留检测仪具有广泛的适用范围。它可以检测多种农药残留,包括有机磷、氨基甲酸酯、拟除虫菊酯等不同类型的农药。这种广泛的适用范围使得该仪器能够满足不同农作物和食品的农药残留检测需求,为农业生产提供了全面的技术保障。  高精度综合农药残留检测仪还具备自动化、智能化的特点。通过内置的软件系统和自动化控制装置,该仪器能够自动完成样品处理、数据分析等步骤,大大降低了检测人员的操作难度和劳动强度。同时,该仪器还能够实时记录检测数据,方便用户进行数据管理和追溯。  高精度综合农药残留检测仪在农药残留检测领域具有显著的优势。其高精度、广适用范围和智能化特点使得该仪器成为保障食品安全和人民健康的重要工具。随着科技的进步和应用的推广,相信高精度综合农药残留检测仪将在未来发挥更加重要的作用。

  • 地面高精度气压传感器让气象预报更精准

    导读:我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    近些年来,我国气候异常事件频发,如南方冰冻雨雪极端低温,南方持续干旱后的集中降雨引起的洪水,还有部分地区的高温天气。2008年奥运会开幕前每隔1小时的天气预报,让人们对天气的精准预报有了更高的期待。    我国突发性灾害发生的频率在逐年增加,由于气候极端异常,给人民生命财产安全带来了极大的危害。目前我国应对突发性自然灾害侧重在事后应急机制,对事前防范、强化气象预测和预警的力度不够。尽管,我们现在具备很多现代化的技术手段进行气象预报,如卫星、雷达等监控措施,但是由于在极端天气下设备的稳定性能差,边远地区通讯障碍等局限因素,直接导致我国的气象预报精度不够。    地质灾害催熟气象智能化    目前我国气象监控预测技术还比较落后,集中暴露出预警不精确、人为干扰大、自动化水平低下等问题。在这种情况下,就对气象智能化的发展提出了更高要求。    在信息化社会,任何气象智能化技术的发展和应用都离不开传感器和信号探测技术的支持。物联网技术的成功应用可以为气象预测安装上一双“智慧电子眼”,通过地面高精度气压传感器可收集到当地雨量和次声波等信息,通过互联网传输到地面自动气象站进行实时的气象数据监控和分析,根据分析结果,实施预警报告的分级警告。    将物联网技术应用到自然灾害的监控领域是必然之举,与传统气象预测相比,无线化、智能化的气象预测监控系统之所以倍受青睐,就在于其畅通、快速、精确稳定的通信信道。    地面高精度气压传感器让气象预报不再“爽约”    频频发生的自然灾害并不是不可控的,更重要的是要提高气象预测的精准度,真正实现灾害提前预警,从而将灾害损失减到最低。    传统的气象预测精度差有多方面的因素,我国地形复杂、技术设备在极端天气下的稳定性能差、边远地区通讯信号差等。这些都制约着气象预测数据的精准度和及时性。地面高精度气压传感器是以无线遥感网络来测量边远和恶劣地区的环境情况,将监测数据借助通讯产品进行传输,反馈到地面自动气象站,利用监控软件对数据进行分析处理,实施气象预警的分级告警。这一监控预警系统为自然灾害的及时检测和预警预报提供了畅通、快速、精准可靠的信号通道,让气象预报不再“爽约”,全面提升气象预测的信息化和智能化水平。    责任重于泰山,技术造福人类    面对国内日益频发的自然灾害,北京市科学技术委员会推出“地面高精度气压传感器产业化关键技术攻关”科技计划项目,进行利用物联网传感技术预测自然灾害的研究。昆仑海岸作为物联网技术应用领域内的骨干企业,承接了本次研究项目的关键技术攻关和传感器芯片的批量化生产关键技术的研发。    作为中国物联网行业传感器领域快速前进的参与者、见证者和领跑者,北京昆仑海岸一直紧贴物联网行业应用的脉搏,深入研究物联网技术在各行各业的应用。凭着对物联网行业的专注和默默耕耘,公司始终以技术创新为发展动力,重视研发新产品和新技术,同时积极开展与相关机构的科研合作和技术交流。北京昆仑海岸在压力、湿度、流量、风向等传感器(变送器)以及相应的仪器仪表研发方面具备很好的研究经验和研发能力。凭着丰富的行业经验、领先的技术优势,北京昆仑海岸一定会成为气象智能监测预警的先导。

  • 求助有没有那种精度高的离心管

    各位万能的大大们,请问有没有高精度离心管的推荐啊?我们要做油气田开采助剂黏土稳定剂的防膨率,需要用离心管离心之后,直接在离心管中读数,我们使用的离心管读数大多不能满足要求,去计量检定都过不了。想问问有没有哪个厂商的离心管精度高,要求是10mL,0.1mL的刻度。大小要能放进离心机的,和一般的管子一般大那种。

  • E+H恩德斯豪斯高精度pH标定液

    E+H恩德斯豪斯高质量CPY20标定液提供了最高精度的pH标定。它们在已经通过权威DAkkS永久认证(德国认证机构)的标定实验室内进行生产和装瓶。标定液的准确率是+/-0.02 pH,它们使用NIST和PTB标准进行配置,只包含FDA认证防腐剂。使用CPY20可以得到可靠的准确值。E+H恩德斯豪斯高精度pH标定液的优势高精度和可再现的标定液帮助您优化过程中的pH测量值,提高产品产量和质量CPY20 pH标定液按照 NIST (USA) 和 PTB (Germany)标准配置,可溯源,并满足生命周期内严格的文档要求所用防腐剂均为FDA认证介质,确保最高的产品安全CPY20 pH标定液的温度曲线预设置在Liquiline系列变送器中 ,方便传感器标定和调节,降低维护工作量易访问的标定液证书简化您的审计跟踪流程,并提高SOPs可靠性详细,单独的标定液分析证书可在 下载区 下载. 在“文本搜索”字段中输入您的批号,然后点击“开始搜索”按钮.E+H恩德斯豪斯高精度pH标定液的应用领域CPY20 pH 标定液用于各类行业pH电极的标定和校准,适用于生产过程和实验室中高精度传感器的日常校准标定和校准可以采用:Memobase Plus CYZ71D 软件Liquiline 系列变送器各类常规的 pH变送器了解标定液和装瓶尺寸,请点击“特性和说明”.[b][color=#ffffff]文章来源:E+H http://www.china-endress.com/[/color][/b]

  • SW7超声波测厚仪全新上市

    产品介绍:SW7系列为Soundwel的穿越涂层型高精度超声波测厚仪,适用于各种材料的穿越涂层高精测量需求,可应用于钢、铸铁、铝、铜、锌、石英、玻璃、聚乙烯、PVC,灰口铸铁、球墨铸铁等材质的被测物体厚度测量。只需要将探头放置于被测物体一侧的接触面上,既可以迅速准确测量出被测物体厚度。SW7系列超声波测厚仪的产品特性显著,其极高的性价比成为您的理想选择:1 无需清除被测物体表面的涂层及非金属附着物即可测量厚度;2 自动识别探头和校准功能;3 材料声速范围广泛509至18699米/秒;4 大容量数据存储最多可存储2000条数据;5 USB接口实现与PC连通进行数据传输和管理;6 点阵液晶显示屏,屏幕背光功能自由调节。功能特征:穿越涂层测量厚度,无需清除被测物体表面的涂层如油漆,塑料等非金属附着物即可测量厚度,两种穿越涂层测厚模式:薄涂层模式、厚涂层模式;• 适合于几乎所有材质的厚度测量,如:金属,玻璃,塑料,橡胶等材料;• 测量精度高,测量范围大;适用于管材厚度测量;• 全系列测厚探头可以配合测厚仪满足多用途厚度测量应用;多种探头可选,适合特殊测厚应用,包括灰口铸铁等粗晶粒材料和高温环境测量(温度最高可达300℃)应用;,• 探头自适应功能:自动匹配不同生产厂家的各种型号的探头,自动进行灵敏度与频率等参数测试识别,自动调整测厚仪参数设置,达到最佳测量效果;• 开机自检功能,有助提高测量精度;• 自动关机时间可根据用户习惯自行设置;• 探头零点自动校准,声速校准功能;• 内置9种材料的声速,并可编辑,方便用户使用;•[/

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制