当前位置: 仪器信息网 > 行业主题 > >

大体积混凝土温度测试仪

仪器信息网大体积混凝土温度测试仪专题为您提供2024年最新大体积混凝土温度测试仪价格报价、厂家品牌的相关信息, 包括大体积混凝土温度测试仪参数、型号等,不管是国产,还是进口品牌的大体积混凝土温度测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大体积混凝土温度测试仪相关的耗材配件、试剂标物,还有大体积混凝土温度测试仪相关的最新资讯、资料,以及大体积混凝土温度测试仪相关的解决方案。

大体积混凝土温度测试仪相关的论坛

  • 【原创】混凝土强度测试仪

    测试混凝土强度的新标准成熟度和导电率测试法全自动模式测试通过互联网和SMS,使得任何情况下测试数据都是可用的优点:更高效、简单和便宜系统非常简单:传感器测试温度和电导率,然后把测试的数据存储到数据箱中。在数据箱中,是一个GSM,通过GPRS可以很规律的将测试数据传输到中心服务器上。在该服务器上,运行软件,用户键入这些数据和一些项目数据,同时计算混凝土的强度值,当然所有的操作都进行存储。按下按钮,即可完成项目报告,并可以打印或是以电子文本的形式进行储存和传送。测试的数据也可以以Excel表格的形式或一个XML文件的形式进行下载,用于后续的处理。如果没有互联网怎么办?不需要:例如:当达到某一强度值,或发送一个SMS信息,同时包含有强度值是,该服务器还可以发送SMS给主管或其他相关人员。该系统计算强度的方式有两种:已知成熟度的情况下和已知电导率的情况。通过这种方式,可以确定最佳的混凝土强度值。系统是如何工作的?每个用户拥有自己的网页,可以安全的登录。在该网页上,他可以看到所有的他的项目以及测试点。网页和所有用户的数据都存储在荷兰最大的最安全的数据中心服务器上。数据服务器上有永久的数据备份。在项目开始时,用户登录到网站上,准备一个项目以及命名需要测试的点。键入使用的混凝土的很多的细节(包括C值),和使用的数据箱的数目。在建筑工地现场,对于每个测试点,一同安装数据箱和传感器。一旦打开数据箱,它将通过GPRS与服务器进行联通。配有的数据箱以及传感器,就可以测试混凝土的温度和电导率,在给定的时间,通过GPRS把数据传输到服务器上。数据箱中的温度值和电池的状态也一起传输。在服务器上,用户可以看到所有他的项目和测试点,并且可以追踪强度的发展情况。如果需要自动的发送强度数据SMS信息的话,在现场,也可以发送信息到相关人员。当测试已完成,数据箱已拆除,重新加载到下一个项目。传感器仍保留在混凝土中,以便可用来后期的进一步测试。快问快答:我的项目数据是否安全?  是安全的,用户名和密码仅仅可用于安全服务器。数据存储在多个计算机中心,对最佳的方式,并对数据进行永久的备份。在混凝土中,可在任何深度进行测试?  是的,测试可在任何深度进行。是否一个数据箱可连接几个传感器?  为了阻止长期在建筑施工现场弯曲存在的缺点和风险,一个传感器可连接到每个数据箱。但是如果有相对有利的价格,这个都不是问题。强度是如何确定的?  按照加权成熟度的方法来确定混凝土的强度。此外,也可以使用电导率。在未来可能使用这种方法较多。

  • 低温环境混凝土热膨胀系数测试技术研究

    低温环境混凝土热膨胀系数测试技术研究

    [color=#cc0000]摘要:本文针对低温环境,介绍了目前国内外测量混凝土热膨胀系数的标准测试方法,着重介绍低温环境下混凝土热膨胀系数测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。  关键词:低温,混凝土,热膨胀系数,测试方法,膨胀仪[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  混凝土作为使用最广泛的建筑材料,它在室温和高温环境下的性能都得到了深入的研究。然而,在低温温度(即低于-165℃的温度)环境下混凝土的热物理性能尚未开展系统性研究。目前大多数液化天然气(LNG)储罐都采用了混凝土结构形式展,利用混凝土进行LNG主要密封的罐体设计将是未来发展的趋势,这将大大降低罐体的建造成本。因此,为了提高混凝土结构LNG储罐的安全性和长期耐久性,必须从根本上了解混凝土冷却到低温时的行为,而这些了解低温环境下混凝土的努力将集中于控制由于其部件的热膨胀系数引起的热变形和损伤增长的机制,因此准确测量低温环境下混凝土热膨胀系数是液化天然气储罐设计和建造的前提。  本文针对低温环境,将介绍目前国内外测量混凝土热膨胀系数(CTE)的标准测试方法,着重介绍低温环境下混凝土CTE测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。[color=#cc0000][b]2. 国内外测试方法介绍[/b]2.1. 国内标准测试方法[/color]  针对低温环境下的混凝土热膨胀系数测试,我国在2015年新制订了国家标准GB 51081-2015“低温环境混凝土应用技术规范”。  在GB 51081中对低温环境混凝土热膨胀系数的样品规定了应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081,试件应为边长100mm×100mm×300mm的棱柱体,每次检验应在相同条件下制作12个试件。  对低温环境下混凝土热膨胀系数测试设备GB 51081给出了下列规定:  (1)低温设备应有同时容纳不少于6个试件的有效空间,应满足常温至-197℃区间各种温度的施加,应具有自动控温和给出各种降温速率的功能,恒温器件的温度波动范围应在±0.5℃内。  (2)微变形测量装置应满足各职能过低温下的测量要求,且测量精度不得低于0.001mm。[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012229434228_5404_3384_3.png!w690x342.jpg[/img][align=center][color=#cc0000]图2-1 低温混凝土热膨胀系数测试棱柱体样品示意图[/color][/align]  在GB 51081中对低温环境混凝土热膨胀系数的具体测量方法给出了如下规定:  (1)试件标准养护应达到设计龄期时取出,并应用湿布擦去表面水分后静置于室内自然环境中。应静置14天后进行时间外观检查和尺寸测量,并应将试件分成2组,每组6个试件。  (2)应标识热膨胀系数检验棱柱体试件两端面的3个测量点位置(图2-1),并应在这3个测量位置测量棱柱体试件的长度。  (3)检验低温时的低温环境混凝土热膨胀系数,第1组试件作用的温度值应为,第2组试件作用的温度值应为。  (4)测量第1组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按不高于1℃/min速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  (5)测量第2组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按与第1组试件相同的降温速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  综上所述,针对低温环境下混凝土热膨胀系数测试设备,国标GB 51081只给出了测量温度范围、温度波动大小、样品尺寸、测量位置点和热膨胀变形测量精度的规定,并没有测试设备更详细的内容,这使得很难具体执行国标GB 51081并有效保证测量准确性。[color=#cc0000]2.2. 国外标准测试方法[/color]  目前国际上并没有针对混凝土及其结构在低温环境下的热膨胀系数标准测试方法,对于液化天然气(LNG)储罐采用的混凝土及其结构,美国混凝土协会(ACI,American Concrete Institute)制订过相应的标准ACI 376(混凝土结构冷冻液化气体容器的设计和构造规范及说明),其中关于热膨胀系数测试所推荐的标准测试方法是改进后的CRD-C 39测试方法。  国外在以往混凝土常温下的热膨胀系数测试中,大多采用的测试方法为ASTM C531、CRD-C 39、AASHTO T336和Protocol-P63,但这些方法在所测试的温度范围基本适用于常温条件下,并不能直接推广应用到低温环境。  在ASTM C531中规定了需要在烘干条件下测量CTE,其中样品长度测量的温度范围为22.8~93.9℃,通过样品长度变化量除以温度变化量来得到CTE。而CRD-C 39中规定了将样品浸入水中48小时来达到饱和条件,然后在4.4~60℃温度范围内测量样品长度。在ASTM C531和CRD-C 39中,样品长度测量都是离线式测量方式,即将达到一定恒温时间的样品从恒温器中取出,并放置在样品长度测量的比较器上。由此可见,ASTM C531和CRD-C 39并不是连续测量热应变来得到热膨胀变化行为。  AASHTO T336和Protocol-P63测试方法也规定了在饱和条件下测试CTE,测试温度范围为10~50℃。然而各种混凝土构件,特别是液化天然气(LNG)储罐采用的混凝土及其结构的实际应用温度会非常低,因此需要拓展测试温度范围以覆盖低温范围。  因此,对于液化天然气(LNG)储罐采用的混凝土及其结构,其热膨胀系数的测试需要重点考虑两方面的因素,一是温度范围的拓展以满足低温测试要求,二是样品要保持一定的湿度然后在低温下进行热膨胀系数的测量。[b][color=#cc0000]3. GB 51081标准方法的改进建议[/color][/b]  对于低温环境下的混凝土热膨胀系数测试,我国基本上基于AASHTO T336标准制订了GB 51081-2015“低温环境混凝土应用技术规范”。因此,AASHTO T336中存在的问题在低温环境下会被放大,从而严重影响测量的准确性。另外,要使得GB 51081标准方法真正能推广应用并保证CTE测试的准确性,GB 51081还需要进行重大改进,主要改进建议如下:  (1)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,混凝土CTE测量装置中的辅助装置(如承台、导杆、支架等)的影响并不严重,这些辅助装置一般采用CTE较小的殷钢等材料制成就能满足要求。而按照GB 51081规定,低温环境下的最低温度要达到液氮温度(-197℃),在测试温度接近200℃这样大的温度变化范围内,CTE为1×10-6/K量级的殷钢材料的热胀冷缩影响将非常凸出。这就需要采用CTE更小的超低膨胀系数材料制作热膨胀仪的相应辅助装置,同时还需要进行热膨胀仪的基线校准来进一步降低热膨胀仪的系统误差。  (2)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,样品温度变化并不会对LVDT探测器带来明显的影响。同样,低温环境下的CTE测试,低温环境就会对安装在室温环境下的LVDT探测器产生明显影响,特别是对探测器的支撑板和固定架的温度影响从而带来探测器自身位置的改变。因此,在测试方法中要规定出LVDT探测器及其相关装置的温度变化范围,这方面的影响往往是重要的测量误差源。  (3)在GB 51081标准中缺乏校准样品相关条款,建议在GB 51081标准中增加与AASHTO T336类似的校准样品相关条款,即校准样品的CTE测定必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与GB 51081相同的温度范围内进行,即低温要达到-197℃。[b][color=#cc0000]4. 低温环境混凝土热膨胀测定仪设计[/color][/b]  为了实现低温环境下混凝土热膨胀系数测试,上海依阳实业有限公司专门设计了一种大尺寸多样品的低温混凝土热膨胀测定仪。混凝土低温膨胀仪一种测试混凝土块体低温下线膨胀系数的测试设备,测量方式为接触方式,整体结构如图4-1所示。此低温热膨胀仪依据测试标准为国家标准GB 51081-2015“低温环境混凝土应用技术规范”,测试温度范围为室温~196℃。[align=center][img=,690,397]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012230310478_4454_3384_3.png!w690x397.jpg[/img][/align][color=#cc0000][/color][align=center]图4-1 低温混凝土热膨胀系数测定仪结构示意图[/align]  此混凝土低温膨胀仪具有测试试样体积大、可多样品同时测量的特点,适合大批量样品的连续测量。  混凝土低温膨胀仪由计算机进行自动控制和检测,自动进行样品温度的监控、自动进行样品变形量的监控以及自己进行测试结果计算。  按照标准方法规定每个样品需测试三个位置点处的热变形。“低温腔体”采用侧开门结构,开启侧门安装或取出样品,使得被测样品处于“低温腔体”内进行升降温。[color=#cc0000][b]5. 参考文献[/b][/color]  AASHTO TP60,Standard Test Coefficient of Thermal Expansion of Hydraulic Cement Concrete,In American Association of State Highway and Transportation Officials,Standard Specifications for Transportation Materials and Methods of Sampling and Testing,Washington, DC, 2000.  CRD-C 39-81,Standard Test Method for Coefficient of Linear Thermal Expansion of Concrete,US Corps OF ENGINEERS,1981.   ASTM C531-00,Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars,Grouts,Monolithic Surfacings,and Polymer Concretes,ASTM International, West Conshohocken, PA, 2012.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【已应助】GB11836-2009混凝土和钢筋混凝土排水管等标准

    求GB11836-2009混凝土和钢筋混凝土排水管GB 23821-2009 机械安全 防止上下肢触及危险区的安全距离 GB4674-2009 磨削机械安全规程 GB50052-2009 供配电系统设计规范 GB50366-2009 地源热泵系统工程技术规范GB 50493-2009 石油化工可燃气体和有毒气体检测报警设计规范GB50496-2009大体积混凝土施工规范及条文说明GB50272-2009锻压设备安装工程施工及验收规范GB50488-2009腈纶工厂设计规范 GB/T 24186-2009 工程机械用高强度耐磨钢板 GB 19029-2009 质量管理体系咨询师的选择及其服务使用的指南 谢谢

  • 【分享】首台瑞士TST温度应力测试系统成功登陆长江科学院

    【分享】首台瑞士TST温度应力测试系统成功登陆长江科学院

    首台瑞士TST温度应力测试系统成功登陆长江科学院长江科学院从瑞士W+B公司引进的国内第一台混凝土温度应力测试系统正式到货,一次性安装调试成功并且通过了最终用户验收,即时可投入科学研究工作,这也意味着长江科学院的混凝土温度应力方面的研究软硬件建设已经走在国内的最前头,在国际上也不亚于其他所有顶尖的同行院所和实验室。温度应力系统主要用于测试混凝土等建筑材料在初期的温度应力,用于研究混凝土从初期水化热、初应力开始与开裂性能的关系,通过测量试件在不同约束条件下,温度变化产生的应力发展情况和试件抗拉强度,来评价混凝土的开裂性能,是大坝等大体积混凝土构造物温度应力研究的有力武器。  本次引进的瑞士W+B公司的温度应力测试系统代表了当今世界上最好的工艺以及测试水平,也是长江科学院经过长期全球对比考察后最终选定的,系统具有超大的测试空间,最大混凝土试样横断面尺寸可以达到150 x 150 mm,最大长度可以达到1500mm,最大水平压力可达400kN,拉力可达200kN,可以实现力、行程、应变和外部等控制模式闭环回路控制。温度控制方面采用先进的油浴系统,温度控制范围从-10º C到80º C,可以通过软件采用多种闭环回路控制模式以模拟各种不同的现实环境。对于应变或者是变形的测量采用高精度LVDT位移传感器。除了一个被测试样以外,还可以采用另外一个在室温中的参考试样作为试验结果的修正,进行加载和卸载测试。[img]http://ng1.17img.cn/bbsfiles/images/2008/07/200807110015_97468_1634361_3.jpg[/img]

  • 混凝土公路设计中的热膨胀系数

    混凝土公路设计中的热膨胀系数

    [color=#990000]摘要:本文编译自美国交通部联邦公路管理局的技术简报,该技术简报描述了混凝土的热膨胀系数(CTE),其在混凝土路面行为中的作用,以及如何确定混凝土路面设计和分析目的的建议。讨论了“力学-经验路面设计指南”中混凝土路面性能预测模型的敏感性。描述了用于确定或估算CTE的实验室测试和其他方法,并总结了来自“长期路面性能”对路面部分的岩心所进行CTE的实验室测试结果,提供实用的指导路线来确定或估算CTE,并在设计和建造混凝土路面时考虑CTE对混凝土板对温度变化响应的影响。[/color][color=#990000]关键词:热膨胀系数,混凝土测试,混凝土公路设计,力学-经验路面设计指南[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b]  混凝土在温度升高时膨胀,在温度降低时收缩。衡量温度变化对混凝土体积变化的影响称为混凝土的热膨胀系数(CTE),定义为温度变化一度时单位长度变化量。混凝土路面混合物的CTE取决于骨料类型和饱和度。  由于粗骨料占混凝土体积的大部分,因此对混凝土CTE影响最大的因素是粗骨料的CTE。混凝土路面施工中常用的粗骨料类型中石英的CTE最高,其他常用粗骨料类型的CTE在很大程度上取决于其石英含量。根据所用骨料类型,混凝土CTE的典型值如表8-1所示。[align=center][color=#990000]表8-1 混凝土骨料类型的热膨胀系数(CTE)(LTPP标准日期版本25.0)[/color][/align][align=center][img=混凝土骨料类型的热膨胀系数,800,448]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251803468244_6004_3384_3.png!w900x505.jpg[/img][/align]备注1. 在LTPP标准数据25.0版本(2011年1月)中共提供了2991个CTE数据,由于骨料类型没有定义或主要骨料类型只提供了一个样品,其中628个数据无法使用,另外11个CTE异常数据并未包含在此数据表中。 粗骨料对CTE值的影响最大,但细骨料也是一个影响因素。天然砂通常含有高二氧化硅(高CTE),而制造的碎石灰石细骨料的CTE则较低。  水泥浆的CTE对水分含量非常敏感,但由于粗骨料的影响减弱使得混凝土的CTE较低(Powers和Brownyard,1947;Yeon等人,2009)。混凝土的CTE在相对湿度约70%时最高,当混凝土完全饱和时CTE会降低20~25%(美国陆军COE 1981)。[b][color=#990000]2. CTE如何影响混凝土路面行为变化[/color][/b]  混凝土响应温度变化时在体积上的改变是混凝土路面多种行为的起因,混凝土路面中每天和季节性温度循环变化导致衔接和裂缝的循环打开和关闭。为了使横向开裂最小化,使用具有高CTE的混凝土构造的连接路面可能需要比具有较低CTE的混凝土路面更短的接缝间距,这将增加初始建造的成本。  在白天,当混凝土路面的顶部比路面的底部更热时,混凝土将在路面的顶部膨胀而不是在底部。如果不限制这种不同的变形(通过横向接头处的销钉、纵向接头处的连杆或两者,以及路面自身的重量),则路面将向下卷曲。另一方面,如果沿着路面边缘限制路面的白天向下卷曲,结果将造成混凝土和销钉之间的支撑应力更高。  同样,在夜间,当混凝土路面顶部冷比路面底部更冷时,混凝土将在路面顶部收缩而不是在底部收缩。如果这种差异变形不受限制(通过横向接头处的销钉,纵向接头处的连杆或两者),则路面将向上卷曲。另一方面,如果沿着路面边缘限制路面的夜间向上卷曲,则结果将是混凝土和销钉之间的支撑应力更高。  如果路面下方的基层足够柔软,则路面可以向上或向下卷曲,并且仍然与路面中间的基层和沿其边缘保持完全接触,如果路面平坦且与基层完全接触,则由交通车辆载荷引起的应力将不会差别很大。然而,如果路面下方的基层足够坚硬,且当路面响应深度方向温度梯度而向上或向下卷曲时,一部分路面会卷曲而不与基层接触,由交通车辆载荷对路面引起的应力将大于路面平坦且与基层完全接触时的情况。这种向上卷曲在夜间尤其是一个问题,当路面边缘和拐角处的支撑减少将导致交通车辆荷载下边缘和拐角处的应力增加。  混凝土的CTE对连续钢筋混凝土路面(CRCP)的性能也有影响。CRCP中的钢含量设计为可以达到相当均匀的裂缝间距,并且是在约1~2米范围内。裂缝间距太短可能会增加冲孔的可能性,裂缝间隔过长可能会增加钢材断裂的可能性。如果混凝土的CTE高于钢设计中的假定(或隐含值),则可能无法实现所希望的裂缝间距和均匀性。因此,在设计阶段确定混凝土CTE(基于过去的经验或新测试)、调整设计以达到所需的性能水平并要求在施工期间验证CTE值就变得非常重要。[color=#990000][b]3. 热膨胀系数测试方法[/b][/color]  确定混凝土CTE的AASHTO测试方法是T 336-11。该实验室测试包括测量直径为10 mm的饱和混凝土芯材或圆柱体的长度变化,同时温度从10℃升至50℃然后将温度降低到10℃。混凝土样品和测量装置完全浸泡在水浴中以在测试期间保持混凝土的饱和度,虽然100%饱和度混凝土的CTE不如水分含量稍低时CTE,但实验室测试是在饱和样品上进行以便控制水分含量。来自两家供应商的CTE测试设备和安装在CTE测试设备中的混凝土样品如图8-1所示。[align=center][img=测试设备测量混凝土的CTE,900,298]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251806355253_264_3384_3.png!w900x298.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图8-1 在FHWA混凝土实验室使用的测试设备测量混凝土的CTE[/color][/align]  在进行膨胀(加热)和收缩(冷却)段期间的测量时,需要对测量进行调整以考虑温度变化对测试设备本身的影响,通过计算两个测试段中每度温度变化的样品长度变化,并除以样品长度得到混凝土的CTE。必要时重复测试过程,直到在膨胀段和收缩段测试的CTE值相差在每度每百万分之0.3之内。然后将混凝土的CTE计算值确定为获得的两个连续CTE值的平均值,一个来自测试的膨胀段,一个来自测试的收缩段。  美国陆军工程兵团有一个类似的测试方法来确定混凝土的CTE(美国陆军COE 1981),该测试方法CRD-C 39-81指出测试在5~60℃的温度范围内进行。工程兵团测试方法指出,当混凝土试样的长度变化仅在两个温度点之间进行测量时,应报告单个CTE值,但是当在一系列不同温度下进行长度变化测量时,应给出CTE与温度的关系曲线,并应说明不同温度区间的CTE计算值。[b][color=#990000]4. 力学-经验公路设计指南推荐的测定热膨胀系数[/color][/b]  对于1级设计:此级别需要输入最高精度且被认为适用于最重要项目。力学-经验路面设计指南(MEPDG)建议对混凝土样品进行实验室测试以确定CTE(AASHTO 2008)。  许多国家已开始使用其典型骨料来描述其典型的普通水泥混凝土混合物,并将这些CTE值存储在数据库中。他们将根据项目位置将这些值用作CTE输入。通过定义,这些值不是1级输入,但它们是比2级或3级输入更真实的输入。  对于2级设计:此级别被认为适用于常规、实际项目。MEPDG建议将混凝土CTE估算为骨料和水泥浆的CTE值的平均值,相对于它们在混合物中的体积比例。  对于3级设计:此级别是需要输入精度最低的级别。MEPDG允许使用典型的CTE值。要使用的值应该是要在项目中使用的骨料类型制作的混凝土的典型值。表 81提供了从“长期路面性能(LTPP)”项目中实验室对芯材测试获得的混凝土CTE范围,应该注意的是,这些值是基于来自美国和加拿大的骨料。根据矿物的不同,这些CTE值可能在不同地区有显著差异。  MEPDG(ARA-ERES 2004)基于未校正的LTPP CTE数据和其他来源(Mindess和Young 1981 Kosmatka等2002 Jahangirnejad等2008 )还提供了不同类型骨料典型混凝土CTE信息。[b][color=#990000]5. CTE如何影响MEPDG的性能预测[/color][/b]  MEPDG将CTE确定为混凝土材料关键响应计算所需的输入参数之一,混凝土的CTE值对路面开裂的预测具有显著影响,并且在较小程度上对MEPDG的连接断裂具有影响(Malella等人,2005)。这两种危害都在MEPDG对路面不平整度预测中起着作用,较高的CTE值对应于更大的路面开裂预测量、更大的连接断裂和更大的路面不平整度。[b][color=#990000]6. CTE测试和MEPDG危害模型[/color][/b]  JCP新的力学-经验路面设计指南(MEPDG)模型是使用LTPP数据库开发的,使用的LTPP数据参数之一是混凝土CTE。由于发现用于原始混凝土路面危害模型开发的混凝土CTE数据是错误的(Crawford等人2010),当时使用的是AASHTO TP 60-00(AASHTO 2005)测试方法,使用此方法导致CTE测量值偏高。对于用于校准CTE测试框架的304不锈钢校准样品,TP 60试验方法推荐值为17.3×10-6/℃,但根据ASTM E 228测定的304不锈钢试样的CTE为15.0×10-6/℃,使用这些错误的CTE数据对于混凝土而言造成实际使用的混凝土CTE相同比例的偏低。  用于校准CTE测试框架的不锈钢校准样品CTE测试方法已在新的AASHTO T 336标准方法(AASHTO 2011; Tanesi等人2010)中得到颁布,使用新的测试方法测定的CTE值低于使用TP 60-00测试方法测定的CTE值。LTPP标准数据版本24.0及更高版本中的CTE值已经过校正,以符合T 336测试方法,并且是表8-1中报告的方法。  截至2011年8月,混凝土路面危害模型已纳入最近发布的(2011年7月)DARWin-ME?软件(包含MEPDG版本1.1危害模型),此版本软件是基于使用TP 60-00测试方法确定的CTE值。因此,建议Darwin ME用户使用未经修正的CTE值,如AASHTO于2008年出版的“力学-经验路面设计指南:实践手册”(临时版)表11-5中所列数据,或使用根据TP 60-00测试方法确定的CTE数据。如果使用T 336标准确定可用的CTE数据,则应调整CTE值以与DARWin-ME一起使用,方法是将校准棒假定的CTE(17.3×10-6/℃)与ASTM E 228测量304不锈钢校准样品的CTE值之间的差值相加,差值约为1.5×10-6/℃。[b][color=#990000]7. 推荐[/color][/b]  MEPDG提供了量化混凝土CTE对JCP和CRCP预测性能影响的机会,MEPDG对JCP路面裂缝的预测对所输入的CTE敏感,在较小程度上,MEPDG对连接断裂的预测也是如此。这两种危害都在MEPDG对路面不平整度的预测中起着作用。  鉴于MEPDG的几个混凝土路面危害模型对混凝土CTE输入的敏感性,对于1级设计,应通过对具有相同骨料类型和混合设计以及应用在路面结构中的圆柱体样品进行测试来确定CTE(使用AASHTO T 336-11测试方法)。  对于3级设计,应使用表8-1中提供的数据。这些数据是对LTPP混凝土路面的数百个芯材进行实验室测试后获得的平均CTE值,也是几个来源报告中的混凝土CTE的典型中间值。  如上所述,重要的是如果使用DARWin-ME软件(包含MEPDG 1.1版危害模型),如果使用AASHTO T 336方法确定这些值,则应对CTE值进行调整,否则直接使用表8-1中的CTE值。  [b][color=#990000]8. 参考文献[/color][/b]  American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” T 336-11, Washington, DC, 2011.   American Association of State Highway and Transportation Of?cials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition, Washington, DC, 2008, p. 120.   American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” TP 60-00, Washington, DC, 2005.   ARA-ERES, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37a, Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 2004.   Crawford, G., J. Gudimettla, and J. Tanesi, “Inter- laboratory Study on Measuring Coef?cient of Thermal Expansion of Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington, DC, January 2010.   Jahangirnejad, S., N. Buch, and A. Kravchenko, “A Laboratory Investigation of the Effects of Aggregate Geology and Sample Age on the Coef?cient of Thermal Expansion of Portland Cement Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington DC, January 2008.   Kosmatka, S. H., B. Kerkhoff, and W. C. Panerese, Design and Control of Concrete Mixtures, Engineering Bulletin EB001, 14th ed., Portland Cement Association, Skokie, IL, 2002.   Malella, J., A. Abbas, T. Harman, C. Rao, R. Liu, and M. I. Darter, “Measurement and Signi?cance of the Coef?cient of Thermal Expansion of Concrete in Rigid Pavement Design,” Transportation Research Record: Journal of the Transportation Research Board, No. 1919, 2005, pp. 38-46.   Mindess, S., and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.   Powers, T. C., and T. L. Brownyard, “Studies of the Physical Properties of Hardened Cement Paste,” Proceedings of the American Concrete Institute, Vol. 43, 1947, p. 988.   Tanesi, J., G. L. Crawford, M. Nicolaescu, R. Meininger, and J. M. Gudimettla et al., “New AASHTO T336-09 Coef?cient of Thermal Expansion Test Method: How Will It Affect You?” in Transportation Research Record: Journal of the Transportation Research Board, No. 2164, pp. 52-57, 2010.   U.S. Army Corps of Engineers, “Test Method for Coef?cient of Linear Thermal Expansion of Concrete,” CRD-C 39-81, issued 1 June 1981.  Yeon, J. H., S. Choi, and M. C. Won. “Effect of Relative Humidity on Coef?cient of Thermal Expansion of Hardened Cement Paste and Concrete,” Transportation Research Record: Journal of the Transportation Research Board, No. 2113, 2009, pp. 83-91.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 硬化混凝土含气量测试专用设备——WINNER208

    硬化混凝土含气量测试专用设备——WINNER208

    硬化混凝土含气量测试专用设备——WINNER208产品图片http://ng1.17img.cn/bbsfiles/images/2015/11/201511181357_574164_3049057_3.jpg 混凝土的含气量对于建筑在高寒高盐度等地区的强度与寿命具有重要意义。硬化后的混凝土的含气量检测一直是一个比较繁琐的过程,一般采用直线导线法进行测试,其不足之处有如下几点:1. 无法获得准确的面积值:由于无法直接测量气孔面积数值,只能用被气孔切割的线段长度利用微积分的原理获得近似面积值,取得的数值精确度太低。2. 测试时间长:一个样品经过处理划线等等步骤下来,往往要测试两到三个小时甚至更长时间。3. 测试结果不稳定:不同的操作者测试同一类样品,由于操作习惯的不同,测试结果差距很大,因此测试结果的不稳定导致了对比性不强。 因此济南微纳与国内知名大学合作,推出WINNER208混凝土含气量检测仪。采用计算机图像学配合自主设计的光学机械系统,实现了对硬化混凝土含气量、气孔间距系数等相关数据的自动测试。功能特点传统直线导线法WINNER208混凝土气孔检测仪无法获得准确面积值,只能以多条线段长度近似通过拍摄的图片直接获得面积值,准确度极高后续计算误差小测试时间长,人员工作量大测试时间短,测试人员基本不需要参与,直接获得结果测试结果不稳定,由于每个测试人员的测试习惯不同,所以测试结果重复性差,对比性也差。采用相同的取样方式和分析方式,无人为因素干扰,重复性好,而且尤其适合多个样品之间的对比,建立自己的评价体系。设备参数尺寸http://ng1.17img.cn/bbsfiles/images/2015/11/201511181352_574157_3049057_3.png重量 20KG光学组件1. 物镜组:可连续变倍光学系统2. 倍率范围:7倍——450倍(含数码放大倍率)3. 光学照明:高亮LED紫外照明器。波长范围365~380nm运动组件1. 移动平台:二维电动平移台,有效行程60MM×60MM。带霍尔磁性感应器。可选:有效行程100mm×100mm2. 对焦机构:电动对焦系统,有效行程50mm。3. 电机参数:高精密式步进电机,微动细分最高可达1微米。4. 驱动模块:内置式RS232驱动端口,可用USB控制。图像设备1. 成像元件:1/1.8英寸 progress scan CMOS 可选:1英寸或1/2英寸CCD芯片2. 像素数:310万 可选:最高可选800万像素3. 最高分辨率:2048×1536 可选:最高可获得3264*24484. 帧率:6fps@2048×1536 / 10fps@1600×1200 / 15fps@1280×1024 / 30fps@640×480内置系统1. CPU:AMD低功耗CPU2. 内存:4G3. 硬盘:500G4. 操作系统:WIN7软件功能1. 混凝土气孔预设模式:软件核心模块,开启此模式,即可预设步距、采集范围等参数,并可一键拼图,获得完整的混凝土砌块图像并进行计算和结果输出。2. 自动修正模块:可以将裂隙、骨料等非气孔的测试干扰自动去除。3. 任务管理机制:按照任务进行管理,保证资料管理井井有条。4. 视像采集:随时进行视频和图片的采集,保留需要的视像资料。5. 比例尺标定:通过比例尺标定操作,可与实际尺寸建立关联,从而直接在图像上获得实际尺寸数值。6. 测量:可以进行长度、圆周、多边形、角度等多种测量操作。7. 颗粒自动处理工具集:自动消除颗粒粘连、自动消除杂点、自动消除边界不完整颗粒、自动填补颗粒的空心区域、自动平滑颗粒边缘等12项自动处理工具8. 平台自由运动模式:选择此模式,可使用按钮自由控制平台移动9. 自动对焦:软件可根据焦平面的清晰程度自动选择合适的对焦点。输出参数1. 核心数据:气孔总数、气孔平均半径、泥浆含量百分比、含气量、间距系数等2. 气孔粒径分布:气孔的粒径的分布图表3. 分布类型:按数量分布、按体积分布、按面积分布、按长度分布等4. 自定义表头:自定义表头显示的LOGO以及测试人员等报告信息5. 原始图片/缩略图:可以将带有测量数据信息的图片保存,便于发表论文等。备选配件1. 混凝土砌块加工配套设备(详情请咨询销售人员)测试实例1. 样品处理:将混凝土砌块切割打磨抛光后,用专用材料进行填充处理(下图中有做好的样品实例,使用的填充材料和方式不同,具体情况请咨询销售人员)http://ng1.17img.cn/bbsfiles/images/2015/11/201511181353_574159_3049057_3.jpg1. 开始测试:将处理好的样品放在WINNER208上标示位置,选择混凝土气孔预设模式,即可自动开始测试。2. 合成图片:系统会自动将采集的图片拼接成一整幅大图http://ng1.17img.cn/bbsfiles/images/2015/11/201511181354_574160_3049057_3.png(注:由于尺寸所限,本照片已压缩,原照片尺寸为8102×7680)1. 二值化:通过二值化操作去掉颜色等其他信息,将整幅图数字化http://ng1.17img.cn/bbsfiles/images/2015/11/201511181355_574161_3049057_3.png(注:由于尺寸所限,本照片已压缩,原照片尺寸为8102×7680)1. 自动修正:开启自动修正功能。可以自动去除裂隙、骨料等非气泡干扰。获得最终需要分析的图片。http://ng1.17img.cn/bbsfiles/images/2015/11/201511181355_574162_3049057_3.png(注:由于尺寸所限,本照片已压缩,原照片尺寸为8102×7680)1. 输出最终结果核心数据包括:气泡总数、气泡平均半径、泥浆含量、含气量等除此之外还可以获得:球形度等形状参数、气泡大小的分布曲线等数据http://ng1.17img.cn/bbsfiles/images/2015/11/201511181356_574163_3049057_3.png

  • 求购混凝土碳化箱一台jg/t 247

    本公司为杭州一家建材实验室,拟采购混凝土碳化箱一台,要求符合JG/T 247标准要求,其他指标要求:1. 试验要求:CO2体积浓度20±3%,相对湿度70±5%,温度20±2℃;2.提供co2传感器年度校准信息,直接负责校准或者帮助联系可以校准的检定/校准机构。有意者请将相关资料发送到276928194@qq.com

  • 美国重大事故——美国混凝土热膨胀系数测试方法重大错误的验证和分析

    [color=#cc0000]摘要:针对路面混凝土热膨胀系数(CTE)测试,国内外普遍使用的测试方法AASHTO TP60因被发现由重大错误,后经过重大修改并由AASHTO T336所替代。本文将回顾发现AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[/color][color=#cc0000][/color][color=#cc0000]关键词:热膨胀系数,混凝土,路面混凝土设计,测试方法[/color][color=#cc0000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  随着我国基础建设的飞速发展,越来越多的公路路面采用了水泥混凝土,这主要是因为水泥混凝土具有高强度和高稳定性等优点,但路面板边缘过早破坏、面板开裂、横缝错台等危害一直困扰着道路工程界。大量研究发现混凝土的热膨胀系数(CTE)是影响路面水平裂缝以及其它危害发生的主要原因,CTE越大,路面越容易出现开裂和疲劳破坏。在近些几年中对CTE测试的兴趣显著增加,因为它被认为是用于混凝土路面设计最重要的输入参数之一。  有多种测试方法可用于测定混凝土的CTE,文献做了详细的综述介绍。纵观各种混凝土CTE测试方法,最广泛使用的是AASHTO TP60,它是所有混凝土CTE测试的基础,AASHTO TP60测试方法广泛使用的另外一个原因是其测量装置也可以被其它测试方法使用。  TP60的测量原理非常简单,它测量垂直放置在金属框架内的饱和混凝土样品的长度变化,该金属框架受特定温度变化的影响。控温水浴用于改变测试方法规定的温度范围,通过测量已知CTE的校准样品长度变化来消除框架的变形影响。  对于任何材料性能测试方法和测量装置的测量准确性考核和评价,一般都采用以下几种方式:  (1)测试可计量溯源的标准参考材料,测试结果与标准值比较;  (2)测试经更高等级测试设备验证过的参考材料,测试结果与参考值比较;  (3)多个实验室不同测试设备之间的比对测试。  美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)为了评估AASHTO TP60测试方法的准确性,采用了上述第二种方式,选择了几种参考材料并经第三方实验室采用更高等级的测试设备对参考材料CTE进行测量。在此评价过程中发现了使用了近十多年之久的AASHTO TP60存在着重大错误,并及时做出了修改,从而推出了新的测试方法AASHTO T336,但以往错误所带来的影响和后果非常严重,造成大面积的数据库和设计软件的修改等。  本文将回顾发现混凝土CTE测试方法AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[b][color=#cc0000]2. 参考材料[/color][/b]  为了评估AASHTO TP60测试方法和相应测试设备测量精度和测量重复性,以及实验室间的比对测试,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)准备了三种参考材料,这三种参考材料的CTE值范围基本都在TFHRC先前测试过的混凝土样品范围内。三种参考材料如下:  (1)氧化铝陶瓷:根据文献其CTE为5.5×10-6/℃。这种氧化铝陶瓷一种多孔陶瓷,在测试之前需要饱和。  (2)钛合金(Ti-6Al-4V):根据文献其CTE为9.2×10-6/℃。  (3)410不锈钢:根据文献其CTE为10.5×10-6/℃。[b][color=#cc0000]3. 参考材料热膨胀系数测试[/color][/b]  美国TFHRC首先使用自己实验室的两台不同的混凝土热膨胀系数测试设备,按照TP60方法对上述三种参考材料进行了测试,测试结果如表3-1所示。[align=center][color=#cc0000]表3-1 参考材料文献值和不同测试方法(AASHTO TP60和ASTM E228)结果[/color][/align][align=center][img=,600,324]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292225403071_943_3384_3.png!w900x487.jpg[/img][/align]  从表3-1可以看出,针对氧化铝陶瓷、钛合金和410不锈钢三种参考材料,采用AASHTO TP60测试方法测量得到的CTE值与文献报道值并不一致,它们普遍比文献值高约1×10-6/℃。  当发现测量值与文献值之间存在较大差异后,TFHRC首先认为造成这种差异的可能原因是氧化铝素瓷、钛合金和410不锈钢这些参考材料与文献报道的材料并不完全相同,或者在测试期间位移探测器(LVDT)受温度或湿气(或两者)变化的影响。[b][color=#cc0000]4. 第三方实验室测试[/color][/b]  上述三种参考材料测试结果与文献值的较大差异使得TFHRC决定选择独立的第三方实验室对CTE测试进行验证,参考样品被送到专门从事航天工业金属CTE测试的实验室进行了测试,测试按照ASTM E228测试方法(顶杆法)的修改版进行,以适应高度180mm、直径80mm或100mm样品和TP60中相同的温度范围10~50℃。除了发送新获得的参考材料外,用于校准FHWA手动测量装置和两台商业测量装置的几个304不锈钢校准样品也被送到此第三方实验室进行测试验证。  在ASTM E228测试方法中,顶杆法热膨胀仪用于测量线性热膨胀。测量样品和已知标准参考材料之间作为温度函数的膨胀差异,样品的膨胀是根据这种膨胀差异和标准膨胀来计算的。  表3-1显示了CTE文献值和TFHRC及第三方独立实验室获得的测量结果。可以看出,按照TP60在TFHRC获得的CTE结果远高于按照ASTM E228在第三方实验室的测量结果。按照TP60规定,三种304不锈钢校准样品(SS743、M1和M2)设定的热膨胀系数都为17.3×10-6/℃,所以采用TP60方法测试得到的CTE结果也都为17.3×10-6/℃。  从表3-1可以看出,根据TP60获得的结果远高于根据ASTM E228获得的结果。此外,除了304不锈钢校准样品外,第三方实验室报告的结果与文献值基本一致。而对于所有304不锈钢校准样品,第三方实验室报告的CTE测试结果都要明显低于17.3×10-6/℃。[b][color=#cc0000]5. 对比分析[/color][/b]  通过上述第三方实验室的对比测量,TFHRC终于认识到出现TP60测试结果较高的原因是:304不锈钢校准样品的CTE值可能在测试温度范围内设定(或选择)的并不正确。当发现这个灾难性的可能原因后,TFHRC感觉到了事态的严重性,这是因为无论是定制装置还是商用测量装置,所有执行AASHTO TP60和类似测试方法的实验室所使用的304不锈钢校准样品CTE值均为17.3×10-6/℃,如果发生错误则会带来大范围的影响。  根据TP60,如果用作校正系数所输入的304不锈钢校准样品CTE值不正确,则所测试材料的CTE值也不正确。作为验证,TFHRC使用了第三方CTE测试结果15.8×10-6/℃作为304不锈钢校准样品的CTE作为新的校正因子。使用新的校正因子,TFHRC重新计算了表3-1中报告的CTE,如表5-1所示。[align=center][color=#cc0000]表5-1 第三方实验室和TFHRC的CTE测量值比较,假设校准样品有两个CTE值[/color][/align][align=center][color=#cc0000][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292227254161_5379_3384_3.png!w900x289.jpg[/img][/color][/align]  从表5-1可以看出,当使用TP60建议的304不锈钢CTE默认值来计算校正系数时,氧化铝陶瓷、钛合金和410不锈钢的CTE高于预期,但是当使用由第三方实验室测量确定的304不锈钢CTE值计算校正系数时,获得的氧化铝陶瓷、钛合金和410不锈钢的CTE更接近预期值,与预期值的差异并不是由于温度或湿度变化对LVDT读数的影响。相反,这种较大差异主要是由于使用304不锈钢校准样品的不适当CTE值作为输入来计算校正因子,从而导致测量参考材料CTE的错误。[b][color=#cc0000]6. 第三方实验室再次测试[/color][/b]  为了进一步确认304不锈钢校准样品的CTE,TFHRC将校准样品送到另一家第三方独立实验室进行测试。由于发现此实验室虽然可以采用ASTM E228进行CTE 测量,但无法对高180mm、直径80mm或100mm的样品进行测量,因此送到此第二家第三方实验室的较小尺寸样品是将先前发送到第一家第三方实验室的样品进行了切短,切短后的样品尺寸约为51×51×6mm。该实验室在比以前实验室更宽的温度范围内(-40~300℃)测量了304不锈钢校准样品的CTE,结果如表6-1所示。[align=center][color=#cc0000]表6-1 两家第三方实验室的CTE测试结果比较(测试方法ASTM E228)[/color][/align][align=center][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229073780_4938_3384_3.png!w900x289.jpg[/img][/align]  表6-1清楚地显示,从第二个独立实验室收到的结果与从第一个独立实验室获得的结果一致,观察到的微小差异可归因于可接受的测试系统误差。表6-1中显示的CTE测试结果表示在与TP60相同温度范围内的CTE值,并不包括第2个独立实验室使用的全温度范围。  图6-1显示了第二家独立实验室在测试期间使用的整个温度范围内的平均CTE。从中可以看出,CTE值随温度而变化在-40~300℃温度范围内呈现最稳定CTE的材料是钛合金。同样清楚的是,在300℃左右,304不锈钢样品的CTE试验结果接近17.3×10-6/℃的文献报道。[align=center][img=,600,354]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229413984_686_3384_3.png!w848x501.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图6-1 在宽温度范围内的平均CTE(参考温度为20℃)[/color][/align]  通过这次第二家第三方实验室的测试,进一步验证了TP60方法中存在的问题,从而推进了新型测试方法的建立。[b][color=#cc0000]7. AASHTO新旧标准之间的区别[/color][/b]  AASHTO TP60标准方法在2000年颁布,2009年发现了TP60存在重大问题,2010年在AASHTO TP60基础上颁布了新标准AASHTO T336。TP60方法与T336新方法的主要区别如下:  (1)第三方测试:虽然TP60在非强制性附录中指出304不锈钢的CTE为17.3×10-6/℃,但T336要求任何校准样品的CTE应由拥有ISO 9001或同等认证的实验室来确定。  (2)校准样品的CTE测定:CTE必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与T336相同的温度范围内进行,即10~50℃。  (3)CTE证书:校准样品必须具有第三方实验室颁发的证书,包括所测样品品的批号。CTE必须在相同的样品上或同一批次的样品上测定,因为材料的CTE可能会随批次发现变化。  (4)力学经验路面设计指南(MEPDG)警示说明:在1.0版MEPDG软件中,模型的校准采用的是长效路面性能(LTPP)数据库中的CTE值,而这些CTE值则由TP60方法测试获得。由于根据TP60和T336获得的校准样品CTE值之间由很大差异,因此根据T336获得的CTE不应用作1.0版MEPDG软件的输入,以防止路面厚度的低估。[color=#cc0000][b]8. AASHTO新旧标准更替所带来的影响[/b]8.1. 对路面性能数据库的影响[/color]  目前的长效路面性能(LTPP)数据库中的CTE值是整个美国在10年期间对来自道路的数千个样芯采用TP60方法进行广泛测试的结果。在所测试的温度范围内如果假定校准样品的CTE不正确,那么LTPP数据库中的所有CTE值都高于预期温度范围内的实际CTE值,需要全部进行相应调整。  由于发现了校准样品的CTE差异,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)已经努力反算所有测试结果,用特定的CTE值代替17.3×10-6/℃用于每台热膨胀测试设备的校准样品。[color=#cc0000]8.2. 对力学经验路面设计指南的影响[/color]  美国一致将CTE确定为力学经验路面设计指南(MEPDG)中用于设计混凝土路面最重要输入或分类为极其敏感的输入参数,混凝土的CTE决定了影响整个路面设计的路面卷曲应力、贴合移动和荷载传递效率的大小。在连续钢筋混凝土路面中,CTE决定了裂缝间距和裂缝宽度,这些会影响裂缝荷载传递效率并影响最终冲孔。  由于MEPDG中的各种不同模型使用的都是来自LTPP数据库的CTE数据,因此需要根据校正数据调整这些模型(使用校准样品的正确CTE)。由于MEPDG软件中的当前模型是基于LTPP数据库中错误的较高CTE值,因此无论是通过模型的全局重新校准还是通过局部校准过程,只有在模型重新校准后,才能使用正确的较低CTE值。如果没有解决这个问题,它可能会对预测的设计厚度产生负面影响。[color=#cc0000]8.3. 其他影响[/color]  许多机构已经开始在MEPDG实施之前表征其典型混合物的材料特性,存储在这些数据库中的CTE值仍然有效。但是,这些CTE记录值需要根据校准样品的假定CTE值和根据ASTM E228获得的CTE值的差异进行调整。如上所述,这些经过调整的CTE值仅在模型重新校准后才能用于MEPDG软件的设计。  美国一些州已经开发了基于MEPDG和CTE的典型路面设计和设计表。在这种情况下,一旦重新校准MEPDG,应根据需要对表格进行验证和更改。[b][color=#cc0000]9. AASHTO T336的改进[/color][/b]  2010年颁布的AASHTO T336已经实施了将近十年,尽管AASHTO T336在这些年的实施中已经取得了很大成就,但基于广泛的测试应和研究经验,还是需要进一步的改进和完善。美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)对改进给出了如下建议:  (1)校正因子:T336已经提出了确定校正因子的程序,然而它是测试方法中的非强制性附录内容。由于必须确定校正因子,因此应将其移至标准文本中进行强制性执行。此外,在当前的T336中,没有提供关于校准样品的讨论。为了获得准确结果,建议校准样品的长度与待测混凝土样品长度相差在2mm范围内。校准样品的直径应该是合适的直径,以牢固地放在框架的支撑按钮上。  (2)解决水位问题:当受控温度水浴中的水位影响CTE时,尤其是在测试期间水位发生变化或者在混凝土测试期间水位与校准期间的水位不同时。这是因为当水位改变时,框架和浸没或暴露于环境空气的LVDT轴的长度将改变。因此,根据TFHRC研究,水位偏离上次校准水位以下不应超过13mm。  (3)设备验证。使用LVDT与水接触并在高温下,电子设备会受到影响。为了验证LVDT和整个设备操作的正常运行,建议每月通过测试已知CTE的参考样品(校准样品除外)来验证设置。参考样品的CTE值应至少为5×10-6/℃,与校准样品的CTE值不同。它将确保读数始终良好,因为能很容易的发现任何差异。  建议参考样品应由非腐蚀、非氧化、无孔和非磁性的材料组成,此外,在10~50℃温度范围内,其导热系数应接近混凝土的导热系数。与校准样品的CTE相同,参考材料的CTE应由独立的实验室测定。在研究中发现钛合金(Ti-6Al-4V)是比较合适的材料,如图61所示,其CTE值在整个温度范围内始终比较稳定,变化幅度小。  验证后,如果发现参考样品CTE与认证值相差超过0.3×10-6/℃,则应采用T336中描述的程序再次确定修正系数。  (1)LVDT的校准:目前的T336需要一个千分尺来校准LVDT。然而,它没有提供任何校准指导,也没有提供校准频率。每6个月进行一次校准就足够了。  (2)样品末端条件:混凝土样品的末端条件可能是某些试验误差的来源。T336应提供有关最低要求的指导。建议采用AASHTO T 22-07对抗压强度样品的相同要求。  (3)待测样品数量。不应根据单个测试结果确定混合物的CTE,应提供有关待测样品数量的指导。据推测,至少要测试两个样品并报告平均值,以表征混合物。[b][color=#cc0000]10. 分析和建议[/color][/b]  通过上述路面混凝土热膨胀系数(CTE)测试中测试方法AASHTO TP60重大问题发现和新测试方法AASHTO T336制订的全过程回顾,我们从以下几方面做出了分析,并给出相应的建议:  (1)采用参考样品(或标准参考材料)对测试方法和测试设备进行考核甚至定期自校、多个实验室之间的比对测试,以及多种测试方法之间的比对测试等,这些都是材料物理性能测试工作中标准测试方法制订和实施的必要手段和过程,是保障测试准确性和稳定性的重要措施,在以往热膨胀系数标准测试方法(如ASTM E228等)的制订和实施过程中,都是按照以上过程进行实施。令人费劲的是美国在AASHTO TP60测试方法的制订和实施过程中明显缺少这些重要环节,此测试方法的制订和推广应用非常不严谨甚至不严肃,否则也不会发生AASHTO TP60在颁布十多年后才发现存在严重缺陷的重大问题。  (2)尽管AASHTO T336针对校准样品规定要在有资质的第三方实验室采用ASTM E228或ASTM E289在10~50℃范围内进行CTE测试,并没有规定样品的尺寸大小、控温精度和温度变化形式等细节,而这些细节同样会在ASTM E228或ASTM E289的测试过程中带来较大误差。如一些采用ASTM E228方法的热膨胀仪,测温热电偶为热电偶,那么在10~50℃范围内仅热电偶带来的温度测量误差就会达到10%。另外在样品温度变化形式上,采用台阶式还是线性形式的升降温方式,也会给CTE测量带来很大不同,如果采用线性升降温形式,往往会使样品内外存在温度梯度,而台阶式升降温形式则会使得样品在恒温阶段达到整体温度均匀。  (3)尽管AASHTO T336在校准样品的CTE值准确性上得到了改进,纠正了AASHTO TP60中校准样品CTE值的错误,但CTE测试的装置并没有丝毫改变,测量装置还是基于校准样品来保证测量的准确性,整体设计思路并没有变。而从CTE测试的基本原理出发,几乎所有目前比较常用的CTE标准测试方法,除了采用校准样品(基线扣除法)来保证测量准确性之外,更有效的手段是降低测量装置自身热变形对样品CTE测量的影响,如ASTM E228顶杆法中采用热膨胀系数较低的石英(约0.53×10-6/℃),或热膨胀系数更低的钛石英(0.06×10-6/℃)来作为样品支架。但在AASHTO T336方法中,还在沿用AASHTO TP60方法使用金属杆做样品固定支架,有些混凝土热膨胀仪已经做了改进,采用CTE约为1×10-6/℃的殷钢做样品固定支架。采用较大CTE的金属杆做样品固定支架,因为测试温度范围比较小,基本上能满足目前路面混凝土CTE的测试需求。但对于高温和低温环境下使用的混凝土CTE测试,再采用金属杆做样品固定支架则明显会带来巨大误差。因此,今后AASHTO T336方法的改进,首先要考虑样品固定支架采用膨胀系数低的材料。  (4)无论是AASHTO TP60,还是AASHTO T336方法,混凝土样品CTE的测试温度范围都在10~50℃。在这样接近室温的条件下,样品和水浴的温度变化似乎对位移探测器的影响并不大,在上述两种方法中也没对位移探测器的热防护做出规定。但在高温和低温环境条件下,位移探测器的热防护问题则显着尤为凸出,样品温度的大范围变化势必会给固定位移探测器的机械结构带来热变形。同样,基于更严谨和更准确的目的,建议在AASHTO T336增加上对位移探测器的热防护,尽可能减少长时间50℃水浴温度对位移探测器固定装置的影响。[b][color=#cc0000]11. 参考文献[/color][/b]  (1)李清海, 姚燕, 孙蓓. 水泥基材料热膨胀性能测试方法发展现状. 新型建筑材料, 2007, 34(6):10-12.  (2)黄杰, 吴胜兴, 沈德建. 水泥基材料早期热膨胀系数试验系统现状研究. 结构工程师, 2010, 26(4):160-166.  (3)Tanesi J, Crawford G L, Nicolaescu M, et al. New AASHTO T336-09 Coefficient of Thermal Expansion Test Method: How Will It Affect You?. Transportation Research Record, 2010, 2164(1): 52-57.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 求购测试混凝土的流变仪

    准备求购一台用于测定新拌混凝土流变性质的流变仪,混凝土内含有大量大颗粒的石子,如10-1毫米左右的比例约50%。

  • 【转帖】提高回弹法检测混凝土抗压强度精确度的探讨

    提高回弹法检测混凝土抗压强度精确度的探讨回弹法检测混凝土抗压强度在我国使用已达四十余年,因其简便、灵活、准确、可靠、快速、经济等特点而倍受工程检测人员的青睐,是我国目前工程检测中应用最为广泛的检测仪器之一。当对工程结构质量有怀疑时,均可运用回弹法进行检测。但回弹法在使用过程中还是出现了较多的操作不规范、随意性大、计算方法不当等问题,造成了较大的测试误差。如何保证检测精度,使其在监督检验结构工程和混凝土质量中发挥应有的作用,已成为众多工程建设者所关注的话题。要提高回弹法的检测精度,应综合考虑以下几个方面因素。 1  注意回弹法检测的适用条件 回弹法是通过回弹仪检测混凝土表面硬度从而推算出混凝土强度的方法,当出现标准养护试件数量不足或未按规定制作试件 对构件的混凝土强度有怀疑 或对试件的检验结果有怀疑时,可按《回弹法检测混凝土抗压强度技术规程》(JGJPT2322001) (以下简称《规程》) 进行检测。必须注意回弹法的使用前题是要求被测混凝土的内外质量基本一致,当混凝土表层与内部质量有明显差异,如遭受化学腐蚀、火灾、冻伤,或内部存在缺陷时,不能直接采用回弹法检测混凝土强度。 2  测试前必须进行回弹仪的率定试验回弹仪的质量及测试性能直接影响混凝土强度推定的准确性,只有性能良好的回弹仪才能保证测试结果的可靠性。回弹仪的标准状态应是在洛氏硬度HRC 为60 ±2 的标准钢砧上,垂直向下弹击三次,其平均率定值应为80 ±2 ,否则回弹仪必须进行调整或校验。在单个构件检测中,一般只需测试前进行率定即可,但在大批量检测时,由于受现场灰粉及回弹仪自身稳定性等因素的影响,随着工作时间的延长,回弹仪的工作状态逐渐低于标准状态。有时一个批量检测项目检测前后回弹仪率定值的差异较大,从而导致测试结果偏低。因此,在大批量检测时,应随身携带标准钢砧,以便随时进行率定检测,适时更换,从而保证检测结果的精确性。 3  测区选择要正确 检测构件布置测区时,相邻两测区的间距应控制在2 m以内,测区离构件端部或施工缝边缘的距离不宜大于0. 5 m且不宜小于0. 2 m 测区应选在使回弹仪处于水平方向检测混凝土浇筑面,并选在对称的两个可测面上,如果不能满足这一要求时,也可选在一个可测面上,但一定要分布均匀,在构件的重要部位及薄弱部位必须布置测区,并应避开预埋件。当遇到薄壁小构件时,则不宜布置测区,因为薄壁构件在弹击时产生的振动,会造成回弹能量的损失,使检测结果偏低。如果必须检测,则应加以可靠支撑使之有足够的约束力时方可检测。 4  测试动作要规范,切忌随意操作 回弹法本身是一种科学的操作方法,国家也专门制定了相应的规程,不容许操作人员随意操作。回弹的精度也取决于操作人员用力是否合适和均匀,是否垂直于结构或构件的表面,是否规范操作。但实际检测中却很少有人严格按照标准规定的技术要求进行检测操作,责任心不强,敷衍了事,这样的检测将带来较大的测试误差,无法保证回弹质量,为此,应加强检测人员的职业道德素养,提高检测责任心,也只有如此,才能真正提高回弹法的检测精度。 5  消除测试面因素的影响 《规程》规定:用于回弹检测的混凝土构件,表面应清洁、平整,不应有疏松层、浮浆、油垢、蜂窝、麻面。我们在检测时经常遇到麻面或有浮浆的构件,回弹前必须有砂轮磨平,否则结果偏低。在测试面达到清洁、平整的前提下,还需注意混凝土表层是否干燥,混凝土的含水率会影响其表面的硬度,混凝土在水泡之后会导致其表面硬度降低。因此,混凝土表面的湿度对回弹法检测影响较大,对于潮湿或浸水的混凝土,须待其表面干燥后再进行测试。建议采用自然干燥的方式。禁止采用热火、电源强制干燥,以防混凝土面层被灼伤,影响检测精度。 6  注意碳化深度的测试取值 碳化深度值的测量准确与否与回弹值一样,直接影响推定混凝土强度的精度。在碳化深度的测试中,注意其深度值应为垂直距离,而非孔洞中呈现的非垂直距离。孔洞内的粉末和碎屑一定要清除干净之后再测量,否则将难以区分已碳化和未碳化的界线,造成较大的测试误差。测量碳化深度值时最好用专用测量仪器,不能采用目测方法。还有一种情况应特别注意,在检测已用粉刷砂浆覆盖的构件碳化深度时,由于测试面受水泥砂浆的充填渗透影响,其表层含碱量较高,而用于碳化测试的酚酞酒精溶液遇碱即变红,极易使人产生视觉误差,认为其碳化深度值很小。如果认真观察测试孔,可发现外表层颜色较深,而孔内混凝土所变的颜色较浅,这颜色较浅部分的厚度即为混凝土实际的碳化深度。这一点细微的差别,检测人员一定要注意区分。 7  注意混凝土回弹值的修正 近年来,随着城市泵送混凝土使用的普及,采用回弹法按测区混凝土强度换算值表推定的测区混凝土温度值将明显低于其实际强度值。这是因为泵送混凝土流动性大,粗骨料粒径较小,砂率增加,混凝土的砂浆包裹层偏厚,表面硬度较低所致。因此在运用回弹法检测混凝土强度时,必须要事先了解到施工单位浇注混凝土的方式,并注意修正。另外,当检测时回弹仪为非水平方向且测试面为非混凝土侧面时,一定要先按非水平状态检测时的回弹值进行修正,然后再按角度修正后的回弹值进行不同浇筑面的回弹值进行修正,这种先后修正的顺序不能颠倒,更不能用分别修正后的值直接与原始值相加或相减,否则将造成计算错误,影响对混凝土强度的推定。 8  测试异常时,需与钻芯法配合使用现行的工程施工中,普遍采用胶合板面的大模板,此种模板密闭性能极好但不透气,振捣过程中产生的气泡聚集在混凝土表面和大模板之间,不易排出,致使拆模后在混凝土表面存在大量的微小气孔,使混凝土表面不是很密实,如果混凝土养护跟不上,混凝土表面将不能有效地进行水化反应,不仅有粉化现象,而且混凝土碳化深度较大,造成混凝土表面强度低。如我市某一框架结构商住楼,在使用回弹仪抽检三层剪力墙混凝土时发现,全部抽检构件混凝土表面强度都比较低,只达到原设计强度等级的67 %。经查施工技术资料,该工程的混凝土配合比以及使用的原材料均不存在问题,施工单位混凝土搅拌后的管理也比较到位,遂用钻芯法取样复检,芯样上观察,混凝土表层10 mm 较疏松。内层较为坚硬,芯样检测结果是实际混凝土抗压强度符合原设计强度等级,从而避免了一次误判。 9  建立本地区的专用测强曲线 国家标准虽给出了全国通用回弹法检测的测强曲线并由此得到测定混凝土强度值换算表,但全国统一曲线仅综合考虑到全国各地的原材料使用情况,没有把碎、卵石普通混凝土区分开来,而实际上回弹法检测碎、卵石普通混凝土强度是有很大差异的。而地区测强曲线正是充分考虑本地区的混凝土原材料、气候条件和成型养分护工艺,通过试验、校核、修正所建立的曲线,与通用测强曲线相比较,该曲线比通用测强曲线更接近实验数据,能更好的推算本地区混凝土的实际强度。因此,建立本地区的专用测强曲线,能有效地提高回弹法的检测精度。

  • DYE-2000型混凝土压力试验机

    主要结构DYE-2000型混凝土压力试验机主要由主机、液压系统和测力单元等组成。1、 主机主要由上梁、立柱、调节丝杠及手轮、承压板、油缸和活塞等组成。丝杠末端与上压板间装有活动球座,操作时当上压板底面与试件顶面接触后,能自动适应试件高度方向的细微倾斜度,使两平面互相接触全面,从而使度件受力均匀。根据试件大小,可转动手轮和丝杠,以适当调节试验空间。下压板顶面上刻有定位线框,便于将试件放置在中心位置。2、 液压系统由液压泵、送油阀、回油阀、油箱、滤油器及油管等组成。液压泵为轴向五柱塞超高压泵,由电动机直联驱动,送油阀上设有安全阀,过载是可溢流,起安全作用。操纵送油阀手轮,可调节油缸进油量,以达所需加荷速率。打开回油阀,可使油缸内和油泵来的油全部流回油箱。3、 测力单元主要包括测控系统、打印机和压力传感器等。(详见所附《RFP-03智能测力仪使用说明书》4、 电气系统由电动机、启动按钮、停止按钮、交流接触器、熔断器等组成。使用方法 1 操作者必须熟悉DYE-2000型混凝土压力试验机机床操作顺序和性能,严禁超性能使用设备。2 操作者必须经过培训、考试或考核合格后,持证上岗。   3 开机前,按设备润滑图表注油,检查油路是否畅通。开启气阀调节系统压力、润滑压力、平衡缸压力,调节油雾装置。   4 检查变速箱油标油位,启动主电机空转5分钟后,寸动滑块至下死点,调节滑块高度,锁紧球头丝杆锁紧机构。   5 关闭机床电控总开关,关闭电控柜空气开关。   6 清洁机床,按设备润滑图表注油润滑混凝土压力机,水泥压力试验机,压力试验机:混凝土压力机主要用于测试混凝土、水泥、高强度砖、耐火材料等建筑材料试块的抗压强度,也可用于其他非金属材料的抗压强度的试验。混凝土压力试验机的横梁可以通过两个很长行程的提升装置进行调整,并且带有可靠的夹紧系统将横梁固定在高刚度的镀铬立柱上,这个设计可以使得可以进行快速、简便以及精确的横梁定位,在测试一些不同高度的试样的时候具有很好的优势。加载架具有很高的轴向和侧向刚度,经过精确调整,可以用于高级的建材测试。混凝土压力机,水泥压力试验机,压力试验机:混凝土试验机采用非常高刚度的四柱式结构加载架,单加载头设计,上下压力板都带有注油式球座装置。立柱经过镀铬处理,液压活塞经过硬化处理并且具有很高的表面加工精度以保证压力试验机的最高性能。弯折测试架上采用双向作动器,提供快速的控制方式并且可以用来测试高强混凝土。混凝土压力试验机采用非常高刚度的四柱式结构加载架,单加载头设计,上下压力板都带有注油式球座装置。加载立柱经过镀铬处理,液压活塞经过硬化处理并且具有很高的表面加工精度以保证试验机的最高性能。试验机经过精确调整,可以连接到带有低噪音液压源组的落地式控制器,或者式连接到其他的带有液压源的其他测量系统。

  • 【分享】混凝土抗折仪的功能及技术参数

    混凝土抗渗仪是测试建筑物具有特殊的性能-抗渗性能。混凝土渗仪是用来测定混凝土的抗渗性能,适用于建筑企业、科研院校,设计施工等部门从事混凝土抗渗性能的测定研究,同时可用于其它建筑材料透气测定和质量检测。 混凝土抗渗仪的主模采用优质钢,台面采用不锈钢板。压力值通过传感器在压力显示仪上显示出来,并能按设定的程序实现自动升压,自动完成试验,减轻工作人员负担。混凝土抗渗仪主要使用于湖拧土抗渗性能和是试验和抗渗标号的测定。混凝土抗渗仪可做建筑材料透气性的测定和质量检查,因此得到了有关生产、施工、设计、教研等部门的广泛使用。混凝土抗渗仪的主要参数:允许最大压力:6Mpa;工作方式:自动调压;电动机功率:90W;外型尺寸:1100×900×600mm ;试模几何尺寸:175 x 1 85 x l50mm;电动机功率:90W;转速:1390r/min;

  • 湖南“问题混凝土”案牵出案中案:检测单位用铁块代混凝土出假报告

    [align=center][b][size=16px]湖南“问题混凝土”案牵出案中案:检测单位用铁块代混凝土出假报告[/size][/b][/align] 有问题的混凝土被用于长沙望城区一房地产项目建设,最终导致该项目一栋楼房的12-27层拆除,返工重建。供应这些混凝土的湖南拓宇混凝土有限公司付出惨重代价,公司法定代表人兼董事长、总经理代建华及实验室主任刘伟分别被判刑9年、7年。 这起“问题混凝土”案还牵出案中案:在代建华、刘伟被判之前,为涉事楼盘新城国际花都提供检测服务的湖南励信工程检测有限公司(以下简称“励信公司”)及相关负责人,用铁块替代混凝土试块进行强度检测,并出具虚假检测报告,致长沙另一楼盘5层楼混凝土构件强度未达设计要求,最终耗费巨资进行加固处理。 中国裁判文书网公布的长沙市望城区法院一审判决书显示,励信公司法定代表人李俊、总经理赵开颜、检测员曾超豪均犯提供虚假证明文件罪,分别被判有期徒刑1年2个月、11个月。[b]用铁块代替混凝土试块检测,出假检测报告[/b] 望城区法院判决认定,励信公司自2019年2月4日开始直至案发,为逃避监管部门的监管,即采取不合法、不合规、虚假检测的方式出具虚假的检测报告。 据法院查明,励信公司于2007年8月3日成立,经营范围为建筑工程检测、经济信息咨询,于2015年取得建设工程见证取样检测资质,具有向社会出具具有证明作用的检测数据和结果的资格。李俊系公司法定代表人、股东,分管行政、后勤、财务方面工作,负责对检测报告签字授权;赵开颜系公司总经理、实际管理人,主管公司的全面工作和检测业务工作,负责对检测报告进行审核并签名确认。曾超豪于2019年8月被聘为公司职员,受公司指派从事负责混凝土试块强度检测工作。 励信公司及直接主管人员李俊、赵开颜明知混凝土试块强度检测活动应当由取得检测资质的检测员实施,故意违背相关规定,先后安排没有取得检测资质的赵某、张某、曾超豪上岗从事检测工作。 法院查明,为了不得罪委托单位,确保委托单位送检的试块获得检测合格的数值,赵开颜示意赵某、张某等人利用铁块代替混凝土试块进行强度检测,出具虚假的检测报告。期间,为遮掩虚假检测行为,赵开颜又示意赵某等人故意用铁架遮挡监控摄像头,以躲避长沙市建筑工程质量安全监督站的监管。[b]将方法教给无检测资质的检测员,致企业重大损失[/b] 法院查明,2018年10月,湖南新华联建设工程有限公司望城分公司(以下简称新华联公司)委托励信公司对新华联梦想城1.1号地二期二标项目11栋、12栋、13栋进行常规建材检测,其中包含砼抗压检测。励信公司指派张某负责该项目混凝土试块强度检测工作,张某为让检测数据合格,不认真履行应尽职责,一直使用铁块代替混凝土试块获取虚假检测数据。 2019年8月下旬,曾超豪进入励信公司后,张某将用铁块或者高强度混凝土试块代替送检混凝土试块获取合格数据的方法教授给曾超豪,并和曾超豪一起对新华联梦想城1.1号地二期二标试块进行虚假检测。2019年9月5日,张某根据公司安排离开混凝土强度检测岗位,曾超豪则继续按照张某传授的方法向委托方新华联公司出具虚假检测报告。 期间,张某、曾超豪明知委托方送检的混凝土试块数量不足,甚至委托方有时不提供混凝土试块,仍然收下新华联公司资料员刘某提供的芯片和检测委托单,通过伪造送检委托单上的信息,并用铁块或者高强度混凝土试块代替测试的办法,出具虚假的混凝土试块合格检测报告。 2019年2月4日至2019年10月29日期间,励信公司采取上述方法陆续向新华联公司出具多份混凝土抗压强度合格的检验报告,导致施工单位、建设单位对该工程质量误判,致使企业遭受重大经济损失。[b]部分构件不满足要求,5层楼剪力墙加固耗资82万[/b] 2019年10月28日,望城新城国际花都开发商公开给业主发出一份《告知函》,决定对C10栋12-27层进行返工重建。也正是因为这纸《告知函》,令长沙“问题混凝土”事故和湖南拓宇混凝土有限公司曝光于公众视野,并引起广泛关注。 长沙市住房和城乡建设局对此高度重视,介入调查,对全市同一时期使用拓宇公司混凝土的59个项目进行排查。除查出望城区新城国际花都五期三标C10栋12层以上部分混凝土构件强度未达设计要求外,还查出该区新华联梦想城项目1.1号地二期二标13栋21-25层部分混凝土构件强度未达设计要求,致该项目停工,论证研究处理措施。 据判决书披露,经湖南大学设计研究院有限公司对新华联梦想城13#栋21层至25层剪力墙现龄期混凝土抗压强度检测,部分构件不满足设计要求,需要进行加固设计及处理。经湖南天鉴造价咨询有限公司鉴定,新华联梦想城1.1期13栋(21-25层)剪力墙加固工程预算总造价金额为82多万元。 在查明上述事实后,2019年11月26日,李俊、赵开颜、曾超豪三人被长沙市公安局望城分局刑事拘留。 望城区法院经审理认为,被告单位励信公司及李俊、赵开颜、曾超豪均构成提供虚假证明文件罪,并作出一审判决:对被告单位湖南励信工程检测有限公司,判处罚金人民币二十万元;对被告人赵开颜、李俊分别判处有期徒刑一年二个月,并处罚金人民币一万元;对被告人曾超豪判处有期徒刑十一个月,并处罚金人民币五千元。 来源:澎湃新闻[b][/b]

  • 立轴混凝土搅拌机精准控制全自动加持与传统混合拉开差距

    青岛迪凯立轴混凝土搅拌机在混合方式上具有多样性和灵活性。无论是混合、分散还是重聚,立轴混凝土搅拌机都能够根据搅拌物料的不同的产品特性和生产需求,选择更合适的混合方式,确保混料效果的理想化。在行业的实际应用中,立轴混凝土搅拌机通过精确控制不同搅拌物料的混合比例和时间,大大提高了搅拌物料的品质和效率,通过精准控制全自动加持与传统混合拉开差距。[img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/04/202404290952391231_8317_5336215_3.jpg!w600x600.jpg[/img]

  • 混凝土压力试验机操作规范

    混凝土压力试验机是用来测试水泥、混凝土、各种建筑用砖、橡胶垫、混凝土构件、金属构件等的抗压强度试验。我们在操作时有一些规范需要注意: 1、该仪器需由专人操作。  2、在使用前必须检查油箱的油标位置和油管接着是否松动。  3、放好试块,转动手轮,调整丝杆高度,可调至试件离上压板1-2mm。  4、接通电源,启动电动机。  5、关闭回油阀,控制送油阀,当强度等级小C30时,取0.3-0.5Mpa/s的加荷速度,强度等级大于或等于C30时,取0.5-0.8Mpa/s的加荷速度;当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直到试件破坏。  6、试件破碎后,打开回油阀,使活塞回落,此时,从指针所指读数即为该试件的破坏荷载,并予以记录。  7、清扫试件碎屑,进行下一次试验。  8、试验完毕后,按停止键,关闭电机,关闭电源。我们在使用试验机时遵守这些操作规范能够有效的延长试验机的寿命!

  • 【分享】混凝土材料的物理力学性能习题

    一、填空题1.钢筋和混凝土两种材料组合在一起,之所以能有效地共同工作,是由于 (钢筋和混凝土间有良好的粘结力、 二者温度线膨胀系数接近 )以及混凝土对钢筋的保护层作用。2.混凝土强度等级为C30,即 (立方体抗压强度标准值 )为30N/mm2 ,它具有 95% 的保证率。3.一般情况下,混凝土的强度提高时,延性 (降低)。4.混凝土在长期不变荷载作用下将产生 (徐变) 变形,混凝土 随水份的蒸发将产生 收缩 变形。5.钢筋的塑性变形性能通常用 (伸长率) 和 (冷弯性能) 两个指标来衡量。6.混凝土的线性徐变是指徐变变形与 (应力) 成正比。7.热轧钢筋的强度标准值系根据 (屈服强度 ) 确定,预应力钢绞线、钢丝和热处理钢筋的强度标准值系根据 (极限抗拉强度 ) 确定。8.钢筋与混凝土之间的粘结力由化学胶结力、 (摩阻力) 和 (机械咬合力) 组成。9.钢筋的连接可分为 (绑扎搭接) 、 (机械连接) 或焊接。10.混凝土一个方向受拉、另一个方向受压时,强度会( 降低) 。11.我国采用按标准方法制作养护的边长为( 150mm )的立方试块,在 (28天) 龄期,用标准试验方法测得的具有 (95% )保证率的抗压强度作为(立方体抗压强)度标准值.12.钢筋按化学成分的不同,分为 ( 碳素结构钢) 和 (普通低合金钢) 两类。13.软钢是指 (有屈服点的 )钢筋,其质量检验的四项主要指标是 ( 屈服强度 ) 、 (极限强度 ) 、 (伸长率 ) 、 (冷弯性能 ) 。14.硬钢是指 ( 无屈服点的钢筋) 、其质量检验以 ( 极限强度) 作为主要强度指标,设计上取相应于 (残余应变为0.2% )的应力作为条件流限。 15.HPB235、HRB335、HRB400钢筋的符号分别 ( )、( )、( )。16.粘结作用产生的三方面原因为 ( 摩擦力) 、 ( 胶结力) 、 (机械咬合力) 。17.钢筋的连结接头可采用 (机械连接接头) 、( 焊接接头) 、 ( 绑扎搭接接头) 。18.反映钢筋塑性性能的指标是 (伸长率) 和 (冷弯性能) 。

  • 榜上有名!行星式搅拌机获得混凝土行业市场准入资格

    行星式搅拌机通过其高效的搅拌能力,使得混凝土行业搅拌生产效率大大提升,很好地规避了传统混凝土搅拌机因为搅拌不均匀而导致生产效率低下、生产品质不过过关等问题,青岛迪凯研发的行星式搅拌机通过创新优化设计,确保了混合物料的均匀性,大幅提高了物料的搅拌生产效能,获得混凝土行业市场的准入资格。由于经青岛迪凯行星式搅拌机搅拌后的混凝土各组分物料的分布更加均匀,匀质性很高,确保了混凝土混制成品的一致性,即使是将钢纤维类的难搅料添加其中,行星式搅拌机也同样会实现高匀质的混合效果。行星式搅拌机在搅拌过程中能够使搅拌料受到充分的剪切和拉伸,有利于纤维与混凝土的相互粘结,提高混凝土的强度和韧性,与此同时,也大大保证了混凝土的均匀性和稳定性。[img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/06/202406050928350358_7544_5336215_3.jpg!w600x600.jpg[/img][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/06/202406050928350358_7544_5336215_3.jpg!w600x600.jpg[/img]

  • 加气混凝土用铝粉的应用与制备

    加气混凝土用铝粉的应用与制备

    加气混凝土用铝粉的应用与制备(1.哈尔滨东轻金属粉业有限责任公司,黑龙江哈尔滨 150060;2.济南大学颗粒测试研究所山东济南 250022)摘要:用干式球磨法生产加气混凝土用铝粉。根据加气混凝土的生产工艺,确定其对铝粉的性能要求。在加气混凝土用铝粉的生产工艺中,通过实践及数据分析,确定最佳工艺参数:原料铝粉粒度 http://ng1.17img.cn/bbsfiles/images/2013/05/201305271048_441747_388_3.jpg=630~280 μm;助磨剂加入量在 3.0%;铝粉磨内滞留时间为 16.6~19h。关键词:加气混凝土;铝粉;松装密度;粒度存;分散性差、粒度分布不均匀,生产出的加气混凝中图分类号: TF123.7 文献标识码: B文章编号: 1008-5548(2006)03-0045-03 Application and Preparation of Aluminum PowderApplied in Lightweight Concrete SONGXiao-hui1,RENZhong-jing2 (1.HarbinDongqingMetalPowderIndustryCo.Ltd,Harbin150060;2.InstitrteofParticleMeasurement,JinanUniversity,Jinan 250022, China) Abstract:The aluminum powder applied in light weight concrete was produced in mill by dry grinding.The aluminum powder’s performance was decided by the light weight concrete technology. The aluminum powder’s performance were controlled by the material’s particle size, grinding aid’s additions and grinding time.The practice and data were analyzed. The technical parameters were optimized,which was that material’s particle size was http://ng1.17img.cn/bbsfiles/images/2013/05/201305271048_441747_388_3.jpg=630~280 μm, adding 3.0% grinding aid, grinding time was from 16.6h to 19h. Key words: light weight concrete;aluminum powder;bulk density; particle size为了顺应世界对资源保护的要求,我国加强了土地使用的监督,限制红砖的生产,加大对环保建材推广和应用。加气混凝土材料作为新型环保建材,得到了较快的发展。随着加气混凝土材料应用范围的扩大,其对铝粉性能的要求也越来越严格。20世纪 90年代,我国从国外引进了亲水性铝粉的加工工艺。经过 10多年的改进,铝粉在加气混泥土材料中的使用已经很成熟。近年来,新的发气材料----亲水铝膏开始发展起来。由于铝膏生产用湿墨工艺,避免了粉尘飞扬,一部分厂家认为其安全性好,从而改用铝膏生产,但铝膏的稳定性差,无法长期保存;分散性差、粒度分布不均匀,生产出的假期混凝土砖气泡不均匀,易开裂,强度不高;固体份差别较大,配料不准确,导致发气高度不一,强度差异较大;由于铝膏的流动性差,无粉体工业用人工加料,无法达到工业化大生产的要求。干法生产的铝粉,由于加工工艺连续,可保证质量稳定;粒度分布可控,可根据不同配方进行相应调整;流动性好,易于分散,可用于工业化大生产;安全性上,经十几年来不断改进,得到了很好的控制。1铝粉在加气混凝土中的应用1.1铝粉在加气混凝土中的作用机理铝作为活泼的两性金属,能够与酸、碱反应放出氢气。铝粉能够作为加气混凝土的发气剂,就应用了铝在碱性溶液中反应的化学过程。其化学反应式如下:Al+OH-+H2O=Al(OH)3+H2 ↑混凝土的浇注料浆主要由水泥、砂子、石灰和水组成,属于碱性环境。在料浆中投入铝粉后与磨细生石灰或与水泥水化生成的氢氧化钙作用,结果在料浆中生成氢气泡,随着作用加剧,气泡压力上升,并传给具有一定塑粘性强度的料浆,当气体压力超过料浆的塑性极限时,料浆开始变形,也就是发气 。在混凝土固化后,其内部形成蜂窝状结构,就形成了轻质的加气

  • 新标准规定混凝土立方体抗压强度试验步骤

    [font=宋体]压力试验机在测试混凝土抗压强度试验时操作步骤是怎样的呢?下面详细为您介绍:[/font][font=宋体]混凝土立方体抗压强度试验应按下列步骤进行:[/font][font=宋体]1[/font][font=宋体]、试件到达试验龄期时,从养护地点取出后,应检查其尺寸及形状,尺寸公差应满足本标准第3.3节的规定,试件取出后应尽快进行试验。[/font][font=宋体]2[/font][font=宋体]、试件放置试验机前,应将试件表面与上、下承压板面擦拭干净。[/font][font=宋体]3[/font][font=宋体]、以试件成型时的侧面为承压面,应将试件安放在试验机的下压板或垫板上,试件的中心应与试验机下压板中心对准。[/font][font=宋体]4[/font][font=宋体]、启动试验机,试件表面与上、下承压板或钢垫板应均匀接触。[/font][font=宋体]5[/font][font=宋体]、试验过程中应连续均匀加荷,加荷速度应取0.3MPa/s~1.0MPa/s。当立方体抗压强度小于30MPa时,加荷速度宜取0.3MPa/s~0.5MPa/s 立方体抗压强度为30MPa~60MPa时,加荷速度宜取0.5MPa/s~0.8MPa/s 立方体抗压强度不小于60MPa时,加荷速度宜取0.8MPa/s~1.0MPa/s[/font][font=宋体]6[/font][font=宋体]、手动控制压力机加荷速度时,当试件接近破坏开始急剧变形时,应停止调整试验机油门,直至破坏,并记录破坏荷载。[/font][font=宋体]。[/font]

  • 立轴混凝土搅拌机匠心打造,实力出圈混合效果拉满

    为了保证立轴混凝土搅拌机使用的通用性和精确性,青岛迪凯对立轴混凝土搅拌机配置了湿度、温度控制器,可以精确测出物料实际的温度和湿度,除此之外,立轴混凝土搅拌机在物料制备混合过程中由搅拌工具带动物料按照行星轨迹运行,来实现物料360度全方位无死角的高匀质搅拌。立轴混凝土搅拌机作为青岛迪凯针对混凝土行业专门研发设计的新型混凝土搅拌机,其特殊研发的行星齿轮传动灵活,可以适应各种不同组分物料的混合搅拌,立轴混凝土搅拌机匠心打造,实力出圈混合效果拉满,丰富的搅拌机型号,满足了行业领域的多元化混合与搅拌。[img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/04/202404230951526063_1909_5336215_3.jpg!w600x600.jpg[/img]

  • YA-200B数显式加气混凝土压力试验机

    YA-200B数显式加气混凝土压力试验机

    YA-200B数显式加气混凝土压力试验机该机为数显式控制,手动控制压力试验机,适用于额定试验力下压缩试验,可测试加气混凝土、水泥、混凝土等材料的抗压强度。主要技术参数最大 试验力:200KN精 度:优于1级加 荷 速 度:0-50KN/S可调(手动控制)压盘间 距离:≥130mm压盘尺寸: 125×125mm左右立柱净间距:170mm主机外形尺寸:860mm×430mm×1100mm电 源 功 率:(三相380V)0.75KW电 压: 380V ±10% ;主要功能:微型电脑芯片,具有自动存储,自动打印,自动保存功能,上下压盘具有自动找正功能,双屏幕数显,输入面积可以自动换算兆帕值,具有微型打印机。http://ng1.17img.cn/bbsfiles/images/2012/08/201208311042_387581_2587891_3.jpg

  • 【原创】【第三届原创参赛】混凝土的传说

    【原创】【第三届原创参赛】混凝土的传说

    本文为smallstrong 原创作品,本作者是该作品唯一合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为。说说历史:混凝土是目前土建施工,尤其是高层住宅建筑的主要施工材料。据说混凝土早在古代就被聪明的希腊人使用,当时的主要建筑材料是石材。但石材的可取材地区十分稀少,搬运困难,而且品质不一。后来人们发现将水泥(主要成分是硅酸盐)、砂石混合后能够形成具有一定强度的并且十分具有可塑性的形状类似石材的物体,而且最关键的是混凝土为水硬性材料,说通俗点,适合在湿度较大的环境中提升强度,或者干脆在水中,它的强度也能不断增长。当时广大建筑师对此十分长草。混凝土的中文简称为“砼”,分解开即为“人工石”,即为人造石材。但是问题又来了,混凝土和石材的特性很相似,抗压强度很好,但是抗剪切和抗拉的强度却只有其抗压强度的约十分之一。因此造成了梁以及楼板等有剪应力和拉应力参与受力的构件设计极为放不开,跨度十分之小。因此我们现在看到的古罗马神庙宫殿建筑,基本都是一个模式,虽然可能只需要极少数柱子即可承受屋面的重量,但是还是不得不缩短梁的跨度,加大梁的高度,搞的一个大型建筑立柱成林。屋顶也是尽量的盖成穹顶,加大水平角以减少对柱子的横向推力。十分浪费材料。后来这个问题被一个法国园艺师莫尼埃解决了。从花的根部包裹土壤的现象中获得灵感,将钢筋包裹进混凝土当中,从此成了钢筋混凝土的发明人。当然这也许是杜撰,就和凯库勒发现苯环结构式一样。无论怎样,钢筋混凝土的发明是有十分严谨的科学成分的。之所以这两种东西能够完美结合,是因为以下原因:1、 相近的线膨胀系数,保证两者能够“同进退”。2、 良好的粘结性,想要钢筋帮助混凝土承受拉力和剪力,需要做好钢筋的工作。在钢筋身上加上“肋条”,或者让钢筋轻度锈蚀,用钢筋调直机一拉,松脆的锈蚀立刻掉落,在钢筋表面流下无数的小坑洞。3、 混凝土中碱性的环境能够保护钢筋不锈蚀。钢筋混凝土的弱点:知道了钢筋混凝土结合的原因,也不免分析出混凝土的弱点。1、 钢筋不给力:钢筋若锈蚀严重,或者干脆能够承受的力度不够,自然整个构件会破坏;2、 混凝土不争气——氯化腐蚀、硫酸盐腐蚀和碱骨料反应:众所周知,铁块放在盐水中比放在清水中腐蚀的快。另外,水泥是碱性的,可以保护钢筋,但是碱含量过大时也能与砂石中一些二氧化硅等活性成分反映,这种反应的产物通常不具有太大强度,而且膨胀系数超大,能将混凝土涨开。同样,硫酸盐也会对混凝土造成同样的影响。3、 碳化:二氧化碳和碱是能够反应的,正如可乐能够除水碱一样。混凝土凝固后是有一定的毛细孔的,经过长期的碳化反应,一旦保护钢筋的混凝土碱性环境丧失,钢筋也面临被腐蚀的窘境。混凝土的亲戚:混凝土本身就是十分复杂的个体,它的亲戚自然也少不了。上文已述,混凝土主要是由水、水泥、砂石等组成,这里砂石被称为骨料。顾名思义,骨料即承受强度的主要物体。骨料讲究“粒径”选择,并不是越硬越大的石头就好,要讲究级配。我们想让混凝土达到的理想效果是:大石头的缝隙里主要是小石头,小石头缝隙里是小石子,小石子缝隙里是大沙粒,大沙粒缝隙里是小沙粒,其他地方填充细细的水泥以构成统一的整体。其次,水和水泥也是一对矛盾体,水灰比也是影响混凝土强度很重要的一项,水少了太稠,水多了强度低。故使用现场严禁往罐车中加水,否则可能引起严重的质量事故。例如北京市大兴区旧宫三角地明锐湾项目,就是由于私自加水而导致拆除部分结构重新浇筑,造成了极大的不良后果。上述两项加起来就是所谓的“配合比”了。商品混凝土厂家每批混凝土都要有符合规范规定的配合比要求,根据工程的要求来满足各种不同使用功能。混凝土的亲戚众多,被叫做各种外加剂和掺合料,根据不同的环境和使用功能,外加剂和掺合料的类型也五花八门,主要功能有几点:1、 加快混凝土早期增长:主要适用于冬季施工或拆模快的情况2、 延缓混凝土过快增长:夏天气温高,长距离运输防止混凝土过稠3、 减少水的用量增加流动性:防止混凝土过稠打灰不易堵塞4、 减少毛细孔增强防水性能:防水加强5、 加强混凝土防冻性能:防冻抗裂6、 防止各种不利反映:防止碱骨料反应等其他一系列不利反应。施工现场关于混凝土的实验主要有以下几个方面:1、 原材料:1.1 水泥:细度、标准稠度用水量、凝结时间、安定性、强度1.2 砂:细度模数、级配区域、含泥量、泥块含量、表观密度、堆积密度、碱活性指标1.3 碎(卵)石:级配情况、级配结果、最大粒径、含泥量、泥块含量、针、片状颗粒含量、压碎指标值、表观密度、堆积密度、碱活性指标1.4 掺合料:细度、需水量比、吸铵值、[/font

  • 立轴混凝土搅拌机——效率高、匀质好的“全能战士”

    针对于混凝土物料的复杂多样性,青岛迪凯设计的立轴混凝土搅拌机采用行星搅拌原理,自转与公转相结合,可以将搅拌物料快速分散,再通过强有力的搅拌作用力来实现物料的高匀质混合效果。立轴混凝土搅拌机可以根据搅拌物料的组分进行有效的计量配比,自动化程度高,大大减少了人工成本的支出。立轴混凝土搅拌机升级的搅拌工艺,完善的质量控制体系,在很大程度上推进了混凝土行业领域的高标准化进程,成为行业认可的“全能战士”。[img=,600,600]https://ng1.17img.cn/bbsfiles/images/2024/06/202406250942343383_910_5336215_3.jpg!w600x600.jpg[/img]

  • 混凝土立方体抗压强度试验对压力试验机有什么要求?

    [font=宋体]济南铂鉴测试技术有限公司根据混凝土新标准GBT50081-2019整理。[/font][font=宋体]1.[/font][font=宋体]压力试验机应符合下列规定:[/font][font=宋体]1)[/font][font=宋体]试件破坏荷载宜大于压力机全量程的20%且宜小于压力机全量程的80%;[/font][font=宋体]2)[/font][font=宋体]示值相对误差应为士1%;[/font][font=宋体]3)[/font][font=宋体]应具有加荷速度指示装置或加荷速度控制装置,并应能均匀、连续地加荷;[/font][font=宋体]4)[/font][font=宋体]试验机上、下承压板的平面度公差不应大于0.04mm;[/font][font=宋体]平行度公差不应大于0.05mm 表面硬度不应小于55HRC;板面应光滑、平整,表面粗糙度R不应大于0.80um;[/font][font=宋体]5)[/font][font=宋体]球座应转动灵活;球座宜置于试件顶面,并凸面朝上;[/font][font=宋体]6)[/font][font=宋体]其他要求应符合现行国家标准《液压式万能试验机》GB/T3159和《试验机通用技术要求》GB/T2611的有关规定。[/font][font=宋体]2.[/font][font=宋体]当压力试验机的上、下承压板的平面度、表面硬度和粗糙度不符合本条第1款中第4)项要求时,上、下承压板与试件之间应各垫以钢垫板。钢垫板应符合下列规定:[/font][font=宋体]1)[/font][font=宋体]钢垫板的平面尺寸不应小于试件的承压面积,厚度不应小于25mm;[/font][font=宋体]2)[/font][font=宋体]钢垫板应机械加工,承压面的平面度、平行度、表面硬度和粗糙度应符合本条第1款要求。[/font][font=宋体]3.[/font][font=宋体]混凝土强度不小于60MPa时,试件周围应设防护网罩。[/font][font=宋体]4.[/font][font=宋体]游标卡尺的量程不应小于200mm,分度值宜为0.02mm。[/font][font=宋体]5.[/font][font=宋体]塞尺最小叶片厚度不应大于0.02mm,同时应配置直板尺。[/font][font=宋体]6.[/font][font=宋体]游标量角器的分度值应为0.1°。[/font]

  • 【转帖】水泥混凝土用集料的技术标准

    【转帖】水泥混凝土用集料的技术标准

    1.粗集料的技术标准   普通混凝土中采用的粗集料,主要是碎石和卵石。混凝土用粗集料的质量应满足下列技术要求。  (1)水泥混凝土用粗集料的压碎值、含泥量、针片状颗粒含量等指标  水泥混凝土用粗集料的压碎值、含泥量、针片状颗粒含量等技术指标应符合表3-1的规定。[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005161841_218746_2034074_3.jpg[/img][align=left]注:① 混凝土强度为c60及以上时,必要时应进行岩石抗压强度检验,岩石的抗压强度与混凝土强度等级之比,不应小于1.5,且火成岩强度不宜低于80mpa,变质岩不宜低于60mpa,沉积岩不宜低于30mpa。   ② 混凝土强度等级等于及小于c10级的,其针、片状颗粒含量可放宽到40%。[/align][align=left]  (2)粗集料的坚固性[/align]   碎石或卵石的坚固性是指集料在气候、环境变化或其它物理因素作用下抵抗碎裂的能力。为保证水泥混凝土的耐久性,选用的粗集料应具有足够的坚固性,以抵抗冻融和自然因素的风化作用。混凝土用粗集料的坚固性用硫酸钠溶液法检验,试样经5次循环后,其质量损失应符合表3-2的规定[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005161843_218748_2034074_3.jpg[/img][align=left]注:① 寒冷地区系指最寒冷月份的月平均温度低于-5℃的地区;[/align][align=left]  ② 对于有抗疲劳、耐磨、抗冲击等要求的集料,或混凝土强度大于c40时,其集料的质量损失率应不大于8%。[/align][align=left]  ③ 若发现粗集料有显著缺陷时(指风化状态及软弱颗粒较多),应进行坚固性检验;[/align][align=left]  ④ 对同一产源的碎石或卵石,在类似的气候条件下使用已有可靠经验时,可不作坚固性检验[/align][align=left]  ⑤ 当坚固性不符合本指标要求时,可作混凝土抗冻性试验,合格后方可使用。[/align][align=left]  (3)粗集料的有害杂质含量[/align][align=left]  粗集料中常含有一些有害物质(如粘土、淤泥、云母、硫酸盐、硫化物和有机质),能够防碍水泥的水化反应,降低集料与水泥的粘附性。粗集料的有害杂质主要应控制其硫化物和硫酸盐,以及卵石中有机质的含量符合表3-2的规定。[/align][align=left]  (4)粗集料颗粒级配[/align][align=left]  粗骨料颗粒级配是否合适,直接影响水泥混凝土的技术性质和经济效果,因而粗集料级配的选定是保证混凝土质量的重要环节。水泥混凝土用粗集料的级配应符合表3-3的规定。[/align][align=center][img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005161844_218749_2034074_3.jpg[/img][/align]

  • SPC-MATS预应力混凝土梁多功能检测仪

    四川升拓检测技术股份有限公司是无损检测技术专家.提供预应力混凝土桥梁多功能检测仪,预应力桥梁无损检测,混凝土检测仪器,混凝土材质检测,混凝土缺陷检测,混凝土材料无损检测,混凝土结构无损检测等.功能强大可测试混凝土材质、缺陷,灌浆密实度(定性、定位),预应力张拉性能等,并具有丰富的图形图像处理机能。技术先进兼容国内外多种技术和本公司独创技术,测试精度高,操作简便、效率高。测试范围从15cm的试样到150m的桥梁均可。性能可靠主要元器件均由日美等国家进口,可靠性高,耐久性强。技术支持多个大尺寸的模型试验和现场测试,具备雄厚的技术支持能力。产品功能能对预应力灌浆密实度的进行快速定性测试、准确定位测试和缺陷类型判别;能测后张法灌浆后的锚杆和锚索的锚下应力、拉杆张力、悬索张力;可检测竖向锚杆长度;可检测混凝土材质、结构尺寸、缺陷(内部的空洞、剥离、表面的裂化)。

  • 混凝土防腐剂检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39707.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]混凝土防腐剂是混凝土中常见的外加剂,使用混凝土抗硫酸盐侵蚀防腐剂可以使混凝土具有抗盐类离子侵蚀、抗冻融循环破坏及高抗渗透等良好性能。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]混凝土防腐剂检测:样品名称 防腐剂 规格型号 GK-6B工程名称 巫溪至开州高速公路 WYKTJA1 合同段工程部位 隧道工程批号/编号 22022015 代表数量 3t样品数量 5L检测类别 委托检测 样品特征 液体、无悬浮、无沉淀检测依据 1.GB/T 1346-2011;2.GB/T 176-2017;3.GB/T 8077-2012;4.JC/T 1011-2021;5.JC/T313-2009。判定依据 JC/T 1011-2021《混凝土抗侵蚀防腐剂》检测项目:1.密度,2.含固量,3.碱含量,4.氯离子含量,5.氧化镁,6.pH 值,7.膨胀系数,8.抗压强度比:7d,9.抗压强度比:28d,10.抗蚀系数,11.凝结时间(初凝),12.凝结时间(终凝),13.膨胀率(1d),14.膨胀率(28d)。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font]

  • 【原创】2011年巴西建筑混凝土展CONCRETE SHOW 2011

    2011年巴西建筑混凝土展CONCRETE SHOW 2011展会地点:圣保罗移民展览中心举办周期:每年一届展会时间:2011年08月31-9月2日组展单位:上海泽嘉国际展览有限公司参展范围:●技术装备:混合搅拌机械、混凝土回收分离设备、搅拌站、配料站、自动控制系统混凝土搅拌运输车、泵车、泵及配套产品;泵送机械、布料机械、喷射机械、浇注设备、计量设备;摊铺机械、振动设备、破碎、切割、焊接、绕丝等钢筋加工机械,模板、脚手架等施工机械装备,混凝土砌块、砖瓦生产机械,混凝土破碎设备,沥青混凝土搅拌、摊铺机械设备及配套产品;水泥散装储运设备;干粉砂浆生产设备及控制系统。 ●外加剂: 各类外加剂、外加材料、外加剂生产技术设备;检测、试验仪器:分析、计量、检测仪器设备,试验检测试剂及材料。 ●各类制品:商品砂浆、混凝土砌块制品、混凝土构件、颜料等。展会介绍:南美洲建筑混凝土设备展览会(CONCRETE SHOW 2011)由Sienna Interlink展览公司、巴西混凝土工业服务供应商协会(Brazilian Association of Concrete Service Providers)和巴西波兰特水泥协会(Brazilian Association of Portland Cement)主办,其他协办单位包括:FICEM、美洲国家水泥联盟,还有超过19家来自巴西和拉丁美洲的各个协会和机构。这意味着各个地区的混凝土和水泥相关机构都参与了这次展会,保证了观众群体的专业性。巴西是南美大国,国土面积、人口和国内生产总值均居南美首位,是世界第八大经济体,同时也是最大的建筑投资市场,占据了南美市场近一半的份额,对周边国家有很强的辐射能力。同时巴西是BRIC金砖四国(巴西、俄罗斯、印度和中国)之一,被认为是世界上发展最为迅速的市场。巴西一直是中国在拉美最大的贸易伙伴,中国也已成为巴西第5大出口对象国之一。在过去的几年中巴西工业建筑以每年20%的速度递增,巴西的建筑支出总量将从2004年的1055亿美元达到2010年的1771亿美元。我国的建材产品出口目前主要集中在欧洲和北美市场,对市场潜力巨大的南美市场还没有充分开发。南美地区国民经济近几年有了很大恢复,目前正在处于快速增长的上升期,同时带动了基础建设的快速增长,因此是我国建材产品进入南美市场的最佳时机。参加此次展览会对扩大产品宣传,开拓南美各国建材市场是非常有利的。获得了2014年世界杯举办权以及2016年奥运会举办权,将毫无疑问带动巴西经济的腾飞!上届回顾:上届展会共有来自全球20个国家的400多家参展商与27,145名专业观众参加,展出面积36500平方米。明年的展会规模将会扩大一倍,成为拉丁美洲最大的混凝土工业技术盛会。联系方式 上海泽嘉展览服务有限公司联系人:王先生 手机: 18964530693传真:[/fo

  • 【求助】外加剂组分的选择提高混凝土强度的研究

    求解脱,有关外加剂组分的选择提高混凝土强度的研究,这问题困扰了小妹好几天,跪求高手相助!谢谢!! 详细说明:C30混凝土强度发展,3天强度为50%,7天为80%,28天95%。水泥为P042.5水泥(水泥强度28天为51Mpa),粉煤灰达到2级标准,砂子为河砂和人工砂各半,外加剂为聚羧酸减水剂。实际生产中,该配合比配制的混凝土出机坍落度为200mm,流动性、和易性、保水性均良好。在配合比不变的情况下(不改变水泥、粉煤灰、砂石等原材料),如何通过调整外加剂的组分提高混凝土的28天强度达到120%?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制