当前位置: 仪器信息网 > 行业主题 > >

气相色谱质谱复杂物分析

仪器信息网气相色谱质谱复杂物分析专题为您提供2024年最新气相色谱质谱复杂物分析价格报价、厂家品牌的相关信息, 包括气相色谱质谱复杂物分析参数、型号等,不管是国产,还是进口品牌的气相色谱质谱复杂物分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱质谱复杂物分析相关的耗材配件、试剂标物,还有气相色谱质谱复杂物分析相关的最新资讯、资料,以及气相色谱质谱复杂物分析相关的解决方案。

气相色谱质谱复杂物分析相关的论坛

  • 气相色谱分析~基质复杂

    [color=#444444]在用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析实际样品时,发现基质成分很复杂,干扰目标组分,各位高人有什么经验可以分享一下吗,非常感谢![/color]

  • 气相色谱-质谱在药物分析中的应用

    [em26] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱在药物分析中的应用(一) 气-质联用技术是药物分析学科领域中主要和基本的研究手段和方法,发展十分迅速。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(Gas chromatography,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url])是近年来应用日趋广泛的分析技术,特别适用于具有挥发性的复杂组分的分离、分析,由于是以气体作为流动相,所以传质速度快,一般的样品分析可在20-30s左右完成,具有分离效能高,灵敏度高的特点,在有对照品的条件下,可作定性、定量分析,但对重大事件或有争议的样品不能做出肯定鉴定报告,必须连接如质谱的检测器。另外对于不能气化的样品则需要作衍生化处理后再分析。 质谱(Mass Spectrnum,MS)是强有力的结构解析工具,能为结构定性提供较多的信息,是理想的色谱检测器。气-质联用([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS)法对药物分析的发展起到很大促进作用,尤其是在含量测定,有关物质检查、质量标准制定、成分分析以及药物动力学研究的代谢物分析、药物及代谢物的体内浓度分布等试验中,成为有力的分析工具。由于利用了色谱的高分离能力和质谱的高鉴别特性,可对复杂的混合样品进行分离、定性、定量分析的一次完成,是一种完美的现代分析方法。文章综述了近年来气-质联用在以上领域的应用实例。一、含量测定和有关物质检查 2005年,同济大学的林淑芳等采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法,分析比较大蒜中的挥发油以及大蒜精油的化学成分。实验仪器:Agilent HP6890/5973MSD联用仪,配NIST98谱库检索系统HP-5MS毛细管柱(30m× 0.25 mm ×0.25μm),载气:氦气(纯度99.99%),有机相针式滤器(13 mmX 0.45 μm)。色谱条件:进样口温度250℃ ;分流比为1:50;总流速50ml/min ;初始温度设定4O℃,以5℃/min 升温至8O℃,再以1O℃/min 升温至220℃;流速1.0 mL/min,恒流速;接口温度230℃;质谱质量扫描范围为10-500 amu,扫描速度1O次/S。用化学计量学方法(非负矩阵因子分解(NMF))解析解析两个色谱图中重叠峰,通过NIST谱库检索,确定了大蒜萃取液中的37种化学成分,大蒜精油中的32种化学成分,其中含硫化合物分别为34和28种。并用峰面积百分比法计算各化学成分的峰面积相对百分含量。 2005年广州市胸科医院的钟洪兰等采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法检测大青叶、板兰根、连翘、岗梅根的有机磷农药的残留。仪器:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS连用仪,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]:6890系列;检测器:MS 5973系列;色谱柱:HP一5MS,30 m×0.25 mm×0.25μm;气化室温度为250℃,载气:氮气,1 mL/min,恒流;进样方式:1μL;进样口温度230℃;接口温度280℃;柱升温程序:100℃保持2 min。6℃/min升至140℃,保持1min,8℃/min升至180℃,保持1min,15℃/min,升至280℃,保持2min,质量扫描范围30~450nm;溶剂延迟:2min。实验中[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]部分对微量的有机磷农药具有很强的分离能力,毛细管柱能在比较短的时间里很好地把几种有机磷农药分离开来,而质谱鉴别有机磷农药灵敏度高,准确性好。 2005年四川省人民医院药剂科余继英等首次采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法测定复方薄荷脑滴鼻液中薄荷脑及樟脑含量。仪器:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS-QP5050A,日本岛津);DM-5弹性石英毛细管柱(0.25mm×30m,Dikma公司)。色谱条件:进样口温度:200℃;接口温度:250℃;载气:氦气;流速:1.0ml/min;柱前压:67kPa;分流比:20:1;升温程度:柱温80℃恒温2min,以5℃/min的速率升温至150℃,维持3min后结束。质谱条件:EI源(70ev);在SIM 模式下,于8.50min~8.84min时选择碎片离子95对樟脑进行检测,8.84min~9.15min选择碎片离子71对薄荷脑进行检测,13.00min~14.50min选择碎片离子144对乙萘酚进行检测。实验利用谱库检索帮助定性和SIM方式定量可排除杂质干扰,增加灵敏度。 2003年三峡大学化学与生命科学学院的李瑞萍等采用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS法测定苯丙醇胶丸中苯丙醇含量及其杂质苯丙酮的含量。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]:Thermo Quest Trace [url=https://insevent.instrument.com.cn/t/Mp]gc[/url];质谱仪:Finnigan Trace MS,EI电离源。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件:色谱柱为RTX-5MS(15m×0.25 mm×0.25µ m),载气为高纯氦气,恒流速1.5mL/min,进样口温度250℃ ;柱温:40℃ 保持1min,以l0℃ /min 速率升温至130℃ ,再以30℃/min 速率升至250℃ ,保持3min;分流模式进样,分流速度10mL/min;接口温度200℃。质谱条件:EI电离源,电子能量70eV;离子源温度200℃ ;发射电流250A,检测器电压200V,全扫描,质量范围:35-80amu,对采集到的质谱图利用NIST谱库进行检索。。中国药典所载醋酐-吡啶乙酰化法属经典测定方法,测定结果准确,但操作复杂,费时,且主要试剂吡啶对人类身体健康有害。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS法操作简便、快速、准确,适于进行大批量生产的例行分析及药物放置过程中的质量监控。

  • 气相色谱法与其他的一些分析方法的比较

    气相色谱法是近代仪器分析方法之一。它在分析化学中占有一定的地位。但是气相色谱法决不是万能的,在很多场合下,它必须与其他仪器配合,才能解决问题。因此,要根据具体分析对象,选择合理的分析方法。 1.与化学分析法比较 化学分析是按物质的特殊化学反应进行分析的。在这一方面前人已积姨了丰富的经验,大部分方法亦属于经典方法。其特点是所用仪器简单、价廉、操作也不复杂,且可进行同族、同系物的总含量测定(如滴定、氧化、还原等方法),对于单个组份的测定,准确可靠,故可作气相色谱法的对照、旁证方法。其缺点是不能测定化学性质迟钝或性质极为相近的复杂物质。气相色谱法分析这类物质却轻而易举。但色谱定量时要做校正因子、校正曲线,即使只分析一个样品也要这样做,故建立方法费时。色谱法难以分析腐蚀性或反应性较强的物质,如HF, OE、过氧化物等,而化学法分析则甚为简便。另外,在处理一些特殊样品的定性、定量工作中,亦需与化学法结合起来才能解决。如经基的脂化、.经基的硅醚化、二次加工、油品的酸碱处理等。所以需要求购仪器仪表,这样有实际的比照才会做出明显的区别。 2.与光谱、质谱法比较 气相色谱法的最大优点是易分离。分析多组份混合物,光谱(红外,紫外光谱)、质谱法就不及色谱法。而且一般来说色谱法的灵敏度与质谱接近,比光谱要高,造价却比光谱、质谱仪都低。色谱法的缺点主要是难以对未知物分析定性,如果没有已知的纯样品或已知纯样品的色谱图,就很难判断某一色谱峰究竟代表何物。而质谱则既能分析多组份混合物,且可测定出未知物的分子沮。用光谱法可以测出分子中含有那些官能团。这些都是气相色谱法所不及的。所以把色谱与质谱、光谱结合起来联用,就可以解决未知物的分析问题,发挥更大的作用,成为目前解决复杂混合物强有力的先进手段之一。这种结合包括收集色谱分离后的单组份或窄馏份,用光谱、质谱定性。色谱一质谱联用,色谱一光谱联用等。国内利用毛细管色谱一质谱联用仪成功地解决了一些油品的组份分析。不论从速度或效果看,都是十分理想的。比如最好的鉴别仪器是在线微波水分仪等等。 3.与精密分馏比较 色谱柱的效能和精馏塔一样,也是用理论板数来度量。但获得某一纯度分离所需要的板数,色谱法比精馏法要高得多。例如:分离同一有具体名称的样品,精馏塔需要100块塔板,色谱柱则需要10000块塔板。这是因为色谱柱中每一时刻都只有某一小部分柱在起分离作用,而精馏中却是在全部时间里全部塔板同时起分离作用。但提高色谱柱理论板数是较容易实现的,因此,用大型制备色谱可以制出纯度高达99.99%的纯物质,比精馏产品纯度高得多,所需时间也较短,但处理量小是其不足之处。 4.与经典的测定物化常数比较经典法测定物化常数,通常手续麻烦,时间较长,且需用纯物质。气相色谱法的特点是设备简单,操作方便,可以同时测定两种或多种物质相差微小的物化常数,如分配系数、活度系数、溶解热、自由能、自由摘等,而且不必分离杂质,一次可测出多种数据。但色谱法的缺点是要作一些简化假设(如载体不起作用是惰性的等),数学处理较复杂,数据精度也较差。

  • 【分享】大体积-复杂基质进样-气相色谱-质谱联用(LV-DMI-GC-MS)检测生菜与豌豆中的农残

    [B]大体积-复杂基质进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用(LV-DMI-GC-MS)检测生菜与豌豆中的农残[/B]Richard Fussell, Central Science Laboratory, York, N. Yorks, UKDiane Nicholas, ATAS UK, Hardwick, Cambridgeshire, UK1.前言 由于乙酸乙酯对不同极性农药的回收率普遍较高,常作为食品中农残检测的有机溶剂而被广泛使用。提取完的样品在用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析之前,通常需要经过某些净化处理去除样品中的干扰基质(例如固相萃取与凝胶渗透色谱),否则[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的进样口与色谱柱很容易受到污染,进而降低色谱性能。然而,这些净化步骤不但会增加样品前处理的时间而且会加大溶剂的使用量,增加分析成本。 复杂基质进样模式(DMI)是一种色谱分析中全新的进样模式:将样品放置于一根一端开口的DMI小管中,小管置于衬管内,然后将该衬管置于OPTIC多模式进样系统的进样口中。液体样品和固体样品都可以放置于DMI小管中。当大体积的液体样品被导入到DMI小管中,首先大量的溶剂在低温下进行排除,然后进样口升温将目标分析物汽化,并被载气转移到色谱柱中,而那些难挥发的基质仍被截留在小管中。衬管可以手动或自动更换,然后进行下一个样品分析。衬管可重复使用,DMI小管用过后可以丢弃。由于不挥发的复杂基仍截留在DMI小管中而未进入色谱系统中,所以进样前样品不需要净化等前处理步骤,亦不会给色谱系统造成污染。[~189454~]

  • 【分享】大体积-复杂基质进样-气相色谱-质谱联用(LV-DMI-GC-MS)检测生菜与豌豆中的农残

    大体积-复杂基质进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用(LV-DMI-GC-MS)检测生菜与豌豆中的农残Richard Fussell, Central Science Laboratory, York, N. Yorks, UKDiane Nicholas, ATAS UK, Hardwick, Cambridgeshire, UK1.前言由于乙酸乙酯对不同极性农药的回收率普遍较高,常作为食品中农残检测的有机溶剂而被广泛使用。提取完的样品在用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析之前,通常需要经过某些净化处理去除样品中的干扰基质(例如固相萃取与凝胶渗透色谱),否则[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的进样口与色谱柱很容易受到污染,进而降低色谱性能。然而,这些净化步骤不但会增加样品前处理的时间而且会加大溶剂的使用量,增加分析成本。复杂基质进样模式(DMI)是一种色谱分析中全新的进样模式:将样品放置于一根一端开口的DMI小管中,小管置于衬管内,然后将该衬管置于OPTIC多模式进样系统的进样口中。液体样品和固体样品都可以放置于DMI小管中。当大体积的液体样品被导入到DMI小管中,首先大量的溶剂在低温下进行排除,然后进样口升温将目标分析物汽化,并被载气转移到色谱柱中,而那些难挥发的基质仍被截留在小管中。衬管可以手动或自动更换,然后进行下一个样品分析。衬管可重复使用,DMI小管用过后可以丢弃。由于不挥发的复杂基[~189471~]

  • 实验室分析仪器--气相色谱质谱联用仪数据处理系统介绍

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术,以其优异的分离定性特点,被广泛地应用于分析复杂混合物中的挥发性组分中。[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]的使用过程:将在通常[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]上优化后的色谱条件移植到[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]上,全扫描分析进行定性,然后选取目标化合物的特征质量进行选择性离子扫描,进行定量分析。在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用仪中,采用四极杆作为质量分析器是其中的主流。由于四极杆采用的时域性分辨,因此在定量过程中通常推荐采用选择离子扫描模式(SIM),采用多通道SIM模式可对样本中的多个化合物实现定量检测,其检测灵敏度较全扫描模式可提高10倍以上,同时数据采集频率也可获得极大的提高,更好地匹配高速[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url],对于SIM模式定量检测而言核心是选择目标化合物的特征离子,确保附近的共流出化合物对其没有干扰,在SIM模式下获取的质量色谱图的数据处理与常规的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]数据处理基本一致,在此不予深入讨论。[b]一、定性谱图的获取[/b][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱联用技术的另一个主要应用是复杂混合物中组分的定性,定性的基础是流出物的质谱图。采用全扫描方式获得的总离子流与FID产生的谱图(图1)极为相似(应该注意的是由于响应灵敏度的不同强度有所差异),每一个点的强度相当于该时间段所有离子丰度的总和,根据归一计算每一个点可获得一张对应的质谱图。[img=Compress_1.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249047244813.jpg[/img] 图1 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]总离子流图(a)及单点对应的质谱图(b)然而,其质谱图通常会包含一些来自于离子源污染物、柱流失物、基质干扰物、共流出化合物所产生的离子,在分析复杂基质中的痕量物质时,这一现象尤为突出,样本中的基质就会不可避免地被引入检测过程中,对目标化合物的质谱图产生严重的干扰。因此,通过对质谱数据的后处理,将目标化合物的质谱图从原始谱图中提取出来,根据新建的“纯净”的质谱图进行图库检索或标样谱图比对,可使目标化合物的定性结果更加准确系统的背景噪声结构相对比较简单,包含空气中组分的分子离子(18、28、32、40、44等)以及部分色谱固定液的流失(高温条件下),扣除此类干扰较为简单,通常采用从目标化合物的质谱图中减去其周围本底的质谱图。丰度较高的共流出物及复杂基质干扰物的离子,使目标化合物的定性变得更为困难,简单的扣“本底”的方法无能为力。目前大部分[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]质谱软件均不具备重叠峰自动判别以及自动谱图解卷积提取功能,因此在进行谱图提取时不能简单地扣除背景进行谱图检索。对总离子流谱图中的峰进行定性时,首先要判断其是否为重叠峰。判断标准一般为该峰的前肩位置和后肩位置的质谱特征是否一致。如果存在显著差异,表明该峰至少由两个或更多物质重叠而成。如图2所示,图中154号峰峰形基本正常,但前肩和后肩的质谱图存在显著性差异,可认定其为重叠峰。如果发现重叠峰,选择两个谱图中差异大的离子,获取离子谱图,根据谱峰对比确认重叠峰。选择特征离子134和146(图3),可发现两个质量色谱图存在峰错位,进一步验证了上述判断。为获得第一个物质的质谱图,如果选择位置a作为原始数据,那么它的背景应选择在位置b进行扣除。类似于双波长光谱的背景扣除,因为位置a所包含的第二个物质的量与位置b相等。图3(I,Ⅱ)给出了准确减扣后的两个物质质谱图,相互之间的干扰被完全去除,定性结果更加准确。 [img=Compress_2.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249049364498.jpg[/img] 图2 总离子流图及重叠峰前肩和后肩质谱图 [img=Compress_3.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249051332596.jpg[/img] 图3 重叠峰干扰扣除及对应的两个物质的质谱图为了能够达到更好的重叠峰拆分效果,化学计量学的方法被应用于质谱数据后处理中通过数学计算对质谱数据进行去卷积处理,以提取“干净”的质谱图。目前己商品化的去卷积谱图拆分软件有美国国家标准技术研究院(NIST)开发的一套软件 AMDIS( Automated MassSpectral Deconvolution& Identification System)、美国Leco公司色质谱工作站内含的去卷积算法等。图9-9显示了Leco工作站对一段总离子流谱图的重叠峰拆分结果,根据算法在一个前肩峰中拆分出5个物质。其中A为该时间点的质谱图,B为去卷积拆分后6号物质的谱图,C为NIST谱图库中的标准谱图。该结果表明,采用去卷积算法可以有效地获取准确的谱图,解决复杂物质分离分析时共流出物质的干扰。 [img=Compress_1.jpg]https://i4.antpedia.com/attachments/att/image/20220127/1643249053444127.jpg[/img] 图4 去卷积分法拆分重叠峰结果显示去卷积谱图分析算法一般包括以下部分。(1)噪声分析:排除噪声对后期数据分析的影响。(2)特征离子提取:全谱图分析,确定化合物的特征离子及其峰形。(3)谱图去卷积:根据特征离子及其峰形将这段时间范围内的离子进行相关性归属,获得纯净的谱图。当两个共流出化合物的保留时间偏差大于2个以上数据采集点时,才能获得准确的拆分如果流出时间完全一致,无法获得拆分,定性结果往往只能显示丰度较高物质,同时匹配度有所降低。[b]二、谱图的定性分析[/b]通常在获取化合物纯净的质谱图后,通过检索的方法进行定性分析。谱图检索是一项比较成熟的技术。NIST等积累了大量的实验数据并形成了标准质谱谱图库,这些数据库被安装在各种[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]工作站上,极大地简化了定性的过程。但在检索的基础上,人工解析[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]得到的质谱图,有时也是非常必要的,尤其对于同分异构体、同系物以及未知化合物的定性分析[b]1.分子离子峰的确定[/b]EI质谱图中有分子离子的话,它应该出现在谱图的最高质荷比区,但是,质谱图上质荷比最高的离子不一定就是分子离子,仍需进一步检验确定,以便排除各种干扰。一个分子离子必要的但非充分的条件是:(1)一般是最高荷质比的离子,但是,某些含氧含氮的化合物,如醚、酯、胺、酰胺氨基酸酯、氯化物等,往往在比母峰多一个质量单位处出现一个峰(M+1),同样,有些分子,如芳醛、某些醇和含氮化合物易失去一个氢而生成M-1离子(2)分子离子必须能够通过丢失合理的中性碎片,产生谱图中高质量区的重要离子。通常,分子离子不可能失去质量为4~14和21~25的中性碎片而产生重要的峰。(3)分子离子对应的分子式应符合“氮规则”。假若一个化合物含有偶数个氮原子,则分子离子的质量为偶数,含奇数个氮原子的化合物,分子离子的质量为奇数,其他有机化合物,分子离子的质量一般为偶数。(4)分子簇丰度分布符合同位素峰规律:同位素峰分布强度分布规律符合(aX+bY)n展开式。其中n为该元素的个数,a,b分别为不同同位素的分布比率,如C为3:1,Br为1:1分子离子峰的强、弱甚至消失取决于分子离子的稳定性,也就是和化合物的结构类型密切相关。一般而言,相似结构或分子量情况下,分子离子峰的强度:芳香族共轭烯烃脂环化合物烯烃直链烷烃硫醇胺→酸支链烷烃醇。[b]2.碎片离子解析[/b](1)研究高质量端离子峰。质谱高质量端离子峰是由分子离子失去中性碎片形成的。从分子离子失去的碎片,可以确定化合物中含有哪些取代基。常见的离子失去碎片如表91所示。(2)研究低质量端离子峰。寻找不同化合物断裂后生成的特征离子和特征离子系列。应该注意的是上述离子系列在不同化合物的质谱中可能表现出的离子丰度相差比较大,另外有些离子系列在谱图中只出现其中的几个离子,芳基对应的离子丰度一般比较低。

  • 【分享】液相色谱/质谱(LC /MS)联用技术在环境污染物分析中的应用

    摘 要 本文综述了液相色谱- 质谱联用(LC /MS)技术的分类、发展,以及近年来国内、外利用此技术分析环境污染物的应用,为我国环保监测部门开展此方面的工作提供参考。色谱和质谱联用技术是对复杂样品进行定性、定量分析的有力工具,其中[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/质谱联用技术发展较早, 已广泛用于痕量有机物的定性和定量分析 ,但对极性较大、热稳定性强、难挥发性的样品使用液相色谱/质谱联用技术(LC /MS)分析效果更好。目前,这一技术已突破了色谱、质谱连接的难题,多种商品化的接口相继问世,各领域的分析工作活跃地开展起来。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=189810][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]在环境污染物分析中的应用.pdf[/url]

  • 【网络会议】:2015年08月18日 10:00 全二维色谱在复杂样品分析中的应用

    【网络会议】:2015年08月18日 10:00 全二维色谱在复杂样品分析中的应用

    【网络会议】:全二维色谱在复杂样品分析中的应用【讲座时间】:2015年08月18日 10:00【主讲人】:张艳海赛默飞世尔公司色谱质谱部应用研究中心液相色谱应用工程师,在赛默飞一直致力于液相色谱方面的应用方法开发,主要应用方向为多维色谱分离、online-SPE技术在药物、食品和环境中的应用,积累有丰富的分析经验。【会议介绍】 随着科学研究的不断深入,复杂样品的分析已成为热点。一维色谱很难满足要求。多维色谱分离技术可提供更大的峰容量,有效减少色谱峰重叠,从而提供更多更准确的信息,已获得越来越多研究人员的关注和应用。 赛默飞特色的双三元液相色谱在多维色谱分离方面具有较高的自动化和灵活性,易于使用,可轻松实现二维或多维色谱分离应用。本次讲座将给大家介绍赛默飞双三元液相色谱在中药和蛋白分析中全二维液相色谱分离技术的应用。 -------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年08月18日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16085、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 东西分析和厦门质谱公司合作推出的全二维气相色谱飞行时间质谱仪通过专家测评

    仪器信息网讯 2015年10月18日,中国分析测试协会仪器评议组对北京东西分析仪器有限公司与广州禾信分析仪器公司联合研制的GC×GC TOF MS 3300全二维气相色谱飞行时间质谱仪进行现场测评。该活动作为BCEIA展会同期开展的活动,评测结果将在展会期间进行发布。  测评专家组成员包括:中国分析测试协会研究员汪正范、中石化石油化工研究院高级工程师苏焕华,中国农业大学教授李重九,国家生物医学分析中心教授杨松成,中国科学院科学仪器研究中心研究员于科岐、国家生物医学分析中心研究员赵晓光,清华大学教授张新荣、北京大学教授刘虎威,中国科学院化学研究所研究员王光辉。北京蛋白质组研究中心研究员魏开华任测评组组长。北京东西分析仪器有限公司合作伙伴广州禾信分析仪器有限公司董事长周振也带领广州禾信项目团队一同参加了本次活动。  全二维气相色谱飞行时间质谱的研发是对当前国内外常用的一维气相色谱质谱的一次革命,为解析复杂物质与检测未知物质提供了一个强有力和新颖的解决手段。目前国际上只有个别公司掌握了这项尖端技术。GC×GC TOF MS 3300全二维气相色谱飞行时间质谱仪作为全二维色谱和质谱彻底整合的产品,国际尚属少见。通过此项目的研究,东西分析和广州禾信获得了多个相关专利。  本次会议由魏开华主持。项目组向专家组汇报仪器研制情况,介绍测评方案。专家组针对测评方案提出意见并进行了现场测评。并对现场测评结果进行了总结和补充。  GC×GC TOF3300的新颖性和独创性引起了专家的极大兴趣。针对专家的疑问,项目组现场做样和演示,通过分析结果解答专家的问题,整个互动过程气氛活跃。http://img1.17img.cn/17img/images/201510/insimg/0f81a93f-b3ae-42ef-bce8-53a094d5374c.jpg  项目技术负责人、北京东西分析仪器有限公司生命科学及生物技术首席科学家薛恒钢汇报仪器研制结果  项目技术负责人、北京东西分析仪器有限公司生命科学及生物技术首席科学家薛恒钢介绍了产品的设计理念、立项依据、产品研制过程、突破的关键技术点和仪器的检出限等性能指标。据介绍,此仪器主要应用在大气中有机物分析、地质石油中组分分析、现代农业研究、冶金环保等领域。薛恒钢还以柴油组分分析为例介绍了仪器的应用特点。除此之外,薛恒钢还对比了该产品与国外同类产品的分析结果。http://img1.17img.cn/17img/images/201510/insimg/687222a7-70d7-4bd0-818b-399d625c8ef1.jpg专家组对仪器进行现场测评http://img1.17img.cn/17img/images/201510/insimg/c61dd797-fd21-48b4-a469-fd132b816bca.jpg柴油样品一维TIC图(GC Q MS)  由柴油样品的一维色谱TIC图可以看到,一维色谱分离化合物数目不到200个。http://img1.17img.cn/17img/images/201510/insimg/fc1d8f5a-c227-4137-a873-9060d7527a7d.jpg柴油样品的全二维色谱TIC图http://img1.17img.cn/17img/images/201510/insimg/07c512dc-79d5-4553-aeb9-1fb238fbc18c.jpg柴油样品的全二维色谱TIC图3D显示  通过全二维色谱可以对超过1500个化合物进行定性。  会议最后,参会专家对该款仪器予以了积极的和正面的肯定,为能见证国产仪器的跨越式的进步感到十分欣喜。专家表示希望东西分析继续大胆创新,不断推出具有自主知识产权的优秀高端科学仪器产品,勇敢攀登世界分析仪器的顶峰。  另外,专家特别称赞东西分析和广州禾信的这种合作模式,为国内仪器厂商合作共赢树立了一个良好的典范。广州禾信秉承“做中国人的质谱仪器”的理念,在中国质谱仪的研发和应用方面,取得了丰硕的成果。http://img1.17img.cn/17img/images/201510/insimg/8f7bc677-9ae9-4b60-9fca-2f7933a2fb2a.jpg参会全体人员在东西分析楼前合影

  • 【分享】复杂样品分析的基本思路

    复杂样品是指组分种类多、含量差别大、已知信息少.几乎为一黑箱的复杂混合物。这样的样品在生物、环境、材料中占大多数.例如中药提取物或环境污染物.来源于自然界,常常含有从无机到有机、从离子性、强极性到非极性、从小分子到大分子、从位置异构体到对映体、从常量到痕量的上百种成分,而且这些成分大都是未知的.即使是曾被发现的成分,也很难获得纯品或对照品,与大量未知物混于一体,无异于未知化食物。复杂样品的分析,首先需要弄清组成这一样品体系的各种组成及其比例关系,了解组成这一体系的基本组分分布,在此基础上,还需对每一组成进行详细了解,如结构确定,为最终阐明组成一结构一功能提供依据(或根据组成一功能关系.先确定有效组成,再确定这些有效组成的结构).因此,对复杂样品的分离分析,可按三个层次进行研究:(1)利用高效色谱进行复杂混合物的系统分离分析,获得基本组成色谱峰及其比例关系:(2)混合物组成成分的结构鉴定,这包括离线各种光谱、质谱的综合鉴定及色谱和各种技术的在线联用,尤其是联用技术不仅可以进行快速签定,而且由于减少了处理步骤,避免了处理过程造成的组分损失,因此具有更高的定量可靠性,对含量少的组分也可以进行定性(这些含量少的组分是比较难于得到纯品的);(3)尽管高效色谱和各种光谱、质谱的联用技术可以极大地促进复杂混合物的分析,但应该看到联用技术—般要求色谱能分离获得纯色谱峰,才能较好地获得其光谱、质谱,进行较好的分析.由于样品组分复杂,在实际分离中即使采用多柱系统在最优化条件下,仍会有大量的不同程度重叠峰,因此,利用先进的算法和计算机,结合色谱和各种光谱、质谱规律,进行多维分析信号与信息的综合处理,解决重叠峰的解析和定性、定量,最终完成复杂样品的分析任务.

  • 热重红外气相色谱质谱联用技术分析未知水性样

    [font=微软雅黑][font=微软雅黑]实验室经常需要分析未知混合物确定其主要成分、获取其中的添加剂或污染物种类以及含量[/font] [font=微软雅黑]等信息。这些信息在某些应用场合是至关重要的,例如,剖析竞争对手产品配方或者评价产[/font] [font=微软雅黑]品的指标是否遵循行业规范等等。光谱分析技术在研究预分离纯组分的样品方面已经建立了[/font] [font=微软雅黑]大量较为成熟的方法,分离和离析过程可以借助热重分析仪、傅立叶变换红外光谱仪和气[/font] [font=微软雅黑]相色谱仪等完成。而对于复杂混合物样品体系,将这些常规技术进行联用则是更为有效的[/font] [font=微软雅黑]检测分析手段。珀金埃尔默公司可提供全套成熟的联用解决方案,在本案例中,通过使用[/font] [font=微软雅黑]TL-9000型传输管线有效的将使用产品TG-IR-GC/MS 热重-红外-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱联用进行联用,可用于分析复杂 样品体系。三联机解决方案如图1所示。[/font][/font][font=微软雅黑][font=微软雅黑]  本文选取了近期典型的案例:分析实验室对一组染色的[/font] [font=微软雅黑]水性样品进行了系统分析。由于水对光谱分析有强烈干扰,所以样品均在在室温预[/font] [font=微软雅黑]先进行干燥处理。当干燥过程完成后,将所得到的薄膜[/font] [font=微软雅黑]从烘干盘上剥下,然后置于干燥空气流中进行短暂加[/font] [font=微软雅黑]热。从所得薄膜上取部分样品放入与红外光谱仪联机[/font] [font=微软雅黑]的热重分析仪当中。样品重量为[/font][font=微软雅黑]20毫克,在氮气气氛 下以20o C/min的速度从20度加热到850度。在加热过程 中,样品所释放的气体通过TL-8000型加热传输管线和 接口被导入红外光谱仪的气体样品池。因此,在热重分 析过程中,可以同时对样品所释放出的气体进行实时红 外光谱分析。图2所示为热失重与温度的关系曲线。[/font][/font][font=微软雅黑][font=微软雅黑]  在[/font][font=微软雅黑]20o C到150o C之间对应样品中残余水分1.38%的失重 过程。在200o C到410o C之间,存在一个归属于挥发性 组分挥发的显著失重台阶,在该温度区间同时还伴随着 聚合物的初始分解过程。聚合物部分主要分解过程发生 在410o C到510o C的温度范围内。[/font][/font][font=微软雅黑][font=微软雅黑]  在热重分析仪的热分离过程中,样品所释放的气体被实[/font] [font=微软雅黑]时输送到傅立叶变换红外光谱仪中进行红外数据采集。[/font] [font=微软雅黑]热重[/font][font=微软雅黑]-红外数据包含了每间隔约8秒采集一次所得到的一 系列的谱图。标准的红外数据显示格式为吸收率对波数 曲线,样品逸出气体的红外光谱图采集密度大约为每升 温2度采集一组谱图。热重-红外联用的Time-Base软件 还可以辅助绘制三维坐标图谱,可同时显示叠加的红 外曲线随时间或者温度以及波数的关系,用户可以非常 直观的了解样品在整个温度平台中的热重-红外数据变 化情况(如图3示)。这有助于阐述样品分解过程的动 力学,确定选取哪个温度区间展开精细分析。此外,分 析人员还可以查看任何特定波长对应的吸收与时间的谱 图,以跟踪所关心的分解产物浓度对时间,乃至温度的 关系。[/font][/font][font=微软雅黑][font=微软雅黑]  通过观察图[/font][font=微软雅黑]3的数据,作者观察到逸出气体中包含一种未 知物质,在280o C处该物质的逸出速率达到大。选择该 温度下的谱图进行数据库比对分析。从这个数据库搜索 发现这种未知物质属于三乙二醇二苯甲酸酯-或者结构类 似的物质。图4显示的是未知样的红外谱图以及搜索到的 匹配物质的红外谱图。图5列出了其他匹配物质,一起 列出的还有每个匹配物的相关统计匹配程度。[/font][/font][font=微软雅黑][font=微软雅黑]  然后,[/font][font=微软雅黑]TL-9000接口被用来进行后续分析,以证实样品 中的未知物质的鉴定准确度。选取该物质红外吸收浓 度达大值时进行分析,将红外气体池中的气体样品 送到[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱仪中。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]数据如图6所示。[/font][/font][font=微软雅黑][font=微软雅黑]280°C时从热重分析仪逸出的物质,进一步用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]色 谱解析,然后用质谱分析仪评估,由此未知分子结构被 打碎成为组分离子,根据它们在磁场中飞行响应的不同 加以鉴别。结果与已建质谱数据库的数据作比较。 国家科学技术研究院(NIST)的质谱数据库搜索未知物质 形成的输出结果如图7示。[/font][/font][font=微软雅黑][font=微软雅黑]  未知物质经证实为二乙二醇二苯甲酸酯,化学结构与[/font] [font=微软雅黑]红外分析确定的物质非常相似,这两种物质红外谱图[/font] [font=微软雅黑]不能进行有效鉴别。[/font] [font=微软雅黑]在文献中搜索二乙二醇二苯甲酸酯的化学特性显示该[/font] [font=微软雅黑]物质属于一种化学性质稳定、具有较高沸点的清澈液[/font] [font=微软雅黑]体。该物质微溶于水,与聚合物材料相容性较好。尤[/font] [font=微软雅黑]其是与聚乙烯醇和聚氯乙烯能够极好的相容,因此常[/font] [font=微软雅黑]被用于聚乙烯醇均聚物和共聚物乳液的增塑剂。此[/font] [font=微软雅黑]外,它也被用做聚氯乙烯涂层、食品包装粘结剂和涂[/font] [font=微软雅黑]料,以及化妆品工业的增塑剂等等。由于在老鼠活体[/font] [font=微软雅黑]实验中显示该物质具有表观毒性,因此将其作为增塑[/font] [font=微软雅黑]剂使用和如何妥善处理含有这种物质的废弃物时需要[/font] [font=微软雅黑]法规加以监管。[/font][/font][font=微软雅黑][font=微软雅黑]  热重[/font][font=微软雅黑]-红外的进一步分析显示在300到400°C之间样品 中的聚合物分解释放出醋酸,如下图示;因此,样品 中的聚合物极有可能是聚醋酸乙烯酯:[/font][/font][font=微软雅黑][font=微软雅黑]  小结:将多套分离分析仪器联机进行测试的[/font][font=微软雅黑]“联用技术”, 如TG-IR-GC/MS 热重-红外-[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]/质谱联用技术,配合强 大的搜索软件以及完善的谱图数据库,赋予分析人员 能够对未知水性混合物进行有效全面的分析,其中添 加的各种组分得以鉴别。[/font][/font][font=Calibri] [/font]

  • 气相色谱- 质谱/质谱联用仪进行亚硝胺分析(一)

    Alex Chen1, Hans-Joachim Huebschmann2, Li Fangyan3, Chew Yai Foong3 and Chan Sheot Harn31Alpha Analytical Pte. Ltd., Singapore 2Thermo Fisher Scientific, Singapore, 3Health SciencesAuthority, HSA Singapore[b]关键词[/b]亚硝胺,食品安全,啤酒,TSQ 8000,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]- 质谱/ 质谱,定量分析,确认,自动SRM,TraceFinder[b]简介[/b]亚硝胺是N- 亚硝基烷基胺一类化合物的通用名。已知的含有不同烷基基团的这类化合物有很多。最简单的N- 亚硝基烷基胺含有两个甲基,即N- 亚硝基二甲基胺(NDMA)。亚硝胺是常见的剧毒化合物,对人和动物都有强致癌性,高剂量的摄入会导致严重的肝损伤和内出血。食物中的亚硝胺主要是由亚硝酸生成的。亚硝酸通常作为防腐剂被添加到肉及肉制品中,以避免肉毒杆菌造成的中毒。维生素等有抗氧化作用的添加剂能抑制亚硝酸向亚硝胺的转化。亚硝胺的另一个来源是由氮的氧化物与生物碱(alkaloids)反应产生,这一反应在啤酒生产时干燥已萌发的麦芽的过程中已有报道。由于麦芽和啤酒中的亚硝胺水平在发酵过程中已大幅降低,需要更好的分析表现才能胜任此检测任务。而除了其它各项日常食品的常规控制项目之外,啤酒中麦芽的低剂量亚硝胺检测也是必须的。已采用多年的“经典”亚硝胺检测方法是利用串接热能分析仪(TEA)检测器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进行分析的。选择特殊的TEA 检测器是由于该检测器能够从亚硝胺生成NO,NO又能与臭氧进行特异性的化学发光反应,从而实现特异性的亚硝胺检测。而如今,随着对检测方法的灵敏度的要求不断增加,TEA 的检出限及其复杂的操作程序,已无法满足目前的低检出限和高样品通量要求。质谱仪已在不断取代TEA。由Munch 和 Bassett 于2004 年建立的EPA 方法521 提供了一个适应当时要求的、基于化学电离(CI)和带有内部离子化功能的离子阱质谱仪的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]检测方法,而不是标准的带有外部离子源的四极杆或离子阱质谱仪。如今随着技术的发展,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url] 三重四极杆也可以在低分子量区域提供高灵敏度和高选择性的分析,使得非常低浓度的亚硝胺检测,甚至是在复杂样品中的低浓度检测,成为可能。这一可能性源于使用更为简便的、利用常规的电子轰击源(EI)的标准技术,来建立低浓度亚硝胺检测的便捷方法。本应用说明文章描述了一套完整的、使用 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS 进行食品中亚硝胺类化合物常规检测和定量的方法。本工作中的食品基质包括多种不同的麦芽啤酒产品以及作为最终食品产物销售的啤酒本身。在方法开发过程中,我们特别注意优化,以在达到对亚硝胺化合物检测所需的高灵敏度的同时,提供一种迅速、易于实现的常规检测方法。样品处理方法基于AOAC 官方方法 (2000), 982.11 并略有改动。我们建立了一种使用Celite 硅藻土柱并用DCM 洗脱的固相萃取方法来从啤酒样品中分离亚硝胺。[b]实验条件[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS [/b]仪器[img]https://i2.antpedia.com/attachments/att/image/20200518/1589800467101440.jpg[/img][img]https://i2.antpedia.com/attachments/att/image/20200518/1589800468477298.jpg[/img]

  • 色谱一质谱联用技术

    质谱法可以进行有效的定性分析,但对复杂有机化合物分析就无能为力了,而且在进行有机物定量分析时要经过一系列分离纯化操作,十分麻烦。而色谱法对有机化合物是一种有效的分离和分析方法,特别适合进行有机化合物的定量分析,但定性分析则比较困难,因此两者的有效结合必将为化学家及生物化学家提供一个进行复杂化合物高效的定性定量分析的工具。这种将两种或多种方法结合起来的技术称为联用技术(Hyphenated Method),利用联用技术的有[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一质谱(G-MS)、液相色谱一质谱([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])、毛细管电泳一质谱(CZE-MS)及串朕质谱(MS-MS)等,其主要问题是如何解决与质谱相连的接口及相关信息的高速获取与贮存等问题。

  • 简介ARL iSpark直读光谱仪对铝及其合金中微量夹杂物的超快速分析(9月)

    简介ARL iSpark直读光谱仪对铝及其合金中微量夹杂物的超快速分析(9月)

    [color=#cc0000][b][/b][/color][align=center][font='Times New Roman'][font=微软雅黑][/font][/font][/align][align=center][b][color=#cc0000][font=微软雅黑][/font][/color][/b][/align][align=center][b][color=#cc0000][font=微软雅黑]【第十五届原创大赛】简介[/font][font=微软雅黑]ARL iSpark直读光谱仪对铝及其合金中微量夹杂物的超快速分析[/font][font=微软雅黑][font=微软雅黑]([/font][font=微软雅黑]9月)[/font][/font][/color][/b][/align][align=center][/align][align=center][/align][b][color=#cc0000][font=微软雅黑] 一、【前言】[/font][font=微软雅黑] 赛默飞[/font][font=微软雅黑]公司[/font][font=微软雅黑]继[/font][font=微软雅黑]ARL[/font][font=微软雅黑] [font=微软雅黑]MA/3460/4460直读光谱仪[/font][/font][font=微软雅黑]之后,[/font][font=微软雅黑]推出[/font][font=微软雅黑]了[/font][font=微软雅黑]ARL iSpark[/font][font=微软雅黑](简称[/font][font=微软雅黑]iSpark [/font][font=微软雅黑])[/font][font=微软雅黑]系列[/font][font=微软雅黑]新[/font][font=微软雅黑]型高端[/font][font=微软雅黑]直读光谱仪[/font][font=微软雅黑],[/font][font=微软雅黑]iSpark直读光谱仪采用了先进[/font][font=微软雅黑]的[/font][font=微软雅黑]Spark-DAT(Spark 数据采集和处理)[/font][font=微软雅黑]分析[/font][font=微软雅黑]技术,能够更好的为[/font][font=微软雅黑]用户[/font][font=微软雅黑]提供更为[/font][font=微软雅黑]广泛及更为[/font][font=微软雅黑]准确精细的直读光谱仪[/font][font=微软雅黑]检测方法。[/font][font=微软雅黑] iSpark[/font][font=微软雅黑]系列[/font][font=微软雅黑]直读光谱仪采用[/font][font=微软雅黑]PMT[/font][font=微软雅黑]独立[/font][font=微软雅黑]光学系统[/font][font=微软雅黑]或[/font][font=微软雅黑]CCD/PMT双重光学系统[/font][font=微软雅黑],该系列系列[/font][font=微软雅黑]直读光谱仪[/font][font=微软雅黑][font=微软雅黑]具有单[/font][font=微软雅黑]/多基体配置,[/font][/font][font=微软雅黑]非常[/font][font=微软雅黑]适合铸造和金属加工厂商[/font][font=微软雅黑]的[/font][font=微软雅黑]冶金样品[/font][font=微软雅黑]检测[/font][font=微软雅黑]。[/font][font=微软雅黑]同时也[/font][font=微软雅黑]是实验室[/font][font=微软雅黑]研究[/font][font=微软雅黑]、金属回收[/font][font=微软雅黑]、[/font][font=微软雅黑]检测机构[/font][font=微软雅黑]及[/font][font=微软雅黑]任何通用性[/font][font=微软雅黑]常规元素[/font][font=微软雅黑]分析的理想[/font][font=微软雅黑]仪器[/font][font=微软雅黑],[/font][font=微软雅黑]尤其是在[/font][font=微软雅黑]夹杂物分析,[/font][font=微软雅黑]金属研发,[/font][font=微软雅黑]光谱研究,[/font][font=微软雅黑]更具有其[/font][font=微软雅黑]样品检测的[/font][font=微软雅黑]灵活性。[/font][font=微软雅黑]以此来保证用户的[/font][font=微软雅黑]生产[/font][font=微软雅黑]效率[/font][font=微软雅黑]和质量[/font][font=微软雅黑]控制[/font][font=微软雅黑]目标。[/font][font=微软雅黑] 本文简单介绍[/font][font=微软雅黑]iSpark直读光谱仪[/font][font=微软雅黑]与[/font][font=微软雅黑]Spark-DAT[/font][font=微软雅黑]方法结合,[/font][font=微软雅黑]为材料[/font][font=微软雅黑]分析[/font][font=微软雅黑]提供[/font][font=微软雅黑]一个多用途解决方案[/font][font=微软雅黑]。[/font][font=微软雅黑]从[/font][font=微软雅黑]常规材料[/font][font=微软雅黑]到[/font][font=微软雅黑]铝中的微夹杂物[/font][font=微软雅黑]、[/font][font=微软雅黑]过程控制[/font][font=微软雅黑]、[/font][font=微软雅黑]定性尺寸分布[/font][font=微软雅黑]、纯净[/font][font=微软雅黑]铝夹杂物分析[/font][font=微软雅黑]、[/font][font=微软雅黑]铝及其合金[/font][font=微软雅黑]的[/font][font=微软雅黑]分析[/font][font=微软雅黑]技术[/font][font=微软雅黑]。[/font][font=微软雅黑]iSpark直读[/font][font=微软雅黑]光谱仪发挥出了良好的[/font][font=微软雅黑]功能和特性[/font][font=微软雅黑]。[/font][font=微软雅黑]并[/font][font=微软雅黑]且还[/font][font=微软雅黑]适用于[/font][font=微软雅黑]在[/font][font=微软雅黑]恶劣的分析环境[/font][font=微软雅黑]下[/font][font=微软雅黑],[/font][font=微软雅黑]对铝及其合金中的微夹杂物进行超快速分析[/font][font=微软雅黑],以[/font][font=微软雅黑]实现[/font][font=微软雅黑]冶金现场快速高效[/font][font=微软雅黑]的[/font][font=微软雅黑]需[/font][font=微软雅黑]求。[/font][/color][font=微软雅黑][/font][/b][align=center][color=#cc0000][b][img=,649,406]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162054286122_140_1841897_3.jpg!w690x431.jpg[/img][font='Times New Roman'] [/font][/b][/color][/align][color=#cc0000][b][font='Times New Roman'][font=微软雅黑][/font][/font][font=微软雅黑] 二、 【简介】[/font][font=微软雅黑][font=微软雅黑] 发射光谱法([/font][font=微软雅黑]OES)是一种快速、易于使用且具有成本效益的分析技术,应用于从生产到回收,从铸造厂到服务实验室的各种环境中[/font][/font][font=微软雅黑]的[/font][font=微软雅黑]固体铝样品[/font][font=微软雅黑]的[/font][font=微软雅黑][font=微软雅黑]元素分析。[/font][font=微软雅黑]iSpark直读光谱仪[/font][/font][font=微软雅黑]作为[/font][font=微软雅黑][font=微软雅黑]高性能[/font][font=微软雅黑]OES光谱仪,可为从痕量到合金元素的铝[/font][/font][font=微软雅黑]样品[/font][font=微软雅黑]分析提供极高的精度和准确度。[/font][font=微软雅黑] Spark-DAT(Spark 数据采集和处理)方法[/font][font=微软雅黑]可以[/font][font=微软雅黑]实现超快速[/font][font=微软雅黑]的[/font][font=微软雅黑]夹杂物分析,[/font][font=微软雅黑]由此[/font][font=微软雅黑]大大扩展了其光谱分析[/font][font=微软雅黑]的[/font][font=微软雅黑]能力。在钢铁工业中,这些方法通常用于获取炼钢过程中有关夹杂物的信息。随着分析技术的提升和改进,扩展到了铝行业中的夹杂物分析。在铝及其合金中,夹杂物会影响[/font][font=微软雅黑]诸如[/font][font=微软雅黑][font=微软雅黑]流动性、气孔率、机械加工性、表面形貌和力学性能等,因此对铝液中夹杂物的分析非常重要。[/font][font=微软雅黑]Spark-DAT方法在iSpark[/font][/font][font=微软雅黑]直读光谱仪[/font][font=微软雅黑]中的使用大大的提升了其分析的潜力,特别是可以取代或简化传统的夹杂物评估技术。[/font][font=微软雅黑] 三、【[/font][font=微软雅黑]优点[/font][font=微软雅黑]】[/font][font=微软雅黑][font=微软雅黑] 使用[/font][font=微软雅黑]iSpark直读光谱与Spark-DAT方法结合的使用具有如下优点:[/font][/font][font=微软雅黑]1、[/font][font=微软雅黑]除了元素浓度分析外,光谱仪还能够进行夹杂物分析。为此可以大幅降低夹杂物分析的[/font][font=微软雅黑]经济[/font][font=微软雅黑]成本。[/font][font=微软雅黑]2、[/font][font=微软雅黑]在取样后即可快速获得夹杂物信息。这为金属加工的过程控制提供了非常[/font][font=微软雅黑]有价值[/font][font=微软雅黑]的[/font][font=微软雅黑]参考信息[/font][font=微软雅黑]。[/font][font=微软雅黑]3、[/font][font=微软雅黑][font=微软雅黑]夹杂物分析和相关样品制备的时间极短。样品及其制备与标准[/font] [font=微软雅黑]OES 分析[/font][/font][font=微软雅黑]完全[/font][font=微软雅黑]相同。[/font][font=微软雅黑]4、[/font][font=微软雅黑][font=微软雅黑]与标准的[/font][font=微软雅黑]OES 光谱仪相比,无需额外的操作成本和时间。用于夹杂物分析的维护、服务和样品制备保持不变。[/font][/font][font=微软雅黑]5、[/font][font=微软雅黑][font=微软雅黑]夹杂物分析与元素浓度分析同时进行,每小时可能分析超过[/font] [font=微软雅黑]30 个样品。可以对 OES 分析的所有样品进行夹杂物分析。[/font][/font][font=微软雅黑]6、[/font][font=微软雅黑]更容易检测随机分布的外来夹杂物。且可以快速分析样品非常大的表面积。[/font][font=微软雅黑] 四、【[/font][font=微软雅黑]原[/font][font=微软雅黑]理】[/font][font=微软雅黑][font=微软雅黑] 与[/font] [font=微软雅黑]OES 浓度分析相比,Spark-DAT 方法使用了独[/font][/font][font=微软雅黑]特[/font][font=微软雅黑]的处理原理。所有单火花的光强度值都经过特殊的数学处理,而不是被整合并转化为浓度。[/font][font=微软雅黑][font=微软雅黑] 单火花信号的强度取决于对应单个火花击中位置的样品成分。如果一种元素在烧蚀样品材料中的浓度显著高于其在基体中可溶形式的浓度,则结果是该元素强度峰值。当火花击中含有[/font][font=微软雅黑]Ti(钛)基夹杂物(例如TiB2)的样品区域时,因为夹杂物的作用,使Ti的浓度比金属基体中的浓度要高[/font][/font][font=微软雅黑]的[/font][font=微软雅黑]多。[/font][font=微软雅黑][font=微软雅黑] 为了更好地理解这一点,我们可以用数字来解释。[/font][font=微软雅黑]TiB2颗粒中Ti的浓度约为69%,如果与样品材料一起烧蚀一个直径为5 μ m的球形夹杂物,则Ti的浓度会明显提高0.136%。[/font][/font][font=微软雅黑] 通过下面这张图可直接说明这一点:[/font][font='Times New Roman'][font=微软雅黑][/font][/font][/b][/color][align=center][color=#cc0000][b][img=,649,348]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162054479332_9991_1841897_3.jpg!w690x370.jpg[/img][font='Times New Roman'] [/font][/b][/color][/align][color=#cc0000][b][font='Times New Roman'][font=微软雅黑][/font][/font][font=微软雅黑][font=微软雅黑] 平坦的、有噪声的基线信号强度与溶解在基体中[/font][font=微软雅黑]Ti 原子的浓度成正比,峰值的强度取决于单个火花烧蚀的夹杂物中所包含Ti原子的数量。因此,峰值的数量与夹杂物的数量有关,其强度与夹杂物的尺寸和夹杂物中Ti的浓度等因素有关。[/font][/font][font=微软雅黑] 五、【实用方面】[/font][font=微软雅黑] Spark-DAT方法包括软件和专用算法,目前仅适用于PMT。使用SSA(单火花采集)采集的单火花强度,用于夹杂物分析和传统元素浓度分析,两种类型的分析可同时运行。通常在每个通道上获取数千个单一强度值,这使得Spark-DAT原始数据集非常庞大和复杂。此时,使用快速专用算法来计算与有价值信息对应的峰值数。然后,分析软件可以像处理传统的OES结果一样处理计算出的峰值。它们可以显示、打印、存储、传输、用于伪元素计算、检查产品规格等。[/font][font=微软雅黑] 六、【分析时间】[/font][font=微软雅黑] Spark-DAT分析单次测量通常需要7s(包含2s Ar冲洗)。这种方式只推荐用于快速计算和确认夹杂物类型,以获取原始数据便于快速进行离线解释。然而,当结合浓度分析时,Spark-DAT分析提供了更多的选择性。在这种情况下,从开始分析到显示结果所用的分析时间平均如下表:[/font][font='Times New Roman'][font=微软雅黑][/font][/font][/b][/color][align=center][color=#cc0000][b][img=,484,91]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162055070404_7859_1841897_3.jpg!w605x114.jpg[/img][font='Times New Roman'] [/font][/b][/color][/align][color=#cc0000][b][font='Times New Roman'][font=微软雅黑][/font][/font][font=微软雅黑] 从表面上看,这些分析时间与标准元素分析时间相比没有什么[/font][font=微软雅黑]差别[/font][font=微软雅黑],但多种夹杂物的分析情况已包含在其中,特别是在铝生产过程中,分析时间是非常关键的。[/font][font=微软雅黑] 七、【[/font][font=微软雅黑]使用背景[/font][font=微软雅黑]】[/font][font=微软雅黑][font=微软雅黑] 采用[/font][font=微软雅黑]Spark-DAT方法分析夹杂物具有[/font][/font][font=微软雅黑]以[/font][font=微软雅黑]下优越性:[/font][font=微软雅黑]1、[/font][font=微软雅黑]最重要的应用是铝及铝合金生产过程中的夹杂物分析。并且包含应用在来料或中间产品和成品中获得质量保证的控制。[/font][font=微软雅黑]2、[/font][font=微软雅黑][font=微软雅黑]通过在线监测夹杂物进行过程控制。夹杂物是指示过程变化的[/font][font=微软雅黑]“过程标记或示踪剂”。借助Spark-DAT方法分析,夹杂物受到在线监控,从而提供了一种快速检测并能及时采取纠错[/font][/font][font=微软雅黑]措施[/font][font=微软雅黑]的独特方式。[/font][font=微软雅黑]3、[/font][font=微软雅黑]样[/font][font=微软雅黑]品[/font][font=微软雅黑]筛选。一天内可筛查数百个样[/font][font=微软雅黑]品[/font][font=微软雅黑]中是否有夹杂物。这[/font][font=微软雅黑]非常[/font][font=微软雅黑]有助于迅速解决关键的质量问题。在预防性方法中,可以对存档样品进行筛选,以验证[/font][font=微软雅黑]之[/font][font=微软雅黑]前[/font][font=微软雅黑]生产并已[/font][font=微软雅黑]发[/font][font=微软雅黑]给[/font][font=微软雅黑]客户的产品是否[/font][font=微软雅黑]也存在[/font][font=微软雅黑]质量问题[/font][font=微软雅黑]。[/font][font=微软雅黑]4、替换[/font][font=微软雅黑][font=微软雅黑]冗长或昂贵的分析技术。[/font][font=微软雅黑]Spark-DAT方法可以[/font][/font][font=微软雅黑]取[/font][font=微软雅黑][font=微软雅黑]代传统的夹杂物分析技术。[/font] [font=微软雅黑]如果可以在[/font][font=微软雅黑]Spark-DAT夹杂物分析和[/font][/font][font=微软雅黑]常规分析[/font][font=微软雅黑]技术的结果之间建立相关性,[/font][font=微软雅黑]则[/font][font=微软雅黑]该技术[/font][font=微软雅黑]即可能成为[/font][font=微软雅黑]替代测量铝或铝合金性能的[/font][font=微软雅黑]分析[/font][font=微软雅黑]技术,[/font][font=微软雅黑]检测性能[/font][font=微软雅黑]取决于其[/font][font=微软雅黑]样品所[/font][font=微软雅黑]包含的夹杂物(例如抗疲劳性)。[/font][font=微软雅黑] 八、【组合算法】[/font][font=微软雅黑] Spark-DAT方法最简单的应用[/font][font=微软雅黑]是[/font][font=微软雅黑]使用峰值[/font][font=微软雅黑]([/font][font=微软雅黑]peaks[/font][font=微软雅黑])[/font][font=微软雅黑]算法计算[/font][font=微软雅黑]出[/font][font=微软雅黑][font=微软雅黑]给定元素通道上的强度峰值。[/font] [font=微软雅黑]峰值定义为高于阈值[/font][/font][font=微软雅黑]的[/font][font=微软雅黑]强度信号[/font][font=微软雅黑]([/font][font=微软雅黑]Ipeak[/font][font=微软雅黑])[/font][font=微软雅黑],该阈值位于溶解在基[/font][font=微软雅黑]体[/font][font=微软雅黑]中元素的平均强度[/font][font=微软雅黑]([/font][font=微软雅黑]m[/font][font=微软雅黑])[/font][font=微软雅黑][font=微软雅黑]加上其三倍的标准偏差[/font] [font=微软雅黑]SD :[/font][/font][font=微软雅黑] Ipeak m + 3SDI[/font][font=微软雅黑](基体)[/font][font=微软雅黑] 计算强度峰值可以[/font][font=微软雅黑]统计出[/font][font=微软雅黑]包含该元素的夹杂物的数量[/font][font=微软雅黑]和类型[/font][font=微软雅黑][font=微软雅黑]。[/font] [font=微软雅黑]如下图所示,通过比较夹杂元素通道上计数的峰数,可以轻松识别[/font][/font][font=微软雅黑]出纯[/font][font=微软雅黑]净和[/font][font=微软雅黑]非纯净[/font][font=微软雅黑]铝样品。[/font][font='Times New Roman'][font=微软雅黑][/font][/font][/b][/color][align=center][color=#cc0000][b][img=,649,239]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162055235284_2215_1841897_3.jpg!w690x254.jpg[/img][font='Times New Roman'] [/font][/b][/color][/align][color=#cc0000][b][font='Times New Roman'][font=微软雅黑][/font][/font][font=微软雅黑] 组合算法允许计算[/font][font=微软雅黑]重[/font][font=微软雅黑][font=微软雅黑]合峰值,即在同一单火花期间同时出现在多个元素通道上的峰值。[/font][font=微软雅黑]Na和Cl通道上的峰重合意味着这两种元素是同一夹杂物的一部分,例如氯化钠(NaCl)夹杂物。在[/font][/font][font=微软雅黑]上图[/font][font=微软雅黑]的示例中[/font][font=微软雅黑]可以看出[/font][font=微软雅黑],[/font][font=微软雅黑]纯净[/font][font=微软雅黑][font=微软雅黑]样品中没有[/font][font=微软雅黑]NaCl重合[/font][/font][font=微软雅黑]峰[/font][font=微软雅黑]计数,而[/font][font=微软雅黑]非纯净样[/font][font=微软雅黑]品中重合[/font][font=微软雅黑]峰[/font][font=微软雅黑][font=微软雅黑]计数为[/font][font=微软雅黑]96。[/font][/font][font=微软雅黑][font=微软雅黑] 组合算法可以统计多达[/font][font=微软雅黑]4个通道的重合[/font][/font][font=微软雅黑]峰[/font][font=微软雅黑]。这[/font][font=微软雅黑]样方可计算出[/font][font=微软雅黑]复杂夹杂物在金属间相或夹杂[/font][font=微软雅黑]物[/font][font=微软雅黑]簇的化学[/font][font=微软雅黑]组构。例如[/font][font=微软雅黑][font=微软雅黑]用[/font][font=微软雅黑]NaKCaCl在含7% Si的AlSi样品中记录的几种元素的火花强度如下图所[/font][/font][font=微软雅黑]示[/font][font=微软雅黑]。此外,除了[/font][font=微软雅黑]重合峰计数[/font][font=微软雅黑]之外,[/font][font=微软雅黑]尽可能[/font][font=微软雅黑]检查非[/font][font=微软雅黑]重合峰计数,这样[/font][font=微软雅黑]有助于消除[/font][font=微软雅黑]夹杂物[/font][font=微软雅黑]类型上的歧义。[/font][font='Times New Roman'][font=微软雅黑][/font][/font][/b][/color][align=center][color=#cc0000][b][img=,649,368]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162055416987_9118_1841897_3.jpg!w690x390.jpg[/img][font='Times New Roman'] [/font][/b][/color][/align][color=#cc0000][b][font='Times New Roman'][font=微软雅黑][/font][/font][font=微软雅黑] 注[/font][font=微软雅黑]:[/font][font=微软雅黑]Spark-DAT方法提供的其他算法[/font][font=微软雅黑],[/font][font=微软雅黑][font=微软雅黑]例如[/font][font=微软雅黑]Spark-DAT[/font][/font][font=微软雅黑]方法[/font][font=微软雅黑]可用于铝合金样品的可溶性[/font][font=微软雅黑]分析[/font][font=微软雅黑]。该算法评估[/font][font=微软雅黑]某[/font][font=微软雅黑][font=微软雅黑]种元素的可溶性部分,并允许计算该元素可溶性部分的浓度。可溶性通常用于钢样品分析,以评价[/font][font=微软雅黑]Al、B、Ca和Ti的可溶性部分。[/font][/font][font=微软雅黑] 九、【定性尺寸和尺寸分布】[/font][font=微软雅黑] 对于了解[/font][font=微软雅黑]夹杂物的尺寸,或者更[/font][font=微软雅黑]详细[/font][font=微软雅黑]的知道[/font][font=微软雅黑]夹杂物[/font][font=微软雅黑]的尺寸分布是很重要的,因为大[/font][font=微软雅黑]尺寸[/font][font=微软雅黑]夹杂物通常对金属质量最有害。峰值和合成两种算法也可以对不同强度[/font][font=微软雅黑]等级[/font][font=微软雅黑]的信号进行计数。由于峰[/font][font=微软雅黑]值[/font][font=微软雅黑]强度与夹杂物的体积有关,[/font][font=微软雅黑]因此[/font][font=微软雅黑]这[/font][font=微软雅黑]些等级[/font][font=微软雅黑]可以定性地[/font][font=微软雅黑]视为[/font][font=微软雅黑]尺寸[/font][font=微软雅黑]等级[/font][font=微软雅黑]。将[/font][font=微软雅黑]门控[/font][font=微软雅黑]阈值设置在[/font][font=微软雅黑]基体[/font][font=微软雅黑]中元素强度[/font][font=微软雅黑]大于[/font][font=微软雅黑]3SD,可以计数所有可见的[/font][font=微软雅黑]信号[/font][font=微软雅黑]峰。[/font][font=微软雅黑]若[/font][font=微软雅黑]将其设置[/font][font=微软雅黑]的[/font][font=微软雅黑]更高,例如下[/font][font=微软雅黑]图[/font][font=微软雅黑]中[/font][font=微软雅黑]所[/font][font=微软雅黑][font=微软雅黑]示的[/font][font=微软雅黑]6SD或9SD,则只允许计算较大尺寸的夹杂物,分别高于[/font][/font][font=微软雅黑]6[/font][font=微软雅黑]SD或[/font][font=微软雅黑]9[/font][font=微软雅黑]SD[/font][font=微软雅黑]。[/font][font='Times New Roman'][font=微软雅黑][/font][/font][/b][/color][align=center][color=#cc0000][b][img=,649,466]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162055590601_7037_1841897_3.jpg!w690x495.jpg[/img][font='Times New Roman'] [/font][/b][/color][/align][color=#cc0000][b][font='Times New Roman'][font=微软雅黑][/font][/font][font=微软雅黑] 通过计算连续阈值之间的夹杂物峰[/font][font=微软雅黑]值[/font][font=微软雅黑]数,可以[/font][font=微软雅黑]获[/font][font=微软雅黑]得它们界[/font][font=微软雅黑]定[/font][font=微软雅黑]的[/font][font=微软雅黑]尺寸等级[/font][font=微软雅黑]中夹杂物的数量。在[/font][font=微软雅黑]该[/font][font=微软雅黑][font=微软雅黑]示例中,[/font][font=微软雅黑]3SD ~ 6SD之间的峰[/font][/font][font=微软雅黑]值[/font][font=微软雅黑]数和重合数对应的是小[/font][font=微软雅黑]尺寸[/font][font=微软雅黑]夹杂[/font][font=微软雅黑]物[/font][font=微软雅黑][font=微软雅黑],[/font][font=微软雅黑]6 SD~ 9SD之间对应的是中[/font][/font][font=微软雅黑]等尺寸[/font][font=微软雅黑]夹杂[/font][font=微软雅黑]物[/font][font=微软雅黑][font=微软雅黑],大于[/font][font=微软雅黑]9SD对应的是大[/font][/font][font=微软雅黑]尺寸[/font][font=微软雅黑]夹杂[/font][font=微软雅黑]物[/font][font=微软雅黑]。这样的[/font][font=微软雅黑]峰值[/font][font=微软雅黑]计算[/font][font=微软雅黑]结果[/font][font=微软雅黑]可以定性的[/font][font=微软雅黑]评估出[/font][font=微软雅黑]夹杂物尺寸分布。[/font][font=微软雅黑] 十、【使用[/font][font=微软雅黑]Spark-DAT [/font][font=微软雅黑]方法检测夹杂物】[/font][font=微软雅黑] [/font][font=微软雅黑] 使用[/font][font=微软雅黑]附带[/font][font=微软雅黑]Spark-DAT[/font][font=微软雅黑]软件[/font][font=微软雅黑][font=微软雅黑]的[/font][font=微软雅黑]iSpark 光谱仪,可以直接或间接[/font][/font][font=微软雅黑]地[/font][font=微软雅黑]在铝及[/font][font=微软雅黑]铝[/font][font=微软雅黑]合金中[/font][font=微软雅黑],[/font][font=微软雅黑][font=微软雅黑]观察到各种类型的内源性和外源性夹杂物,例如[/font] [font=微软雅黑]氧化物([/font][font=微软雅黑]Al2O3、MgO、CaO、FeO、MnO、SiO2)、尖晶石(MgAl2O4)、碳化物(TiC、Al4C3)、硼化物(TiB2)、氮化物(AlN)、盐(MgCl2、NaCl、KCl、CaCl2)、石墨、金属间化合物(Cr-Mn-Fe)[/font][/font][font=微软雅黑]及[/font][font=微软雅黑][font=微软雅黑]其他各种化合物([/font][font=微软雅黑]AlP、Mg3P2、硫化物、AlB2、Al4C4 B )[/font][/font][font=微软雅黑]等[/font][font=微软雅黑]。[/font][font=微软雅黑] 夹杂物的检测主要受所[/font][font=微软雅黑]使[/font][font=微软雅黑]用分析线灵敏度、夹杂物[/font][font=微软雅黑]尺寸及[/font][font=微软雅黑]夹杂物元素[/font][font=微软雅黑]在基体中[/font][font=微软雅黑]作为可溶性元素浓度水平的限制。更高的线灵敏度和更低的可溶性含量允许[/font][font=微软雅黑]测[/font][font=微软雅黑][font=微软雅黑]定更小的夹杂物。例如,在[/font][font=微软雅黑]Ti含量为100 ppm的铝样品中,可检测到的最小ESD约为0.8 μm,而在Ti含量为 0.3% 的情况下,可检测到的最小ESD为1.5 μm。氧线的低灵敏度和作为基体元素[/font][/font][font=微软雅黑]的[/font][font=微软雅黑]Al[/font][font=微软雅黑],[/font][font=微软雅黑]解释了[/font][font=微软雅黑]可[/font][font=微软雅黑]直接[/font][font=微软雅黑]成功[/font][font=微软雅黑][font=微软雅黑]观察[/font][font=微软雅黑]Al2O3的[/font][/font][font=微软雅黑]原因[/font][font=微软雅黑]。[/font][font=微软雅黑] 十一、 【[/font][font=微软雅黑]在线分析[/font][font=微软雅黑]】[/font][font=微软雅黑] Spark-DAT分析强度峰数和[/font][font=微软雅黑]重合[/font][font=微软雅黑]峰数的结果[/font][font=微软雅黑],[/font][font=微软雅黑][font=微软雅黑]可以与浓度值同时监测。[/font] [font=微软雅黑]Spark-DAT[/font][/font][font=微软雅黑]的[/font][font=微软雅黑][font=微软雅黑]结果可以像任何标准[/font][font=微软雅黑]OES结果一样进行处理(例如用于计算具有所谓伪元素的高级参数)、显示、传输和存储。[/font][/font][font=微软雅黑] 下图[/font][font=微软雅黑] 中[font=微软雅黑]OXSAS [/font][/font][font=微软雅黑](应用软件)操作界面图[/font][font=微软雅黑]显示了部分分析结果,包括元素测定和夹杂物相关信息(峰[/font][font=微软雅黑]值[/font][font=微软雅黑]数、定性尺寸分布[/font][font=微软雅黑]—[/font][font=微软雅黑]夹杂物尺寸[/font][font=微软雅黑]等级[/font][font=微软雅黑]“小”、“中”和“大”,以及[/font][font=微软雅黑]重合[/font][font=微软雅黑]峰[/font][font=微软雅黑]值[/font][font=微软雅黑]数[/font][font=微软雅黑]等[/font][font=微软雅黑])。[/font][font=微软雅黑] [/font][font='Times New Roman'] [/font][/b][/color][align=center][color=#cc0000][b][img=,690,558]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162059183140_1417_1841897_3.jpg!w690x558.jpg[/img][/b][/color][/align][align=center][font='Times New Roman'][color=#cc0000][b] [/b][/color][/font][/align][color=#cc0000][b][font=微软雅黑] 十二、【离线[/font][font=微软雅黑]调研[/font][font=微软雅黑]】[/font][font=微软雅黑] Spark-DAT 强度数据可以存储在标准文本 (.txt) 或逗号分隔值 (.csv) 文件中。然后,这些文件可用于离线[/font][font=微软雅黑]调研[/font][font=微软雅黑]或[/font][font=微软雅黑]学术[/font][font=微软雅黑]研究夹杂物[/font][font=微软雅黑]及[/font][font=微软雅黑]开发新方法或[/font][font=微软雅黑]新[/font][font=微软雅黑]算法等。它们可以[/font][font=微软雅黑]通过[/font][font=微软雅黑][font=微软雅黑]集成在[/font][font=微软雅黑]OXSAS中的Spark-DAT查看器以图形方式显示[/font][/font][font=微软雅黑]出来(如下图所示)[/font][font=微软雅黑],这是一个非常有用的工具,[/font][font=微软雅黑]不但[/font][font=微软雅黑]可以显示火花图和强度分布,[/font][font=微软雅黑]而且还[/font][font=微软雅黑]有助于搜索[/font][font=微软雅黑]重合[/font][font=微软雅黑]峰、设置夹杂物分析程序并[/font][font=微软雅黑]完善[/font][font=微软雅黑]其参数。它们也可以用作第三方程序的输入[/font][font=微软雅黑],在今后的[/font][font=微软雅黑]OXSAS升级[/font][font=微软雅黑]中可[/font][font=微软雅黑]继续开发新的算法并改进现有的算法[/font][font=微软雅黑],以满足用户更多的实际使用需求。[/font][/b][/color][align=center][color=#cc0000][b][img=,649,456]https://ng1.17img.cn/bbsfiles/images/2022/09/202209162056488221_5846_1841897_3.jpg!w690x484.jpg[/img][font='Times New Roman'] [/font][/b][/color][/align][b][color=#cc0000][font='Times New Roman'][font=微软雅黑][/font][/font][font=微软雅黑] 十三、【样品制备】[/font][font=微软雅黑][font=微软雅黑] 铣削是推荐用于铝及其合金[/font] [font=微软雅黑]OES 分析的表面处理技术,可确保样品表面清洁、无污染,是夹杂物分析的理想选择。[/font][/font][font=微软雅黑] 十四、【[/font][font=微软雅黑]结[/font][font=微软雅黑]语】[/font][font=微软雅黑] ARL iSpark[/font][font=微软雅黑]直读光谱[/font][font=微软雅黑]仪[/font][font=微软雅黑]拥有[/font][font=微软雅黑][font=微软雅黑]的[/font][font=微软雅黑]Spark-DAT方法增加了仪器[/font][/font][font=微软雅黑]使用[/font][font=微软雅黑]的多功能性。从[/font][font=微软雅黑]常规分析[/font][font=微软雅黑]到[/font][font=微软雅黑]科学[/font][font=微软雅黑][font=微软雅黑]研究,[/font][font=微软雅黑]Spark-DAT方法为铝业的夹杂物分析提供了快速,简单且具有经济[/font][/font][font=微软雅黑]效益[/font][font=微软雅黑][font=微软雅黑]的解决方案。在当今铝工业中可用的所有夹杂物分析方法中,[/font][font=微软雅黑]Spark-DAT方法是最快的。Spark-DAT方法[/font][/font][font=微软雅黑]可以[/font][font=微软雅黑]简单的在几秒[/font][font=微软雅黑]钟[/font][font=微软雅黑]到几分钟内[/font][font=微软雅黑],[/font][font=微软雅黑]对夹杂物进行超快速的在线计数、成分识别和定性尺寸分类[/font][font=微软雅黑]等[/font][font=微软雅黑]。这使得它在铝生产过程中对夹杂物[/font][font=微软雅黑]的[/font][font=微软雅黑]控制非常有效。[/font][font=微软雅黑] 夹杂物分析[/font][font=微软雅黑]技术[/font][font=微软雅黑]可以与元素浓度的标准分析[/font][font=微软雅黑]技术[/font][font=微软雅黑][font=微软雅黑]相结合。与标准[/font][font=微软雅黑]OES[/font][/font][font=微软雅黑]光谱仪[/font][font=微软雅黑]相比,样品及其表面处理以及仪器维护和耗[/font][font=微软雅黑]材[/font][font=微软雅黑]是[/font][font=微软雅黑]相同[/font][font=微软雅黑]的。这意味着与需要专用仪器的其他夹杂物分析技术相比,运[/font][font=微软雅黑]行[/font][font=微软雅黑]成本[/font][font=微软雅黑]非常[/font][font=微软雅黑]低。[/font][font=微软雅黑]对于同一[/font][font=微软雅黑][font=微软雅黑]台[/font][font=微软雅黑]iSpark[/font][/font][font=微软雅黑]直读光谱[/font][font=微软雅黑]仪[/font][font=微软雅黑],[/font][font=微软雅黑]即可[/font][font=微软雅黑]同时[/font][font=微软雅黑]获取元素分析信息和夹杂物[/font][font=微软雅黑]状况信息[/font][font=微软雅黑],[/font][font=微软雅黑]从而[/font][font=微软雅黑]大大降低了投资成本。[/font][font=微软雅黑] [/font][font=微软雅黑] [font=微软雅黑]2022.9.16[/font][/font][font=微软雅黑] [/font][/color][/b][font='Times New Roman'][/font]

  • 质谱如何做到定量分析?

    质谱如何做到定量分析?

    质谱信号。与EI谱图分析以相对强度为主不同,在色谱-质谱联用时,信号的绝对强度就成了我们天天都要关心的内容,因为质谱信号强度随时间的变化就是实验的色谱图,通常以总离子强度或者某一特定质荷比离子的强度作图。http://ng1.17img.cn/bbsfiles/images/2015/11/201511271813_575350_2544766_3.jpg2、定量的两种方法外标法 用已知量的标准样品A和未知量的待测样品A分别进行实验;我们会得到以下三个信息:标准样品的量(已知);标准样品的信号强度;待测样品的信号强度。(假设样品的响应=常数*浓度,从这三个信息即可算出待测样品的量。) 为了更加精确地测定未知量的样品,我们希望标准样品的信号强度与待测样品的信号强度尽量接近(以减少非线性响应的影响)。因此常用的外标法会测量一系列已知量的标准样品,绘制一条工作曲线,再用拟合的方法确定未知样的量。http://ng1.17img.cn/bbsfiles/images/2015/11/201511271814_575351_2544766_3.jpg内标法 外标法主要有以下两方面的局限:1标样和待测样是独立进行实验的,实验间的偶然误差无法消除;2标样和待测样的基质(即除待分析物外的其它成分)不同,基质有可能会带来不同的影响,也会产生误差。 那么,如果我们把已知量的标准样品B直接加入待测样品A,就可以把标准样品和未知样品的测定在同一次实验和同样基质中完成,也就消除了两次实验和基质不同造成的误差,这就是内标法。(如果加入的标准样品和待测样品是同种物质A,那么由于它们不可区分,只通过一次实验是不能定量待测样的,这时我们在加入标样前后分别进行两次测量,即测量待测样及待测样+标样的信号,即可计算出待测样的量。)3、质谱相关的特殊定量细节同位素稀释 前面内标法的介绍中我们可以发现,最理想的内标物既要和待测样相同(具有相同的响应系数)又要不同(仪器可以区分二者的信号),这对矛盾的集合体就是同位素内标。 由于不同同位素的化合物具有近似相同的物理化学性质,离子化时的响应通常也是相同的,而它们具有不同的质荷比m/z,即可在质谱中被区分出来。因此同位素标准品是最理想的内标物。 另外,由于某些元素的天然同位素分布有一定的比例,当我们加入一定量的同位素内标时,可以把对信号绝对强度的测量转化为对信号相对比例的测量,从而提高实验的准确性。http://ng1.17img.cn/bbsfiles/images/2015/11/201511271814_575353_2544766_3.jpg选择反应监测 在不太复杂的体系中,我们只要按照分子量就可以定性某种化合物了。但对于复杂混合物(如石油产品/生物样品)而言,很多化合物具有相同或相近的质量(同分异构体质量完全相同,有些化合物分子量非常接近,如CO和N2,要考虑仪器的质量分辨率是否能区分二者),此时仅靠测量质量就不能确定这个化合物是否就是我们关心的“the one”了。 在串联质谱 (Tandem MS) 仪器中,我们不仅可以把质谱仪理解为一个称量离子的“天平”,它还具有了离子“镊子”(选择某个特定的离子把它分离出来)和“剪刀”(把某个/某些离子激活并打成碎片)的功能。通过母离子和子离子的两步选择,我们可以在复杂体系中精确定位到我们关心的化合物,同时,两次离子选择还可减少复杂基质的干扰,降低背景噪声(获得更低的检出限)并提高方法的动态范围。因此选择反应监测是目前色谱(气相色谱/液相色谱)-质谱联用中最常用的定量方法。http://ng1.17img.cn/bbsfiles/images/2015/11/201511271815_575354_2544766_3.jpg选择反应监测在不太复杂的体系中,我们只要按照分子量就可以定性某种化合物了。但对于复杂混合物(如石油产品/生物样品)而言,很多化合物具有相同或相近的质量(同分异构体质量完全相同,有些化合物分子量非常接近,如CO和N2,要考虑仪器的质量分辨率是否能区分二者),此时仅靠测量质量就不能确定这个化合物是否就是我们关心的“the one”了。在串联质谱 (Tandem MS) 仪器中,我们不仅可以把质谱仪理解为一个称量离子的“天平”,它还具有了离子“镊子”(选择某个特定的离子把它分离出来)和“剪刀”(把某个/某些离子激活并打成碎片)的功能。通过母离子和子离子的两步选择,我们可以在复杂体系中精确定位到我们关心的化合物,同时,两次离子选择还可减少复杂基质的干扰,降低背景噪声(获得更低的检出限)并提高方法的动态范围。因此选择反应监测是目前色谱(气相色谱/液相色谱)-质谱联用中最常用的定量方法。

  • 【分享】气相色谱法做痕量分析选择仪器的几方面考虑

    气相色谱法做痕量分析选择仪器的几方面考虑-(1)痕量分析一般是指纯物质或混合物中被测组分含量在10-6~10-9(体积比或重量比)的成分的定性和定量分析。随着社会的不断发展与进步,人类面临的几大课题(资源 能源 人口 环境)的解决均与痕量分析技术密切相关。或者说,人们的日常生活越来越离不开痕量分析。近期接到有关分析仪器的采购单几乎都是解决痕量分析项目。痕量分析样品的特点①样品来源广泛;② 种类繁多;③ 组成复杂;④ 含量低;⑤ 性质状态各不相同。因此相对常量和微量分析难度大,对各方面要求都高的一项工作。虽说多种分析方法:如色谱法、质谱法、光谱法、电化学等都可以用于痕量分析,相比之下气相色谱法具有诸多优点(在大多数情况下):⑴仪器价格较低,使用条件不苛刻,利于普及推广;⑵ 分离效率高,选择性大,有利于复杂多组分的分离检测;⑶灵敏度高,分析速度快,直接进样用量小;⑷与其他仪器联用能解决更复杂的分析难题。色谱法已经是目前痕量分析中使用方法与仪器中数量最大,面最广的方法。当然,要完成一项痕量分析任务,除首先购置一台性能优良的GC外,还涉及样品采集,予处理,分析方法建立(色谱柱的选择,分析条件的优化等。),标准样品的制备,数据处理等环节。本文就气相色谱法做痕量分析在选购GC仪器时应考虑的几个方面,加以概括介绍供大家参考。若有更具体的技术问题请在本网站“专家咨询”栏目中交流。

  • 【分享】气相色谱法做痕量分析选择仪器的几方面考虑-(1)

    气相色谱法做痕量分析选择仪器的几方面考虑痕量分析一般是指纯物质或混合物中被测组分含量在10-6~10-9(体积比或重量比)的成分的定性和定量分析。随着社会的不断发展与进步,人类面临的几大课题(资源 能源 人口 环境)的解决均与痕量分析技术密切相关。或者说,人们的日常生活越来越离不开痕量分析。近期接到有关分析仪器的采购单几乎都是解决痕量分析项目。痕量分析样品的特点①样品来源广泛;② 种类繁多;③ 组成复杂;④ 含量低;⑤ 性质状态各不相同。因此相对常量和微量分析难度大,对各方面要求都高的一项工作。虽说多种分析方法:如色谱法、质谱法、光谱法、电化学等都可以用于痕量分析,相比之下气相色谱法具有诸多优点(在大多数情况下):⑴仪器价格较低,使用条件不苛刻,利于普及推广;⑵ 分离效率高,选择性大,有利于复杂多组分的分离检测;⑶灵敏度高,分析速度快,直接进样用量小;⑷与其他仪器联用能解决更复杂的分析难题。色谱法已经是目前痕量分析中使用方法与仪器中数量最大,面最广的方法。当然,要完成一项痕量分析任务,除首先购置一台性能优良的GC外,还涉及样品采集,予处理,分析方法建立(色谱柱的选择,分析条件的优化等。),标准样品的制备,数据处理等环节。本文就气相色谱法做痕量分析在选购GC仪器时应考虑的几个方面,加以概括介绍供大家参考。若有更具体的技术问题请在本网站“专家咨询”栏目中交流。

  • 【转帖】夹杂物的研究方法

    归纳夹杂物鉴定技术,可分为两类。第一类是在位鉴定检查。在位鉴定检查是在夹杂物和钢的基体不分离的情况下进行检查,它可分为宏观在位检查和微观在位检查。宏观在位检查有:低倍酸浸、硫印、X光透射、超声波检查等。这些方法可以确定夹杂物(或缺陷)在钢材或工件中的位置、尺寸和分布。根据这些检查的结果可以评价工艺因素对钢清洁度的影响,可以发现肉眼难于发现的夹杂物缺陷,避免继续加工或投入使用,造成不应有的损害和损失。但是宏观在位检查往往不能确定夹杂物的类型和组成。微观在位检查弥补了这方面的不足。 微观在位检查是用显微镜鉴定钢中的缺陷或夹杂物。显微镜鉴定法已有很长的历史,用显微镜可检查夹杂物的光学特征,如透明度、色泽、偏光效应、耐磨性和耐侵蚀性等。人们根据这些特征来推断夹杂物的类型和组成。但是,由于它不是直接分析,即使是有经验的内行也难免有时误判。近些年来随着X光显微镜分析技术的发展,使微观在位分析产生了飞跃。只要镜下观察到的夹杂物,就比较容易确定其元素组成,根据元素组成又可推断夹杂物的矿物结构。 另一类鉴定方法是移位检查鉴定。在位检查鉴定有很多优点,生产上应用很广,但在位鉴定不能确定夹杂物的平均组成。夹杂物的移位鉴定弥补了这方面的不足。常用的移位分析法有酸法、卤素法、电解法等,其中尤其是以电解法最为安全方便,便于分析夹杂物类型、粒度和组成。移位鉴定分析可以避免基体对分析的干扰;但处理不当时,会损害夹杂物形貌。 下面就夹杂物的检测方法作以介绍。 1.金相观察 金相显微镜是研究钢中非金属夹杂物的重要工具,是发展历史最长,应用最广的一种检测方法。近几十年来,虽然现代物理冶金的研究工具有了飞跃的发展,但由于金相显微镜具有操作简便、造价低廉、功能多等特点,它不仅能够鉴别夹杂物的类型、形状、大小和分布,并可研究夹杂物与材料性能之间的定量关系,所以传统的金相技术至今仍被广泛应用。 金相鉴别方法具有以下优点: 1)观察者可直接通过金相显微镜观察试样抛光表面上夹杂物的形状、大小及分布,不需要对夹杂物进行电解分离,从而避免了非金属夹杂物遭受化学试剂或电流的影响以及外来杂质的干扰; 2)金相显微镜造价低廉,操作简便,试验周期短,适合于生产中对产品和材料质量检验的需要; 3)通过直接观察夹杂物的形状、大小及分布,研究钢中非金属夹杂物与钢基体之间的变形行为和断裂关系,为评价夹杂物对金属材料性能的影响提供参考依据; 4)随着体视学与定量金相技术的发展,材料研究进入了三维组织形貌与材料使用性能建立内在联系的阶段。利用图像自动分析仪,可迅速而准确地测定钢中非金属夹杂物的含量、粒度、质点间距和体积百分数,为合理地利用材料和科学地评定产品质量提供了可靠的原始分析数据; 5)金相显微镜具有功能多的特点,目前大型金相显微镜都带有明视场、暗视场、偏振光、相对、干涉相衬和显微硬度等附件。利用这些特殊装置可测定非金属夹杂物的光学性质、力学性质和本来色彩等特征; 6)在金相鉴别的基础上,可为电子探针成分测定和电子衍射结构分析提供最小的分析范围。 金相鉴别方法的不足在于: 1)单独使用金相分析方法不能直接确定非金属夹杂物的化学成分及某些物理性质; 2)由于非金属夹杂物在钢中的存在比较复杂,它的类型、组成、结构、形态和尺寸大小等常常随着钢的成分、冶炼条件、冷却速度和其它处理条件的改变而变化,如果不和其它分析方法(如电子探针、扫描电镜等)结合起来进行综合试验,单独采用金相方法不能全面地鉴定和研究未知的夹杂物; 3)采用金相方法虽然可以确定金属材料中非金属夹杂物的分布、数量、形状和大小,但往往受到金相磨面的限制。 2.扫描电镜 扫描电子显微镜(SEM)是材料学领域中应用最为广泛的一种电子显微镜。SEM广泛使用是因为它既具有光学显微镜制样简易性,又具有昂贵、复杂的透射电镜的众多功能和适用性。SEM是20世纪30年代在德国由Knoll和VonArdenne首创的。在20世纪40年代,美国RCA研究所实验室的Zworykin,Hillier和Snyder对它的进展起了重要作用,但是,他们的成功最终受到当时真空条件的限制。现代的SEM是Oatley和他的学生从1948年到1965年期间在剑桥大学的研究成果。SEM是近几十年来才趋于完善的一种电子光学仪器,它利用入射电子束与试样作用产生的各种信号,可对试样进行形貌观察、成分分析等多方面工作。SEM具有分辨本领高、放大倍率变化范围宽(放大率可从十几倍连续放大到几十万倍)、成像焦深长、立体感强等特点,可对凸凹不平的断口表面的宏观和微观形貌特征进行观察和分析。SEM还备有X射线谱仪,可对断口表面进行成分分析。

  • 实验分析仪器--有机质谱的分类与应用

    有机质谱主要用于各种有机化合物的结构分析,它提供了有机化合物最直观的特征信息,即分子量及官能团碎片结构信息。在某些条件下,这些信息足以确定一个有机化合物的结构。此外,在高分辨条件下,将质谱信号通过计算机运算,还可以获知其元素组成。目前,有机质谱根据质量分析器工作原理主要分为四极杆质谱、离子阱质谱、飞行时间质谱及傅里叶变换离子回旋共振质谱,其中四极杆质谱及离子阴质谱为低分辨质谱,而飞行时间质谱及傅里叶变换离子回旋共振质谱为高分辨质谱;另外按照联用技术划分主要分为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱、毛细管电泳-质谱及芯片质谱等。关于质谱质量分析器及联用技术的原理及特点等在后文有详细介绍,在此不一一赘述。有机质谱分析虽起步较晚,但发展十分迅速。由于与分离型仪器([url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])联用的成功,质谱已成为复杂混合物(包括天然产物、食品、药物、代谢产物、污染物等)成分分析的最有效工具。这些混合物的组分可多至数百个甚至上千个,含量也千差万别,用其他方法分析一般耗时耗力,有时则根本不可能进行。而用色谱-质谱联用法则可在较短的时间内对这些组分进行定性和定量分析。结合裂解方法,色谱-质谱联用甚至可以分析高分子样品的成分。20世纪80年代中期出现的电喷雾电离(ESI)和基质辅助激光解吸电离(MALDI),这两种常压离子化电离技术所具有的高灵敏度和高质量检测范围使得在fmol(10[sup]-15[/sup]mol)乃至amol(10[sup]-18[/sup]mol)水平检测分子量高达几十万的生物大分子成为可能,从而开拓了有机质谱一个崭新的领域——生物质谱,促使质谱技术在生命科学领域获得广泛应用和发展。目前,有机质谱法应用于生物化学、生物医学领域的研究工作已成为质谱学发展的热点。用质谱技术分析核糖、核酸、多肽、蛋白质方面的许多成功的研究工作,都标志着它作为一种生化分析方法将占据重要的地位。此外,用质谱技术应用于医学疾病诊断及在法庭科学中的微量甚至痕量样品分析的研究工作也日趋显著。近年来,由于常压离子化技术的发展,有机质谱可直接分析气态、液态、胶体、组织等复杂基体样品,其应用得到了进一步的拓展

  • 【原创】技术贴:复杂食品基质中甲胺磷残留分析样品前处理方法

    做农残的应该都深有体会,复杂基质样品中的甲胺磷残留分析是个相当棘手的问题。相对来说葱还算不太复杂的样品,最可怕的是熏硫处理过的干香菇、调味粉,简直是无解了,还有大蒜,真是头疼。。。。主要还是因为前处理目前没有什么好的办法。正头疼中,一天突发奇想,哈哈,搞了一个前处理方法,很好用,速度很快,成本也不高,跟大家分享。主要有2个优势:1、含硫基干扰物质(挥发性硫化物)如葱蒜类样品、熏硫产品也可以用GC-FPD做了,没干扰。2、通吃各种不同基质样品,验证了黑胡椒粉、茶叶、干香菇、小麦、葱姜蒜、韭菜、烤鳗、黄鱼、菠菜、苹果等基质,目前暂时没有发现不能做的样品基质。这点在农残检测中很少见。 其它的看附件啦,下个月在分析化学刊登出来,解释得比较详细了,包括[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)和液相色谱-串联质谱(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)方法:正相硅胶/选择洗脱-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法、液相色谱-质谱法检测食品中甲胺磷残留及其作用机理研究。大家试一下,有什么问题可以跟帖,互相交流,呵呵[img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=195647]食品中甲胺磷残留分析方法.pdf[/url]

  • 【原创大赛】气相色谱-质谱联用分析芥末油天然真假性

    【原创大赛】气相色谱-质谱联用分析芥末油天然真假性

    前 言芥末油是一种很好调味品。它是由十字花科植物芥末籽经过粉碎,加水水解,蒸馏而得。其主要成分是异硫氰酸烯丙酯,有强烈的刺激辣味,可刺激唾液和胃液的分泌,有开胃、杀菌消炎等作用,还能增强食欲,另外还有解毒、美容养颜等功效。芥末油有由芥末籽生产纯粹天然品,也有添加人工合成异硫氰酸烯丙酯冒充天然品的。本文用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法分析鉴定某一芥末籽油的天然真伪。并与纯天然芥末籽油对比进一步确认真伪。用Amdis质谱数据解卷积处理质谱数据,并结合保留指数校正使质谱检索结果更为准确。使用动态范围宽的FID来定量。[b]1试验部分[/b]1.1 仪器与装置安捷伦6890N/5973I[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪,带FID检测器,双进样口分别接两根毛细管柱及MS和FID。1.2样品样品: 待测芥末籽油由某供应商提供,标品由某天然油公司提供。所有香气化合物标准品均来自Sigma-Aldrich等主要试剂公司,少数为原料精制标样。C6-C30正构烷混合标准物来自AccuStandard。1.3 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS条件1.3.1 色谱条件:色谱柱(质谱鉴定):安捷伦HP-Innowax(60m×0. 25 mm ( i.d.)×0.25μm)毛细管柱,连接MS定性;升温程序: 60℃,以3 ℃/min升至250℃,保持28 min;色谱柱(FID定量):安捷伦HP-Innowax (60m×0. 25 mm ( i.d.)×0.25μm)毛细管柱,连接FID定量;升温程序: 60℃,以3℃/min升至250℃,保持28 min;载气:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS, He,纯度99.999%以上,流速1.8 mL/min [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-FID, He, 纯度99.999%以,流速1.8mL/min;进样口温度250℃,分流进样,分流比100:1 进样量:1μl。检测器:FID, 氢气:30ml/min, 空气:350ml/min, 尾吹:N2,30ml/min, 温度:270℃。1.3.2质谱条件: 电子轰击(EI)离子源;电子能量70eV;传输线温度250℃;离子源温度230℃;四级杆温度150℃。SCAN扫描范围:29-400。EMV:1560V。溶剂延迟时间:3.8min.[b]1.4样品处理及分析方法[/b]样品用特丁基甲醚5倍稀释,进样1微升进行[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS/FID分析。在分析样品前,和样品分析完全相同的条件下,用0.05%的C6-C30的正构烷标样注射到[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS,获得正构烷的保留时间,用于计算保留指数。分析样品后,用软件计算样品各个组分的保留指数,并和标样的保留指数对比来,结合质谱来定性。事先也用同样方法测定标样的保留指数备用。[b]2 结果与讨论[/b]2.1 实验结果待测芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)如下:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010929318112_6403_1615838_3.jpg!w690x387.jpg[/img][align=center]图 1待测芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)[/align]***********************************************************************从图1看出此待测样品的纯度较高,杂质少。为了便于判断是否为天然,也同时和天然品对照。标准天然品芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)如下:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010929512682_8708_1615838_3.jpg!w690x387.jpg[/img][align=center]图 2 标准天然品芥末籽油的总[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]图(TIC)[/align]**********************************************************************对比两张色谱图,标准天然品比待测样品的杂峰要多一些,纯度可以比待测样品低。两者对比图如下:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010930118444_855_1615838_3.jpg!w690x387.jpg[/img][align=center]图3 待测样品和标准品色谱图对照[/align]***************************************************************************2.2数据处理:2.2.1先用Amdis质谱数据解卷积处理质谱数据,减少本底干扰,对共流出峰拆分,提取出大峰下面的峰或隐藏在里面的色谱峰。同时用Amdis的MSL质谱数据库和工作站的PBM(L)质谱数据库检索,并结合保留指数来鉴定峰。所有保留指数均由标准样品测定。极少数没有保留指数的化合物,参照其它资料和以往的经验,在保证良好匹配度的情况下确认。由于FID的动态线性范围很宽,定量结果稳定,复杂的多挥发性组分一般用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]FID来定量,而不用质谱总离子(TIC)来定量。本篇用FID检测器的面积归一化法来计算芥末籽油挥发性组分的含量。2.2.2 Amdis处理举例Amdis质谱数据解卷积处理天然标品数据后在主峰异硫氰酸烯丙酯和硫氰酸烯丙酯的台阶上面发现BUTYL ISOTHIOCYANATE和2-methylbutyl-Isothiocyanat组分。这在一般的检索情况下是无法发现到的。如下图:[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010930409409_2260_1615838_3.jpg!w690x387.jpg[/img][align=center]图4 Amdis处理举例[/align]*********************************************************************2.2.3 特殊峰形积分由于芥末籽油的主成分异硫氰酸烯丙酯和硫氰酸烯丙酯的峰形比较特殊,在两者之间也有少许物质。积分采用面积加合,撇线处理和扣除结合的方法。积分方法请参考:[b][b]一个较难积分的例子[/b][url]https://bbs.instrument.com.cn/topic/7270600[/url][/b][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/07/201907010930567232_9060_1615838_3.jpg!w690x387.jpg[/img][align=center]图5 主峰积分方法[/align]***********************************************************************2.3芥末籽油挥发性成分[align=center]表 芥末籽油挥发性成分表[/align] [table=568][tr][td][/td][td][/td][td][/td][td]天然样品[/td][td][img=,1,17]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] [table][tr][td]待测样品[/td][/tr][/table] [/td][/tr][tr][td][/td][td][/td][td][/td][td]Std[/td][td]unknown[/td][/tr][tr][td]No[/td][td]RT(min)[/td][td]Name 成分名称[/td][td] [/td][td] [/td][/tr][tr][td]1[/td][td]4.01[/td][td]2-Propenal 2-丙烯醛[/td][td]0.000[/td][td]0.014[/td][/tr][tr][td]2[/td][td]4.22[/td][td]ALLYLMERCAPTANE 丙烯硫醇[/td][td]0.006[/td][td]0.005[/td][/tr][tr][td]3[/td][td]4.49[/td][td]DIALLYL ETHER 烯丙醚[/td][td]0.000[/td][td]0.000[/td][/tr][tr][td]4[/td][td]4.63[/td][td]BENZENE 苯[/td][td]0.000[/td][td]0.005[/td][/tr][tr][td]5[/td][td]5.70[/td][td]1,2-dichloro-Propane 1,2-二氯-丙烷[/td][td]0.000[/td][td]0.017[/td][/tr][tr][td]6[/td][td]6.69[/td][td]ALLYL ALCOHOL 烯丙醇[/td][td]0.000[/td][td]0.026[/td][/tr][tr][td]7[/td][td]7.64[/td][td]DIALLYL SULPHIDE 二丙烯基硫醚[/td][td]0.011[/td][td]0.000[/td][/tr][tr][td]8[/td][td]7.85[/td][td]3-Butenenitrile 3-丁烯腈[/td][td]0.001[/td][td]0.000[/td][/tr][tr][td]9[/td][td]8.22[/td][td]2-Butenenitrile 2 -丁烯腈[/td][td]0.868[/td][td]0.000[/td][/tr][tr][td]10[/td][td]9.32[/td][td]THIAZOLE 噻唑[/td][td]0.000[/td][td]0.031[/td][/tr][tr][td]11[/td][td]10.88[/td][td]BUTYL ISOTHIO CYANATE, 2- 异硫氰酸2-丁酯[/td][td]0.138[/td][td]0.000[/td][/tr][tr][td]12[/td][td]12.47[/td][td]BUTYL ISOTHIOCYANATE, ISO- 异硫氰酸异丁酯[/td][td]0.012[/td][td]0.000[/td][/tr][tr][td]13[/td][td]13.89[/td][td]ALLINATE /ALLYL ISOTHIOCYANATE 异硫氰酸烯丙酯[/td][td]92.245[/td][td]94.296[/td][/tr][tr][td]14[/td][td]14.80[/td][td]BUTYL ISOTHIOCYANATE 异硫氰酸丁酯[/td][td]0.006[/td][td]0.000[/td][/tr][tr][td]15[/td][td]16.18[/td][td]Isothiocyanat, 2-methylbutyl- 异硫氰酸2-甲基丁酯[/td][td]0.026[/td][td]0.000[/td][/tr][tr][td]16[/td][td]17.07[/td][td]ALLYL THIOCYANATE 硫氰酸烯丙酯[/td][td]5.879[/td][td]5.392[/td][/tr][tr][td]17[/td][td]17.23[/td][td]3-BUTENYL ISOTHIOCYANATE 异硫氰酸3-甲基丁酯[/td][td]0.692[/td][td]0.000[/td][/tr][tr][td]18[/td][td]18.50[/td][td]AMYL ISOTHIOCYANATE 异硫氰酸戊酯[/td][td]0.006[/td][td]0.000[/td][/tr][tr][td]19[/td][td]20.35[/td][td]PENTENYL ISOTHIOCYANATE, 4- 异硫氰酸戊烯-4-酯[/td][td]0.024[/td][td]0.000[/td][/tr][tr][td]20[/td][td]36.26[/td][td]METHYLTHIOPROPYL ISOTHIOCYANATE 异硫氰酸甲基硫代丙酯[/td][td]0.020[/td][td]0.000[/td][/tr][tr][td]21[/td][td]43.60[/td][td]m/z 87,57,115 unknown 未知物[/td][td]0.000[/td][td]0.182[/td][/tr][tr][td]22[/td][td]43.69[/td][td]2-PHENYLETHYL ISOTHIOCYANATE 异硫氰酸2-苯乙酯[/td][td]0.053[/td][td]0.000[/td][/tr][tr][td]*[/td][td]SUM[/td][td]总计[/td][td]99.99[/td][td]99.97[/td][/tr][/table]从上述结果来看,从芥末籽油里面一共鉴定测定了22个挥发性组分。主要成分是异硫氰酸烯丙酯,其次是硫氰酸烯丙酯。从待测样品发现有苯,1,2-二氯丙烷,而天然品里面并没有,显然是由于化学合成提纯时候带来的。另外2-丙烯醛,烯丙醇等也是在天然品里面没有看到。在天然品里面具有的,硫醚,丁烯腈,二丙烯基硫醚,异硫氰酸的丁酯异构体,异硫氰酸戊酯异构体,异硫氰酸苯乙酯等在待测样品里面也没有看到。所以判断该号称天然芥末籽油的样品并不是天然来源,是化学合成而来。即使待测样品的异硫氰酸烯丙酯的含量高,为94.3%,比天然品还高2%,但并非是天然的。

  • 气相色谱分析方法的开发

    RCONH22 确定初始操作条件主要包括进样口温度、检测器温度、色谱柱温度和载气流速。分流进样的进样量一般不超过2μL ,最好控制在 0 .5 μL 以下 ,进样量还和分流比有关 ,分流比大时 ,进样量可大一些 ;进样口温度应接近或高于样品中最重组分的沸点 ;对于一个未知的新样品, 可将进样口温度设置为 300 ℃;常用毛细管GC 所用柱内载气线流速为:氮气 20~40 cm/s。隔垫吹扫设定为 2 ~5 mL/min , 分流比依据样品情况(如待测组分浓度等)、进样量大小和分析要求来改变, 选择一个合适的折衷分流比,用分流比范围 20∶1 ~200∶1 ,待测组分浓度大或进样量大时, 分流比可相应增大,反之则减小,用大口径柱时分流比小一些,用微型柱做快速GC 时,分流比要求很大,流比小时, 分流歧视效应可能小,但初始谱带(主要是溶剂谱带)宽度大,分流比大时,初始谱带(主要是溶剂谱带)宽度小,但分流歧视效应可能大。检测器温度可参照色谱柱的最高温度设定,而不必优化。色谱柱温度,组成简单的样品最好用恒温分析;组成复杂的样品,常需要用程序升温分离;色谱柱的初始温度应接近样品中最轻组分的沸点, 最终温度取决于最重组分沸点;升温速率依样品的复杂程度而定,建议毛细管柱的尝试温度条件设置为OV -1或SE-54 柱 :从 50 ~280 ℃,升温速率 10 ℃/min ,V - 17(OV -1701)柱:从60 ~260 ℃, 升温速率 8 ℃/ min ,PEG -20M 柱:从60 ~200 ℃,升温速率 8 ℃/ min 。这是方法开发时的初始参考条件,具体工作中再根据样品的实际分离情况来优化设定。3 尝试性分析上述初始条件设定后,便可以进行样品的尝试性分析。一般先分离标准样品,然后分析实际样品。在此过程中,还要根据分离情况不断进行优化。GC的分离优化就是要在保证分离度和灵敏度的前提下,实现快速分析。在实际工作中,一般是首先满足分离度的要求,然后提高分析灵敏度,最后再考虑尽可能缩短分析时间。改变柱温和载气流速可改变分离度;内径越小,或者填料粒度越小,柱效越高;薄液膜色谱柱的柱效高于厚液膜柱;更换色谱柱可改变分离度;用化学作用如通过生化反应改变待测物结构;程序升温是GC分离复杂混合物的有效方法;进样量小一些、进样口温度高一些、载器气流速快一些、汽化室体积小一些,分流比大一些,对窄的初始谱带宽度有利。4 气相色谱定性与定量分析对于简单的样品,可通过标准物质对照来定性。对于复杂的样品, 则要通过保留指数定性和或GC/MS来定性。对于基层监测站,气相色谱定性分析最主要是依据保留值定性,即在相同的条件下,分别注入标准样品和实际样品,根据保留值确定色谱图上哪个峰是要分析的组分。但必须注意,在同一根色谱柱上,不同的化合物可能有相同的保留值,对未知样品的定性仅仅用一个保留值还不够。双柱或多柱保留指数定性是气相色谱定性分析较为可靠的方法,不同的化合物在不同色谱柱上具有相同保留值的几率要小的多。建议对复杂的样品采用双柱或多柱保留指数法定性。气相色谱定量方法包括面积百分比法、归一化法、外标法、内标法、标准加入法。基层监测站最常用的方法是外标法,只要用一系列浓度的标准样品做出工作曲线, 就可以在完全一致的条件下对未知样品进行定量

  • 气相色谱仪器图谱分析使用口诀

    [b][size=24px]气相色谱仪器图谱分析使用口诀[/size][size=18px]气相色谱分析法概述气液试样实在多,气相色谱把样测分析灵敏响应快,常量分析全包括内标外标归一法,检测热导氢焰化微机处理色谱图,定量结果准度大气相色谱仪气相色谱仪器多,型号性能各有别分析特性有异同,分离分析有特色载气系统稳操作,携带样气去检测压力流速勿波动,稳压稳流靠调节柱分系统分类多,填充毛细全包括分离试样全靠它,选择液载要正确进样系统严操作,定量进样需准确气体采用进样阀,液体微量用注射检测系统蕞明确,种类型号也很多热导氢焰离子化,电子捕俘双焰火检测信号需琢磨,各个组分细甄别响应快速能分辨,一一对应勿出错放大记录有把握,谱图精细准轮廓色谱峰大含量高,微机定量更准确利用气相色谱分析法定性和定量气相色谱分析法,试样定性较发杂操作相同峰一致,纯物对照判断它气质联用好办法,色谱红外能简化试样组分可判定,定性数据能表达气相色谱分析法,试样定量不发杂谱峰面积知多少,总量相比求得它定量测定常规法,内标外标归一化测定一种内外标,全部出峰归一化法归一化法来定量,出峰不全不适当全部组分看做一,百分之百来计量质量分数即含量,谱峰面积先测量校正因子查表得,代入公式得含量内标法定量可用内标法,分析简便不复杂出峰组分不完全,计算仍然要方法内标物质物含杂,称量不准出误差谱峰面积测准确,质量分数准度大外标法定量可用外标法,操作条件较复杂平行测定要保证,标准试剂用量大固定称量熟练化,称量不准出误差偶尔测定公式算,常规工作曲线查[/size][/b]

  • 【分享】气相色谱-质谱联用(6890GC-5973MS) 操作步骤

    [b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用(6890[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-5973MS) 操作步骤[/b]一、实验目的1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法;了解色谱工作站的基本功能,掌握利用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪进行定性分析的基本操作。二、实验原理[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法(gas chromatography, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url])是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS)是最早实现商品化的色谱联用仪器。目前,小型台式[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS已成为很多实验室的常规配置。1. 质谱仪的基本结构和功能质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。5054质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪的进样系统由接口和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]组成。接口的作用是使经[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分离出的各组分依次进入质谱仪的离子源。接口一般应满足如下要求:(a)不破坏离子源的高真空,也不影响色谱分离的柱效;(b)使色谱分离后的组分尽可能多的进入离子源,流动相尽可能少进入离子源;(c)不改变色谱分离后各组分的组成和结构。离子源的作用是将被分析的样品分子电离成带电的离子,并使这些离子在离子光学系统的作用下,汇聚成有一定几何形状和一定能量的离子束,然后进入质量分析器被分离。其性能直接影响质谱仪的灵敏度和分辨率。离子源的选择主要依据被分析物的热稳定性和电离的难易程度,以期得到分子离子峰。电子轰击电离源(EI)是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪中最为常见的电离源,它要求被分析物能气化且气化时不分解。质量分析器是质谱仪的核心,它将离子源产生的离子按质荷比(m/z)的不同,在空间位置、时间的先后或轨道的稳定与否进行分离,以得到按质荷比大小顺序排列的质谱图。以四极质量分析器(四极杆滤质器)为质量分析器的质谱仪称为四极杆质谱。它具有重量轻、体积小、造价低的特点,是目前台式[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪中最常用的质量分析器。5054检测器的作用是将来自质量分析器的离子束进行放大并进行检测,电子倍增检测器是色谱-质谱联用仪中最常用的检测器。5054计算机控制与数据处理系统(工作站)的功能是快速准确地采集和处理数据;监控质谱及色谱各单元的工作状态;对化合物进行自动的定性定量分析;按用户要求自动生成分析报告。5054标准质谱图是在标准电离条件——70eV电子束轰击已知纯有机化合物得到的质谱图。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪中,进行组分定性的常用方法是标准谱库检索。即利用计算机将待分析组分(纯化合物)的质谱图与计算机内保存的已知化合物的标准质谱图按一定程序进行比较,将匹配度(相似度)最高的若干个化合物的名称、分子量、分子式、识别代号及匹配率等数据列出供用户参考。值得注意的是,匹配率最高的并不一定是最终确定的分析结果。目前比较常用的通用质谱谱库包括美国国家科学技术研究所的NIST库、NIST/EPA(美国环保局)/NIH(美国卫生研究院)库和Wiley库,这些谱库收录的标准质谱图均在10万张以上。

  • 分析串联质谱的优、缺点

    所谓的[url=https://www.chem17.com/st370866/]串联质谱[/url]就是两个或者更多的质谱仪连接在一起,进行分析样品的技术。两个质谱串联而成的质谱联用技术是简单的,通常个质量分析器(ms1)将离子预分离或加能量修饰,由第二级质量分析器(ms2)分析结果。三级四极杆串联质谱是常用的串联质谱,级和第三级四极杆分析器分别为ms1和ms2,第二级四极杆分析器所起作用是将从ms1得到的各个峰进行轰击,实现母离子碎裂后进进ms2再行分析。串联质谱能够分析小分子,也可测试有些蛋白质等生物大分子,还可以直接进行如中草药等混合物成分的分析的仪器。随着采用新技术的质量分析器不断推出,大大促进了串联质谱技术的发展,如四极杆-飞行时间串联质谱(q-tof)和飞行时间-飞行时间(tof-tof)串联质谱等。离子阱和傅里叶变换分析器可在不同时间顺序实现时间序列多级质谱扫描功能。上风分析:1.在混合物分析中的上风,ms/ms基本的功能包括能说明ms1中的母离子和ms2中的子离子间的联系。根据ms1和ms2的扫描模式,如子离子扫描、母离子扫描和中性碎片丢失扫描,可以查明不同质量数离子间的关系。在质谱与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]联用时,即使色谱未能将物质完全分离,也可以进行鉴定。ms/ms可从样品中选择母离子进行分析,而不受其他物质干扰。2.在药物分析中的上风,子离子扫描可获得药物主要成分,杂质和其他物质的母离子的定性信息,有助于未知物的鉴别,也可用于肽和蛋白质氨基酸序列的鉴别。3.在药物代谢动力学研究中的上风,对生物复杂基质中低浓度样品进行定量分析,可用多反应监测模式消除干扰。如分析药物中某特定离子,而来自基质中其他化合物的信号可能会掩盖检测信号,用ms1/ms2对特定离子的碎片进行选择监测可以消除干扰。mrm也可同时定量分析多个化合物。在药物代谢研究中,为发现与代谢前物质具有相同结构特征的分子,使用中性碎片丢失扫描能找到所有丢失同种功能团的离子,如羧酸丢失中性二氧化碳。假如丢失的碎片是离子形式,则母离子扫描能找到所有丢失这种碎片的离子。[b]串联质谱的缺点:[/b]1.串联质谱结构复杂,维护成本高。[url=https://www.chem17.com/st370866/]质谱仪[/url]是高精密仪器,在实验室使用时要经过专门培训的技术职员才能操纵质谱仪。2.串联质谱对环境的温度、湿度等要求高。3.测试速度慢,而且功能复杂。影响分析工作的效率

  • 气相色谱仪和质谱仪联用解决了哪些技术问题

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]一质谱联用仪是将[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和质谱仪通过一定的接口耦合到一起的化学分离分析仪器。因为同时兼具[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的高分离能力和质谱仪的高灵敏度优势,在复杂的分析工作中发挥着不可替代的作用。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和质谱仪联用技术中主要着重要解决两个技术问题:1.仪器接口众所周知,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,后和载气一起流谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。2.扫描速度没和色谱仪联接的质谱仪一般对扫描速度要求不高。和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]联接的质谱仪,由于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]峰很窄,有的仅几秒钟时间。一个完整的色谱峰通常需要至少6个以上数据点。这样就要求质谱仪有较高的扫描速度,才能在很短的时间内完成多次全质量范围的质量扫描。另一方面,要求质谱仪能很快地在不同的质量数之间来回切换,以满足选择离子检测的需要。

  • 【讨论】未知化合物的质谱分析过程

    未知化合物的结构判定是一个复杂工程,四大波谱分析的综合运用也是必不可少的,质谱分析也扮演其中一个重要角色。如果您是这个化合物的合成者,现在有各种质谱可供选择,您认为未知化合物质谱分析的具体过程是怎么样的?怎样快速准确的完成这一分析任务?[color=#DC143C]感谢参与,参与有奖,好的回帖有更多加分。谢绝灌水!请各位支持![/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制