当前位置: 仪器信息网 > 行业主题 > >

大扫描范围原子力显微镜

仪器信息网大扫描范围原子力显微镜专题为您提供2024年最新大扫描范围原子力显微镜价格报价、厂家品牌的相关信息, 包括大扫描范围原子力显微镜参数、型号等,不管是国产,还是进口品牌的大扫描范围原子力显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大扫描范围原子力显微镜相关的耗材配件、试剂标物,还有大扫描范围原子力显微镜相关的最新资讯、资料,以及大扫描范围原子力显微镜相关的解决方案。

大扫描范围原子力显微镜相关的论坛

  • 【求助】请教原子力显微镜分辨率与扫描器的关系?

    [color=#0162f4][size=4]新进了一台原子力显微镜,配的扫描器是20μm的,不知道分辨率是多少?我也检索了关于原子力显微镜的分辨率的一些问题,但不知道原子力的分辨率是不是与扫描器有关,不同扫描器除了扫描范围不一样,得到的扫描图像的精度也不一样,是不是就是说分辨率不一样呢?关于分辨率的问题常常都在困扰这我,这个问题说简单很简单,说复杂也觉得挺复杂的,请教各位,原子力显微镜分辨率与扫描器的关系如何?如果我希望能看到更高精度的图像,是不是需要升级我现在的20μm的扫描器?衷心感谢各位的解答![/size][/color]

  • 原子力显微镜拼接缝合技术(Stitching)

    原子力显微镜拼接缝合技术(Stitching), 高分辨率成像技术例如AFM常常会受制于他们的最大扫描范围。当同时需要AFM高的侧向分辨率和一个大扫描范围时,图像拼接技术是一个解决方案。图像拼接常用于从批量制作的图片中生成一个单一的全景图像。在更先进的操作中,这项技术也能被用于结合批量AFM测量生成单一大图像。因此,大尺寸表面区域的AFM图像,例如1mm×1mm或100μm×100μm大小,能被简单的得到。

  • 【讨论】原子力显微镜

    【讨论】原子力显微镜

    原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德?宾宁与斯坦福大学的Calvin Quate于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子穿隧效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或喀希米尔效应等来呈现样品的表面特性。1. 工作原理原子力显微镜的原理示意图: Detector and Feedback Electronics 侦检器及回馈电路; Photodiode 感光二极管; Laser 激光器; Sample Surface 样品表面; Cantilever & Tip 微悬臂及探针; PZT Scanner 压电扫描器 AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂。这种悬臂大小在数十至数百微米,通常由硅或者氮化硅构成,其上载有探针,探针之尖端的曲率半径则在纳米量级。当探针被放置到样品表面附近的地方时,悬臂会因为受到探针头和表面的引力而遵从胡克定律弯曲偏移。在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、静电力、磁力(见磁力显微镜)喀希米尔效应力、溶剂力等等。通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质( 如铝)以增强其反射。其他方法还包括光学干涉法、电容法和压电效应法。这些探头通常由采用压电效应的变形测量器而制得。通过惠斯登电桥,探头的形变何以被测得,不过这种方法没有激光反射法或干涉法灵敏。 当在恒定高度扫描时,探头很有可能撞到表面的造成损伤。所以通常会通过反馈系统来维持探头与样品片表面的高度恒定。传统上,样品被放在压电管上并可以在z方向上移动以保持与探头之间的恒定距离,在x、y方向上移动来实现扫描。或者采用一种“三脚架”技术,在三个方向上实现扫描。扫描的结果S(x,y)就是样品的表面图。AFM可以在不同模式下运行。这些模式可以被分为接触模式(Contact Mode)、非接触(Non-Contact Mode)、轻敲模式(Tapping Mode)、侧向力(Lateral Force Mode)模式。2. 优点与缺点 相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812311440_127077_1664664_3.jpg[/img]

  • 【分享】原子力显微镜

    【分享】原子力显微镜

    原子力显微镜  原子力显微镜  atomic force microscope  一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息。它主要由带针尖的微悬臂  、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。   原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.  优点与缺点  相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。  和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。[~116643~][~116644~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624039_1602049_3.jpg[/img]

  • 原子力显微镜测试

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37076.html[/url]Bruker Dension lcon系列作为布鲁克公司(Bruker AXS)原子力显微镜的旗舰产品,凝聚了多项行业领先的技术,是二十多年技术创新、客户反馈和行业应用的结晶。Dimension lcon的出现为科学和工业界在纳米尺度的研究带来了革命性的巅峰之作。Dimension lcon可以实现所有主要的扫描探针成像技术,其测试样品尺寸可达:直径210mm,厚度15mm。温度补偿位置传感器使Z-轴和X-Y轴的噪音分别保持在亚-埃级和埃级水平,并呈现出前所未有的高分辨率。对于大样品、90微米扫描范围的系统来说,这种噪音水平超越了所有的开环扫描高分辨率的原子力显微镜。全新的XVZ闭环扫描头在不损失图像质量的前提下大大提高了扫描速度。探针和样品台的开放式设计使lcon可胜任各种标准和非标准的实验。Dimension lcon的硬件和软件最大程度的利用了先进的布鲁壳AFM的模式和技术,如高次谐波共振模式等。并且独有的不失真高温成像技术采用对针尖和样品同时加热的方法,最大程度减少针尖和样品之间的温差,避免造成成像失真。Dimension lcon可广泛应用于材料科学,物理,化学,微电子,生命科学等领域和学科。[align=center][size=20px]应用范围[/size][/align]形貌分析:通过原子力显微镜我们可获得纳米材料、高分子材料、生物样品、金属材料、陶瓷材料、薄膜材料表面形貌信息。高度及粗糙度分析:通过原子力显微镜可以获得各种材料表面的起伏度信息、粗糙度信息、高度信息。性能分析:通过原子力显微镜可对材料的力学性能、电学性能、磁学性能、摩擦力、阻抗性能进行表征。[align=center][size=20px]检测案例[/size][/align][align=center]零维纳米材料:量子点检测案例[/align][align=center][img=image.png]https://img2.17img.cn/pic/kind/20210901/20210901144216_0978.jpg[/img][/align][align=center]二维纳米材料:石墨烯检测案例[/align][align=center][img=image.png]https://img2.17img.cn/pic/kind/20210901/20210901144315_4015.jpg[/img][/align][align=center]薄膜材料检测案例[/align][align=center][img=image.png]https://img2.17img.cn/pic/kind/20210901/20210901144356_1183.jpg[/img][/align][align=center][size=20px][/size][/align][size=20px]送样要求[/size]粉末样品:样品量≥10mg.液体样品:样品量≥1ml。块体样品:样品尺寸≤1cm*1cm(能支持的最大样品尺寸20cm,样品较大时请提前联系)。[align=center][size=20px]测试说明:[/size][/align]1.样品粗糙度或者粒径尽量不要超过 1um,含有较多有机杂质的需要提纯处理,否则影响测试。2.测试原子力前最好先用扫描电镜或透射电镜进行筛选,并提供相关的参考图片。3.C-AFM PFM KPFM测试要求样品必须导电。4.导电性能测试(C-AFM):可同时得到样品形貌和电流分布图,也可进行选区I-V曲线测试。5.表面电势测试(AFM-SKPFM): 可对样品表面电荷进行半定性表征,能直接测量探针和样品之间的电势差。6.压电力测试(AFM-PFM):可得到材料的静态电畴结构、电畴反转行为、慢弛豫过程、微区电滞回线等信息。7.磁学性能测试(AFM-MFM):可得到样品微区磁畴的分布。8.力学性能测试(AFM-QNM):可通过拟合力学曲线得到样品的杨氏模量,得到微区的杨氏模量分布,适用于较软样品高级纳米力学成像模式,可对有机物,高分子以及金属材料进行扫描,同时得到形貌和模量分布。

  • 【原创】原子力显微镜的原理

    【原创】原子力显微镜的原理

    一、原理 原子力显微镜(Atomic Force Microscopy, AFM)是由IBM 公司的Binnig与史丹佛大学的Quate 于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191623_119371_1601358_3.jpg[/img] 图1、原子与原子之间的交互作用力因为彼此之间的距离的不同而不同,其之间的能量表示也会不同。 原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化,其作用力与距离的关系如“图1” 所示,当原子与原子很接近时,彼此电子云斥力的作用大于原子核与电子云之间的吸引力作用,所以整个合力表现为斥力的作用,反之若两原子分开有一定距离时,其电子云斥力的作用小于彼此原子核与电子云之间的吸引力作用,故整个合力表现为引力的作用。若以能量的角度来看,这种原子与原子之间的距离与彼此之间能量的大小也可从Lennard –Jones 的公式中到另一种印证。 img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img] 为原子的直径 为原子之间的距离 从公式中知道,当r降低到某一程度时其能量为+E,也代表了在空间中两个原子是相当接近且能量为正值,若假设r增加到某一程度时,其能量就会为-E 同时也说明了空间中两个原子之距离相当远的且能量为负值。不管从空间上去看两个原子之间的距离与其所导致的吸引力和斥力或是从当中能量的关系来看,原子力式显微镜就是利用原子之间那奇妙的关系来把原子样子给呈现出来,让微观的世界不再神秘。 在原子力显微镜的系统中,是利用微小探针与待测物之间交互作用力,来呈现待测物的表面之物理特性。所以在原子力显微镜中也利用斥力与吸引力的方式发展出两种操作模式: (1)利用原子斥力的变化而产生表面轮廓为接触式原子力显微镜(contact AFM ),探针与试片的距离约数个?。 (2)利用原子吸引力的变化而产生表面轮廓为非接触式原子力显微镜(non-contact AFM ),探针与试片的距离约数十个? 到数百个?。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img]

  • 【分享】原子力显微镜技术资料(SPM/AFM)

    原子力显微镜技术资料主要特点 - 完全机动化的AFM,提供自动的laser-to-tip alignment以及快速启动。 - 低噪音光学记录系统。 - 真正意义上的非接触式扫描。- 高速大范围100x100x15um 扫描器 - 先进的闭环控制 - 数字模块化控制器 Measuring modes ●Contact AFM ●Semicontact AFM ●True Non-contact AFM ●LFM 原子力显微镜技术原子力显微镜技术原子力显微镜技术●Conductive AFM: ●Advanced MFM, Kelvin Probe, ●Capacitance and EFM ●Advanced nanolithography and nanomanipulation capabilities ●STM ●Tuning fork AFM ●3D scanning imaging.技术参数 ◆ Scanning range: 100um x 100um x 15um (+/-10%) ◆Scanning type: by sample ◆XY non-linearity: 0.03% ◆Z non-linearity: 0.1% ◆Noise: 0.1nm RMS in XY dimension in 200Hz bandwidth with capacitance sensors on 0.02nm RMS in XY dimension in 100Hz bandwidth with capacitancel sensors off l 0.04nm RMS Z capacitance sensor in 1000Hz bandwidth ◆Digital closed loop control: for X,Y,Z axes ◆XY resonance frequency: 7 kHz (unloaded) ◆Z resonance frequency: 15 kHz (unloaded) ◆Active elimination of XY phase lag, overshooting andl ringing results in fast scanning without any dynamic image distortion ◆Digital filtering of Z control signal at scanner resonant frequencies results in extremely short settling time ◆ Motorized sample positioning: range - 5x5mm, positioning resolution - 1um. [~117635~][~117636~]

  • 【分享】基本原则的原子力显微镜

    基本原则的原子力显微镜 在原子力显微镜基本上是一个微型悬臂式(一小束停泊在一端,而另一项目进入太空像跳水板) ,以纤巧,指出探针(同一个极为精细陶瓷或半导体尖端这是衡量规模的纳米)底下的一端,就像笔就测谎,甚至是地震。 不同的笔在纸上打印或其他媒介,一个原子力显微镜有几项改进,使原子级测量的吸引力或令人厌恶的部队之间的“笔”尖和样品的表面。 作为小费是吸引或排斥的样品的表面,是悬臂偏转。 的严重性挠度测量激光反映在斜角月底的调查。 绘图激光挠度对冰山上的立场样品表面创造了“地图”的丘陵和山谷的表面。 这提供了一个高分辨率图像的样品的表面。 在原子力显微镜有两种扫描模式。 在接触模式下,原子力显微镜的探针接触样品的表面。 作为文书拖累冰山的表面,检测设备的措施悬臂的垂直挠度和说明了当地的样品高度-实际上,衡量'排斥'势力之间的尖端和样品。 在非接触模式下,原子力显微镜的探针没有触及表面的样本,它的措施有吸引力的部队之间的冰山,表面画地形图的表面。 利弊原子力显微镜 一个原子力显微镜具有优势了扫描电子显微镜( SEM ) 。 其中之一是,一个原子力显微镜可以功能的空气或液体的环境不同,电子显微镜,要求所有探头进行在真空中进行。 鉴于此,研究人员已经开始测试原子力显微镜的适宜用于研究活生物体在纳米尺度(例如,扫描和研究生物大分子如DNA等) 。 另一方面,一个原子力显微镜可以绘制三维图像 的扫描电镜只能提供二维图像或投影的抽样调查。 另一方面,一个主要的缺点是原子力显微镜是该地区它可以扫描和图像分辨率,它可以产生。 电子显微镜可以扫描面积测量毫米 一个原子力显微镜的扫描涵盖微米(纳米,事实上) 。 从这个角度看,可以很容易地看到,电子显微镜可以扫描的区域面积更广,速度超过了原子力显微镜。 原子力显微镜是相当新的,仍然有一些错误,但它是目前使用广泛的研究在电子,化学和生物领域包括深奥的学科磨损和粘附,清洗和腐蚀,以及作为东道主的其他应用软件。

  • 【注意】扫描探针显微镜版讨论范围(发贴有惊喜哦!)

    扫描探针显微镜同其它的显微镜相比,历史比较短,只有20年的时间,大家了解的少一些,这个版也相对冷清了一些,但是发展相当迅速,大有取代SEM的趋势(大胆!^_^)。希望大家多发贴,发贴的内容主要集中在以下方面:1. 扫描隧道显微镜(STM)的构造、原理;2. 原子力显微镜(AFM)的构造、原理;3. 其它扫描探针显微镜,如MFM,EFM,LFM等的结构和原理;4.扫描探针显微镜的各种成像模式:如接触模式,轻敲模式,非接触模式以及相位成像模式等等;5.扫描探针显微镜的各种模式的技巧;6.各类扫描探针显微镜在各个方面的应用:物理,化学,材料,生物等等,包括各种制样技术;7.纳米蚀刻,纳米操纵等等;8.扫描探针显微镜的发展方向。 欢迎补充!欢迎交流![em61] [em61] [em61] [em61] [em61]

  • 原子力显微镜参数

    原子力显微镜中有些参数很不明白,比如说z Range到底反映是什么,它好像不影响扫描,可是调节它又确实使图像清晰亚。

  • 【分享】鲁克发布原子力显微镜号称世界最快

    美国加利福尼亚州当地时间2011年5月2日,布鲁克(Bruker)发布了一款具有创新性和独特外形的原子力显微镜新品——DimensionFastScanTM,该产品在不牺牲纳米级分辨率的前提下提高显微镜成像速度方面取得了重大突破。DimensionFastScanTM比其他AFM扫描速度提高了数百倍,能够在数秒或数分钟内,而不是数小时或数天内得出结果,是世界上扫描速度最快的高分辨原子力显微镜。 鉴于在纳米尺度上观察与了解材料的需求在不断增加,作为世界上使用最广泛的原子力显微平台的最新成员,DimensionFastScan采用了数项创新技术,使快速扫描速度、图像的高分辨率与精度达成完美平衡。基于成功设计的原子力显微镜架构,DimensionFastScan是一个尖端扫描系统(tip-scanning),能够提供空气或液体中的大、小样品的测量。 “DimensionFastScan实现了布鲁克在原子力显微镜技术上的目标之一,该仪器将使我们的用户能更有效率地工作,同时又不会丢失图像的分辨率与精度。在这样短的时间内完成高质量的图像,这是一项突破。”布鲁克纳米表面部总裁MarkR.Munch博士说到,“采用38项专利技术,DimensionFastScan具备了以往研究级原子力显微镜不能达到的更高的扫描速度,这是它的独特之处。” “通过提供更有效获得纳米级信息的途径,DimensionFastScan表示了布鲁克对科学界的承诺。”布鲁克的原子力显微镜业务副总裁与总经理DavidV.Rossi补充到,“我们全新的DimensionFastScan,其与ScanAsyst、PeakForceQNM等其他的布鲁克旗下的原子力显微镜产品结合起来,显著提高工作效率,同时也提供纳米级的新的定量信息。这将使布鲁克的原子力显微镜系列产品更易于被学术界和工业界使用。”http://simg.instrument.com.cn/bbs/images/brow/em09505.gif

  • 8个国家前沿专家齐聚线上——扫描探针/原子力显微镜技术前沿线上论坛

    [font=&]【扫描探针/原子力显微镜技术前沿线上论坛】[/font][font=&]8个国家前沿专家齐聚线上[/font][font=&]——第二届SPM纳米科学中国论坛 (NSSC 2020)——[/font][font=&]直播时间:12月10日[/font][font=&]会议形式:线上免费参会,英文[/font][font=&]会议主席:Mario Lanza教授,惠飞博士[/font][font=&]部分报告:[/font][font=&]【1】特邀嘉宾视频专访:导电原子力显微镜发明人专访---Sean Joseph O’Shea(A*STAR, Singapore)[/font][font=&]【2】使用扫描探针显微镜表征纳米电子材料和器件的最新趋势---Günther Benstetter(Deggendorf Institute of Technology, Germany)[/font][font=&]【3】电子原子力显微镜纳米电子学研究---Umberto Celano(IMEC, Belgium)[/font][font=&]【4】具有自优化和精确扫描控制的非接触式原子力显微镜及定量纳米测量---Sangjoon Cho(Park Systems, Korea)[/font][font=&]【5】电子器件的纳米尺度热成像---Miguel Munoz Rojo(University of Twente, Netherlands)[/font][font=&]【6】 导电原子力显微镜及纳米电子学二维材料和异质结构研究——Filippo Giannazzo(National Research Council of Italy, Italy)[/font][font=&]【7】用于栅极介电可靠性分析的导电原子力显微镜---Alok Ranjan(Singapore University of Technology and Design, Singapore)[/font][font=&]【8】氟化钙:一种优秀的二维电子学高介电介质---Chao Wen(Soochow University, China)[/font][font=&]【9】Park原子力显微镜现场演示:使用KPFM进行表面电势映射的比较研究---Charles Kim(Park Systems, Korea)[/font][font=&]【10】圆桌论坛---Moderator: Mario Lanza Panelist: Umberto Celano, Filippo Giannazzo, Miguel Munoz Rojo, Sang-joon Cho[/font][font=&]更多关于SPM技术及应用前沿,欢迎线上参会关注![/font][font=&]马上报名:[/font][url=https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs][color=#3333ff]https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs[/color][/url]

  • 8个国家前沿专家齐聚线上——扫描探针/原子力显微镜技术前沿线上论坛

    [font=&]【扫描探针/原子力显微镜技术前沿线上论坛】[/font][font=&]8个国家前沿专家齐聚线上[/font][font=&]——第二届SPM纳米科学中国论坛 (NSSC 2020)——[/font][font=&]直播时间:12月10日[/font][font=&]会议形式:线上免费参会,英文[/font][font=&]会议主席:Mario Lanza教授,惠飞博士[/font][font=&]部分报告:[/font][font=&]【1】特邀嘉宾视频专访:导电原子力显微镜发明人专访---Sean Joseph O’Shea(A*STAR, Singapore)[/font][font=&]【2】使用扫描探针显微镜表征纳米电子材料和器件的最新趋势---Günther Benstetter(Deggendorf Institute of Technology, Germany)[/font][font=&]【3】电子原子力显微镜纳米电子学研究---Umberto Celano(IMEC, Belgium)[/font][font=&]【4】具有自优化和精确扫描控制的非接触式原子力显微镜及定量纳米测量---Sangjoon Cho(Park Systems, Korea)[/font][font=&]【5】电子器件的纳米尺度热成像---Miguel Munoz Rojo(University of Twente, Netherlands)[/font][font=&]【6】 导电原子力显微镜及纳米电子学二维材料和异质结构研究——Filippo Giannazzo(National Research Council of Italy, Italy)[/font][font=&]【7】用于栅极介电可靠性分析的导电原子力显微镜---Alok Ranjan(Singapore University of Technology and Design, Singapore)[/font][font=&]【8】氟化钙:一种优秀的二维电子学高介电介质---Chao Wen(Soochow University, China)[/font][font=&]【9】Park原子力显微镜现场演示:使用KPFM进行表面电势映射的比较研究---Charles Kim(Park Systems, Korea)[/font][font=&]【10】圆桌论坛---Moderator: Mario Lanza Panelist: Umberto Celano, Filippo Giannazzo, Miguel Munoz Rojo, Sang-joon Cho[/font][font=&]更多关于SPM技术及应用前沿,欢迎线上参会关注![/font][font=&]马上报名:[/font][url=https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs][color=#3333ff]https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs[/color][/url]

  • 8个国家前沿专家齐聚线上——扫描探针/原子力显微镜技术前沿线上论坛

    [font=&]【扫描探针/原子力显微镜技术前沿线上论坛】[/font][font=&]8个国家前沿专家齐聚线上[/font][font=&]——第二届SPM纳米科学中国论坛 (NSSC 2020)——[/font][font=&]直播时间:12月10日[/font][font=&]会议形式:线上免费参会,英文[/font][font=&]会议主席:Mario Lanza教授,惠飞博士[/font][font=&]部分报告:[/font][font=&]【1】特邀嘉宾视频专访:导电原子力显微镜发明人专访---Sean Joseph O’Shea(A*STAR, Singapore)[/font][font=&]【2】使用扫描探针显微镜表征纳米电子材料和器件的最新趋势---Günther Benstetter(Deggendorf Institute of Technology, Germany)[/font][font=&]【3】电子原子力显微镜纳米电子学研究---Umberto Celano(IMEC, Belgium)[/font][font=&]【4】具有自优化和精确扫描控制的非接触式原子力显微镜及定量纳米测量---Sangjoon Cho(Park Systems, Korea)[/font][font=&]【5】电子器件的纳米尺度热成像---Miguel Munoz Rojo(University of Twente, Netherlands)[/font][font=&]【6】 导电原子力显微镜及纳米电子学二维材料和异质结构研究——Filippo Giannazzo(National Research Council of Italy, Italy)[/font][font=&]【7】用于栅极介电可靠性分析的导电原子力显微镜---Alok Ranjan(Singapore University of Technology and Design, Singapore)[/font][font=&]【8】氟化钙:一种优秀的二维电子学高介电介质---Chao Wen(Soochow University, China)[/font][font=&]【9】Park原子力显微镜现场演示:使用KPFM进行表面电势映射的比较研究---Charles Kim(Park Systems, Korea)[/font][font=&]【10】圆桌论坛---Moderator: Mario Lanza Panelist: Umberto Celano, Filippo Giannazzo, Miguel Munoz Rojo, Sang-joon Cho[/font][font=&]更多关于SPM技术及应用前沿,欢迎线上参会关注![/font][font=&]马上报名:[/font][url=https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs][color=#3333ff]https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs[/color][/url]

  • 8个国家前沿专家齐聚线上——扫描探针/原子力显微镜技术前沿线上论坛

    【扫描探针/原子力显微镜技术前沿线上论坛】8个国家前沿专家齐聚线上——第二届SPM纳米科学中国论坛 (NSSC 2020)——直播时间:12月10日会议形式:线上免费参会,英文会议主席:Mario Lanza教授,惠飞博士部分报告:【1】特邀嘉宾视频专访:导电原子力显微镜发明人专访---Sean Joseph O’Shea(A*STAR, Singapore)【2】使用扫描探针显微镜表征纳米电子材料和器件的最新趋势---Günther Benstetter(Deggendorf Institute of Technology, Germany)【3】电子原子力显微镜纳米电子学研究---Umberto Celano(IMEC, Belgium)【4】具有自优化和精确扫描控制的非接触式原子力显微镜及定量纳米测量---Sangjoon Cho(Park Systems, Korea)【5】电子器件的纳米尺度热成像---Miguel Munoz Rojo(University of Twente, Netherlands)【6】 导电原子力显微镜及纳米电子学二维材料和异质结构研究——Filippo Giannazzo(National Research Council of Italy, Italy)【7】用于栅极介电可靠性分析的导电原子力显微镜---Alok Ranjan(Singapore University of Technology and Design, Singapore)【8】氟化钙:一种优秀的二维电子学高介电介质---Chao Wen(Soochow University, China)【9】Park原子力显微镜现场演示:使用KPFM进行表面电势映射的比较研究---Charles Kim(Park Systems, Korea)【10】圆桌论坛---Moderator: Mario Lanza Panelist: Umberto Celano, Filippo Giannazzo, Miguel Munoz Rojo, Sang-joon Cho更多关于SPM技术及应用前沿,欢迎线上参会关注!马上报名:[url=https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs][color=#3333ff]https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs[/color][/url]

  • 8个国家前沿专家齐聚线上——扫描探针/原子力显微镜技术前沿线上论坛

    [font=&]【扫描探针/原子力显微镜技术前沿线上论坛】[/font][font=&]8个国家前沿专家齐聚线上[/font][font=&]——第二届SPM纳米科学中国论坛 (NSSC 2020)——[/font][font=&]直播时间:12月10日[/font][font=&]会议形式:线上免费参会,英文[/font][font=&]会议主席:Mario Lanza教授,惠飞博士[/font][font=&]部分报告:[/font][font=&]【1】特邀嘉宾视频专访:导电原子力显微镜发明人专访---Sean Joseph O’Shea(A*STAR, Singapore)[/font][font=&]【2】使用扫描探针显微镜表征纳米电子材料和器件的最新趋势---Günther Benstetter(Deggendorf Institute of Technology, Germany)[/font][font=&]【3】电子原子力显微镜纳米电子学研究---Umberto Celano(IMEC, Belgium)[/font][font=&]【4】具有自优化和精确扫描控制的非接触式原子力显微镜及定量纳米测量---Sangjoon Cho(Park Systems, Korea)[/font][font=&]【5】电子器件的纳米尺度热成像---Miguel Munoz Rojo(University of Twente, Netherlands)[/font][font=&]【6】 导电原子力显微镜及纳米电子学二维材料和异质结构研究——Filippo Giannazzo(National Research Council of Italy, Italy)[/font][font=&]【7】用于栅极介电可靠性分析的导电原子力显微镜---Alok Ranjan(Singapore University of Technology and Design, Singapore)[/font][font=&]【8】氟化钙:一种优秀的二维电子学高介电介质---Chao Wen(Soochow University, China)[/font][font=&]【9】Park原子力显微镜现场演示:使用KPFM进行表面电势映射的比较研究---Charles Kim(Park Systems, Korea)[/font][font=&]【10】圆桌论坛---Moderator: Mario Lanza Panelist: Umberto Celano, Filippo Giannazzo, Miguel Munoz Rojo, Sang-joon Cho[/font][font=&]更多关于SPM技术及应用前沿,欢迎线上参会关注![/font][font=&]马上报名:[/font][url=https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs][color=#3333ff]https://www.instrument.com.cn/webinar/meetings/NSSC2020/?hmsr=NSSC2020&hmpl=bbs[/color][/url]

  • 【讨论】你用过AFM吗?--布鲁克发布原子力显微镜新品 号称世界最快

    美国加利福尼亚州当地时间2011年5月2日,布鲁克(Bruker)发布了一款具有创新性和独特外形的原子力显微镜新品——Dimension FastScanTM,该产品在不牺牲纳米级分辨率的前提下提高显微镜成像速度方面取得了重大突破。Dimension FastScanTM比其他AFM扫描速度提高了数百倍,能够在数秒或数分钟内,而不是数小时或数天内得出结果,是世界上扫描速度最快的高分辨原子力显微镜。  鉴于在纳米尺度上观察与了解材料的需求在不断增加,作为世界上使用最广泛的原子力显微平台的最新成员,Dimension FastScan采用了数项创新技术,使快速扫描速度、图像的高分辨率与精度达成完美平衡。基于成功设计的原子力显微镜架构,Dimension FastScan是一个尖端扫描系统(tip-scanning),能够提供空气或液体中的大、小样品的测量。  “Dimension FastScan实现了布鲁克在原子力显微镜技术上的目标之一,该仪器将使我们的用户能更有效率地工作,同时又不会丢失图像的分辨率与精度。在这样短的时间内完成高质量的图像,这是一项突破。”布鲁克纳米表面部总裁Mark R. Munch博士说到,“采用38项专利技术,Dimension FastScan具备了以往研究级原子力显微镜不能达到的更高的扫描速度,这是它的独特之处。” “通过提供更有效获得纳米级信息的途径,Dimension FastScan 表示了布鲁克对科学界的承诺。”布鲁克的原子力显微镜业务副总裁与总经理David V. Rossi补充到,“我们全新的Dimension FastScan,其与ScanAsyst、PeakForce QNM等其他的布鲁克旗下的原子力显微镜产品结合起来,显著提高工作效率,同时也提供纳米级的新的定量信息。这将使布鲁克的原子力显微镜系列产品更易于被学术界和工业界使用。”

  • 求购扫描探针-原子力显微镜

    领导要求调查一下扫描探针(原子力)显微镜,打算购买一个,我看了一下,国内外的很多家单位都有产品,这下不知道怎么搞了,也不知道性能上怎么区分啊。我们的要求是首先满足最低要求,能观测三维形貌,测量厚度,其次再考虑其他的功能模块。也就是说满足首先条件,预留其他功能窗口,大家帮忙推荐一下。也可以直接发我的信箱guigxms@163.com,宋。谢谢

  • 英国 NanoMagnetics 原子力显微镜

    英国 NanoMagnetics 原子力显微镜

    [color=#706f6f]英国 NanoMagnetics 仪器 1998年在牛津成立, 作为世界领先的原子力显微镜 AFM 制造商, 主营环境扫描探针显微镜 SPM, 低温扫描探针显微镜 LT-SPM 等, 适用于产品表面特征分析, 生命科学, 原位成像, 材料科学, 薄膜等领域. [color=red]与[/color][color=red] STM [/color][color=red]对比[/color][color=red] AFM [/color][color=red]可以观测非导电样品[/color][color=red], [/color][color=red]应用范围更广[/color][color=red].[/color][color=#000000][/color][/color][color=#eb650a]• [/color][color=#000000] [/color][color=#706f6f]扫描区域宽泛[/color][color=#706f6f]120x120x40 [/color][color=#706f6f]μ[/color][color=#706f6f]mor40x40x4 [/color][color=#706f6f]μ[/color][color=#706f6f]m[/color][color=#000000][/color][color=#eb650a]• [/color][color=#000000] [/color][color=#706f6f]性价比超高[/color][color=#000000][/color][color=#eb650a]• [/color][color=#000000] [/color][color=#706f6f]结构紧凑小巧[/color][color=#706f6f],[/color][color=#706f6f]易安装[/color][color=#706f6f],[/color][color=#706f6f]使用方便[/color][color=#000000][/color][color=#eb650a]• [/color][color=#000000] [/color][color=#706f6f]各部件分离设计[/color][color=#706f6f],[/color][color=#706f6f]无定位悬臂设计[/color][color=#000000][/color][color=#eb650a]• [/color][color=#000000] [/color][color=#706f6f]终身免费软件升级[/color][color=#000000][/color][color=#eb650a]• [/color][color=#000000] [/color][color=#706f6f]1[/color][color=#706f6f]小时内完成安装[/color][color=#000000][/color][color=#eb650a]• [/color][color=#000000] [/color][color=#706f6f]使用电压低[/color][color=#706f6f][img=原子力显微镜,220,220]https://ng1.17img.cn/bbsfiles/images/2019/02/201902131034128129_5215_728_3.jpg!w220x220.jpg[/img][/color]

  • 【原创】扫描探针显微镜的1234

    1.功能扫描隧道显微镜STM 原子力显微镜AFM自动进针功能 真三维图形处理功能深度和宽度定标功能自动保存扫描参数WINDOWS 9X操作系统的控制软件2.特点整机自动化自动记录参数图象数据定标配图象处理软件3.技术指标分辨率 横向:≥0.1nm 纵向:≥0.01nm;扫描范围 3μm×3μm;18μm×18μm;扫描频率 1Hz~100Hz步进电机及丝杠控制 10nm精度光栅扫描旋转角度 0~360º样品台大小 10x10x10mmD/A精度:16bit,32通道;A/D精度:16bit,10通道偏置电压 0~10V隧道电流预置 0.5nA~10nA图像分辨率 512×512灰度等级 256计算机 优于P42.0G/256M/40G4.整套仪器的其他附件、连接电缆、软件确保仪器正常操作和日常维护,满足基本功能和以上技术参数。

  • 【求购】调研合适的原子力显微镜

    我们课题组向采购原子力显微镜还附带扫描隧道的功能,不知道什么样的合适,大家有相关资料的话请给我发一下,仪器的参数和报价!我的邮箱:licuicui_80@126.com

  • 【原创】原子力显微镜及其在木材细胞壁研究方面的应用

    【原创】原子力显微镜及其在木材细胞壁研究方面的应用

    原子力显微镜(AFM)是我们学校新进的大型仪器设备之一。与光学显微镜及电子显微镜不同,AFM可利用微小探针“摸索”样品表面来获得信息。其成像原理决定了它具备其他显微技术所不具有的优点:受工作环境限制较少,可以在真空、气相、液相和电化学的环境下操作;可以对导体、半导体、绝缘体等多种样品成像,样品制备简单,且对样品的破坏性较小;具有原子级高分辨率,可得到观测表面的三维立体图像,并能获得探针与样品相互作用的信息。AFM可以观察许多不同材料的原子级别的高分辨表面形貌与结构,是一种新型的表面结构分析仪器。它的出现使人类在认识和改造自然方面进入一个新的层次,已被广泛应用于高分子材料、生物学以及生命科学等领域。近年来,研究人员也开始将这种新型的表面分析技术应用于木材微观结构的研究。这为人们进一步认识和了解木材微观世界,提供了一种有效的分析手段。目前在木材科学与技术领域内的研究内容主要包括两个方面:一方面是材料表面形貌、相结构的表征,在微米、纳米的范围内获取图像。另一方面是木质材料细胞壁的力学性能,如硬度、弹性模量和屈服强度的测量。我是实验室参加工程师培训的人员之一,由于课题的需要,我尝试利用AFM技术对杨木木纤维形态尺寸特性进行了测量,具体测量与分析方法如下:1材料与方法1. 1 试样制备试材为速生杨木,切削成横截面尺寸为5 mm×1 mm×5-8mm的木片,再用Spurr树脂进行包埋,然后用超薄切片机(LKB-2188,瑞典)进行表面抛光。1.2 测试方法测量时,将用双面胶固定在钢制样品垫上,再放置在原子力显微镜(AFM XE-100型,PSIA公司)的样品台上(磁铁固定)进行扫描。AFM主要参数设定如下:接触模式,扫描速度和扫描力分别为0.5Hz和1.08nN。2 图像处理图像扫描后还需要通过原子力显微镜配套软件(XEI 1.5)进行数据处理与分析。得到原始的形貌像之后,图像处理主要步骤如下:第一步是斜度校正(Slope Correction ),为的是消除样品倾斜或弯曲(极小程度)造成的图像失真。通过软件的拉平(Flatten )功能可以方便地消除x, y方向的图像倾斜。第二步是消除噪声,保证图像的真实性。第三步根据需要还可以对图像进行滤波、放大、灰度转换、改变像素以及切面、输出3D图像等操作图。处理图像结束后得到了相对真实的表面形貌图,再直接进行分析。图1是一组木材横切表面斜度校正处理前后的表面形貌图。3 杨木细胞壁特征参数测量杨木细胞壁特征参数测量是通过原子力显微镜配套软件(XEI 1.5)来实现的。测量原理与方法见图所示。其中图2和图3分别为AFM扫描的杨木表面形貌图及细胞壁厚度、长度尺寸测试图。通过测量可知,所测杨木细胞横截面的壁厚尺寸为1.026-4.082μm;壁长为2.195-21.004μm。这与前人的研究结论相一致。这说明原子力显微镜完全可以在微/纳米尺度下对木材的细胞形态特征进行测量。http://ng1.17img.cn/bbsfiles/images/2009/01/200901081623_128216_1615676_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/01/200901081625_128217_1615676_3.jpghttp://ng1.17img.cn/bbsfiles/images/2009/01/200901081627_128220_1615676_3.jpg

  • 【网络讲座】快速原子力显微镜和超分辨光学系统联用技术 (2016-11-11 10:00 )

    【网络讲座】快速原子力显微镜和超分辨光学系统联用技术 (2016-11-11 10:00 )

    【网络讲座】:快速原子力显微镜和超分辨光学系统联用技术【讲座时间】:2016-11-11 10:00【主讲人】:樊友杰先生,JPK Instruments AG,中国区技术负责人。樊先生长期从事原子力显微镜在生物学领域的成像与力学表征以及高速原子力显微镜与先进光学系统(如Raman/STED)的联用工作。【会议简介】原子力显微镜由于其对样品的是否导电或是否处于液体环境没有要求被广泛应用于科学研究的各个领域。原子力显微镜可以获得样品役区域的表面形貌和力学性质(如粘性和硬度等)。随着应用领域的不断扩展和对仪器性能越来越高的要求,尤其是生物研究者希望能实时监测细胞和蛋白分子的反应过程,对原子力的扫描速度提出了越来越高的要求。传统的原子力的扫描速度已经无法满足需要了。同时因为原子力只能得到形貌和力学性质而无法获得样品的化学信息和样品内部结构,研究者希望能将原子力与光学仪器联用起来,这样,就能同时获得同区域的原子力信息和光学信息。本次的webinar,将会为大家带来JPK公司的最新快速原子力显微镜与超分辨光学系统联用的最新进展。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2016-11-11 10:003、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2174http://ng1.17img.cn/bbsfiles/images/2016/09/201609271102_612272_2507958_3.jpg扫描二维码,报名参会4、报名及参会咨询:QQ群—290101720,扫码入群“大讲堂”http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669141_2507958_3.gif

  • 【网络讲堂】快速原子力显微镜和超分辨光学系统联用技术

    http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2174原子力显微镜由于其对样品的是否导电或是否处于液体环境没有要求被广泛应用于科学研究的各个领域。原子力显微镜可以获得样品役区域的表面形貌和力学性质(如粘性和硬度等)。随着应用领域的不断扩展和对仪器性能越来越高的要求,尤其是生物研究者希望能实时监测细胞和蛋白分子的反应过程,对原子力的扫描速度提出了越来越高的要求。传统的原子力的扫描速度已经无法满足需要了。同时因为原子力只能得到形貌和力学性质而无法获得样品的化学信息和样品内部结构,研究者希望能将原子力与光学仪器联用起来,这样,就能同时获得同区域的原子力信息和光学信息。 本次的webinar,将会为大家带来JPK公司的最新快速原子力显微镜与超分辨光学系统联用的最新进展。

  • 原子力显微镜

    用原子力显微镜观察鱼的微观结构,求鱼的预处理方法,多点这些

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制