当前位置: 仪器信息网 > 行业主题 > >

全自动光解水教实验系统

仪器信息网全自动光解水教实验系统专题为您提供2024年最新全自动光解水教实验系统价格报价、厂家品牌的相关信息, 包括全自动光解水教实验系统参数、型号等,不管是国产,还是进口品牌的全自动光解水教实验系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动光解水教实验系统相关的耗材配件、试剂标物,还有全自动光解水教实验系统相关的最新资讯、资料,以及全自动光解水教实验系统相关的解决方案。

全自动光解水教实验系统相关的资讯

  • 上海比朗BGH-BL-PLH2O光解水制氢系统全面升级上市
    上海比朗仪器设备有限公司为适应广大科研工作者对光解水系统更好的要求,为充分实现产品的更好的可视化,光解水制氢系统设备使用的耐久性、便捷性,做出了全面升级,既保证了实验原理的简便可行,又提高了设备的可操作性和扩展性。产品详细信息、实物图片、相关测试结果请电话或邮件索取!   上海比朗光解水制氢系统货源充足,可根据客户需求随时发货安装调试。   BGH系列新系统体现的几大特点:   1、玻璃管道系统安装于洁净工作室内,操作安全。   2、全自动采样器与气相色谱连接可实现全自动采样,无需人工看守。   3、数字显示真空度。   4、原装进口光源。   5、电磁气泵及控制器。   6、反应器QO250。   7、真空系统(含真空泵,管路,真空计)。   8、取样系统(含精密取样管,控制阀体,控制面板)。   9、冷凝回流系统。   BGH系列新系统技术参数:   光降解系统BGH-BL-PLH2O系统   玻璃管路系统玻璃光解型反应器,玻璃系统是包含透射式光反应器及石英发生器,石英玻璃组件系统,采用日本改进型的六通阀门控制的氢气流通系统氢气发生石英装置,该系统用不锈钢作为玻璃连接支架,该系统含(A-G)7套管路。   反应器150ml石英玻璃分体式反应器。   真空系统上海比朗仪器有限公司生产的真空泵2xz-2, 以及与真空计连用的真空系统。可选德国进口真空泵(价格另计)。   采样系统全自动采样系统是一种可以用在气相色谱仪前端,按程序设定实现全自动进样的装置。可分步、可定时采样。   滤光片两片   A:透射式滤光片直径50mm   B:反射紫外部分,透射可见和红外部分,70mm*70mm 方片。   光源美国进口光源PE300BF,寿命长达2000小时   BL-GHX-Xe-300功率300W,外照式投射式,平行光输出。上海比朗生产   金属散热机组金属铝型材散热系统   光解水制氢系统典型用户:上海交通大学、复旦大学、华东师范大学、大连理工大学、内蒙古大学、中科院上海有机化学研究所、中科院化学研究所、中科院地球环境研究所、陶氏化学、睿智化学、联合利华、飞利浦(中国)投资有限公司等。   电话TEL:021-52965776   传真FAX:021-52965990   邮箱Email:info@bilon.cn   商城Mall:www.bilon.cc   地址Add:上海市闵行区北松公路588号7号楼5层
  • 325.35万!广州实验室全自动层析系统等设备采购
    项目概况广州实验室全自动层析系统等设备采购项目 招标项目的潜在投标人应在http://www.o-science.com 招标在线频道获取招标文件,并于2022年02月14日 14点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:OITC-G220290019项目名称:广州实验室全自动层析系统等设备采购项目预算金额:325.3500000 万元(人民币)最高限价(如有):325.3500000 万元(人民币)采购需求:包号采购内容数量(台/套)是否允许采购进口产品预算金额(万元人民币)最高限价(万元人民币)1全自动层析系统(25ml流速)1是75.675.6全自动层析系统(150ml流速)1是78.7578.75超速离心机1是4343倒置荧光显微镜1是2626高效液相色谱仪1是3939实时荧光定量PCR仪1是3232细胞活力分析仪1是3131合同履行期限:全自动层析系统(25ml流速)、全自动层析系统(150ml流速)、超速离心机合同签订后的4个月内交货;倒置荧光显微镜、高效液相色谱仪、实时荧光定量PCR仪、细胞活力分析仪合同签订后的2个月内交货。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的法人实体;2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;4)按本投标邀请的规定获取招标文件;5)本项目不接受联合体投标,不允许分包转包;6)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。三、获取招标文件时间:2022年01月19日 至 2022年01月26日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:http://www.o-science.com 招标在线频道方式:登录东方在线www.o-science.com注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年02月14日 14点30分(北京时间)开标时间:2022年02月14日 14点30分(北京时间)地点:广州市越秀区先烈中路100-67号楼14楼自编1401-1402(中科院创新大楼A座)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、投标文件递交地点:广州市越秀区先烈中路100-67号楼14楼自编1401-1402(中科院创新大楼A座)2、招标文件采用网上电子发售购买方式:1)有兴趣的投标人可登陆“东方在线”(http://www.o-science.com 招标在线频道),完成投标人注册手续(免费),然后登录系统浏览该项目下的“项目需求”,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元,售后不退。如决定购买招标文件,请完成标书款缴费及标书下载手续。2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。开户名称:东方国际招标有限责任公司开户行:招商银行北京西三环支行账 号:8620816577100013)投标人应在“东方在线”上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方在线”上登记的电子邮箱,投标人自行下载打印。3、以电汇方式购买招标文件以及转账投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途,例如:OITC-G220290019标书款、OITC-G220290019投标保证金(如未标明招标编号,有可能导致投标无效)。4、采购项目需要落实的政府采购政策:(1)政府采购促进中小企业发展(2)政府采购支持监狱企业发展(3)政府采购促进残疾人就业(4)政府采购鼓励采购节能环保产品七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广州实验室     地址:广东省广州市海珠区国际生物岛星岛环北路9号        联系方式:位老师020-82282900      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层            联系方式:迟兆洋、张君仙020-87001523、0769-26627023ytlin@oitc.com.cn、mye@oitc.com.cn            3.项目联系方式项目联系人:迟兆洋、张君仙电 话:  020-87001523、0769-26627023
  • 安图生物全自动微生物质谱鉴定系统成功落户辽宁省器检院
    安图生物全自动微生物质谱鉴定系统成功落户辽宁省器检院2021年12月,安图生物全自动微生物质谱鉴定系统Autof ms在辽宁省器检院生物学检验室成功装机,为辽宁省器检院医疗器械和药品包装材料的微生物、生物学检验以及洁净室(区)的环境检测工作保驾护航!Autof msAutof ms1000,是一台为中国用户量身定做的基质辅助激光解析电离飞行时间质谱仪(MALDI-TOF MS),主要用于细菌、酵母样菌、丝状真菌和分枝杆菌等检测。具有快速、准确、高通量等特点,并拥有超过5000菌种数据的中国本土化微生物数据库,多领域的质控菌株标准库,保证微生物鉴定的准确性,数据库可即时更新,满足多行业标准检测需求。辽宁省医疗器械检验检测院介绍:辽宁省医疗器械检验检测院(国家食品药品监督管理局沈阳医疗器械质量监督检验中心、国家医用X射线机质量监督检验中心)成立于2000年12月25日,具有独立法人资格,获得CNAS、国家计量、省计量、国家医用X射线机质量监督检验中心授权等认证认可。并通过TUV、CSA国际组织体系审核及授权相关检验检测。是全国国家级十大中心之一。2018年辽宁省省直事业单位整合改革后,成为辽宁省检验检测认证中心分支机构。安图生物介绍:安图生物创立于1998年,专注于体外诊断试剂和仪器的研发、制造、整合及服务,产品涵盖免疫、微生物、生化、分子等检测领域,能够为医学实验室提供全面的产品解决方案和整体服务。公司于2016年9月1日挂牌上市,是国内第一家在上海主板上市的体外诊断生产企业。安图生物建有国家认定企业技术中心、免疫检测自动化国家地方联合工程实验室、河南省免疫诊断试剂工程技术研究中心等,承担了多项国家、省、市重大科技项目,其中包括“863计划”两个项目。安图生物高度重视产品研发及技术创新,始终将提升研发创新能力作为提升企业核心竞争力的重要手段。公司重视研发投入,近三年,研发投入均超过营业收入的10%;注重团队建设,技术研发人员约占公司总人数的三分之一;比肩国际先进,严格研发流程管理;注重核心原材料研发,创建了针对数万个抗原表位的诊断抗体库,免疫诊断试剂产品的抗原抗体自给率高,保证了供应的稳定性和安全性。安图生物是业内注册文号较多、产品线较全面的企业之一。安图生物关注品质,追求精良制造。在试剂生产方面,引入自动化生产线,提高产品自动化和流水作业程度,提升精细化管理水平;在仪器制造方面,持续加大精细化管理力度,倡导追求卓越、精益求精、不断优化的工匠精神;在质量管理方面,通过GMP、ISO9001和ISO13485等认证,严格质量管理考核,持续促进质量提升。正在建设中的安图生物体外诊断产业园,建设用地面积250余亩,建筑面积逾50万平方米,全面建成后,将成为中国最大的体外诊断产业基地之一,并以全新的姿态和面貌为国家医疗事业贡献力量,为人类健康服务。
  • 科普丨光解水制氢技术
    在当今全球对可再生能源需求日益增长的背景下,光解水技术作为一种前沿的清洁能源生产方式,正逐渐引起人们的关注。光催化分解水制氢是从根本上解决能源危机和环境污染的途径之一,是众多光催化实验研究者近年来努力攻克的主要课题之一。如何能高效的获取光催化分解水制氢制氧实验成果,一套好的反应系统必不可少。 光解水是利用光能将水分子分解为氢气和氧气的过程。这一过程通常依赖于光催化剂,在光照条件下,通过吸收太阳光的能量,促进水分子的化学反应,从而实现氢气的生成。 光催化技术是通过光催化剂,利用光子能量将许多需要在苛刻条件下发生的化学反应,转化为可在温和环境下进行的先进技术。利用光催化技术分解水制氢,可以将低密度的太阳光能转化为高密度的化学能,在解决能源短缺问题上具有深远的应用场景。美国能源部提出如果光催化分解水制氢的太阳能转换氢能效率达到10%,太阳能制氢成本(包括生产和运输)达到2~4美元/kg H2,这项技术就有可能走向大规模应用。组成部分光催化分解水的原理水是一种相对稳定的化合物。水分解生成氢气和氧气的过程,是一个吉布斯自由能增加的过程(▲G0),也就是说从热力学角度考虑,水分解反应是一个非自发反应,必须有外加能量才能进行。光催化分解水制氢反应,就是利用光子的能量推动水分解反应的发生,然后转化为化学能。具有高能量的远紫外线(波长小于190nm)可以直接分解水,然而此类远紫外线难以到达地球表面,所以普通太阳光照射难以实现水分解制氢。光催化分解水制氢是利用一些半导体材料如TiO2的吸光特性,实现光解水反应的发生。半导体材料在受到光子的激发后,会产生具有较强还原能力的光生电子,可以将吸附在半导体表面的质子或水分子还原为氢气,从而实现光催化分解水制氢。shinsco产品展示产品详情近年来半导体行业的快速发展,超高纯316L不锈钢,符合SEMI F20标准,通过真空感应熔炼+真空自耗重熔(VIM+VAR),并使用特殊的工艺处理,对材料进行最大程度的提纯,进一步减少了材料中的的非金属夹杂物和气体成分。EP管(316L,VIM+VAR)是表面经过电解抛光处理,以提高产品内部的平滑性,并在金属表面形成富铬层以提高耐腐蚀性,电解抛光后的产品做钝化处理以去除游离铁离子。EP抛光产品经 SEM、 ESCA/XPS、AES分析,产品质量完全满足半导体协会 SEMI F20 标准。基于EP抛光(316L,VIM+VAR)技术的发展,鑫视科shinsco采用国内优秀企业生产的EP管(316L,VIM+VAR)和EP自动阀门,替换了光催化活性评价系统的原有玻璃管路和阀门,并实现了PLC全面控制整套系统,实现了SSC-PCAE光催化活性评价系统的全自动化运行。 SSC-PCAE光催化活性评价系统(Photocatalytic activity evaluation system)沿用半导体行业的真空技术,将玻璃管路和阀门替换为EP管和EP自动阀,实现了整个系统的全自动控制实验过程,全自动在线采样分析,实现了实验中真正的全自动运行。SSC-PCAE光催化活性评价系统主要应用于光解水、全解水、电催化、光催化CO2还原、光催化固氮、光电催化气体产物分析、耐压釜式反应、催化反应的微量气体收集等。产品优势封闭反应的产物气体收集、采样、在线分析的一体化系统;内置气体磁力增压泵,形成高强压差,实现气体快速混匀;全系统耐压-14.6psi ~150psi,实现了从真空到10atm的压力覆盖;应用半导体材料(TiO2、InO、C3N4、CdS等)催化剂的活性评价;催化剂产氢、产氧、光解水的性能分析;催化剂二氧化碳还原的性能分析;系统可配和玻璃、石英、不锈钢、PEEK、PTFE等材料制备的反应器使用可满足光电反应、气固反应、膜催化、多相反应等特殊实验要求;系统管阀件全部采用EP(316L,VIM+VAR)管和EP阀,对气体无吸附;系统即装即用,可兼容任意厂家气相色谱仪,无需额外增加进样阀门;GC测试范围广,氢、氧、CO2、甲烷、CO、甲醛、C1-C5等微量气体;参数配置项目SSC-PCAE-150光催化活性评价系统系统真空度-0.1MPa(-14.6psi)系统耐压-14.6psi ~150psi管路材质EP电解抛管(316L,VIM+VAR);体积50ml±5阀门EP隔膜阀(标配)、250ml、25ml、50ml;石英通光
  • 谱育科技与长江委汉江局共建首个水文系统全自动实验室
    近日,“长江委水文汉江局—聚光科技自主孵化子公司谱育科技 智慧水质全自动监测研发应用中心”揭牌仪式在湖北襄阳举行,双方签署实验室共建合作协议,共同推动智慧水利建设,以科技赋能水质高效检测。长江流域水质监测中心副主任 徐德龙、汉江局局长 林云发、汉江局副局长 龙雪峰、聚光科技党委书记 陈荧平、聚光科技环境与科学仪器事业部副总经理 胡建坤等出席签约仪式。长江水利委员会水文局汉江水文水资源勘测局(以下简称“汉江局”)成立于1952年,是隶属于水利部长江水利委员会水文局的公益性正处级事业单位,是为汉江流域综合治理、防汛抗旱、工程建设、水资源开发及可持续利用等开展水文站网建设、水文水资源监测、水环境监测评价以及辖区内重大突发水污染、水生态事件的应急监测等工作的专业水文机构。汉江水环境监测中心实验室检测能力涵盖地表水、地下水、饮用水等6大类,具备地表水109项、地下水93项全覆盖监测能力,是国家在南水北调中线水源地的核心保障单位,多年来为南水北调中线供水安全提供了重要支撑。深度定制 打造数字孪生综合业务平台会上,汉江局水环境监测分析室主任助理 周明交流发言,通过建立联合实验室,进一步完善行业标准制定,拓展水生态环境监测、新污染物监测及实验室全自动化、数字化建设等新领域合作空间,加快数字化转型。聚光科技环境与科学仪器事业部副总经理 胡建坤以水环境监测全自动实验室装备领域的创新发展与技术突破展开介绍,通过为汉江局深度定制实验室全套设备,提质增效,助力汉江局数字孪生综合业务平台建设。凭“新”而变 首个水文系统全自动分析实验室谱育科技与长江委汉江局联合共建首个水文系统全自动实验室,创新性地增加了ICP-MS、全自动流动注射、离子色谱、全自动CODcr分析仪等分析仪器,实现了10+款科学仪器的全流程自动化,主要由全自动分液工作站、全自动水质分析仪、全自动水质分析流水线、智能控制及信息管理系统组成。谱育科技创新性地将国家/行业标准研发的水质指标自动分析仪与全自动分析技术完美结合,将人工分析转化为自动化、智能化分析,既保障结果准确,又提升检测与管理标准,实现水质高精度、全流程自动化检测与智能化管理。全流程检测 分析自动化 管理智能化实验室采用了样品智能稀释分取、液体流路自动控制、传送带流水线节点控制、智能调度算法、机器人自动进样、水质多参数全自动高通量检测及大型科学仪器系统集成等技术,有效解决水质样品分取、运输、上样、分析、下样整个过程中机械化替代的难题,实现了水质分析的全流程自动化运行。通过开发高频检测数据处理与分析技术,故障诊断技术和智能分析软件等,建设基础信息数据库,实现包含样品、位置、检测因子、质控等全过程样品信息的智能化综合管理,保障样品全流程溯源。真正实现全流程监测、分析自动化和管理智能化。超多监测指标,可新增拓展,有效扩展水质全自动实验室的检测指标范围,目前实验室可开展90余项水质监测指标,同时支持新增测试需求拓展。未来,双方将继续推进汉江水环境监测中心实验室高质量建设,打造标杆平台,构筑高水平技术新高地,塑造创新发展新优势。秉承“优势互补、共同发展”原则,双方在水生态环境监测、新污染物监测以及实验室全自动化、数字化建设等领域实现优势互补、资源共享,携手推动长江经济带高质量发展,共同绘就绿色长江美好图景!
  • 谱育科技与长江委汉江局共建首个水文系统全自动实验室
    近日,“长江委水文汉江局—聚光科技(300203)自主孵化子公司谱育科技 智慧水质全自动监测研发应用中心”揭牌仪式在湖北襄阳举行,双方签署实验室共建合作协议,共同推动智慧水利建设,以科技赋能水质高效检测。长江流域水质监测中心副主任 徐德龙、汉江局局长 林云发、汉江局副局长 龙雪峰、聚光科技党委书记 陈荧平、聚光科技环境与科学仪器事业部副总经理 胡建坤等出席签约仪式。长江水利委员会水文局汉江水文水资源勘测局(以下简称“汉江局”)成立于1952年,是隶属于水利部长江水利委员会水文局的公益性正处级事业单位,是为汉江流域综合治理、防汛抗旱、工程建设、水资源开发及可持续利用等开展水文站网建设、水文水资源监测、水环境监测评价以及辖区内重大突发水污染、水生态事件的应急监测等工作的专业水文机构。汉江水环境监测中心实验室检测能力涵盖地表水、地下水、饮用水等6大类,具备地表水109项、地下水93项全覆盖监测能力,是国家在南水北调中线水源地的核心保障单位,多年来为南水北调中线供水安全提供了重要支撑。深度定制 打造数字孪生综合业务平台会上,汉江局水环境监测分析室主任助理 周明交流发言,通过建立联合实验室,进一步完善行业标准制定,拓展水生态环境监测、新污染物监测及实验室全自动化、数字化建设等新领域合作空间,加快数字化转型。聚光科技环境与科学仪器事业部副总经理 胡建坤以水环境监测全自动实验室装备领域的创新发展与技术突破展开介绍,通过为汉江局深度定制实验室全套设备,提质增效,助力汉江局数字孪生综合业务平台建设。凭“新”而变 首个水文系统全自动分析实验室谱育科技与长江委汉江局联合共建首个水文系统全自动实验室,创新性地增加了ICP-MS、全自动流动注射、离子色谱、全自动CODcr分析仪等分析仪器,实现了10+款科学仪器的全流程自动化,主要由全自动分液工作站、全自动水质分析仪、全自动水质分析流水线、智能控制及信息管理系统组成。谱育科技创新性地将国家/行业标准研发的水质指标自动分析仪与全自动分析技术完美结合,将人工分析转化为自动化、智能化分析,既保障结果准确,又提升检测与管理标准,实现水质高精度、全流程自动化检测与智能化管理。全流程检测 分析自动化 管理智能化实验室采用了样品智能稀释分取、液体流路自动控制、传送带流水线节点控制、智能调度算法、机器人自动进样、水质多参数全自动高通量检测及大型科学仪器系统集成等技术,有效解决水质样品分取、运输、上样、分析、下样整个过程中机械化替代的难题,实现了水质分析的全流程自动化运行。通过开发高频检测数据处理与分析技术,故障诊断技术和智能分析软件等,建设基础信息数据库,实现包含样品、位置、检测因子、质控等全过程样品信息的智能化综合管理,保障样品全流程溯源。真正实现全流程监测、分析自动化和管理智能化。超多监测指标,可新增拓展,有效扩展水质全自动实验室的检测指标范围,目前实验室可开展90余项水质监测指标,同时支持新增测试需求拓展。创新驱动 共塑标杆 未来可期未来,双方将继续推进汉江水环境监测中心实验室高质量建设,打造标杆平台,构筑高水平技术新高地,塑造创新发展新优势。秉承“优势互补、共同发展”原则,双方在水生态环境监测、新污染物监测以及实验室全自动化、数字化建设等领域实现优势互补、资源共享,携手推动长江经济带高质量发展,共同绘就绿色长江美好图景!
  • CBIFS 2021丨仪真分析携全自动氯丙醇酯和缩水甘油酯分析系统亮相
    2021年6月3日-4日,CBIFS 2021第十四届中国国际食品安全技术论坛在杭州国际博览中心隆重召开。作为中国领先的食品安全技术推广平台,CBIFS 2021吸引了数百名专家学者及业界同仁到场,共同推动食品安全技术的发展。仪真分析多年来深耕食品安全领域,本次携全自动氯丙醇酯和缩水甘油酯分析系统参会,更是聚焦氯丙醇酯和缩水甘油酯分析的热点议题,为广大用户献计献策。在粮油质量安全专题论坛上,来自福建省疾病预防控制中心卫生检验检测所的专家——傅武胜老师分享了题为《氯丙醇酯和缩水甘油酯的检测方法和标准修订进展》的报告。傅老师介绍了3-氯丙醇酯和缩水甘油酯的定义,危害,来源及形成机制,并介绍了欧盟对这两种污染物已有定量要求,目前中国对其风险评估工作,即国家标准GB 5009.191-2016的修订工作正在紧密开展中。傅老师还分享了使用德国AS技术开发的全自动样品前处理分析方案,对大量的油脂样品的检测结果表明该方案具有优良的重复性和准确度。展会期间,至仪真分析展台咨询的访客络绎不绝,反响热烈。据介绍,全自动氯丙醇酯和缩水甘油酯分析系统用于全自动分析油脂中氯丙醇酯和缩水甘油酯含量,可自动完成内标添加、酯交换反应、液液萃取、衍生化反应和进样等步骤。每个样品分析时间可以缩短到45min,具备全自动,快速,准确和重复性高的优点。解决了手动分析费时,费力以及测量准确性差的问题。除此之外,仪真分析还带来了农残分析、兽残分析、重金属分析等一系列食品安全解决方案,为我们的安全饮食保驾护航。
  • 莱伯泰科发布GPC 1000全自动凝胶净化系统新品
    AutoClean系列全自动凝胶净化系统,由净化主机及液体工作站组成,一体式设计,布局紧凑协调,可以自动化完成样品进样、分离净化、目标组分收集系列操作,控制软件执行数据采集、保存和管理功能;设备外观具有工作状态指示灯,清楚显示各步骤工作状况,远距离可视;可升级与全自动定量浓缩系统,单通道或多通道全自动固相萃取系统在线联机使用。 功能特点:凝胶净化原理凝胶净化系统是根据凝胶渗透色谱原理对复杂样品按照分子体积的大小进行分离和收集,能有效去除样品中的大分子基质和小分子干扰物质,提高后续分析的灵敏度和准确度,延长分析仪器的使用寿命。可变波长紫外检测器多种规格可变波长及固定波长检测器可选,满足各种实验室前处理需求。内置4nm GPC专用检测器样池,减少样品吸光度过载现象 AutoClean系列凝胶净化系统可提供不同波段紫外检测器,检测器作为整套系统的眼睛,起到检测谱图,实时掌握实验动态的作用。标配可变波长紫外检测器,可以选择在待测物质最大吸收波长处进行 检测,提高样品分辨率及检测准确度。可根据使用需要有多种规格检测器选择。阀组控制系统阀组系统是关系到整套设备的流路及控制是否顺畅的关键部分,整套阀组具有对样品无吸附、无本地干扰,耐压性能强,精度高及使用寿命长等优点。管路均经过钝处理,防止本底塑化剂干扰定量缓冲管,采用不锈钢材质,耐压性能强,无塑化剂干扰具有在线柱切换阀,运行完毕后自动将柱子锁死,防止柱子变干具备干净溶剂回收功能,保护环境,节约溶剂灵活多变的净化程序适合多种应用,定时、分段、判峰、判电压等六种收集模式可自由编辑具有满环及任意体积定量进样方式,多种规格注射可选多种规格定量环可选高精度双柱塞输液泵泵的性能指标体现了仪器系统的整体性能,关系到整套系统的使用寿命。性能良好的双柱塞串联输液泵能有效保证系统的稳定性及可靠性,对于回收率的重现性具有重要作用,避免了廉价单柱塞输液泵的流量及压力不稳情况。并配有隔膜阻尼器,进一步减小流动相脉动。全自动液体处理器自动液体处理器具有自动进样和自动收集功能。承载样品量大、性能稳定,支持多种规格样品瓶,XYZ三维运动模式,可搭载四个样品盘,任意组合设置进样和收集位置,多种盘架组合及多种规格样品瓶可选,满足实验需求;隔膜穿刺功能及进样针追随液面功能,有效降低样品交叉污染及挥发,进样针采用浸入式清洗,内外壁清洗最大程度减少交叉污染。机械臂不受外力干扰,全自动校准位置;可选配样品盘冷却装置,减少样品挥发。专利不锈钢凝胶净化柱凝胶净化柱的好坏直接关系到样品净化的好坏,众多标准方法中规定使用柱填料为Bio-beads S-X3凝胶,粒径为200-400目,根据样品基质不同,填充溶剂分为二氯甲烷和1:1乙酸乙酯:环己烷等溶剂。参考US EPA SW-845(方法3640A)净化能力验证,凝胶净化柱需要70g Bio-beads S-X3凝胶填料填充,同时分离校准溶液玉米油、邻苯二甲酸酯、甲氧滴滴涕、二萘嵌苯及硫,其色谱峰分离度应为85%以上。 传统净化方法通常选用玻璃净化柱,净化一个样品所需溶剂大于400ml,耗时大于一个小时。同时,优于采用大的玻璃柱,在凝胶装柱时不能采用较大压力,只能在重力作用或者低气压下慢慢装柱,导致装柱过程缓慢,装柱效率低,凝胶柱的重现性差。实验过程中样品流出曲线不固定,受实验条件、人员等外在因素影响交大,实验结果平行性和重现性相对较差。 LabTech不锈钢凝胶净化柱,采用中压一次成型技术进行装填。该种净化柱能彻底解决以上传统玻璃柱带来的诸多问题,具有净化速度快,柱效高,柱间平行性好,较小规格即可满足实验需求,极大的节省试验时间和有机溶剂等优点。采用此种净化柱,分离EPA校准溶液仅需22分钟,大大缩短了样品处理时间,节省溶剂。在食品检测、农产品检测、粮油及环境检测等应用领域显现突出优势。 显著优势:推荐用户使用专利不锈钢净化柱,耐压性能强,安全可靠采用中压匀浆法机械装柱,净化柱一次成型,批次重现性好,利于方法固定净化效率高,节省大量时间和溶剂,提高工作效率填充无需人工参与,减少有机溶剂对实验员的伤害受外界因素干扰少,通用接口,使用简单内置过滤片,有效降低杂质对净化柱的干扰,可自行更换,延长使用寿命杜绝传统玻璃净化柱受压塌陷,需调整柱长的问题多种规格不锈钢净化柱及玻璃净化柱可选,玻璃净化柱具有螺旋口设计,方便调整柱长创新点:1、采用完全上样模式,上样体积位0.1-10mL 2、收集平台可靠扩展,最多扩展到4个收集平台 3、样品通量大,最多可支持130位样品连续凝胶净化,无需其他手动操作 4、上样和收集平台适配多种体积的样品瓶,软件开放,可根据不同的瓶子设计上样架和收集架,满足不同客户的需求 5、采用高效不锈钢凝胶净化柱,在满足方法要求的前提下,缩短收集时间,减少溶剂浪费 GPC 1000全自动凝胶净化系统
  • 全自动在线前处理系统CLAM-2030--您的实验室得力助手
    导 语对于每天都要面对大量生物基质样本的您,还在为了每天的样品前处理而烦恼吗?还在纠结人工前处理重复性差的问题吗?您是否一直在寻觅一台得力的全自动前处理设备,可以让您告别烦恼,不再纠结!梦里寻“她”千百度,殊不知,蓦然回首,“她”已悄悄来到您面前!现在就为您介绍一款岛津全自动在线前处理系统CLAM-2030,可以让您从重复且繁琐的前处理中解放出来,呼吸呼吸新鲜空气、喝杯咖啡、看看文献、整理整理数据,猛然间发现,生活原来如此美好!岛津公司推出的最新款生物样本全自动在线前处理系统CLAM-2030既可以提高样本前处理效率,又充分保证操作者的安全,将人和实验中废弃物完全隔离。该套系统可以和岛津液相质谱系统LCMS-8040/8045/8050/8060无缝衔接,实现真正意义的全自动化,操作者只需将采血管(或其他样品管)放置到样品架,系统可自动执行从样品前处理到LCMS分析过程间的所有操作。临床医学检验和公安司法领域的分析对象主要为生物基质样品,例如全血、血浆、血清、尿液和唾液等, 利用传统手动蛋白沉淀方法处理一个样本大约需要人工操作15分钟,而利用CLAM-2030执行的自动蛋白沉淀方法,人工操作流程简单,只需三步。操作者只需花3分钟时间完成以上3个步骤,其他程序全部由CLAM-2030自动完成,大大提高了工作效率,并减少人为误差。同时保障了操作者的健康安全:自动处理减少了使用者接触生物样本而导致的潜在传染疾病的风险;废水和处理后的废弃物保持隔离,样品处理完毕后可一起处理。 为增进用户对岛津全自动在线前处理系统CLAM-2030的深入了解和方便使用,岛津分析中心整理编写《岛津全自动在线前处理系统CLAM-2030应用文集》。本册文集分为两章,分别为“CLAM-2030在医学检验领域的应用”和“CLAM-2030在公安司法领域中的应用”,共包含12篇相关应用,为相关领域的用户使用该系统提供参考。所涉及样本基质有全血、血浆、血清、尿液和组织样本,检测项目包含治疗药物浓度监测(TDM)、人体内源性物质分析、毒品毒物分析以及精神类药物分析等。
  • 禾信康源全自动微生物质谱检测系统获批医疗器械注册证
    p   近日,禾信仪器子公司禾信康源自主研发的全自动微生物质谱检测系统(CMI-1600)近日获广东省药品监督管理局颁发的医疗器械注册证(注册证编号:粤械注准 20202220695)。 /p p   全自动微生物质谱检测系统(CMI-1600)是禾信康源在全面掌握核心技术和先进制造工艺下,历时5年,完全自主、正向研发的一款基于基质辅助激光解吸电离法的质谱检测系统。 /p p    strong span style=" color: rgb(0, 112, 192) " 产品研发历程 /span /strong /p p   2014年7月:微生物鉴定质谱仪项目启动 /p p   2015年2月:开展系统搭建及测试 /p p   2015年9月:采集第一张微生物鉴定质谱仪谱图 /p p   2017年10月:全自动微生物质谱检测系统(CMI-1600)首次亮相 /p p   & #8230 & #8230 /p p   产品不断升级中 /p p   2019年5月:通过注册检验报告 /p p   2020年5月:获批医疗器械注册证 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/172d5164-4fcb-4459-aa1f-84f83ad3981c.jpg" title=" 图片.jpg" alt=" 图片.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 全自动微生物质谱检测系统(CMI-1600) /span /p p   全自动微生物质谱检测系统(CMI-1600)应用于临床细菌等微生物的快速鉴定分析,主要原理是利用已知菌种建立数据库,通过检测获得微生物的蛋白质图谱。由于不同菌种核糖体蛋白(2~20k Da)大小有差异,将所得的谱图与数据库中的微生物参考图谱比对,从而实现细菌等微生物的快速鉴定和分型。相比于表型鉴定、生理生化法、化学发光法等传统微生物鉴定技术,质谱鉴定在鉴定速度、鉴定准确率、技术成本、操作便捷等各方面都具有明显优势,是微生物检验技术史上的一次革新。 /p p    strong span style=" color: rgb(0, 112, 192) " 关于禾信康源 /span /strong /p p   禾信康源系广州禾信仪器股份有限公司控股子公司,专注于高端医疗质谱仪器的研发、制造、销售及服务。秉承“锲而不舍,开拓创新,打造健康之源”的宗旨,在微生物鉴定、基因检测、药物分析等新业务领域,为用户提供全面领先的临床质谱综合解决方案。 /p
  • 天设发布全自动焦炭反应性制样系统BM100新品
    A6-BM100全自动焦炭制球机我公司研发的全自动焦炭颗粒制球机实现了自动化、机械化制球,出球效率高,无人为干预,对于该种设备所制试样,完全符合国家标准GB/T4000-2017焦炭反应性及反应后强度测定试样要求。1、特点能将不规则大块焦炭直接制成适用于焦炭反应性及反应后强度试验的球形焦炭。设备采用PLC控制技术和液晶屏显示操作模式,配合全中文操作按钮,能轻松完成制样工作。焦炭制样系统一体机能快速完成制样,并集制样、磨样、筛分与一体,设计有外接除尘口,可完全清除试验过程中的焦炭粉末。该设备具有成品率高、使用便捷、省时省力环保安全、制样速度快等优点。此设备“集破碎、制球、磨球、筛分、除尘于一体,就是此设备只需要一套系统设备组成,只需一个操作步骤, 能“一键快速完成焦炭反应性试样制备”,焦炭制样时只需按启动按钮,将取来的大块焦炭倒进进料口,操作员工可去作别的工作,无需看守,到试样制好后自动停机,操作便捷、省时省力环保安全、制样速度快。在制样过程中,没有人为接触试样,排除了在制样过程中人为误差,作假等人为因素的影响,从而保证了焦炭试样的真实可靠性。2、工作原理该设备有三组活动切刀、带圆孔的切刀仓、振动装置、筛分装置和控制单元组成,并设计有断相与相序保护、热过载保护。采用冲击切样原理,设备切刀在电机带动下高速旋转,使焦炭在切刀仑内不断被切割、摩擦将大块焦炭直接制成表面平整的球形焦炭,碎焦炭和球形焦炭通过切刀仓壁的孔落在下面的两层筛板上,该筛板装有振动装置,始终处于振动状态,经过筛分后碎焦炭和球形焦炭会自动落入不同的试样框内。3、技术指标项目参数进料粒度<100mm装料重量﹥5kg出料粒度23-25mm最终出料比例10公斤焦炭满足要求的试样1.5千克电压三相五线380V总功率约5.85kW 创新点:制球自动化程度高,出球效率高,噪音低 全自动焦炭反应性制样系统BM100
  • 全自动水质分析实验室 | 全自动水质COD分析仪、全自动总磷总氮分析仪 新品上市
    谱育科技成立5周年 诚意之作始终以客户为中心重磅打造一系列新品,敬请期待!谱育出品,必属精品全自动水质分析实验室面对越来越多的水质检测需求,针对传统实验室手工检测“效率低、投入大、安全风险高、数据质量不可控”等问题,谱育科技率推出了“全自动水质分析实验室”系列产品,通过一体化信息管理,标准化、全自动、大通量、快速监测等手段,能够“自动、快速、精准”地检测高锰酸盐指数、重金属、TP、TN、COD、NH3-N等因子,实现从分样-前处理-分析-报表的全流程自动化。根据“全自动水质分析实验室”理念,谱育科技推出了“全自动水质COD分析仪”和“全自动总磷总氮分析仪”两大新品,分析方法完全符合相关国家或行业标准方法,通过水质分析自动化,有效缩短了分析检测周期,数据质量全流程在线可控、数据全流程可溯源,大幅度提升了水质分析的检测效率和数据质量。全自动水质COD分析仪全自动总磷总氮分析仪全自动分析仪特点全自动系统集成了开盖/关盖、取样、前处理、分析、质控、数据报告全自动水质分析功能,精准高效,避免误差,免去手工检测的一系列烦恼。高通量可实现复杂工序多位并行处理,单台分析仪器每天可处理上百个样品量,满足高峰时期大批量的样品检测需求。信息化全过程对样品信息进行智能记录,自动、实时采集检测过程中的样品信息、仪器设备状态、监测数据等,自动质控并生成检测报告。全自动水质COD分析仪,从开关盖,加试剂,混匀,清洗、排空,生成报告,不仅涵盖了全流程自动化的特点,同时,还具备光程范围更宽泛,测量范围更宽广,不同比色皿产生的误差极小等优点,可广泛适用于综合排放、农林养殖、公共卫生等领域。全自动总磷总氮分析仪,支持总磷总氮同批次检测,全自动化执行分析检测任务,批次水样同步质控,每一个测量值都可溯源,实时掌握样品检测状态、设备运行状态,操作维护便捷,可广泛适用于有色、浑浊、清澈样品检测。 全自动分析系列产品● 全自动高锰酸盐指数分析系统基于智能机械臂技术平台,实现高锰酸盐指数的自动化检测,检测方法完全符合地表水、地下水、饮用水等相关的国家标准。● 全自动重金属分析系统基于ICP-MS/ICP-OES分析技术,满足70多种元素ppt级痕量检测需求。通过搭配石墨全自动消解、自动过滤等辅配系统,满足水质、土壤、食品、药品、血液等有毒有害限值元素国家法规标准分析检测要求。
  • 全自动洗瓶机:为实验室的清洁工作带来便利
    随着科技的不断发展,实验室的设备和工具也在不断地更新换代。其中,全自动洗瓶机的出现,为实验室的清洁工作带来了便利。作为一名实验室工作人员,我深刻体验到了全自动洗瓶机带来的日常便利。在过去,实验室的瓶子清洗是一项繁琐而耗时的任务。我们需要手动清洗每一个瓶子,不仅效率低下,而且容易因为操作不当而导致瓶子破损或清洗不彻底。然而,自从我们实验室引进了全自动洗瓶机后,这一切都发生了改变。全自动洗瓶机的出现,改变了我们实验室的清洁工作。它能够自动完成瓶子的清洗、冲洗和烘干等一系列过程,提高了工作效率。现在,我们只需要将需要清洗的瓶子放入机器中,按下启动按钮,就可以轻松完成清洗工作。这不仅节省了我们大量的时间和精力,而且避免了因为手动清洗而产生的瓶子破损和清洗不干净的问题。除了提高工作效率外,全自动洗瓶机还带来了更好的清洗效果。它采用了高压喷淋技术,能够将清洗剂和水混合后以高压水流的形式喷向瓶子内部和外部,从而清洗掉污渍和残留物。与此同时,全自动洗瓶机还具有多种清洗模式和清洗剂选择,可以适应不同类型的瓶子和清洗需求。这使得我们的瓶子清洗工作更加标准。在日常使用中,全自动洗瓶机的操作也非常简便。它采用了智能化的控制系统,具有简单易懂的操作界面和操作流程。即使是没有使用过洗瓶机的工作人员也可以很快上手,并独立完成清洗工作。此外,全自动洗瓶机还具有自动检测和报警系统,当设备出现故障或异常情况时,会自动报警并显示故障信息,以便我们及时进行维修和处理。总的来说,全自动洗瓶机的出现为实验室的清洁工作带来了便利。它不仅提高了我们的工作效率和清洗效果,而且使得我们的工作环境更加整洁和舒适。转载自:www.hzxpz.com
  • 莱伯泰科全自动固相萃取和凝胶净化应用交流会
    第 一 轮 通 知   现代科学技术的迅猛发展推动了现代分析仪器的发展。分析仪器灵敏度的提高及分析对象基体的复杂化,对样品的前处理提出了更高的要求。目前,现代分析方法中样品前处理技术的发展趋势是速度快、批量大、自动化程度高、成本低、劳动强度低、试剂消耗少、利于人员健康和环境保护、方法准确可靠。   莱伯泰科公司计划2009年11月12日在郑州举办全自动固相萃取ASPE和凝胶净化GPC在有机样品前处理分析中的应用技术交流会”。届时将邀请行业内专家到场与用户进行技术交流。   美国Horizon公司的SPE-DEX® 4790全自动萃取系统是专为美国国家环保署(US EPA)对液体样品进行固相萃取的所有应用需要而设计的,具有快速、**、操作简单和安全实用等特点,其应用范围包括:饮用水、废水、固体废物、食品、爆炸物、杀虫剂和制药工业排出物。 该系统能够提高化学实验工作者的效率,同时全自动操作可以忽略不同实验人员操作的差别,从而保证结果的一致性。Horizon同时提供独特的全自动定量浓缩,溶剂干燥、溶剂蒸发、溶剂收集等技术,应用于环境、农业、工业化学、石化、制药、食品和饮料工业领域。   凝胶渗析色谱净化是US EPA 和 US FDA指定的样品净化标准方法。LabTech全自动凝胶净化系统,通过凝胶柱全自动分离出目标分析物质,去除复杂基体中大分子物质,保留预测小分子组份,改善分析灵敏度,有效延长色谱柱使用寿命,减少基质对分析仪器的影响,提高仪器分析效率,并且避免了干扰物的污染,广泛适用于食品、农业、环保、疾控、质检、高校等领域的有机样品前处理。   会议安排内容如下:   1) 1) 介绍先进的全自动固相萃取(ASPE)和全自动定量浓缩(DryVap)技术   2) 介绍在欧美的主要应用领域   3) 我国新饮用水/地表水标准的具体应用   4) 热点话题:   如何处理简单轻松测定水中的总油?   如何简单容易处理污水?   5)凝胶净化GPC在有机样品前处理中的应用:    GPC凝胶净化技术介绍    凝胶净化技术在国内、国际标准中的应用    食品、蔬菜、肉类、粮食、茶叶等农药残留的净化    土壤中多环芳烃,多氯联苯的净化   6)仪器样机演示、 用户交流讨论、互动节目。   交流会时间: 2009年11月12日   上午: 8:40—12:10   午餐:12:10—13:30(免费)   下午:13:30—16:00(交流抽奖环节)   交流会地点:河南东方粤海大酒店 ,郑州市农业路政七街交叉口.   参加人员:所有莱伯泰科ASPE、DryVap、GPC的用户   有兴趣了解ASPE、DryVap、GPC凝胶净化技术的分析工作者   有兴趣探讨有机样品前处理技术的分析工作者   想了解美国EPA-ASPE方法的分析工作者   请有兴趣的单位和个人尽快发送e-mail或填写回执报名参加,免会务费,其他费用如食宿差旅费自理。   联系人:   周永亮 Email: ylzhou@labtechgroup.com   Tel: 0371-63921904 Fax: 0371-63948290 回 执 我单位(单位名称)___________________________________将参加贵单位举办的“全自动固相萃取ASPE和凝胶净化GPC在有机样品分析前处理中的应用技术交流会”。 参加人员(姓名、人数)__________________ 联系电话: __________________ Email: __________________ ___________________________________________________________________
  • 燃!禾信康源全自动微生物质谱检测系统获批医疗器械注册证
    广州禾信康源医疗科技有限公司(以下简称“禾信康源”)在全面掌握核心技术和先进制造工艺下,历时5年,完全自主、正向研发的一款基于基质辅助激光解吸电离法的质谱检测系统--全自动微生物质谱检测系统(CMI-1600)近日获广东省药品监督管理局颁发的医疗器械注册证(注册证编号:粤械注准 20202220695)。全自动微生物质谱检测系统(CMI-1600)全自动微生物质谱检测系统(CMI-1600)应用于临床细菌等微生物的快速鉴定分析,主要原理是利用已知菌种建立数据库,通过检测获得微生物的蛋白质图谱。由于不同菌种核糖体蛋白(2~20k Da)大小有差异,将所得的谱图与数据库中的微生物参考图谱比对,从而实现细菌等微生物的快速鉴定和分型。相比于表型鉴定、生理生化法、化学发光法等传统微生物鉴定技术,质谱鉴定在鉴定速度、鉴定准确率、技术成本、操作便捷等各方面都具有明显优势,是微生物检验技术史上一次里程碑式的革新。应用领域1.临床微生物鉴定2.疾病预防控制中心病原微生物鉴定3.食药监局微生物污染检测4.科研院所微生物研究5.科研院所微生物研究6.其他微生物鉴定领域技术原理质谱分析技术的基本原理是使样品分子离子化,具有不同质荷比(M/Z)的离子经质量分析器通过测定得到该样品的分子量。硬件系统▲一体化免清洗离子源,集成独创的微小角度激光入射,有效提高灵敏度▲智能化、高抽速真空泵系统,进靶即可采样,无需等待▲超高频、长寿命固体激光器,寿命优于传统氮气激光器,使得样品分析速度更快,终身免维护▲专利性双脉冲延时引出技术,提升全质量范围分辨率▲高稳定性信号采集系统,极大提升了仪器的重复性▲模块化设计,内置前级泵,整机结构更加紧凑,维护更加简单软件系统▲拥有自主知识产权的自动化控制采集软件,全过程智能化监控仪器状态,可自由切换多个数据库▲提供专业的菌种中文名称,无需另外翻译,国内客户使用更便捷▲多台云服务器同时执行鉴定,全面提升鉴定效率,可及时完成软件升级与数据库更新▲专业便捷的离线分析软件,满足各类用户数据分析需求数据库▲源于中国疾控中心(CDC)多年研究积累,品质保证,包含3500余种、60000余菌株谱图,满足各应用领域微生物检测需求▲数据库存于云服务器,可随时更新,客户也可根据自身需求建立自己的专属数据库产品研发历程2014年7月:微生物鉴定质谱仪项目启动2015年2月:开展系统搭建及测试2015年9月:采集第一张微生物鉴定质谱仪谱图2017年10月:全自动微生物质谱检测系统(CMI-1600)首次亮相......产品不断升级中2019年5月:通过注册检验报告2020年5月:获批医疗器械注册证自主创新,20余项产品专利 “十年磨一剑”,熬过了漫长的研发期,也赶上了《“十三五”医疗器械科技创新专项规划》将质谱技术作为科技创新重点的好时期,一家国产高端医疗质谱企业就要崛起了。 关于禾信康源禾信康源系广州禾信仪器股份有限公司控股子公司,专注于高端医疗质谱仪器的研发、制造、销售及服务。秉承“锲而不舍,开拓创新,打造健康之源”的宗旨,在微生物鉴定、基因检测、药物分析等新业务领域,为用户提供全面领先的临床质谱综合解决方案。
  • 新诺全自动热压机 程控系统全新上市
    新诺全自动热压机 程控系统全新上市近期我司争对几款热压机进行了升级,主要体现在显示面板上,采用了4.3英寸大屏液晶显示。能更精准对制样样品所需的压强进行设置,显示上也更加的清晰直观,更加有效的控制样品的成型效果。双平板/一体式/全自动热压机全自动热压机显示升级:4.3寸液晶屏 可满足于各种粉末、塑料薄膜、橡胶材料以及其它固体材料进行高温、高压制样或试验的实验室用户使用,是各大专院校、研究所工程技术人员进行光谱检测分析定性的理想配套设备。双平板/一体式/手动热压机这是一款精巧的双平板手动热压机,采用一体式结构,上下加热板固定,制样实验稳定可靠。 手动热压机显示升级:4.3寸液晶屏
  • 瓶盖全自动扭矩仪较手动扭矩仪可以提高试验效率的检验精确度吗
    在现代工业生产和科研实验中,扭矩测试是不可或缺的一环。无论是瓶盖扭紧度的检测,还是其他机械部件的扭矩测试,精确的扭矩仪都是确保产品质量和性能稳定的关键。近年来,全自动扭矩仪以其高效、精确的特点逐渐取代传统的手动扭矩仪,成为行业的新宠。那么,全自动扭矩仪相比手动扭矩仪,在试验效率和检验精确度方面究竟有哪些提升呢?1. 试验效率的提升:全自动扭矩仪:通过自动化操作,可以连续、快速地进行大量瓶盖的扭矩测试,大大提高了测试效率。它适合于生产线上的在线检测,能够实时监控瓶盖扭矩,确保产品质量的一致性。手动扭矩仪:操作依赖于人工,每次测试都需要手动设置和调整,速度相对较慢,更适合小批量或实验室环境下的测试。2. 检验精确度的提高:全自动扭矩仪:由于其自动化程度高,减少了人为操作误差的可能性,因此通常能够提供更高的测试精确度。它能够精确控制扭矩的大小和测试速度,确保每次测试的一致性。手动扭矩仪:虽然也能提供准确的测试结果,但其精确度受到操作者技能和经验的影响。重复性测试可能会因操作者的不同而有所差异。3. 数据记录和分析:全自动扭矩仪:通常配备有数据记录系统,能够自动记录每次测试的扭矩值,并生成详细的报告。这有助于后续的数据分析和质量控制。手动扭矩仪:可能需要手动记录测试数据,这增加了数据记录的复杂性和出错的可能性。4. 应用场景的适应性:全自动扭矩仪:更适合大规模生产环境,能够与生产线无缝集成,实现连续生产。手动扭矩仪:更适合小规模生产或研发实验室,用于对特定样本进行精确测试。综上所述,瓶盖全自动扭矩仪较手动扭矩仪在试验效率和检验精确度方面有显著优势。它能够快速、连续地进行大量测试,并提供精确的测试结果。然而,选择哪种类型的扭矩仪取决于具体的应用场景和需求。对于需要高效率和精确度的生产环境,全自动扭矩仪是更合适的选择。而对于小规模生产或研发实验室,手动扭矩仪可能更为适用。
  • 325.25万!安捷伦等中标广州实验室全自动层析系统等设备采购项目
    一、项目编号:OITC-G220290019(招标文件编号:OITC-G220290019)二、项目名称:广州实验室全自动层析系统等设备采购项目三、中标(成交)信息供应商名称:广东倍肯恒业医疗投资发展有限公司供应商地址:广州市天河区华穗路263号双城国际大厦A幢903-904单元中标(成交)金额:325.2500000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 广东倍肯恒业医疗投资发展有限公司 全自动层析系统(25ml流速)、全自动层析系统(150ml流速)、超速离心机、倒置荧光显微镜、高效液相色谱仪、实时荧光定量PCR仪、细胞活力分析仪 Cytiva;Cytiva;Beckman coulter;Leica;Agilent;Bio-Rad;Beckman coulter ÄKTA pure 25;ÄKTA pure 150;Optima XPN-80;DM IL LED;1260 Infinity II;CFX 96 Touch;Vi-CELL XR 1套;1套;1套;1套;1套;1套;1套 /
  • 应用案例 | HT8850成功应用于常熟生态实验站全自动多通道土壤通量观测系统
    项目名称:全自动多通道土壤通量观测系统项目地点:常熟生态实验站项目时间:2024年3月 项目背景 气候变化已成为全球迫在眉睫的环境挑战之一。人类社会生产生活造成的温室气体排放,尤其是二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的排放,是全球气候变暖的主要原因。据估计,这三种气体对温室效应的贡献率接近80%。其中,土壤释放的温室气体占比相当显著:约有5%~20%的二氧化碳、15%~30%的甲烷以及80%~90%的氧化亚氮来自土壤,而农田土壤是温室气体的重要排放源。 随着全球气候变化的加剧,了解和监测这些温室气体的排放和变化对于制定有效的环境政策和气候行动方案至关重要。因此需要准确的温室气体测量数据,以便更好地评估人类活动对气候的影响,并制定相应的减排措施。为应对这一挑战,常熟生态实验站启动了全自动多通道土壤通量观测系统项目,宁波海尔欣昕甬智测为此项目提供了HT8850便携式多组分高精度温室气体分析仪,通过精确的温室气体测量,为气候变化研究和减排政策制定提供科学数据支持。 仪器介绍 HT8850便携式多组分高精度温室气体分析仪宁波海尔欣光电科技有限公司推出了昕甬智测HT8850便携式多组分温室气体分析仪。这款仪器基于量子级联激光(QCL)技术,能够精确测量二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)和水(H2O)等温室气体的浓度,采用独立强吸收谱线,使其不受其他气体分子光谱的交叉干扰。该气体分析仪能够可由太阳能或锂电池供电,实现温室气体浓度的定点或移动连续观测。 产品特点: 1. 多组分:目标种类: CO2, CH4, N2O, H2O采用中红外波段,独立强吸收谱线,无交叉干扰,使测量更精准。 2.便携性:高强度ABS材料箱体设计,防水耐用易携带,在仪器箱内实现快速响应的高精度测量。 3.可靠性:气体分子的强吸收信号,不需要超长光腔,使光腔结构更稳定,数据更可靠。 4.灵活性:可用于定点或车载走航连续自动检测,突破检测环境局限。 应用案例清华大学深圳国际研究生院户外实验塔里木大学双循环土壤呼吸观察系统项目在甘肃兰州完成野外安装 海尔欣昕甬智测以科技创新为引领,积极参与全球气候变化的应对工作。未来,公司将继续致力于研发更先进的气体分析技术,为实现全球“碳中和”目标贡献更多力量。
  • 莱伯泰科全自动固相萃取和溶剂蒸发系统广泛进入环境和水质实验室
    莱伯泰科有限公司销售的Horizon全自动固相萃取系统(ASPE)和全自动快速溶剂蒸发浓缩系统(DryVap)已广泛地进入中国的环境保护和水质分析实验室。近来,深圳环保、桂林环保、石家庄环保、扬州环保、北师大环境学院、西南大学环境学院、东江水务、河北水产等环保和水质分析领域实验室,先后同时采购了这两种产品,大大提高了样品前处理的工作效率,减少了样品处理消耗的时间。 Horizon全自动固相萃取系统是目前世界上**使用萃取盘的全自动固相萃取系统,与传统的萃取柱的方式不同,采用盘式萃取的Horizon固相萃取系统,能全自动地、快速地萃取大量的液体样品,在环保分析、农业分析、各种水质分析的应用上具有**的优势,是目前世界上最快速、萃取样品量最多、样品通道最多的固相萃取系统。此萃取方法已被美国EPA列为标准方法。Horizon的全自动快速溶剂蒸发浓缩系统(DryVap)为目前世界上**的可实现全自动在线干燥和多溶剂快速蒸发系统,与传统的蒸发手段比较,这一系统具备了全自动、快速、自动干燥、多溶剂非批处理方式的蒸发等优点,赢得了广大用户的认可。 除在环境和水质领域的大量应用外,Horizon全自动固相萃取系统还被广泛地用于化工、石化、饮料、食品、农业等中间或最终液体产品的萃取浓缩。而全自动快速溶剂蒸发浓缩系统已被广泛地用于各种溶剂的快速浓缩和蒸发应用上。 莱伯泰科有限公司(LabTech.Ltd, www.labtechgroup.com)销售各种无机和有机样品前处理产品,是目前中国市场上能够提供完整样品处理仪器和设备的企业,产品包括微波消解、微波萃取、固相萃取、溶剂蒸发、凝胶净化、制备和半制备色谱、激光固体进样、电热消解仪、膜去溶系统等各种产品。 全自动固相萃取系统 screen.width-300)this.width=screen.width-300" 全自动快速溶剂蒸发浓缩系统 screen.width-300)this.width=screen.width-300"
  • LabTech推出全自动四联机样品前处理系统工作平台
    莱伯泰科经过多年在样品前处理领域的大力开拓,再次推出全新概念样品前处理产品:全自动样品前处理四联机系统工作平台,平台由四部分组成(预浓缩-GPC净化-浓缩-SPE分离),可连续和自动工作,可同时处理多达120个样品。 样品前处理过程是一个非常耗时,繁琐且容易引入分析测定误差的过程。随着科学技术的进步,分析技术和分析仪器不断发展,对分析的灵敏度、精密度和自动化程度要求越来越高,而耗时、费力和效率低的样品前处理已成为整个分析过程的瓶颈。 针对这种市场需求,我们公司推出样品前处理四联机整体解决方案,使用该套系统,只需将提取液放置在液体处理器上,即可全自动实现样品预浓缩-GPC净化-浓缩-SPE一体化处理过程。 整个过程无需人为干预,极大的简化了样品前处理的繁琐过程,同时系统密闭环保。 技术特点: &bull 该套系统可全自动完成样品预浓缩-GPC净化-浓缩-SPE四联机过程。 &bull GPC凝胶净化系统采用双柱塞串联输液泵,可变波长紫外检测器,高效不锈钢凝胶净化柱,具有性能可靠,净化效率高等优点。 &bull 浓缩系统采用真空-氮吹-加热三位一体浓缩方式,可实现温和条件下快速浓缩。 &bull SPE采用正压萃取模式,独特的低压密封技术,保证固相萃取各步骤间无溶剂混合,流速稳定,回收率可靠。 &bull 全自动液体处理器采用XYZ三维处理模式,具有隔垫穿刺功能。 &bull 整套系统全密闭。 该套系统各部分性能优越,整体性能稳定可靠,既可单独使用,也可在线联用,**限度满足不同实验室的使用需求。 LabTech 致力于为广大全球实验室用户提供先进的样品前处理设备,一如既往实现我们的口号:Your Lab ,Our Tech,让分析工作者工作更安全、更环保、更容易、更方便、更自动。
  • 风电叶片检测有奇招!全自动NDT检测系统
    中国的风电市场,在“双碳”目标明确提出后,风电一直是我国环保事业中重要的一部分。风电领域中,风机的叶片是重要的组成部分,直接关系着风机的运转效率及状态。Evident NDT大系统部门,针对风电叶片行业开发了全自动叶片检测系统WBIS(Wind Blade Inspection System)。 该检测系统通过集成AGV(自动导航小车),机械手,电池组,水循环系统,控制系统,并结合Evident自主开发的Focus PX及软件组成高效的全自动化检测系统。,时长03:01检测区域:翼梁和腹板粘结的完整性检查左右滑动查更多全自动的NDT检测系统,扫描过程中无需操作员。得益于这些定位点,WBIS能够自动连续检测叶片两侧。检测动线左右滑动查更多探头在腹板区域移动,AGV和机械手将它们的轴组合起来,以创建X&Y光栅扫描。绿色箭头:AGV移动 红色箭头:机械手移动两个方向上的扫描分辨率由用户选择,以获得数据分辨率及检测效率。以下检测效率作为示例:腹板长度: 60 米长分辨率: 翼弦方向: 1mm, 翼展方向: 3mm, 0.1mm A扫 并沿弦线进行500mm的扫描。检测时间: 2m / min数据大小: 10,3 GB上传速率: 100 MB/s轻松高效的数据分析区别于现有NDT检测设备的数据分析模式,WBIS检测数据被划分为700 MB的文件,一旦可用,就可以进行动态实时传输。因此,数据分析可以更早地开始,并在收到前两个文件后立即开始,而非等到整个检测过程完成之后再分析。WBIS数据可以轻松上传到远程位置(或者云服务器上)进行远程集中分析。WBIS优势:全自动检测,检测过程无需人员操作,实现远端控制高检测效率,扫查分辨率可根据需求调整自带安全传感器及定位点,实现较高安全性独立系统,所需装置均安装于机上,无外界电缆,水管占地面积小,小于2平方米针对不同叶形,检测设置快速切换,无任何机械调整机械手传感器及水楔自由角度,实现叶片曲率变化的仿形检测水循环系统实现供水,回水动态循环,实现稳定耦合
  • 欧波同发布全自动光学显微矿物分析系统新品
    1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂创新点:(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。 (2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征; (3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。 (4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。 全自动光学显微矿物分析系统
  • 前沿科技 | OIA全自动铁矿相分析系统在炼铁原材料中的应用
    背景介绍多数情况下,为进行全面的矿产资源评价,了解铁矿石在下游加工作业中的行为或预测矿石品质对下游工艺的影响并优化处理工艺,需要获取大量关于矿石的原始信息。这些信息包括矿相组成、孔隙度、连生关系、粒度分布、解离度、组织结构、矿石颗粒结构分类和计算出的矿物密度和矿物成分等等。现在,所有这些重要信息都可以在OIA全自动铁矿相分析系统的帮助下准确获得。该系统实现在光学显微镜上自动采集图像,并可自动识别不同铁矿石、烧结矿、球团矿和冶金焦炭中的各矿相和孔隙。图像的获取和矿物颗粒的综合表征全部自动化完成,包括结构分类、解离分析、矿物连生关系和计算后的矿物成分、密度、尺寸等。本系统允许用户建立属于自己的特定结构分类方案,宽泛的放大倍数适用于铁矿粉至块矿,所有计算结果均以图、表的形式导出到Excle或Word文档,加之友好的用户界面,使之成为研究铁矿石、烧结和球团矿不可或缺的强力助手 。 图1 OIA全自动铁矿相分析系统工作原理OIA系统的工作原理有两个:基于反射色的多门槛值识别;基于矿物组织结构的识别。应用范围原生铁矿石、铁精粉、烧结矿、球团矿及冶金焦炭等炼铁原材料。应用案例1-铁矿石OIA在铁矿石信息表征中的应用主要包括获取样品矿物种类(磁铁矿、赤铁矿、水赤铁矿、褐铁矿、石英、孔隙等)及其含量(表1)、颗粒尺寸(表2)、连生关系(表3)及解离度(图3)等[1]。同时,可以提供包含丰富信息的彩色矿物分析图像(图2)。7图2 铁矿石光学图像(a)与矿物分析图像(b)表1 铁矿石样品中的矿物组成与含量表2 铁矿石样品中的矿物颗粒尺寸表3 铁矿石样品中各矿物间的连生关系图3 样品中按矿相计算的解离关系应用案例2-烧结矿OIA在烧结矿信息表征中的应用主要在于识别样品中的不同的赤铁矿相--原生赤铁矿(未反应相)和次生赤铁矿(烧结熔体中分异相)和不同类型的SFCA相(复合铁酸钙)[2],并提供包含丰富信息的彩色图像(图4),包括大面积拼图(图5)与微观分析图像(图6)。 图4 烧结矿光学图像(a)与矿相分析图像(b)图5 烧结矿样品的大面积光学图像拼图(a)与矿相分析图(b)备注:该图像由525帧200×的图像拼接而成,覆盖区域面积12mm×13mm,样品由鞍钢集团钢铁研究院提供图6 上述烧结矿样品的微观分析图像应用案例3-球团矿OIA在球团矿中的应用主要在于表征样品中的Fe3O4相、Fe2O3相和孔隙的分布特征。这里以加热到800℃的磁铁矿球团为例简作说明(图7),详细信息可参阅相关资料[3]。图7 球团矿样品的微观信息表征备注:该球团矿直径为12.7mm。图a为21×21帧2×2Mosaix图像拼接而成的光学图像;图b为系统分析后的矿相图像(粉色-Fe3O4相、蓝色-Fe2O3相、黄色-孔隙);图c-图e为各相的空间分布特征应用案例4-冶金焦炭OIA在冶金焦炭中的应用主要在于表征样品中的IMDC相(惰性组分)、RMDC相(活性组分)及两者边界和孔隙的分布特征(图8)。详细应用信息可参阅相关资料[4]。图8 焦炭样品的微观信息表征(品红色-IMDC、浅蓝色-RMDC、黄色-孔隙)OIA与MLA分析方法对比—铁矿石图9 MLA(图a、b)与OIA(图c、d)分析方法在原生铁矿石信息表征中的对比(粉色-磁铁矿、蓝色-赤铁矿、绿色-褐铁矿、黄色-孔隙、黑色-未识别)由于天然主要铁矿物(磁铁矿与假象赤铁矿,赤铁矿与水赤铁矿等)的含铁量往往相差不大,因此在扫描电镜下其灰度相近(图9a),MLA等电镜矿物分析软件易产生较大的识别误差(图9b);但各铁矿物相在光学显微镜下的特征更加明显(反射色各异,图9c),因此,搭载于光镜上的OIA全自动铁矿相分析系统对铁矿物的识别更加精确,同时,对孔隙特别是微孔隙的捕捉更加灵敏(图9d)。OIA与MLA分析方法对比—烧结矿图10 MLA(图a、b)与OIA(图c、d)分析方法在烧结矿信息表征中的对比MLA在烧结矿的应用中产生的问题与铁矿石分析中遇到的问题相同,样品中不同矿相在电镜下的灰度差异不足以使软件清晰的分割划分,所得分析结果与真实分布情况出入很大(图10a,b);而OIA在烧结矿中的表征,无论是矿相的识别,还是细节的捕捉,都远远优于MLA。OIA关键技术优势• 自动化分析,效率性大幅提升(比人工计点法快高效准确)手动计数往往低估了作为包体存在的小相;由于玻璃的反射率与环氧树脂的反射率非常接近,使得人眼无法对两者做出可靠的区分,因此也容易低估玻璃相;手动计数往往低估了孔隙率,因为忽略了微孔隙的存在。• 准确性(比扫描电镜分析方法更精确)• 信息丰富性(包含丰富的矿物信息)• 形貌表征(包括不同矿相和孔隙的组织结构和空间分布特征)
  • 353万!暨南大学中医学院高级全自动振动切片机等实验室设备采购项目
    项目编号:0809-2241GZG14236项目名称:暨南大学中医学院高级全自动振动切片机等实验室设备采购项目预算金额:353.2431000 万元(人民币)最高限价(如有):353.2431000 万元(人民币)采购需求:包号品目名称采购标的数量(台/套)技术规格、参数及要求最高限价(万元)1通用设备高级全自动振动切片机1/台详见《第二部分 采购需求》99.5499冷冻干燥仪1/台化学发光成像制冷CCD1/套台式冷冻离心机1/台智能有线光遗传系统1/台台式冷冻离心机1/台麻醉机2/台低温型研磨仪1/台相机1/台2通用设备光遗传1/套详见《第二部分 采购需求》29.9700行为学电刺激穿梭箱1/套4度离心机1/套-80度冰箱1/套纯水仪1/套国产微量注射泵1/套超净工作台1/套手术显微镜1/套蠕动泵1/套3通用设备真空离心浓缩仪1/台详见《第二部分 采购需求》49.940020L旋转蒸发仪1/台喷雾干燥机1/台小型压片机1/台小型片剂包衣机1/台2L旋转蒸发仪1/台薄层成像扫描仪1/台恒温恒湿试验箱2/台小型立式湿法制粒机1/台贴膏涂布机1/台小型旋转制粒机1/台真空干燥箱2/台粉碎机1/台智能崩解仪1/台旋转粘度计1/台马弗炉1/台5L数显控温电加热套3/台20L数显控温电加热套1/台1L数显控温电加热套3/台4通用设备氮气发生系统1/台详见《第二部分 采购需求》173.7832动物运动轨迹跟踪系统1/套大容量高速冷冻离心机1/台超纯水系统1/套全自动化学发光/荧光图像分析系统1/台离心机1/台低速常温离心机2/台大容量叠加式恒温摇床1/台NAS服务器1/台多通道旷场实验分析系统1/台中央空调机组1/台生物组织脱水机1/台超低温冰箱1/台单道移液器33/把冷冻离心机1/台CO2培养箱1/台多道移液器6/把生物组织石蜡包埋机1/台垂直电泳仪6/套转膜槽10/套双稳定定时电泳仪电源6/套超声波破碎仪1/台数据分析工作站1/台摇床4/台大鼠转棒仪1/台图像处理工作站1/台40X镜头1/个电动助吸器2/把精密鼓风烘箱1/台金属浴2/台双开门冰箱1/台上下门冰箱2/台涡旋仪3/台磁力搅拌器1/台简易天平2/台经政府采购管理部门同意,本项目部分标的允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。详细要求请参阅“采购需求”。合同履行期限:国内设备在合同签订后 30 天内完成交货及安装调试达验收合格标准;进口设备在合同签订后 90 天内完成交货及安装、调试达验收合格标准。质保期2年以上。本项目( 不接受 )联合体投标。
  • 理加LI-2100全自动真空抽提系统的海外之旅
    不同水体的氢氧稳定同位素可用于植物水分利用来源、水汽输送、土壤水运移和补给机制、补给源和地下水机制、水体蒸发、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、重建古气候等方面的研究。因而引起了水文学家,生态学家以及气候学家等的广泛关注。但问题是:在进行水稳定同位素测试之前如何将植物木质部和土壤中的水分无分馏的提取出来?LI-2100是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证。从根本上解决了植物和土壤水分提取的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全高效,不会对植物和土壤造成破坏。可与LGR水同位素分析仪和质谱仪配套使用。许多科学家已经结合LI-2100和LGR的水同位素分析仪进行了诸多研究。从研发生产至今,LI-2100在国内已经销售了近百台,国内的科研工作者利用这台仪器发表了诸多文献,得到了用户的众多好评。随着LI-2100在国内的广泛应用及众多文献的发表,国外的一些科学家也开始关注理加公司研发生产的LI-2100,理加公司也积极在海外推广该产品,由此拉开了LI-2100走出国门、走向海外的序幕。LI-2100在海外的安装案例1. 巴西国家空间研究所(INPE)应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。科学家简介:Laura De Simone Borma (劳拉德西蒙娜博尔玛)1988 年毕业于欧鲁普雷图联邦大学土木工程专业,1991 年获得里约热内卢联邦大学土木工程硕士学位,以及里约热内卢联邦大学土木工程-环境岩土工程博士学位(1998)。自 2009 年起在 INPE(国家空间研究所)担任研究员,从事生态水文学和土壤物理学领域的工作,重点是实地观察陆地和极端天气事件对土壤-植物-大气相互作用以及气候变化、土地利用和覆盖变化的影响。她目前是 INPE 的 PGCST(地球系统科学研究生)和 PGSER(遥感研究生)的教授。协调 CCST/INPE 的生态水文学 (LabEcoh) 和生物地球化学 (LapBio) 实验室。她是 ISMC(国际土壤建模联盟)的成员。她对巴西不同生物群落中土壤-植物-大气相互作用、生态水文学以及水和气候调节的生态系统服务领域的研究感兴趣。LI-2100在海外的安装案例2. 澳大利亚Flinders大学 College of Science and Engineering应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。 LI-2100在国内的部分安装案例1、沈阳气象局2、中国林业科学研究院亚热带林业研究所3、广西植物园4、中国科学院西双版纳热带植物园...发表文献1. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.2. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.3. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017. 4. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 5. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 6. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.7. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 8. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.9. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 10. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.11. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121. 12. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.13. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650. 14. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.15. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.16. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems and Environment, 276: 55-63. 17. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693. 18. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.19. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287. 20. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199. 21. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 22. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shade‐induced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831. 23. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933. 24. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499. 25. Su PY, Zhang MJ, Qu DY et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791 doi:10.3390/w12102791. 26. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020. 27. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321. 28. Xiao X, Zhang F, Li XY et al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.29. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.30. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.31. Yong LL, Zhu GF, Wan QZ et al. 2020. The soil water evaporation process frommountains based on the stable isotope composition in a headwater basin and northwest China. Water, 12, 2711 doi:10.3390/w12102711. 32. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, doi:10.3390/w12071923. 33. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995. 34. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125811. 35. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593. 36. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731. 37. Zhao Y, Wang L. 2021. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz xylem water from root water stable isotope measurements. Hydrology and Earth System Sciences, 25, 3975-3989.38. Shi PJ, Huang YN, Yang CY et al. 2021. Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126895.39. Zhu GF, Yong LL, Zhang ZX et al. 2021. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.107173.40. Fang FL, Li YJ, Yuan DP et al. 2021. Distinguishing N2O and N2 ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2021.149694.41. Wang JX, Zhang MJ, Argiriou AA et al. 2021. Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 9369.42. Zhu G F, Yong L L, Xi Z et al. 2021. Evaporation, infiltration and storage of soil water in different vegetation zones in Qilian mountains: From a perspective of stable isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-376.43. Qiu GY, Wang B, Li T et al. 2021. Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125940.44. Tang YK, Wang LN, Yu YQ et al. 2021. Differential response of plant water consumption to rainwater uptake for dominant tree species in the semiarid Loess Plateau. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-351.45. Lin W, Ding JJ, Li YJ et al. 2021. Determination of N2O reduction to N2 from manure-amended soil based on isotopocule mapping and acetylene inhibition. Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117913.46. Liu JZ, Wu HW, Zhang HW et al. 2021. Controls of seasonality and altitude on generation of leaf water isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-289.47. Qin WY, Chen G, Wang P et al. 2021. Climatic and biotic influences on isotopic differences among topsoil waters in typical alpine vegetation types. Catena, https://doi.org/10.1016/j.catena.2021.105375.48. Zhang X, Zhang QL, Xu ZH et al. 2021. Mechanism of environmental factors regulating water consumption of Larix gmelinii forests. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-021-03025-7.49. Zhu WR, Li WH, Shi PL et al. 2021. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, northern China. Sustainability, 13(2), 807 https://doi.org/10.3390/su13020807.50. Liu ZH, Jia GD, Yu XX et al. 2021. Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.106943.51. Zhu GF, Yong LL, Zhang ZX et al. 2021. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena, https://doi.org/10.1016/j.catena.2021.105580.52. Zhao Y, Wang L, Knighton J et al. 2021. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108323.53. Shi Y, Jia WX, Zhu GF et al. 2021. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies, 30, 3, 2325-2339.54. Wu A, Behzad HM, He QF et al. 2021. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126199.55. 周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.56. 李亚飞, 于静洁, 陆凯等. 2017. 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41(5): 519-528.57. 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析. 热带地理, 38 (6): 857-865.58. 霍伟杰, 蒲俊兵, 李建鸿等. 2019. 断陷盆地高原面典型岩溶洼地旱季土壤水氢氧同位素时空差异特征.中国岩溶,38(3): 307-317.59. 戴军杰, 章新平, 罗紫东等. 2019. 长沙地区樟树林土壤水稳定同位素特征及其对土壤水分运动的指示. 环境科学研究,32(6): 974-983.60. 胡士可和叶茂. 2020. 基于氢氧稳定同位素的柽柳水分来源分析. 广东农业科学, 47(2):54-60.61. 李盼根, 王震洪, 李赫等. 2020. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究. 水土保持通报, 40(1): 108-115.62. 史佳美, 余新晓, 贾国栋等. 2020. 不同动力学分馏系数对北京山区侧柏叶片水δ18O的模拟. 应用生态学报, 31(6): 1827-1834.63. 苏鹏燕, 张明军, 王圣杰等. 2020. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31(6): 1835-1843.64. 孜尔蝶巴合提, 贾国栋, 余新晓. 2020. 基于稳定同位素分析不同退化程度小叶杨水分来源. 应用生态学报, 31(6): 1807-181665. 王露霞, 梁杏, 李静. 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710.66. 王锐, 章新平, 戴军杰等. 2020. 亚热带地区不同林分下植物水分利用的季节差异. 生态环境学报, 29(4): 665-675.67. 王锐, 章新平, 戴军杰等. 2020. 亚热带典型植物水分利用来源变化的水稳定同位素分析. 水土保持学报, 34(1): 202-209.68. 王锐, 章新平, 戴军杰等. 2020. 亚热带湿润区樟树吸水的土层来源及研究方法对比. 水土保持学报, 34(5): 267-276.69. 郝帅和李发东. 2021. 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76(7): 1649-1661.70. 李雨芊, 孟玉川, 宋泓苇等. 2021. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征. 应用生态学报, 32(6): 1928-1934.71. 刘秀强, 陈喜, 刘琴等. 2021. 西北干旱区尾闾湖过渡带陆面蒸发和潜水对土壤水影响的同位素分析. 干旱区资源与环境, 35(6): 52-59.72. 王家鑫, 张明军, 张宇等. 2021. 基于稳定同位素示踪的黄河兰州段河漫滩土壤水特征分析. 干旱区地理, 44(5): 1449-1458.73. 王锐, 章新平, 戴军杰等. 2021. 亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同位素特征. 生态环境学报, 30(6): 1148-1157.74. 王欣, 贾国栋, 邓文平等. 2021. 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32(6): 1943-1950.75. 武昱鑫, 张永娥, 贾国栋. 2021. 基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分应用生态学报, 32(6): 1971-1979.76. 张泽, 孙贺阳, 李陶珂等. 2021. 拆分典型草原群落蒸散组分方法研究. 中国草地学报, 43(4): 87-95.LI-2100特点1. 沿用传统经典的真空蒸馏冷冻方法,数据可靠2. 无需液氮:压缩机制冷,提高安全性3. 快速高效:一次可同时提取14个样品4. 全自动抽提:全过程无人值守5. 安全便捷:自我断电与自我保护功能6. 质量控制:故障提示与自动报警7. 全球首创:专利技术8. 氢氧稳定同位素前处理 性能指标提取速度>110 个/天可同时提取样品数14 个系统真空度<1000 Pa系统漏率<1 Pa/s抽提率>98%回收率99%-101%真空泵5 L/min, 24 V, 最大压力, 0.3bar制冷无需液氮,压缩机与冷阱结合,最低制冷温度可达 -95℃制热电磁制热,最高制热温度可达 130℃显示与操作TFT LCD (7寸, 800*480 65536). 触摸式人机友好交互界面自动保护温度过高或超出设定温度值,加热系统自动关闭自动报警制冷系统故障提示并报警与真空泄露故障报警尺寸90 cm (H)×74 cm (W)×110 cm (D)重量120 KgLI-2100是国际上第一款全自动植物土壤真空抽提系统,也是国内全自动植物土壤真空抽提系统的领导品牌。LI-2100为客户取得更为准确的数据提供了有利的方法和保障。理加公司专注国产生态仪器的研发和生产,是国内生态领域自主研发比较早、国产化比较好的一家公司。相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。海外市场的拓展不是一条容易走的路,但理加会坚定地走出去。
  • 140万!上饶市立医院全自动微生物质谱检测系统采购
    项目概况上饶市立医院全自动微生物质谱检测系统 招标项目的潜在投标人应在 江西省公共资源交易网 获取招标文件,并于 2022年01月11日 09点00分 (北京时间)前递交投标文件。一、项目基本情况:项目编号:JRZFCG-2021-057-2项目名称:上饶市立医院全自动微生物质谱检测系统采购方式:公开招标预算金额:1400000.00 元最高限价:1400000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求饶购2021F000511629上饶市立医院全自动微生物质谱检测系统1台1400000.00元详见公告附件合同履行期限:合同签订后30天内安装、调试完毕并交付使用。本项目不接受联合体投标。二、申请人的资格要求1、满足《中华人民共和国政府采购法》第二十二条规定的条件;(1)供应商应具备独立承担民事责任的能力:提供有效期内三证合一的营业执照副本、提供法定代表人授权委托书及代理人身份证原件;(2)提供投标单位财务状况报告:提供2019年或2020年经审计的财务状况报告或投标截止时间前三个月内基本开户银行出具的资信证明;(3)具有依法缴纳税收和社会保障资金的良好记录:提供开标前近6个月内任意一个月依法缴纳税收和社会保障资金的相关证明(发票、转账凭证、税务局或社保局的缴费证明等任意一种均可,依法免税或不需要缴纳社保的须提供相应的证明材料);(4)参加政府采购活动前三年内,在经营活动中没有重大违法记录:(提供书面声明);(5)具有履行合同所必需的设备和专业技术能力:(提供承诺函);(6)被“信用中国”网站(网址:www.creditchina.gov.cn)列入“失信被执行人”“重大税收违法案件当事人名单”和“政府采购严重违法失信行为记录名单”、“中国政府采购网”网站(网址:www.ccgp.gov.cn)列入“政府采购严重违法失信行为记录名单”的,不得参与本次项目。提供开标前一个月内信用查询结果页面截图并加盖供应商公章; 2、落实政府采购政策需满足的资格要求: 落实小微企业、监狱企业、残疾人福利性单位等政府采购政策,对监狱企业、小型和微型企业产品的价格给予6%的扣除,用扣除后的价格参与评审。(详见招标文件)3、本项目的特定资格要求:(1)提供二、三类医疗器械产品的须具有医疗器械注册证(老版提供注册证与登记表,新版提供注册证);(2)经营三类医疗器械的须具有医疗器械经营企业许可证,经营二类医疗器械的须具有医疗器械经营企业备案登记凭证;(医疗器械注册人或者生产企业在其住所或者生产地址销售医疗器械,不需提供);三、获取招标文件:时间:2021年12月20日 00:00 至 2021年12月25日 00:00(提供期限自本公告发布之日起不得少于5个工作日)地点:江西省公共资源交易网方式:网上下载售价:0.00元四、提交投标文件截止时间、开标时间和地点:2022年01月11日 09点00分 (北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点:上饶市公共资源交易中心五、公告期限:自本公告发布之日起5个工作日。六、其他补充事宜:1、本项目不允许进口产品参与投标活动。2、开标时另须提供与电子版招标文件一致的纸质招标文件(一正二副)、资格审查纸质文件(一正二副)在开标截止时间前递交。 3、届时请投标人携带CA数字证书出席开标会。4、投标保证金缴纳方式、户名、开户行、账号及金额详见招标文件。5、本项目招标代理服务费向中标人收取,收费标准详见招标文件。6、疫情防疫期间禁止无关人员在开标场地聚集,开标当日只允许法定必须到场人员参加开标活动。到场人员必须全程正确佩戴口罩,保持距离禁止扎堆。公共资源交易各方一律经由交易中心西一门(即样品出入门,广信大厦西栋西侧主楼裙楼连接处)出入开评标现场。上饶市公共资源交易中心开标区域(含开标室等所有三楼区域)禁止用餐,所有区域禁止吸烟,投标人不得在开标室及公共区域、楼道等各角落吸烟。7、外地来(返)饶人员,均须出示行程码、健康码,进行测温、登记及48小时核酸检测阴性报告。健康码为黄码、红码的人员一律不得进入交易中心。近14天内有中高风险地区或有本土病例报告的县(区) 旅居史的来(返)饶人员,须第一时间主动向所在社区(村组)、单位、酒店报告,接受社区(村组)管理,并自离开述地区起,按照“填平补齐”的原则实施14天集中医学 观察,开展不少于2次的核酸检测,检测结果出来前不能流动,不参加聚 集性活动,避免乘坐公共交通工具。(执行依据上饶市新型冠状病毒感染的肺炎疫情防控应急指挥部﹝2021﹞第14号文)。七、对本次招标提出询问,请按以下方式联系:1.采购人信息名称:上饶市立医院地址:上饶市信州区五三大道182号联系方式:0793-70600162.采购代理机构信息名称:江西省江润招标代理有限公司地址:上饶市信州区三清山中大道58号联系方式:181793319333.项目联系方式项目联系人:周先生电话:0793-7060016
  • 博晖微流控全自动核酸检测系统简介
    北京博晖创新光电技术股份有限公司的微流控核算检测技术应用于分子诊断,是一项划时代的技术革命,使分子诊断技术全面普及,为更多人服务。此平台不仅可整合反向斑点杂交技术,实现分型检测;也可整合qPCR技术,实现定量检测,满足不同项目需求。 一台芯片控制仪+试剂盒+芯片,实现了全部的分子诊断实验室功能,节省了实验室空间、降低了分子诊断的应用门槛。多重检测,精确分型,便于对患者进行分层管理。 【过去】传统的PCR实验室需要专用场地,严格分区,操作人员需要具备专业的知识和经过相应训练。需要熟练操作很多手工步骤,配合以多种仪器。按照传统方法,操作人员必须先制成一个样本清单,然后将病人样本和质控品通过移液器加入测试器件,并需手动将被测样本在恒温箱、分析仪、漩涡器之间进行切换。手动加入试剂,最后人工解读实验结果。整个程序处理过程繁琐、容易产生污染物且病样容易混淆。 【现在】博晖微流控全自动核酸检测系统采用世界上先进的微流控技术,进行基因分型检测。操作人员把芯片、样本盒、试剂盒都放在相应位置,关闭仪器门,即可点击”运行键”,在这个时间内,操作人员可去完成其他实验室工作。仪器能够自动运行所有程序。如已连接医院LIS系统,测试循环完成后,即可直接上传结果。 【博晖微流控特点】控制仪可同时检测3或6个芯片;全封闭式的操作,将可能的污染降低到最小;操作人员除了将样本放到芯片里,无需进行任何接触样本的工作,安全受到最大保护;采用三维运动平台进行样本和试剂的添加,整个检测过程无需人工介入;实验室内只需一个控制仪大小的地方即可进行分子检测。
  • 格丹纳免水全自动凯氏定氮仪发布会圆满成功
    忽而微风,吹来盛夏。广州格丹纳仪器有限公司携手仪器学习网举办“前所未至 定氮而生——格丹纳免水全自动凯氏定氮仪发布会”于2024年6月20日取得了圆满成功!我们非常荣幸地邀请到陈江韩(广东省科学院测试分析研究所 所长)、蔡楠(广东省科学院佛山产业技术研究院 副院长)、陈忠(广东省科学院精密仪器中试平台)、李荣超(广东省质量检验协会 秘书长)、何丽媛(广东省科学院测试分析研究所 高级应用工程师)、李其淦(泰通科技(广州)有限公司 总经理)、许权辉(广州谱临晟科技有限公司 总经理)、贺小红(广州质谱有限公司)、蒋超(仪器学习网 总经理)、徐玉梅(仪器学习网 仪学商城总经理)等嘉宾共同见证这一重要时刻。会上,广州格丹纳仪器有限公司总经理沈帝春介绍到,凯氏定氮法作为一个历史悠久却依然年轻的分析技术,被广泛应用于有机化合物的含氮量测定,其重要性不言而喻。格丹纳自2014年推出第一台自动凯氏定氮仪以来,不断进行技术创新和应用探索,始终以用户需求为中心,不断改进产品性能和功能,全新的“免水全自动凯氏定氮仪”应运而生。格丹纳免水全自动凯氏定氮仪采用了双层钛套管金属冷凝器和最新一代的免水技术,实现了免水高效冷凝 ,大幅提升了冷凝效率和精准度。免水全自动凯氏定氮仪经过广东省科学院精密仪器中试验证平台的验证,确保了设备的精度性和稳定性。我们始终坚持,要更好地为用户提供性能经得起验证及可靠性更高的产品。感谢各位嘉宾的莅临和支持!格丹纳期望与广大经销商伙伴携手,展开多方位的深度合作,共同努力奋斗,共创辉煌事业,共谋长远发展。道阻且长,行则将至;行而不辍,则未来可期。我们衷心感谢所有合作伙伴和广大用户对格丹纳公司的信任与支持。未来,我们将继续秉承“质量第一,客户至上”的理念,不断创新和进步,以“做好用的科学仪器”为宗旨,为科学仪器行业的发展贡献我们的力量。
  • 克莱克特发布克莱克特AS-3902全自动多功能进样系统新品
    AS-3902全自动多功能进样系统,是克莱克特潜心研发的多功能新型自动进样装置,可搭配多种功能模块,实现不同样品前处理流程。产品采用模块化的设计方式,用户只需更换样品盘即可实现液体进样、固相微萃取、顶空进样、自动标液配制之间的自由切换。AS-3902全自动多功能进样系统基于转塔式运动设计,圆周式运动路径,精密的步进电 机提供了机器的平稳移动和精确至 0.1mm 的定位。各个不同的功能模块主要集成在样品盘 和进样针上,用户可以根据自身实验需求自行选配。这种灵活的设计方法,赋予了产品丰富的可扩展性,以适应不同分析需要。各个功能部件皆经过精心的设计,用户可自行进行更换,模块之间的切换非常简单,无需移动自动进样器。并且可适配各大品牌的 GC/GC-MS 产品,无论是精密无残留的痕量分析, 还是大批量的样品处理,克莱克特全自动多功能进样系统都能满足您的需求。AS-3902全自动多功能进样系统性能特点 固相微萃取、顶空进样、液体进样、自动标液配置功能四合一;模块化设计,用户可根据需求选配不同功能模块,自由搭配;强大的多功能样品前处理平台,适合不同品牌气相色谱; 不占用进样口,支持同一台 GC 双进样口进样。 液体进样模式:全自动多功能进样系统的基本模块,可实现液体微量进样和大体积进样;定制进样针,进样深度、进样精度更高;进样速度可自由设置,适应不同黏度系数样品;进样针深度可结合实际需求调整;进样前后的时间延迟、进样针清洗可自由设置。固相微萃取模式:恒温和氮气吹扫功能的固相微萃取头老化模块,可进行固相微萃取头自动老化和氮气吹扫;转盘式样品恒温加热模块,可实现样品的恒温加热和萃取;全自动转塔式固相微萃取头插入萃取模块,可进行固相微萃取头全自动萃取;萃取的插入深度可调,可针对液面上(气体)及液面下(液体)样品进行萃取;具有磁力搅拌和加热功能,可控制样品瓶加热的时间、温度和磁力搅拌速度;可选用不同萃取头,以适应不同分析需求;萃取头自动清洗,避免交叉污染;具有固相微萃取针头自动插入色谱等仪器进样口系统的功能。顶空进样模式:旋转式运动进样方式,不占用进样口,可兼顾手动进样;采用可加热气密针进样方式,最大限度地减低样品流失,灵敏度高;进样量和进样速度可自由调节;用户可设置进样前后采用惰性气体加热吹洗次数,无样品交叉污染与残留;最多可同时加热六个样品,提高分析效率;内置单片机,具有自动进样器和色谱仪器全反控功能;一键启动,自动加热平衡、进针、取样、进样,启动色谱和工作站,实现流程全自动化;正压取样方式,可以测定液体或固体样品;常压进样,基线不漂移,可检测出水中 1ppb 的苯。 自动标液配制: 全自动标液配制,使重复手动样品制备更加简化和准确;只需一个高浓度标准溶液,即可完成标准溶液不同浓度的梯度稀释;样品处理前后自动进行洗针操作,减少交叉污染;所有过程无需接触化学品,保障操作者健康和环境安全;减少溶剂、试剂及溶剂处理的损耗,提升标液精度;可全自动配制10位单标或混标溶液;计量认证,保证结果准确有效。AS-3902全自动多功能进样系统【技术指标】 液体进样模式 样品盘 160位,适用于2ml样品瓶 最小进样体积 0.1μl 最大进样体积 500μl 进样针 气密性进样针 最大支持进样口 2个(可定制扩展) 进样速度选择 快速、中速、慢速、用户自定义 进样模式常规模式、三明治模式、PTV模式进样针深度位置2~40mm取样精度 ±0.01% 进样精度 RSD 老化时间/温度 0~60min, 温度设置范围:室温~350℃,控温精度±1℃ 萃取时间/温度 0~240min,温度设置范围:室温~150℃,控温精度±1℃ 解吸时间/温度0~30min, 温度设置范围:室温~350℃,控温精度±1℃ 磁力搅拌速度 0~1500rpm顶空进样模式 样品盘位 22位/36位(标配20ml顶空瓶) 进样针体积2.5ml(标配),可定制5ml 进样平衡延迟 可设定0~120秒 样品加热范围 可设定室温~200℃,控温精度±1℃进样针加热范围可设定室温~200℃,控温精度±1℃进样针取样时间可设定 0~9.99min进样时间可设定 0~9.99min恒温平衡时间可设定 0~1440min样品平衡搅拌时间可设定 0~120min可同时加热样品位数7 位(可扩展)进样精度RSD 单次最大稀释倍数200倍最大定容体积2ml最小取样体积 0.01ml混匀功能 自动混匀创新点:AS-3902全自动多功能进样系统,是克莱克特潜心研发的多功能新型自动进样装置,与公司上一代产品及市场上其他同类产品相比的创新之处是:可搭配多种功能模块,实现不同样品前处理流程。主要的创新是:产品采用模块化的设计方式,用户只需更换样品盘即可实现液体进样、固相微萃取、顶空进样、自动标液配制之间的自由切换。各个不同的功能模块主要集成在样品盘和进样针上,用户可以根据自身实验需求自行选配。这种灵活的设计方法,赋予了产品丰富的可扩展性,以适应不同分析需要。各个功能部件皆经过精心的设计,用户可自行进行更换,模块之间的切换非常简单,无需移动自动进样器。并且可适配各大品牌的GC/GC-MS产品,无论是精密无残留的痕量分析,还是大批量的样品处理,都可以满足用户需求。 克莱克特AS-3902全自动多功能进样系统
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制