当前位置: 仪器信息网 > 行业主题 > >

三维微结构分析测试系统

仪器信息网三维微结构分析测试系统专题为您提供2024年最新三维微结构分析测试系统价格报价、厂家品牌的相关信息, 包括三维微结构分析测试系统参数、型号等,不管是国产,还是进口品牌的三维微结构分析测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三维微结构分析测试系统相关的耗材配件、试剂标物,还有三维微结构分析测试系统相关的最新资讯、资料,以及三维微结构分析测试系统相关的解决方案。

三维微结构分析测试系统相关的论坛

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 【分享】材料显微结构分析

    材料显微结构分析课件。有急需的请到资料中心下载,不急的请10天后下载,我会修改成低分。http://www.instrument.com.cn/download/shtml/043021.shtml

  • 汽车工程领域非接触三维光学测量系统技术

    汽车工程领域非接触三维光学测量系统技术

    1-1 系统介绍三维光学非接触式应变位移振动综合测量系统分为三维光学应变测量系统和三维动态变形测量系统两个部分。 http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599282_3024107_3.png http://ng1.17img.cn/bbsfiles/images/2016/07/201607051411_599283_3024107_3.png 图1 三维应变测量头 图2 动态变形测量头三维光学应变测量系统主要通过数字散斑相关法和双目立体视觉技术结合,追踪物体表面散斑点,实时测量各个变形阶段的散斑图像,通过算法重建三维坐标,最终实现快速、高精度、实时、非接触的三维应变测量。(全场或局部应变)动态变形测量系统基于双目立体视觉技术,采用两个高速摄像机实时采集被测物体变形图像,利用准确识别的标志点(包括编码标志点和非编码标志点)实现立体匹配,重建出物体表面点三维空间坐标,并计算得到物体变形量、三维轨迹姿态等数据。(关键点振动位移)三维光学应变测量系统和动态变形测量系统可以根据实验情况单独使用,也可以合并成综合测量系统使用。1-2与传统方法对比 三维光学测量方法传统测量方法(如位移计、应变片、引伸计等)测量方式非接触式测量,不对被测物体造成干扰与影响。接触式测量,易打滑,不容易固定,试件断裂容易破坏引伸计。测量对象适用于任何材质的对象。测量尺寸范围广,从几毫米到几米。适用于常规尺寸对象测量,特殊材料无法测量,小试样无法测量,大试样需要多贴应变片。测量范围应变测量范围:0.01%~1000%。应变测量范围:应变片通常小于5%,引伸计小于50%。环境要求环境要求低,可在高温、高速、辐射条件下测量。一般适用常规条件测量。测量结果全场多点、多方向测量,同时获得三维坐标、三维位移及应变。单点、单方向测量。三维测量需要多个应变片,效率低。1-3 系统技术参数 指标名称技术指标1. 核心技术工业近景摄影测量、数字图像相关法2. 测量结果三维坐标、全场位移及应变3. 测量幅面支持4mm-4m范围的测量幅面,更多测量幅面可定制4. 测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口5. 相机标定支持任意数目相机的同时标定,支持外部图像标定6. 位移测量精度0.01pixel7. 应变测量范围0.01%-1000%8. 应变测量精度0.005%9. 测量模式兼容二维及三维变形测量10. 实时测量采集图像的同时,实时进行全场应变计算11. 多测头同步测量支持多相机组同步测量,相机数目任意扩展,可同步测量多个区域的变形应变12. 动态变形模块具备圆形标志点动态变形测量功能13. 轨迹姿态测量模块具备刚体物体运动轨迹姿态测量功能14. 试验机接口接通后实时同步采集试验机的力、位移等信号15. FLC接口配合杯突试验机进行Nakazima试验,可以测得材料的FLC成形极限曲线16. 显微应变测量配合双目体式显微镜,可实现微小型物体的三维全场变形应变检测17. 64位软件软件采用64位计算,速度更快18. 系统兼容性支持32位和64位Windows操作系统2 系统应用于汽车振动强度实验室2-1 振动强度实验室介绍振动强度试验室,主要开展对汽车整车,总成,零部件,或者材料的强度,耐久性,疲劳特性,以及可靠性等问题的研究,试验,考核,或者评估。三维应变位移振动综合测量系统在振动强度试验室里具备以下的功能:(1)采集相关的振动、位移和变形数据;(2)作为前期信号分析的软件和硬件;(3)进行必要的试验控制和试验后期数据分析系统。2-2 汽车振动测量常规配合使用设备振动模拟实验系统:电动式振动试验台,机械式试验台,电液伺服试验机系统,道路模拟试验台,吊车(一般5~10吨、小型3吨以下、大型10吨以上)等。振动数据采集传统产品:传感器、应变片、放大器等。2-3系统在汽车振动实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:振动模拟实验系统。实现功能1—耐振性能试验。测试车辆或者零部件系统的减振,耐振性能。模拟振动环境,通过非接触的光学方法,测量振动和位移,从而对车辆的振动性能进行分析。应用包括:发动机振动模态分析,车门振动实验,座椅振动测量分析等。实现功能2—耐久可靠试验。考核车辆和零部件的强度、抗疲劳特性和可靠性指标。应用包括:车身结构强度实验(测量区域振动或者关键点变形),汽车座椅分级加载实验,汽车轮胎受力变形实验等。3 系统应用于汽车材料实验室3-1 汽车材料实验室介绍汽车材料试验室,主要开展对汽车新型材料及相关基础性工作的研究和探索。三维应变位移振动综合测量系统在材料试验室里一般有以下的基本功能:(1)汽车材料常规力学性能方面的测试,得到各种工况下的应变变形;(2)汽车材料焊接的应变变化情况测量;(3)板料成形应变及板料成形极限曲线测量。3-2 汽车材料试验常规配合使用设备力学实验系统:高温蠕变试验机、扭转试验机、疲劳试验机、杯突试验机等。焊接相关设备:焊枪、焊机等。3-3 系统在汽车材料实验室中应用的相关实验采集测量系统:三维应变位移振动综合测量系统。配合使用系统:力学实验系统、焊接相关设备。实现功能1—材料应变变形测量实验。通过对材料进行常规的拉压弯等实验,进行相关材料的力学性能测定。应用包括:金属材料拉伸实验,复合材料大变形测量,碳纤维材料实验等。实现功能2—汽车焊接相关试验。考核汽车相关焊接实验的应变和变形。应用包括:焊接全场应变测量,高温焊接变形测量等。实现功能3—板料成形相关实验。板料成形过程中的全场应变变形测量和板料成形极限曲线(配合杯突试验机)。应用包括:板料成形应变实验、板料成形极限曲线测定实验。4 系统在汽车工程研究方面典型实验案例展示4-

  • 西安交通大学XTDIC 三维数字散斑动态变形测量分析系统

    XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的动态测量。其主要应用有:[b]材料力学性能测量:[/b]DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。[b]细观力学测量:[/b]借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。[b]损伤与破坏检测:[/b]DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。[b]生物力学测量:[/b]DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。[b]大中专院校的研究教学:[/b]本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。

  • DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    DIC数字散斑全场应变测量系统,可以测得三维应变和三维位移的数据。

    XTDIC三维全场应变测量分析系统,结合数字图像相关技术(DIC)与双目立体视觉技术,通过追踪物体表面的散斑图像,实现变形过程中物体表面的三维坐标、位移及应变的测量,具有便携,速度快,精度高,易操作等特点。http://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595779_3024107_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/06/201606021457_595780_3024107_3.png图:系统测量原理及散斑图像追踪过程系统组成:统主要由测量头、控制箱、标定板、标志点、计算机及检测分析软件等组成系统应该包含系统测量头(含两台高速工业相机、进口相机镜头,带万向手柄可调节LED光源)、相机同步控制触发控制箱、系统标定板、系统可移动支撑架、动态采集分析软件、载荷加压控制通讯接口、计算机系统等组成。1.1 主要应用XTDIC 三维数字散斑动态变形测量分析系统是实验力学领域中一种重要的测试方法,其主要应用有:在材料力学性能测量方面:DIC已成功应用于各种复杂材料的力学性能测试中。如火箭发动剂固体燃料、橡胶、光纤、压电薄膜、复合材料以及木材、岩石、土方等天然材料的力学性能的检测中。值得注意的是,DIC被广泛应用于破坏力学研究中,包括裂纹尖端应变场测量、裂纹尖端张开位移测量以及高温下裂纹尖端应变场测量等。在细观力学测量方面:借助于扫描电子显微镜(SEM)、扫描隧道电子显微镜(STEM)以及原子力显微镜(AFM),DIC被越来越多地应用于细观力学测量。最近,数字散斑相关方法还被应用于物体表面粗糙度的测量中。在损伤与破坏检测方面:DIC被应用于多种复杂材料,如岩石、炸药材料的破坏检测中。DIC还被应用于一些特殊器件,如陶瓷电容器、电子器件,电子封装的无损检测研究中。在生物力学测量方面:DIC被应用于测量手术复位后肱骨头在内旋转及前屈运动下大小结节的相对位移量,以及颈椎内固定器对人体颈椎运动生物力学性能的影响等。对于大中专院校的研究教学应用,本系统开展各种软组织、金属及复合材料性能测试、力学性能测试分析、有限元分析验证等研究和教学实验,具有大至1000%应变测量范围,并可以实时计算、实现动态全场的应变变形测量。在土木工程的相关研究中,如四点弯试件、半圆弧试件、悬臂梁实验,对应完整实验设计方案,以非接触式的方式提升研究手段,提高研究能力。亦可为学生提供可视化的教学工具,让学生的基础学习课程变得直观和可视,使复杂问题简单化、抽象问题直观化、隐蔽问题可视化。1.2 系统功能(1)基本测量功能:l ※测量幅面:支持几毫米到几米的测量幅面,可以根据需求定制测量幅面。l 测量相机:支持百万至千万像素、低速到高速、千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps。l ※相机标定:支持多个相机(可多于8个)多种测量幅面的标定,支持外部拍摄图像标定。l ※测量模式:三维变形测量,同时支持单相机二维测量。l ※实时计算:采集图像的同时,可以实时进行三维全场应变计算,具备在线和离线两种计算处理模式。l 计算模式:具备自动计算和自定义计算两种模式。l 测量结果:全场三维坐标、位移、应变数据等动态变形数据,应变模式有工程应变、格林应变、真实应变等三种。l 多个检测工程:系统软件支持多个检测工程的计算、显示及分析。l ※支持系统:支持32位、64位windows操作系统,具备64位计算和多线程加速计算功能。(2)分析报告功能l ※18种变形应变计算功能:X、Y、Z、E三维位移;Z值投影;径向距离、径向距离差;径向角、径向角差;应变X、应变Y和应变XY;最大主应变;最小主应变;厚度减薄量;Mises应变;Tresca应变;剪切角。l ※坐标转换功能:321转换、参考点拟合、全局点转换、矩阵转换等多种坐标转换功能。l ※元素创建功能:三维点、线、面、圆、槽孔、矩形孔、球、圆柱、圆锥。l ※分析创建功能:点点距离、点线距离、点面距离、线线夹角、线面夹角、面面夹角。l 数据平滑功能:均值,中值,高斯滤波等多种平滑功能。l 数据插值功能:自动和手动两种数据插值模式。l 材料性能分析:自动计算材料的弹性模量和泊松比等参数。l 三维截线功能:可对三维测量结果进行直线或圆形截线分析。l 曲线绘制功能:所有测量结果均可以绘制成曲线图。l 成形极限分析功能:可绘制和编辑FLD成形极限曲线。l 视频创建功能:可将测量过程二维图像或者三维测量结果制作成视频并输出保存。l 数据输出功能:测量结果及分析结果输出成报表,支持TXT,XLS,DOC文件的输出。(3)采集控制功能l ※采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。l 相机同步控制:多相机外同步触发信号。l ※外部采集通讯接口:支持外部载荷如微电子万能试验机等外部载荷联机采集通讯接口,通过串口通讯或者模拟量实时采集外部的加载力、位移等信号,并与三维全场应变测量数据实现同步,实现应力和应变数据的融合和统一。l 光源控制:可以实现测量过程中不同补光需要的LED光源控制。(4)预留扩展接口:l ※多测头同步检测接口:可以支持1~8个测头的多相机组同步测量,相机数目任意扩展,可以同步测量多个区域的变形应变,适用于不同实验条件需求下的变形应变测量。l ※显微应变测量:配合双目体式显微镜,系统可以实现微小视场的三维全场变形应变检测,并可支持扫描电镜、原子显微镜等显微图像的应变数据计算。l ※大尺寸全方位变形接口:支持摄影测量静态变形系统,实现全方位变形和局部全场应变检测数据的融合和统一。1.3 技术指标 指标名称技术指标1. ※核心技术多相机柔性标定、数字图像相关法2. 测量结果三维坐标、全场位移及应变,可视化显示及测量过程的视频录制输出,测量结果及数据输出成报表,支持TXT,XLS,DOC文件的输出。3. ※测量幅面支持1mm-4m范围的测量幅面,并配备相应编码型标定板标定架,可定制更多测量幅面。4. ※测量相机支持百万至千万像素相机,支持低速到高速相机,支持千兆网和Camera Link等多种相机接口,控制软件最大支持采集帧率10万 fps)5. 相机标定简单快捷,需要可支持任意数目相机的同时标定,支持外部图像标定6. ※位移测量精度0.005像素7. ※应变测量范围0.01%-1000%8. ※应变测量精度0.001%9. 测量模式三维变形测量,可兼容二维测量10. ※实时测量计算采集图像的同时,实时进行全场应变计算11. ※系统控制2采集控制箱可以实现测量头的控制、多个相机的同步触发、多路模拟量和开关量数据采集、输入和输出信号控制。2相机同步控制:多相机外同步触发信号。2外部采

  • 三维光声层析成像系统介绍

    [b][url=http://www.f-lab.cn/vivo-imaging/lois-3d.html]三维光声层析成像系统[/url][/b]是全球首个[b]体积光声层析成像仪[/b]器,提供[b]三维的组织模拟幻影[/b],包括小动物以及其他在成像模块中的组织图像。三维光声层析成像系统lois-3d是最早根据[b]体积光声层析成像技[/b]术描绘吸收的光能生产综合信息(血液分布及其氧)的系统,提供极其丰富的互补解剖和功能的三维光声图像。[img=三维光声层析成像系统]http://www.f-lab.cn/Upload/LOIS-3D-optoacoustic-tomography.JPG[/img]该三维光声层析成像系统的成像模块被设计成三度扫描,通过研究对象(在临床前研究系统)或模块本身(在临床乳房成像系统)的360度旋转。视频在左边绘制显示成像模块设计的基础激光光声成像系统,lois-3d。它无探针准线快速扫描最佳,而且提供了一个用于小动物活动的灵活的小控制台。三维光声层析成像系统:[url]http://www.f-lab.cn/vivo-imaging/lois-3d.html[/url]

  • 【“仪”起享奥运】朱砂及其不同炮制品的显微结构及主微量元素含量差异性

    [size=16px][font=Arial, &] 目的[/font][font=Arial, &] 研究朱砂及其不同炮制品的显微结构及主、微量元素含量差异,以揭示朱砂炮制的科学内涵。 [/font][font=Arial, &]方法[/font][font=Arial, &] 采用热场发射扫描电镜(SEM)、激光粒度分析仪、X射线荧光光谱仪(XRF)、[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])对道地产区贵州省铜仁市万山汞矿区朱砂矿物粉末、水飞炮制品、球磨仪湿法研磨炮制品、高温真空蒸馏炮制品及水飞法剩余残渣等不同类型的朱砂粉末进行三维显微结构及主、微量元素含量研究。 [/font][font=Arial, &]结果[/font][font=Arial, &] 朱砂炮制前后其显微结构及主、微量元素含量具有明显变化。朱砂水飞后其粒径有所减小且磨圆度变差,球磨后朱砂粒径明显减小,朱砂静置后出现团聚现象。朱砂经过300 ℃真空蒸馏后其粒度略有增加。朱砂经过水飞后其汞(Hg)元素含量由水飞前的71.841%下降为62.906%,硫(S)元素含量无明显变化,氧(O)元素由水飞前的8.721%增加为水飞后的13.279%。朱砂经真空加热后其氧元素含量明显上升,汞元素含量明显下降。朱砂在水飞后其所含的微量元素铬(Cr)、铁(Fe)、铝(Al)、锶(Sr)、锆(Zr)、钡(Ba)、钕(Nd)、铅(Pb)及稀土元素含量明显增加。球磨法研磨后朱砂的微量元素含量与水飞法有类似变化规律,且球磨仪湿法研磨后的朱砂中的锆(Zr)元素含量由2.78 μgg[/font][font=Arial, &]-1[/font][font=Arial, &]增加为78 586 μgg[/font][font=Arial, &]-1[/font][font=Arial, &],扫描电镜下也发现有氧化锆颗粒混入。 [/font][font=Arial, &]结论[/font][font=Arial, &] 朱砂及其不同炮制品的显微结构及主微量元素含量差异性较大,其中传统水飞法为朱砂最优炮制方法,朱砂真空蒸馏可为朱砂的炮制提供新的研究思路,球磨仪湿法研磨的朱砂炮制工艺值得进一步商榷。[/font][/size]

  • 三维荧光光谱仪的应用

    [align=center][font='宋体'][size=16px]三维荧光光谱仪的应用[/size][/font][/align][font='宋体'][size=16px]三维荧光光谱是激发波长—发射波长—荧光强度三维坐标所表征的矩阵光谱,英文全称:Excitation-Emission-Matrix Spectra(EEMs)。三维荧光光谱(EEMs) 能同时获得激发和发射波长信息,且因污染物种类和含量不同而各异,具有与水样(溶液)一一对应的特点,就像人的指纹具有唯一性一样,所以被称为水的“荧光指纹”。中广测配备HORIBA公司的Aqualog三维荧光光谱仪,可实现液体样品的荧光光谱、吸收光谱及三维荧光光谱的测试,同时还可进行单点动力学测试、样品空白和背景自动扣除、荧光内吸收矫正等功能。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271148051748_9255_2862401_3.jpeg[/img][/align][align=left][/align][font='宋体'][size=16px]一、仪器信息[/size][/font][font='宋体'][size=16px]仪器名称:同步吸收-三维荧光光谱仪[/size][/font][font='宋体'][size=16px]英文名称:HORIBA Aqualog Fluorescence Spectrometer[/size][/font][font='宋体'][size=16px]生产制造商:HORIBA公司[/size][/font][font='宋体'][size=16px]型号:HORIBA Aqualog[/size][/font][font='宋体'][size=16px]HORIBA Aqualog 同步吸收—三维荧光光谱仪,全球首台可同时测定紫外-可见吸收光谱与三维扫描荧光的光谱仪器。耦合于origin的专用软件自动修正内吸收效应,扣除瑞利和拉曼散射。[/size][/font][font='宋体'][size=16px]二、主要技术指标[/size][/font][font='宋体'][size=16px]1.光源:150W氙灯光源,激发范围230-620 nm[/size][/font][font='宋体'][size=16px]2.激发带宽:5 nm[/size][/font][font='宋体'][size=16px]3.激发波长精度:±1 nm[/size][/font][font='宋体'][size=16px]4.波长重复性:±0.5 nm[/size][/font][font='宋体'][size=16px]5.发射范围:240-630 nm[/size][/font][font='宋体'][size=16px]6.检测器:TE制冷背照式CCD检测器(荧光) 硅光二极管(吸收)[/size][/font][font='宋体'][size=16px]7.发射积分时间:1 ms (minimum)[/size][/font][font='宋体'][size=16px]8.灵敏度:水拉曼信噪比SNR20000(350ex, 30s 积分时间)[/size][/font][font='宋体'][size=16px]三、应用范围[/size][/font][font='宋体'][size=16px]广泛应用于生物、化学、材料等方向的科研开发,地表水、地下水、自来水、工业园区废水中的有机污染物监测与分析。[/size][/font][font='宋体'][size=16px]四、服务范围[/size][/font][font='宋体'][size=16px]1.生物领域:酶动力学、蛋白质分析、生物发光。[/size][/font][font='宋体'][size=16px]2.材料领域:发光材料、电化学发光、量子点、荧光传感材料。[/size][/font][font='宋体'][size=16px]3.化学领域:反应动力学、化学发光、荧光探针。[/size][/font][font='宋体'][size=16px]4.环境领域:水体DOM分析、污染物迁移转化分析、水体污染物监测评估。[/size][/font][font='宋体'][size=16px]5.工业领域:油品鉴定分析、工业废水处理评价。[/size][/font][font='宋体'][size=16px]五、应用案例[/size][/font][font='宋体'][size=16px]1.荧光光谱在用于荧光探针方面的研究应用[/size][/font][font='宋体'][size=16px]荧光光谱是荧光探针研究的有效手段,通过荧光光谱测试可考察探针分子对目标离子的选择性,灵敏度及抗干扰能力。如在小分子荧光探针氟硼二吡咯(BODIPY)应用于溶液及生物体系钯离子的检测研究中,借助荧光光谱方法,实现了在溶液体系及检测试纸上,开发的荧光探针均能对钯离子的荧光信号增强响应(“OFF-ON”),且手持紫外灯下肉眼可查,探针抗干扰性强。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271148054076_1318_2862401_3.jpeg[/img][/align][font='宋体'][size=16px]2.荧光光谱用于敏感物质荧光传感检测方面的应用 [/size][/font][font='宋体'][size=16px]基于小分子荧光传感材料的研究中,通过荧光光谱方法及荧光动力学研究能有效评估荧光传感材料对目标物响应性能及光稳定性。如针对小分子硝酸酯类爆炸物季戊四醇四硝酸酯(PETN)的检测研究中,通过荧光光谱方法可得到具有较高选择性的荧光淬灭或增强效果传感检测材料。三维荧光光谱是痕量爆炸物荧光传感检测研究的有力工具。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271148054581_9565_2862401_3.jpeg[/img][/align][font='宋体'][size=16px]3.三维荧光光谱法在有机污染物处理过程中的监测应用[/size][/font][font='宋体'][size=16px]三维荧光光谱法可直观实现对有机污染物降解过程中污染物变化的监测。如在对苯胺和二甲苯的降解过程中,三维荧光光谱可以直观地监测反应过程,能够很好地反映废水降解过程中,有机污染物强度,种类变化过程。其测定迅速、简便、灵敏度高,可用于对各类水处理效果的定性分析、评价。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271148058933_5515_2862401_3.jpeg[/img][/align][align=left][/align][font='宋体'][size=16px]4.三维荧光光谱在水体DOM分析中的应用[/size][/font][font='宋体'][size=16px]激发-发射矩阵(EEM)荧光光谱结合数据处理算法已被广泛应用于表征水生和陆地系统中的溶解有机物(DOM)。如采用并行因子框架聚类分析(PFFCA)方法,对不同信噪比和非线性结构强度的模拟数据进行分析,PFFCA为复杂合成和天然样品的独特分解提供了一种稳健的方法,这对于理解水系统中DOM的特性具有重要意义。[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/10/202310271148059192_8596_2862401_3.jpeg[/img][/align]

  • 【分享】三维显微激光拉曼光谱仪

    【分享】三维显微激光拉曼光谱仪

    三维显微激光拉曼光谱仪三维显微激光拉曼光谱仪装置Nanofinder30  Nanofinder30 三维显微激光拉曼光谱仪装置是日本首创,世界最初的分析装置。它能在亚微米到纳米范围内,测定物质化学状态的三维图像。它由共焦激光显微镜,压电陶瓷平台(或电动扫描器)和光谱仪组成。并能自选追加原子力显微镜和近场表面增强拉曼测定的功能。 最新测量数据[ 变形Si的应力测定]PDF刊登 用二维的平面分析来评价变形Si。空间分辨率130nm, 变形率0.01%(0.1cm偏移)。 半导体/电子材料(异状物,应力,化学组成,物理结构)薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造结晶体(单壁碳纳米管,纳米晶体)光波导回路,玻璃,光学结晶等的折射率变化生物学(DNA, 蛋白质, 细胞 组织等) 以亚微米级分辨率和三维图像,能分析物质的化学结合状态空间分辨率200nm(三维共焦点模式),50nm(二维TERS模式)能同时测定光谱图像(拉曼/萤光/光致荧光PL),共焦显微镜图像,扫描探针显微镜图像(AFM/STM)和近场表面增强拉曼图像(SERS)能高速度,高灵敏度地测定样品(灵敏度:与原来之比10倍以上)不需要测定前样品处理,在空气中能进行非破坏测定全自动马达传动系统的作用,测定简单 共焦显微镜模式不能识别结晶缺陷,然而光致荧光(PL)模式却能清楚地测到结晶缺陷 共焦激光显微镜模式的形状测定 光谱窗 560 nm 用光致荧光(PL)模式测到的结晶缺陷的光谱图像(560nm的三维映像) 用AFM和共焦显微拉曼法同时测定CNT,能判定它的特性 (金属,半导体)和纯度。 同时测定单壁碳纳米管(CNT)的原子力显微镜(AFM) 形貌图像和拉曼光谱图像的例子 :拉曼光谱: 激光488nm,功率1.5mW,曝光时间2 sec,物镜100×Oil, NA=1.35, 积分时间100 sec (AFM和拉曼图像测定时) AFM形貌图像(右上)表示了单壁碳纳米管混合物的各种形状结构。图像中用数字1到8来表示其不同形状。数字1-6测得了拉曼光谱(上图所示),判定为半导体CNT。但7-8测不到拉曼光谱,所以不是半导体CNT,而可能是金属CNT(可用He-Ne激光633nm验证)。最上面表示了RBM(173cm-1), G-band(1593cm-1)及D-band(1351cm-1)的拉曼光谱图像 综合激光器和光谱分析系统的长处,坚固耐用的复合设计,卓越的仪器安定性,是纳米技术测定装置中的杰出产品。 ※日本纳米技术2004大奖“评价和测量部门”得奖. ※日本第16届中小企业优秀技术和新产品奖 “优良奖”得奖. 光学器件配置图Nanofinder30 [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122565_1634361_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122566_1634361_3.jpg[/img][~122567~][~122568~]

  • 【资料】常规净水工艺去除有机物效果的三维荧光光谱分析法

    摘 要 有机物的荧光特性被广泛用来解析其在水体中的来源与分布。荧光光谱技术具有灵敏度高、选择性好、且不破坏样品结构的优点, 非常适合用来研究有机物的化学和物理性质。运用三维荧光光谱分析技术对常规净水工艺中有机物的去除效果进行了研究。实验结果表明, 三维荧光光谱技术能有效地揭示净水工艺中有机物的变化过程。在整个净水过程中, 没有完全消除类富里酸荧光物质, 也没有产生新的荧光物质。就类富里酸荧光物质的去除效果而言, 混凝沉淀基本没有去除作用, 过滤作用的去除率在5 %~15 %之间。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=189811]去除有机物效果的三维荧光光谱分析法.pdf[/url]

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131407_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_02_1546_3.jpg[/img]

  • 【分享】世界首个三维等离子标尺制成 在纳米尺度测结构

    最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。  随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。   研究人员还用高精度电子束光刻和叠层纳米技术制作了一系列样品,将三维等离子标尺放在玻璃的绝缘介质中,嵌入样品进行测量,实验结果与计算出来的数据高度一致。与其他分子标尺相比,这种三维等离子标尺建立在化学染料和荧光共振能量转移的基础上,不会闪烁也不会产生光致褪色,在光稳定性和亮度上都很高。  谈到应用前景,该研究领导者、伯克利实验室负责人鲍尔·埃利维塞特说,这种三维等离子标尺是一种转换器,可将其附着在DNA或RNA链多个位点,或放在蛋白质、多肽的不同位置,再现复杂大分子的完整结构和生物过程,追踪这些过程的动态演变。(科技日报)

  • 微纳形貌分析利器——4D微纳形貌动态表征

    微纳形貌分析利器——4D微纳形貌动态表征

    科研史上前所未有的观测手段——数字全息可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131349_01_1546_3.jpg[/img][img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131350_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131354_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_04_1546_3.gif[/img][img=,384,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131358_01_1546_3.jpg[/img]

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_02_1546_3.jpg[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_03_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_04_1546_3.gif[/img]

  • 讲座预告:表面分析技术&无损三维成像技术在生物医药领域的应用研究

    讲座预告:表面分析技术&无损三维成像技术在生物医药领域的应用研究

    [font=宋体][img=,690,151]https://ng1.17img.cn/bbsfiles/images/2020/08/202008211751120698_3790_2507958_3.jpg!w690x151.jpg[/img][/font][font=宋体]表面分析技术包括了飞行时间二次离子质谱,[/font]X[font=宋体]射线光电子能谱等技术,在生物医药的生产和研发过程中,对于药物,细胞等表面和一定深度的成份信息的表征具有非常重要的意义,也是生物医药领域必不可少的分析表征手段。无损三维成像技术主要包括[/font]X[font=宋体]射线三维显微镜,可对样品内部结构与组分在三维空间进行的定量表征。[/font][font=宋体]束蕴仪器(上海)有限公司作为高德英特[/font] TOF-SIMS[font=宋体]、[/font]XPS[font=宋体]、布鲁克[/font]X[font=宋体]射线三维显微镜的授权代理商,[/font]与大家一起交流表面分析与三维成像技术和生物医药领域的碰撞。[font=宋体]会议时间:[/font]8[font=宋体]月[/font]28[font=宋体]日[/font]13:30 – 17:30[font=宋体]会议安排:[/font][font=宋体][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2020/08/202008211751509565_7243_2507958_3.png!w690x276.jpg[/img][/font][font=宋体][font=宋体]报名地址:[/font][url=https://www.instrument.com.cn/webinar/meetings/BM828]点击打开链接[/url][/font][font=宋体]欢迎报名参加![/font]

  • 清华大学Nature Methods发文:新型的冷冻电镜三维重构算法

    清华大学Nature Methods发文:新型的冷冻电镜三维重构算法

    蛋白质是生命体的最主要组成元素,作为一种生物大分子机器,蛋白质功能的实现高度依赖于其复杂的三维原子结构。了解蛋白质的结构及其与功能的关系对探索生命的基本原理,理解疾病的分子机制以及药物的研发具有重要的意义。[align=center][img=,500,284]https://ng1.17img.cn/bbsfiles/images/2018/12/201812131109255316_9391_3224499_3.jpg!w500x284.jpg[/img][/align][align=center]基于粒子滤波的三维重构算法示意图。[/align]冷冻电子显微镜,简称冷冻电镜,使用电子束作为光源,是一种能在原子分辨率水平上观察并测定蛋白质分子结构的有力工具。伴随着最近几年的技术突破,冷冻电镜三维重构技术成为测定蛋白质及其复合物结构的关键技术。冷冻电镜三维重构的基本方法是,首先利用冷冻电镜对冷冻于液氮温度的生物大分子颗粒进行成像,以获得数万到数百万张生物大分子照片,然后通过一定的算法来整合这些图像,计算出生物大分子的三维结构。这其中三维重构算法是核心内容,用于测定出每一张照片的诸多参数,例如空间取向,然后才能将二维的照片整合重构出三维的结构。因为照片的数量巨大,且图像信号极其微弱,如何精确计算测定每张照片的参数,以达到超过0.4甚至0.2纳米的分辨率,一直以来都是冷冻电镜技术研究的重点和难点。来自清华大学生命科学学院的研究人员发表了题为“A particle-filter framework for robust cryoEM 3D reconstruction”的文章,介绍了一种基于粒子滤波的鲁棒的冷冻电镜三维重构算法框架,这种方法通过将电子工程应用中的粒子滤波算法引入到冷冻电镜三维重构中,大幅提高了对系统参数的搜索能力和对系统误差的容忍度;通过进一步融合高性能计算的方法,最终实现了对生物大分子结构高效高精度的三维重构。这一发现公布在11月30日的Nature Methods杂志上,由清华大学生命科学学院李雪明研究组,电子工程系沈渊研究组和计算机系杨广文研究组合作完成。第一作者为胡名旭,余洪坤和顾凯。同期他们开发的THUNDER冷冻电镜三维重构软件系统集成了这些新算法和新特性,为未来冷冻电镜海量图像数据的实时分析,以及大规模的自动化应用提供了一个可靠的算法和软件基础;同时,也为解析接近原子分辨率的生物结构提供了一套鲁棒、快速的解决方案,显著降低了对用户经验的要求,益于冷冻电镜技术的广泛普及,助力在原子尺度上对生命活动进行观察。为了获得一个更有效的算法和计算系统以满足未来高分辨率和大规模应用的需求,李雪明研究组联合电子系沈渊和计算机系杨广文研究组,利用清华大学生物学科和信息学科交叉的优势,将电子工程领域的粒子滤波算法引入到冷冻电镜的图像重构参数搜索中去,发展出一套比现有算法更完善、更有效的贝叶斯统计推断算法。这套新算法对高维参数的搜索具有更好的鲁棒性,可以自适应地进行参数的自动调整,以及通过引入一套新的权重机制大幅提高了对系统误差的容忍度。这些优势的整合,使整个系统具有很好的鲁棒性,更适用于未来自动化的运行工作模式。同时,在算法的实现过程中,深度融合了大规模并行计算的思路和方法,从而使整个系统具有极高的运算效率,和近乎理想的并行计算性能。未来该系统将能够高效运行于小到一个工作站,大到“太湖之光”这样的超大规模计算系统,适应生命科学研究和药物设计的大量结构测定需求。这项工作是三个不同学科研究组交叉研究的阶段性成果,团队正在利用新型的统计推断和机器学习算法将这一工作扩展到对细胞或者细胞器结构的原子分辨率三维重构上去。未来的冷冻电镜技术将使人们不必再借助于复杂的生物化学手段来提取蛋白质,而是利用冷冻电镜直接在细胞中对包括蛋白质在内的生物大分子的原子结构和动态变化进行观察和分析,探索生命活动的本质原理,设计能够治愈疾病的药物,造福人类健康。

  • 讲座预告:表面分析技术&无损三维成像技术在生物医药领域的应用研究

    讲座预告:表面分析技术&无损三维成像技术在生物医药领域的应用研究

    [font=宋体][img=,690,151]https://ng1.17img.cn/bbsfiles/images/2020/08/202008211751279777_4784_2507958_3.jpg!w690x151.jpg[/img][/font][font=宋体]表面分析技术包括了飞行时间二次离子质谱,[/font]X[font=宋体]射线光电子能谱等技术,在生物医药的生产和研发过程中,对于药物,细胞等表面和一定深度的成份信息的表征具有非常重要的意义,也是生物医药领域必不可少的分析表征手段。无损三维成像技术主要包括[/font]X[font=宋体]射线三维显微镜,可对样品内部结构与组分在三维空间进行的定量表征。[/font][font=宋体]束蕴仪器(上海)有限公司作为高德英特[/font] TOF-SIMS[font=宋体]、[/font]XPS[font=宋体]、布鲁克[/font]X[font=宋体]射线三维显微镜的授权代理商,[/font]与大家一起交流表面分析与三维成像技术和生物医药领域的碰撞。[font=宋体]会议时间:[/font]8[font=宋体]月[/font]28[font=宋体]日[/font]13:30 – 17:30[font=宋体]会议安排:[/font][font=宋体][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2020/08/202008211751382904_8492_2507958_3.png!w690x276.jpg[/img][/font][font=宋体][font=宋体]报名地址:[/font][url=https://www.instrument.com.cn/webinar/meetings/BM828]点击打开链接[/url][/font][font=宋体]欢迎报名参加![/font]

  • 讲座预告:表面分析技术&无损三维成像技术在生物医药领域的应用研究

    讲座预告:表面分析技术&无损三维成像技术在生物医药领域的应用研究

    [font=宋体][img=,690,151]https://ng1.17img.cn/bbsfiles/images/2020/08/202008211750577268_7133_2507958_3.jpg!w690x151.jpg[/img][/font][font=宋体]表面分析技术包括了飞行时间二次离子质谱,[/font]X[font=宋体]射线光电子能谱等技术,在生物医药的生产和研发过程中,对于药物,细胞等表面和一定深度的成份信息的表征具有非常重要的意义,也是生物医药领域必不可少的分析表征手段。无损三维成像技术主要包括[/font]X[font=宋体]射线三维显微镜,可对样品内部结构与组分在三维空间进行的定量表征。[/font][font=宋体]束蕴仪器(上海)有限公司作为高德英特[/font] TOF-SIMS[font=宋体]、[/font]XPS[font=宋体]、布鲁克[/font]X[font=宋体]射线三维显微镜的授权代理商,[/font]与大家一起交流表面分析与三维成像技术和生物医药领域的碰撞。[font=宋体]会议时间:[/font]8[font=宋体]月[/font]28[font=宋体]日[/font]13:30 – 17:30[font=宋体]会议安排:[/font][font=宋体][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2020/08/202008211752040863_5792_2507958_3.png!w690x276.jpg[/img][/font][font=宋体]报名地址:[url=https://www.instrument.com.cn/webinar/meetings/BM828]点击打开链接[/url][/font][font=宋体]欢迎报名参加![/font]

  • 【原创大赛】【官人按】热分析/红外光谱联用数据分析时三维图的作图方法

    【原创大赛】【官人按】热分析/红外光谱联用数据分析时三维图的作图方法

    [align=center][b]热分析/红外光谱联用数据分析时三维图的作图方法 [/b][/align][align=center]丁延伟[/align][align=center]中国科学技术大学理化科学实验中心[/align][align=center](安徽省合肥市金寨路96号)[/align]使用热分析/红外光谱联用技术,在得到样品在温度变化过程中质量的变化信息的同时还可以得到逸出气体随温度变化的信息。通过红外光谱测定,可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。在通过热分析/红外光谱联用技术得到数据后,为了便于分析通常会在作图软件如Origin软件中进行重新作图,许多人在得到由仪器的分析软件导出的数据后,不知如何做出如图1所示的三维图。当然通过热分析/红外光谱联用技术得到的信息不仅仅局限于三维图,还可以得到总吸光值、不同官能团的吸光值等随温度和/或时间的变化关系曲线,据此可以分析样品随温度变化过程中结构的变化过程,这些内容将在以后的文章中进行介绍。在本文中将介绍如何通过PE公司的热重/红外光谱联用仪得到的导出的ASCII文件(通常为txt或者excel格式)在Origin软件中得到三维图的方法。[align=center] [img=,634,359]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051615551824_6299_3237657_3.jpg!w634x359.jpg[/img] 图1仪器分析软件得到的三维FTIR图[/align]由于热分析时间较长,对于逸出气体在使用红外光谱仪进行实时监测时,通常采用较快的分析时间(8波数分辨率时,DTGS检测器,平均1s得到一张谱图)。因此,对于一个普通的热分析实验来说(例如,20℃/min加热速率,室温-800摄氏度的试验温度范围),一次实验平均得到2000张以上的红外光谱图。由此得到的excel文件通常为20M左右,在excel软件中直接打开时往往无法显示所有的谱图数据。因此,通常在Origin软件中直接导入该文件,打开方式如图2所示。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051615109434_2866_3237657_3.png!w690x388.jpg[/img][/align][align=center]图2 Origin软件中导入Excel文件的方法示意图[/align]点击图中选项后会弹出以下窗口(图3):[align=center][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051616122214_3758_3237657_3.png!w690x387.jpg[/img][/align][align=center]图3[/align]点击open即可将文件在origin软件中打开,如图4所示。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051616271004_2412_3237657_3.png!w690x388.jpg[/img][/align][align=center]图4[/align]图4中,黄色区域为实验时的时间列,由于软件设置的问题显示在了标题栏,不过这不会影响后期的分析,第一列为波数。点击左上方空白栏全选图中所有数据(注意图中黑色箭头),如图5所示。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051616538527_4468_3237657_3.png!w690x388.jpg[/img][/align][align=center]图5[/align]将选中的数据复制在新建的一个窗口中,并删除第一列波数数据,如图6所示。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051617164670_4524_3237657_3.png!w690x388.jpg[/img][/align][align=center]图6[/align]然后按照图7所示将表中所有格式转换为矩阵形式。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051617346634_4957_3237657_3.png!w690x388.jpg[/img][/align][align=center]图7[/align]点击open dialog选项,弹出以下对话窗口(图8)。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051617510244_1980_3237657_3.png!w690x388.jpg[/img][/align][align=center]图8[/align]继续点击ok选项,在新的窗口中生成了矩阵形式的数据(图9)。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051618066250_8843_3237657_3.png!w690x388.jpg[/img][/align][align=center]图9[/align]按照图10的方法设定X和Y坐标的信息,例如X轴为波数,Y轴为温度。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051618226084_1618_3237657_3.png!w690x388.jpg[/img][/align][align=center]图10[/align]在弹出的窗口中输入X轴和Y轴的起止范围,如图11所示。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051618442934_5220_3237657_3.png!w690x388.jpg[/img][/align][align=center]图11[/align]点击ok,接下来就可以作图了。点击图下方的图标,例如以图12的方式生成三维图。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051619074444_3843_3237657_3.png!w690x388.jpg[/img][/align][align=center]图12[/align]点击选项后,生成以下三维图(图13)。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051620062364_7396_3237657_3.png!w690x388.jpg[/img][/align][align=center]图13[/align]可以点击图中曲线改变曲线的颜色,点击XYZ轴的图注信息编辑不同坐标的信息,编辑后如图14所示。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051620315994_1435_3237657_3.png!w690x388.jpg[/img][/align][align=center]图14[/align]还可以点击图中三维图的显示方式来达到更好的效果,如图15所示。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051620499033_7940_3237657_3.png!w690x388.jpg[/img][/align][align=center]图15[/align]顺时针旋转后,变为图16。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/09/201809051621037004_7930_3237657_3.png!w690x388.jpg[/img][/align][align=center]图16[/align]还有其他的形式,可以根据具体需要来进行调整,不再详述。

  • 【求助】什么技术能实现活细胞超微结构的实时动态观察

    现在大多数对细胞超微结构的观察多采用化学染色法固定、染色、脱水、包埋的前处理,电镜观察。想请教一下各位大虾,有没有什么好的技术能实现对活细胞的超微结构的实时动态观察啊?最好不要染色什么的处理,直接在生理状态下就能观察。需要国内能够买到的仪器,谢谢大家了。目前查了一下文献,好像原子力显微镜、相差显微镜说可以,但我看了一下成像,感觉不如电镜的分辨率高啊。还有共聚焦显微镜,需要使用特定的荧光探针。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制