实时迷你激光雷达传感器

仪器信息网实时迷你激光雷达传感器专题为您提供2024年最新实时迷你激光雷达传感器价格报价、厂家品牌的相关信息, 包括实时迷你激光雷达传感器参数、型号等,不管是国产,还是进口品牌的实时迷你激光雷达传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合实时迷你激光雷达传感器相关的耗材配件、试剂标物,还有实时迷你激光雷达传感器相关的最新资讯、资料,以及实时迷你激光雷达传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

实时迷你激光雷达传感器相关的厂商

  • 深圳镭尔特光电科技有限公司是一家专注于半导体EEL、VCSEL、APD等光电子器件和模组的封装生产、研发与销售一体的科技型生产企业,产品广泛应用于激光测距,激光雷达,激光传感,激光医疗,人工智能等领域。公司现拥有完整的半导体自动化生产线与检验检测设备,产品严格遵循RoHs,ISO9001,CE,AEC-Q102等行业标准执行生产,目前已同国内外众多客户建立了长期稳定的合作关系。
    留言咨询
  • 河北镭族光电科技有限公司是一家生产:各种规格金锡热沉氮化铝陶瓷基板,双面金属化陶瓷片,电路陶瓷基板,以及同轴单模光纤耦合激光器,同轴多模光纤耦合激光器的生产厂家。我们有特的加工技术、操作熟练的员工和优良的团队协作构成的生产体系,可以提供从开发设计到原型打样再到大规模生产的一站式服务,满足不同用户的各种需求。现在镭族光电科技产品已经大量应用于激光测距,激光雷达等领域,被国内外的客户所采用。
    留言咨询
  • 合肥光博量子科技有限公司公司致力于环境气象综合立体观测及相关技术咨询与服务,公司专注于用最先进的激光雷达立体探测技术、卫星遥感技术获取多维度监测数据,以预报预警为核心技术手段,构建大气污染三维实况分布及未来预测分布,为环境气象管理工作提供科学的整体解决方案。公司主营业务包括:大气气溶胶激光雷达(户外高重频型)、大气水汽-气溶胶激光雷达、环境多参数激光雷达、风雷达、温湿度廓线激光雷达等;大气环境立体走航观测车、大气立体组网观测系统;大气污染精细化监控及管理决策服务平台;卫星遥感数据产品;环境气象和污染管控综合应用分析平台;大气污染监测、治理等可定制化配套应用服务解决方案。公司坐落于美丽的合肥市高新技术开发区,依托中科院合肥技术创新工程院,坚持以技术创新成果转移转化为核心,开展工程化研发、技术转移、技术服务等工作,真正践行“用科技融入理想,让创新点缀世界”。
    留言咨询

实时迷你激光雷达传感器相关的仪器

  • VLP-16激光雷达传感器 400-860-5168转1451
    VLP-16VelodyneLiDARPuckTMVelodyne公司的传感器VLP-16是Velodyne三维雷达产品系列中最小巧新颖、成本最优的一款产品。与同类传感器的价位相比,VLP-16性价比更高,并且保留了Velodyne在激光雷达方面的突破性的主要特点:实时数据、360°视场角、三维坐标和校准反射率测量。三维实时雷达VLP-16的测量范围为100米,功耗低,重量轻,体积小,具备双波返回模式,这些特点使得VLP-16成为无人驾驶汽车、机器人技术、地面三维制图和许多其他应用的理想选择。Velodyne雷达“Puck”支持16个通道,每秒可获取约30万个点,具有360°的水平视场、30°的垂直视场(+15°to-15°)。Puck没有可见的旋转部件,在恶劣的使用环境中也能保证其性能,同时允许在广泛的温度范围内运行。传感器:16通道测量范围:高达100米范围精度:高达±3厘米(典型的)1垂直视场:+15.0°至-15.0°(30°)角分辨率(垂直):2.0°水平视场:360°角分辨率(水平/方位角):0.1°-0.4°旋转频率:5Hz–20Hz集成网页服务器,便于监控和配置激光:激光产品分类:1类人眼安全/IEC60825-1:2007&2014年波长:903nm机械/电气/操作:功率:8W(典型)2工作电压:9V-18V(带有接口盒和调节电源)重量:~830g(无电缆和接口盒)尺寸:参见上一页图表环境保护:IP67工作温度:-10°C+60°C3储存温度:-40°C至+105°C输出:三维激光雷达数据点生成:单波返回模式:~30万点/秒双波返回模式:~60万点/秒100Mbps以太网连接用户数据协议包含:距离信息校准反射率测量激光收发角度同步时间戳(μs分辨率)全球定位系统(GPS):GPRMC和GPS接收器的GPGGANMEA语句(不包括GPS)
    留言咨询
  • 激光雷达传感器 400-860-5168转1451
    AlphaPuck传感器优点概述首款测距高达300m的激光雷达传感器,适用于自动驾驶车辆最佳水平(360°)和垂直(40°)视角最佳分辨率(0.2°*0.1°)和点密度采用成熟的905nm激光,满足1级人眼安全可防止传感器与传感器之间的干扰采用动态智能,且极具感知意识采用底部连接器,电缆长度可选规格:传感器:• 通道:128• 测量距离:最远300米• 集成的网络服务器便于监测和配置• 最小角分辨率(垂直):0.11°(非线性分水平方向角分辨率:0.1°至0.4°• 垂直视角范围:40°(-25°至15°)• 水平视角范围:360°• 返回模式:高达四次回波• 旋转频率:5Hz至20Hz• 精度:>±3cm(典型条件下)激光:• 激光产品类别:CLASS1人眼安全IEC60825-1:2014• 波长:~903nm机械/电气/操作• 功耗:<30W(典型条件下)• 工作电压:9V至28V(包括稳压电源)• 重量:~3.5kg(典型值,不包括电缆)• 尺寸:参见上一页图表• 环境保护:IP67• 工作温度:-20℃至60℃(在典型环境下)• 储存温度温度:-40℃至85℃输出:• 三维点云输出:-单次返回模式:240万点/秒-二次返回模式:480万点/秒-三次返回模式:720万点/秒-四次返回模式:960万点/秒• 1000Mbps(Gigabit)以太网连接• UDP数据包括:-飞行时间距离测量-相对反射率测量-同步时间标记(μs分辨率)系统诊断数据• GPS:来自GPS接收机或以太网的$GPRMCNMEA判断(不包括GPS)
    留言咨询
  • EcoDrone轻小型机载激光雷达系统 易科泰轻小型机载激光雷达系统,是我公司在自主研发的EcoDrone多旋翼无人机遥感系统基础上,搭载国外先进的激光雷达传感器,自主集成研发的全新一代机载激光雷达系统,革新了激光雷达的航空扫描模式。相对传统机载激光雷达动辄上百公斤的自重、上千万元的售价、复杂的操作和高昂的运输及后勤费用,本产品具有体积小、重量轻、成本低、适应性强和操作简便等优势。为适应客户对价格、产品功能、所需精度等指标的不同需求,我公司提供两种解决方案供选配,分别为基于Velodyne公司Puck Lite传感器的无人机激光雷达SCOUT方案和基于Riegl公司miniVUX传感器的无人机激光雷达miniRANGER方案。 主要技术指标1、EcoDrone UAS-8无人机平台1) 整机重量≤5000g,最大起飞重量≥15000g,最大载荷≥5000g,对称轴距1200mm,自动折叠脚架,螺杆电机,减震无虚位2) 具备强大的可扩展性,可灵活安装配置多光谱、高光谱、红外热成像、LiDAR、可见光等各种传感器,可同时安装其中任意两种传感器以同步采集多样化地面信息3) 空载悬停时间不低于50分钟,有效作业时间30分钟(搭载多光谱相机),飞行速度10m/s4) 高精度GPS定位模块,支持GPS/北斗双模5) 具备航点导航、定点、悬停、定高、航线、区域覆盖、环绕及跟随(follow-me模式,需地面站支持)等飞行模式,具备“黑匣子”功能模块等6) 具备信号干扰保护,故障保护,低电压自动保护,一键自动返航降落功能7) 气压和GPS定高,10m以内超声波定高,精确度1cm8) 标配4K高清画质彩色成像镜头,帧频30FPS(最大分辨率4K情况下),图片分辨率16MP;光学镜头f/2.8,120度HFOV(可选配82度HFOV无畸变光学镜头);可选配单反20MP或24MP分辨率彩色镜头9) 遥控器:工作频率2.400~2.483GHz(DSSS技术),通道数16或32可选,发射功率(EIRP)FCC 100 dBm,控制距离2.7km(打开增程模式约达5公里)10) 在线图传(FPV接收):模拟信号与数字信号双路图传技术,可同时在线图传可见光和热成像影像视频,工作频段5.8G,支持1080P实时高清图传,显示屏分辨率1920x1080,最大距离5km,既保障同步图传无延迟时滞、又可在线高清接收显示画面11) 数据同传模块,包括无人机作业过程中的位置(经纬度)、高度、温度、湿度、太阳辐射、地面温度、太阳辐射等数据信息同步传输显示在地面站上12) 地面站:包括便携箱、野外勘测级笔记本及相应软件等,可进行谷歌地图、高德地图或必应地图切换、航点输入规划自动飞行、航速/距离/高度/水平/经纬度/升降速度/温度等监测、下载任务日志文件、实现无人机自动跟踪地面站功能(follow-me)等13) 能量管理系统:标配电池容量22000mAh,最大充电电流12A,双通道充电器,最大充电功率1400W2.1、SCOUT激光雷达遥感方案 1) 外形尺寸:160×116×116mm工作电压:12~28V 功耗:40W重量:1.65Kg工作温度:-10℃~40℃2) 导航系统卫星系统:GPS,GLONASS校准支持:静态、差分、双天线工作模式:实时、后处理定位精度:1cm+1ppm(水平方向)3) LiDAR传感器激光性能:1级人眼安全,905nm 测量范围:1m~120m,分辨率:2mm测距误差:30mm扫描频率:300000次/秒,最高可达600000点/秒视场范围:垂直±15°,水平360度多重回波:2激光面板数量:16推荐扫描高度:20~60m(离地高度)点云密度与飞行速度及航高之间关系2.2、THE mini RANGER激光雷达遥感方案1) 传感器外形尺寸:269×99×85mm(STIM)/302×99×85mm(FOG)导航盒外形尺寸:300×99×85mm 工作电压:12~28V 功耗:80W重量(传感器+线缆):3.5Kg(7.7lbs)FOG/IMU;2.9Kg(6.4lb)STIM/IMU工作温度:-10℃~40℃2) 导航系统卫星系统:GPS,GLONASS校准支持:静态、差分、双天线工作模式:实时、后处理定位精度:1cm+1ppm(水平方向)3) LiDAR传感器激光性能:1级人眼安全,905nm 最小测距:3m激光束大小:160mm×50mm@100m最大有效测量频率:100000次/秒视场角:360°精度:15mm@150m4) 扫描仪性能扫描机制:镜面旋转镜面转速:10-100扫描/秒扫描角宽:0.05°~0.5°角度测量分辨率:0.001°内部同步定时器:实时同步时间戳 点云密度与飞行速度及航高之间关系(100kHZ)3、标配4K高清画质RGB彩色成像镜头,F/2.8,FOV 120度广角镜头(可选配其它光学镜头),图片分辨率16MP;可选配Sony A6000镜头4、软件:LiDAR点云数据处理、3D矢量数据及模型等 技术路线 图3 地形测绘图5 点云横断面厚度精度验证:随机选取测区若干特征点作为控制点,采用RTK方法实测控制点坐标,对比激光点云量测坐标和控制点实测坐标,得出高程真误差,反映其精度指标。控制点:平面精度<1cm;高程精度<1.5cm序号东坐标北坐标控制点高程激光点高程高程真误差1355007.1946681305.61065.15965.168+0.0092355042.1136681331.23868.23668.279+0.0433355054.8206681319.33868.62868.667+0.0394355071.5656681286.79866.80666.844+0.03815354970.6646681080.55871.59771.558-0.03943355124.7506681082.09967.00667.006-0.00044355132.5076681054.53867.09267.034-0.05845355075.2576681018.54566.01466.045+0.03147355038.9276681041.35467.62667.601-0.025最小误差最大误差平均误差均方根标准差-0.058+0.0430.0310.0350.037由上表可知,点位高程中误差(标准差)为3.7cm,完全满足高精度测绘要求。可用于包括大比例尺地形图测绘在内的各领域。 三、应用方向无人机激光雷达兼具无人机和激光雷达各自优势,以其低成本、高精度、高效便捷的优势广泛应用于各行各业。典型应用如下:l 地形测绘l 城市三维建模l 农业及林业l 考古及文化遗产保护l 冰川雪地测绘l 滑坡监测
    留言咨询

实时迷你激光雷达传感器相关的资讯

  • 空天院高光谱激光雷达团队 揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室牛铮研究员团队,在新型主动光学传感器高光谱激光雷达(hyperspectral LiDAR, HSL)辐射效应产生机制及相应校正算法研究方面取得重要进展。距离效应和入射角效应作为高光谱激光雷达面临的两大几何辐射效应,严重限制了其在定量遥感方面的应用。该团队研究发现,高光谱激光雷达距离效应和入射角效应分析及校正可以独立进行,并提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应,发展了一种改进的Poullain算法用以目标入射角效应分析和校正。上述研究得到了国家自然科学基金重点项目“植被生理生化垂直分布信息遥感辐射传输机理与反演研究”的支持,有关成果发表在遥感领域国际顶级期刊ISPRS Journal of Photogrammetry and Remote Sensing和IEEE Transactions on Geoscience and Remote Sensing上,第一作者为实验室博士研究生白杰。面对高光谱激光雷达主要几何辐射效应即距离效应和入射角效应校正的技术难题,团队自2020年起开展科技攻关,发现距离效应源于系统本身,所有波长拥有统一的距离效应函数,在此基础上提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应 而对于不同种类植被叶片目标,因其表面微观尺度物理结构和内部生化参数不同,因此通常表现出不同的入射角效应,该效应与被测目标种类在高光谱激光雷达条件下二向反射特性密切相关,因此该团队指出关于高光谱激光雷达入射角效应,更准确的表述应为“某一目标高光谱激光雷达入射角效应”,并发展了一种新的改进的Poullain算法,用以目标入射角效应校正。与传统基于各向同性散射假设的朗伯余弦定律和原始Poullain算法相比,该算法考虑了目标粗糙度因子和漫反射系数在不同入射角和波长下的异质性,更加符合自然目标物回波强度的反射特征,不同植被叶片实验显示,相对于标准0度入射角下的回波强度和反射率,校正结果标准差减少了30%~60%。有关算法为后续植被三维生化参数准确反演提供了重要的理论基础和技术支撑。目前,实验室已经完成具备高速采集能力的第二代高光谱激光雷达系统设计与研制工作,正在开展性能测试,预计2023年底投入使用。早在2014年,遥感科学国家重点实验室就设计、研制了具有完全自主知识产权的国际上首台32波段高光谱激光雷达系统。自此,相关团队围绕这一新型传感器持续开展研究,在高光谱激光雷达系统设计研制、数据获取与处理、辐射信息提取、辐射效应校正及植被三维生理生化参数反演等方面取得了丰富的研究成果,为我国抢占高光谱激光雷达设备研制与应用这一领域做出系统性贡献。
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 高光谱&激光雷达&倾斜摄影融合
    8月12日,北京安洲科技有限公司对中国林业科学研究院的410-Shark机载高光谱、Lidar50机载激光雷达以及AZ3D-2机载倾斜摄影进行了设备验收,在同一地块分别进行了不同传感器的影像数据飞行实验,并进行了高光谱与激光雷达的数据融合处理,实验结果得到了用户的一致好评。410 Shark机载高光谱Lidar 50机载激光雷达AZ 3D-2 机载倾斜摄影410 Shark机载高光谱处理结果ENVI中打开高光谱影像数据高光谱3D Cube归一化植被指数NDVILidar 50机载激光雷达处理结果Lidar 50点云实时预览Lidar 50样区正摄影像图Lidar 50解算完成点云图AZ 3D-2 机载倾斜摄影处理结果角度1 观测角度2 观测NDVI与lidar点云融合结果

实时迷你激光雷达传感器相关的方案

实时迷你激光雷达传感器相关的资料

实时迷你激光雷达传感器相关的试剂

实时迷你激光雷达传感器相关的论坛

  • MILS-F31迷你型激光雷达

    MILS-F31迷你型激光雷达

    MILS-F31迷你型激光雷达采用时间飞行(TOF)测距原理,结合了光学、电学机械运动学等多学科领域前沿技术,MILS-F31能够实现270°视场角、8米范围内的±3cm的准确测量。MILS-F31是一款工业级别的扫描式迷你型激光雷达,内嵌成熟的避障算法,支持16个区域组的避障设置,可广泛应用于AGV、机器人的避障场合。激光防护等级1级,人眼安全 大视场、准确测量、避障区域可灵活设置 准确温控设计,工作温度范围- 25℃~ + 50℃ 抗强光,性光路设计、多级滤光处理 体积小巧,易装配,适用于多种AGV机型。[img=,690,460]https://ng1.17img.cn/bbsfiles/images/2023/06/202306140951318838_9210_5922841_3.jpg!w690x460.jpg[/img]

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 国产厂商速腾聚创登陆港交所,成为全球最高市值激光雷达企业

    近日,国产激光雷达企业速腾聚创科技有限公司(以下简称“速腾聚创”)在香港联交所主板挂牌上市,成为港股激光雷达第一股,2024年中国传感器产业第一股。本次IPO最终发售价定为每股43.00港元 ,全球发售2290.98万股股份,募资总额为9.85 亿港元,速腾聚创上市后股票很快破发,截至当日收盘,公司市值193.2亿港元,成为全球市值最高的激光雷达企业。速腾聚创是激光雷达及感知解决方案市场的全球领导者,通过芯片、激光雷达平台与感知算法三大核心技术闭环,为市场提供具有信息理解能力的智能激光雷达系统,颠覆传统激光雷达硬件纯信息收集的定义。据介绍,速腾聚创是全球最早实现车规级固态激光雷达量产的激光雷达公司,也是全球首家开启车规级激光雷达项目量产交付的激光雷达公司。截至2023年3月31日,与全球其他激光雷达公司相比,速腾聚创服务的汽车整车厂和一级供应商数量最多、拥有前装量产定点车型最多及实现SOP车型最多。截至2023年12月18日,速腾聚创已取得21家汽车整车厂及一级供应商的超60款车型的量产定点订单,其中帮助24款车型实现SOP。出货量方面,截至2023年10月31日止,前十个月,速腾聚创的激光雷达产品及用于 ADAS应用的激光雷达产品的销量分别为约136,000台及约121,700台,较2022年同期的约40,700 台及24,400台分别大幅增加,并且超过2020~2022年前三年出货量总和。此外,10月份单月激光雷达销量近30000台,创单月销量历史记录。2024年,速腾聚创激光雷达的预计交付量或将超过100万颗,其中速腾聚创激光雷达产品更是供货问界M7/M5、小鹏G9/X9、极氪007、比亚迪仰望U8等众多明星车型。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

实时迷你激光雷达传感器相关的耗材

  • 差分吸收激光雷达系统
    ?这套差分吸收激光雷达的工作波长是1.4-4.2微米,这是大气中污染物吸收的波段,因此差分吸收激光雷达系统非常适合大气中污染气体的排放探测和其他科学研究,如:天然气排放检测,大气气溶胶云映射等。激光雷达,差分雷达,激光差分雷达,气溶胶,LIDAR,中红外雷达 差分吸收激光雷达系统,DIAL激光雷达主要部件:激光发射器:包括电光Q开关脉冲Nd:YAG激光器, 可调谐OPO单元,光束扩展器,标定单元,电光Q开关驱动器,可编程高压模块,步进电机驱动器 差分吸收激光雷达系统,DIAL激光雷达功能:光束扩展器:用于光束准直和大气湍流的差分补偿接收器: 是一个牛顿式望远镜,接收反射的地形目标信号。望远镜的直径是300mm,焦距是1386mm。旋转台:是一个可旋转的安装平台,接收望远镜和发射器安装在这个平台上。观察模块:是一个CCD相机用于观察目标。差分吸收激光雷达,DIAL激光雷达技术参数:激光器类型:Nd:YAG+OPO 激光波长:1.44-1.68um 2.9-4.1um 脉冲能量:10-30mJ (受激光波长决定)脉冲线宽:3-3.5cm-1 重复频率:20Hz波长飘逸: 0-12cm-1脉冲宽度: 20ns探测范围:2-5Km(甲烷)探测灵敏度:1ppm (积分距离,甲烷)距离测量精度:100m 平台的水平旋转角:+/-30度(60度)平台的垂直旋转角:-10----25度 平台定位精度:0.8mrad 尺寸:750x1500x1250mm重量:250Kg寿命:4000小时
  • 差分吸收激光雷达系统配件
    差分吸收激光雷达系统配件的工作波长是1.4-4.2微米,这是大气中污染物吸收的波段,因此差分吸收激光雷达系统配件非常适合大气中污染气体的排放探测和其他科学研究,如:天然气排放检测,大气气溶胶云映射等。激光雷达,差分雷达,激光差分雷达,气溶胶,LIDAR,中红外雷达 差分吸收激光雷达系统配件:激光发射器:包括电光Q开关脉冲Nd:YAG激光器, 可调谐OPO单元,光束扩展器,标定单元,电光Q开关驱动器,可编程高压模块,步进电机驱动器 差分吸收激光雷达系统配件功能: 光束扩展器:用于光束准直和大气湍流的差分补偿 接收器: 是一个牛顿式望远镜,接收反射的地形目标信号。望远镜的直径是300mm,焦距是1386mm。 旋转台:是一个可旋转的安装平台,接收望远镜和发射器安装在这个平台上。 观察模块:是一个CCD相机用于观察目标。 差分吸收激光雷达系统配件参数: 激光器类型:Nd:YAG+OPO 激光波长:1.44-1.68um 2.9-4.1um 脉冲能量:10-30mJ (受激光波长决定) 脉冲线宽:3-3.5cm-1 重复频率:20Hz 波长飘逸: 0-12cm-1 脉冲宽度: 20ns 探测范围:2-5Km(甲烷) 探测灵敏度:1ppm (积分距离,甲烷) 距离测量精度:100m 平台的水平旋转角:+/-30度(60度) 平台的垂直旋转角:-10----25度 平台定位精度:0.8mrad 尺寸:750x1500x1250mm 重量:250Kg 寿命:4000小时
  • CS475/CS477雷达式水位传感器
    CS47X系列是Campbell最新推出的脉冲雷达式水位传感器,通过向目标发射短微波脉冲,并测量该脉冲的返回时间,从而计算出水位,可广泛应用于江河、湖波、海洋潮汐和水库等地的水位监测。该系列产品依据不同的量程和精度,划分为三种具体型号。CS475的最大量程为20m,精度为±5mm;CS475A的最大量程为35m,精度为±2mm;CS477的最大量程达到70m,精度为15mm。该雷达式水位传感器采用标准的数字式SDI-12输出接口,能够与包括Campbell的CR系列数据采集器在内的各种数据采集、记录设备连接,具有良好的兼容性。您还可以根据实际需要为该雷达式水位传感器选配25619型水平调节器,以保证测量数据的准确性。25616型调试/显示模块则能够帮助您轻松完成对传感器的故障诊断测试和修改设置工作。 特点l 可适用于高腐蚀性、高污染的环境l 低维护——无可拆除部件,有效降低维护时间和成本l 兼容Campbell公司的各种数据采集器l 无需重新校准l 低能耗l 工作温度范围宽(-40℃~+80℃),有着良好的环境适应性 技术参数CS47X雷达水位技术参数量程50mm~20m(CS475)50mm~35m(CS475A)400mm~70m(CS477) 精度±5mm(CS475)±2mm(CS475A)±15mm(CS477)分辨率1mm输出SDI-12雷达单元频率26GHz脉冲量1mW波束角10°(CS475,CS475A),8°(CS477)供电9.6~16VDC浪涌保护1.5KVA 能耗(12V时)4.7mA(睡眠模式),14mA(工作模式)工作温度-40~80℃外壳材质铝、不锈钢喇叭口长度137mm(CS475),430mm(CS477)  产地:美国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制