当前位置: 仪器信息网 > 行业主题 > >

高分辨率磁式气质联用仪

仪器信息网高分辨率磁式气质联用仪专题为您提供2024年最新高分辨率磁式气质联用仪价格报价、厂家品牌的相关信息, 包括高分辨率磁式气质联用仪参数、型号等,不管是国产,还是进口品牌的高分辨率磁式气质联用仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨率磁式气质联用仪相关的耗材配件、试剂标物,还有高分辨率磁式气质联用仪相关的最新资讯、资料,以及高分辨率磁式气质联用仪相关的解决方案。

高分辨率磁式气质联用仪相关的资讯

  • 500万!吉林大学超高分辨率液质联用仪采购项目
    项目编号:JLU-WT22196项目名称:吉林大学超高分辨率液质联用仪采购项目预算金额:500.0000000 万元(人民币)最高限价(如有):475.0000000 万元(人民币)采购需求:货物名称:超高分辨率液质联用仪数量:1套主要技术参数:*1.1.9 最大分辨率:100,000 FWHM ( m/z≤200);本项目允许进口产品进行投标。合同履行期限:收到信用证后120日内发货。本项目( 不接受 )联合体投标。公告 (1).docx
  • 468万!同济大学全二维气相色谱-高分辨率质谱联用仪采购项目
    项目编号:3109-234Z20233008 (项目编号:Z20230359)项目名称:同济大学全二维气相色谱-高分辨率质谱联用仪采购项目预算金额:468.0000000 万元(人民币)最高限价(如有):468.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格1全二维气相色谱-高分辨率质谱联用仪 1套1.1峰面积重复性:0.8%RSD ★1.2 样品瓶位数:不低于120位 1.3 孵化箱位数:12位 (详见采购需求)合同履行期限:合同签订后6个月内交货本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月20日 至 2023年02月27日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市静安区天目中路380号11楼方式:现场或邮件获取售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:中国上海四平路1239号联系方式:段老师 8621-659826702.采购代理机构信息名称:上海政采项目管理有限公司地址:上海市静安区天目中路380号11楼联系方式:戴小军、朱逸元 8621-620912733.项目联系方式项目联系人:戴小军、朱逸元电话:8621-62091273
  • 赛默飞中标清华大学超高分辨率液相质谱联用仪项目
    h2 class=" tc" style=" text-align: center " span style=" font-size: 20px " 清华大学超高分辨率液相质谱联用仪中标公告 /span /h2 h2 class=" tc" style=" text-align: center " span style=" font-size: 20px " 公告概要: /span /h2 table width=" 600" style=" text-align: left " bgcolor=" #bfbfbf" border=" 0" cellspacing=" 1" tbody tr class=" firstRow" td colspan=" 4" strong 公告信息: /strong /td /tr tr td width=" 128" class=" title" 采购项目名称 /td td width=" 430" colspan=" 3" 清华大学超高分辨率液相质谱联用仪 /td /tr tr td class=" title" 品目 /td td colspan=" 3" p 货物/通用设备/仪器仪表/分析仪器/质谱仪 /p /td /tr tr td class=" title" 采购单位 /td td colspan=" 3" 清华大学 /td /tr tr td class=" title" 行政区域 /td td width=" 168" 北京市 /td td width=" 128" class=" title" 公告时间 /td td width=" 168" 2017年12月13日 & nbsp 15:53 /td /tr tr td class=" title" 本项目招标公告日期 /td td width=" 168" 2017年11月22日 /td td width=" 128" class=" title" 中标日期 /td td width=" 168" 2017年12月13日 /td /tr tr td class=" title" 评审专家名单 /td td colspan=" 3" 米凯霞、胡克平、纪建国、葛 & nbsp 薇(前述专家均为自选专家)、邓海腾 /td /tr tr td class=" title" 总中标金额 /td td colspan=" 3" ¥530 万元(人民币) /td /tr tr td colspan=" 4" strong 联系人及联系方式: /strong /td /tr tr td class=" title" 项目联系人 /td td colspan=" 3" 王 & nbsp 慧,张 & nbsp 云 /td /tr tr td class=" title" 项目联系电话 /td td colspan=" 3" 62785713 /td /tr tr td width=" 128" class=" title" 采购单位 /td td width=" 430" colspan=" 3" 清华大学 /td /tr tr td class=" title" 采购单位地址 /td td colspan=" 3" 清华大学实验室与设备处老环境楼101C办公室 /td /tr tr td class=" title" 采购单位联系方式 /td td colspan=" 3" 王 & nbsp 慧,张 & nbsp 云,62785713,sys-zb@tsinghua.edu.cn /td /tr tr td class=" title" 代理机构名称 /td td colspan=" 3" 详见公告正文 /td /tr tr td class=" title" 代理机构地址 /td td colspan=" 3" 详见公告正文 /td /tr tr td class=" title" 代理机构联系方式 /td td colspan=" 3" 详见公告正文 /td /tr tr td colspan=" 4" strong 附件: /strong /td /tr tr td class=" title" 附件1 /td td width=" 430" colspan=" 3" a title=" 点击下载" class=" bizDownload" id=" AF71737EB0AC162257058D3B119FF6" 中标公告 2017223.doc /a /td /tr /tbody /table p   清华大学超高分辨率液相质谱联用仪项目(项目编号:清设招第2017223号) 组织评标工作已经结束,现将评标结果公示如下: /p p strong 一、项目信息 /strong /p p 项目编号:清设招第2017223号 /p p 项目名称:清华大学超高分辨率液相质谱联用仪 /p p 项目联系人:王 & nbsp 慧,张 & nbsp 云 /p p 联系方式:62785713 /p p strong 二、采购单位信息 /strong /p p 采购单位名称:清华大学 /p p 采购单位地址:清华大学实验室与设备处老环境楼101C办公室 /p p 采购单位联系方式:王 & nbsp 慧,张 & nbsp 云,62785713,sys-zb@tsinghua.edu.cn /p p strong 三、项目用途、简要技术要求及合同履行日期: /strong /p p 适用于蛋白质组学:蛋白质组学研究中的蛋白质鉴定、翻译后修饰、生物大分子相互作用、多肽和蛋白质的定量分析。 /p p strong 四、中标信息 /strong /p p 招标公告日期:2017年11月22日 /p p 中标日期:2017年12月13日 /p p 总中标金额: ?xml:namespace prefix=" fmt" fmt:formatnumber type=" currency" pattern=" ¥.000000#" 530.0 /fmt:formatnumber 万元(人民币) /?xml:namespace /p p 中标供应商名称、联系地址及中标金额: /p p style=" text-align: left " 中 标 人:赛默飞世尔科技(中国)有限公司 /p p style=" margin: 0cm 0cm 0pt 60pt text-align: left text-indent: -60pt " 地 址:中国(上海)自由贸易试验区德堡路379号8幢 /p p style=" margin: 0cm 0cm 0pt 60pt text-align: left text-indent: -60pt " 中标金额:530万元人民币 /p p 评标委员会成员名单: /p p 米凯霞、胡克平、纪建国、葛 & nbsp 薇(前述专家均为自选专家)、邓海腾 /p p 中标标的名称、规格型号、数量、单价、服务要求: /p p 超高分辨率液相质谱联用仪,1套 /p p strong 五、其它补充事宜 /strong /p
  • Science:低成本的超高分辨率成像
    显微镜一直是生物学研究中的重要工具,随着技术的发展显微镜的分辨率在不断提高。最新的超高分辨率显微镜已经达到了超越衍射极限的分辨率。现在MIT的研究团队通过另一种巧妙的方式达到了同样的目的。   研究人员并没有在显微镜上下功夫,而是从组织样本下手,利用一种吸水膨胀的聚合物将组织样本整体放大。这种方法非常简单成本也很低,能用普通共聚焦显微镜达到超越200nm的分辨率。这项发表在Science上的成果,能使更多科学家接触到超高分辨率成像。   &ldquo 你在常规显微镜下就可以实现超高分辨率成像,不需要购买新设备,&rdquo 文章的资深作者,MIT的副教授Ed Boyden说,Fei Chen和Paul Tillberg是这篇文章的第一作者。   物理放大   衍射极限曾经是光学显微镜的最大障碍之一,使其分辨率无法突破200nm,然而这个尺度恰恰是生物学家最感兴趣的。为了克服这个问题,科学家们开发了超高分辨率显微技术,该技术获得了去年的诺贝尔化学奖。   然而,超高分辨率显微镜最适合用于薄样本,成像大样本的时间比较长。&ldquo 如果想要分析大脑,或者理解肿瘤转移中的癌细胞,或者研究攻击自身的免疫细胞,你需要在高分辨率水平上观察大块的组织,&rdquo Boyden说。   为了使组织样本更容易成像,研究人员使用了聚丙烯酸盐制成的凝胶,这是一种高度吸水的材料,通常用于尿不湿中。   研究人员首先用抗体标记想要研究的细胞组分或蛋白,这种抗体不仅连有荧光染料,还能够将染料连到聚丙烯酸盐上。研究人员向样本添加聚丙烯酸盐并使其形成凝胶,然后消化掉起连接作用的蛋白,允许样本均匀膨胀。样本遇到无盐的水之后膨胀了100倍,但荧光标记在整个组织中的定位并没有改变。   人们一般用普通共聚焦显微镜进行荧光成像,不过它的分辨率只能达到几百纳米。研究人员通过放大样本,用共聚焦显微镜达到了70nm的分辨率。&ldquo 这种膨胀显微技术能够很好的整合到实验室已有的显微系统中,&rdquo Chen补充道。   大样本   MIT的研究团队用这种膨胀显微技术,在常规共聚焦显微镜下成像了500× 200× 100微米的大脑组织切片。而其他超高分辨率技术难以成像这么大的样本。   &ldquo 其他技术目前可以达到更高的分辨率,但使用起来比较难也比较慢,&rdquo Tillberg说。&ldquo 我们这个方法的优势在于,使用简单而且支持大样本。&rdquo   研究人员认为,这一技术对于研究大脑的神经连接非常有用。Boyden的团队将注意力放在大脑研究上,不过这一技术同样适用于肿瘤转移、肿瘤血管生成、自身免疫疾病等研究。
  • 1200万!中科院超高分辨率液质联用质谱采购项目公开招标
    p style=" text-align: center " span style=" font-size: 20px " strong 中国科学院广州生物医药与健康研究院超高分辨率液质联用质谱系统采购项目公开招标公告 /strong /span /p p   东方国际招标有限责任公司受中国科学院广州生物医药与健康研究院委托,根据《中华人民共和国政府采购法》等有关规定,现对中国科学院广州生物医药与健康研究院超高分辨率液质联用质谱系统采购项目进行公开招标,欢迎合格的供应商前来投标。 /p p strong 项目名称: /strong 中国科学院广州生物医药与健康研究院超高分辨率液质联用质谱系统采购项目 /p p strong 项目编号: /strong OITC-G180350017 /p p strong 项目联系方式: /strong /p p 项目联系人:迟兆洋 /p p 项目联系电话:010-68290505 /p p strong 采购单位联系方式: /strong /p p 采购单位:中国科学院广州生物医药与健康研究院 /p p 地址:广州市萝岗区开源大道190号 /p p 联系方式:陈老师 & nbsp 020-32015326 /p p strong 代理机构联系方式: /strong /p p 代理机构:东方国际招标有限责任公司 /p p 代理机构联系人:迟兆洋 & nbsp 010-68290505 /p p 代理机构地址: 北京市海淀区西三环北路甲2号院科技园6号楼13层 /p p strong 一、采购项目的名称、数量、简要规格描述或项目基本概况介绍: /strong /p table align=" left" style=" margin: auto 6.75pt border: currentColor border-collapse: collapse " border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" style=" height: 30px " td width=" 45" style=" padding: 0cm 5.4pt border: 1pt solid windowtext width: 8.38% height: 30px " p style=" text-align: center line-height: 150% " 包号 /p /td td width=" 98" style=" border-width: 1pt 1pt 1pt 0px border-style: solid solid solid none padding: 0cm 5.4pt width: 20.36% height: 30px " p style=" text-align: center line-height: 150% " 货物名称 /p /td td width=" 55" style=" border-width: 1pt 1pt 1pt 0px border-style: solid solid solid none padding: 0cm 5.4pt width: 13.1% height: 30px " p style=" text-align: center line-height: 150% " 数量 /p p style=" text-align: center line-height: 150% " (台/套) /p /td td width=" 126" style=" border-width: 1pt 1pt 1pt 0px border-style: solid solid solid none padding: 0cm 5.4pt width: 26.56% height: 30px " p style=" text-align: center line-height: 150% " 简要技术规格 /p /td td width=" 24" style=" border-width: 1pt 1pt 1pt 0px border-style: solid solid solid none padding: 0cm 5.4pt width: 16.04% height: 30px " p style=" text-align: center line-height: 150% " 是否允许采购进口产品 /p /td td style=" border-width: 1pt 1pt 1pt 0px border-style: solid solid solid none padding: 0cm 5.4pt width: 15.56% height: 30px " p style=" text-align: center line-height: 150% " 采购预算 /p p style=" text-align: center line-height: 150% " (人民币) /p /td /tr tr style=" height: 30px " td width=" 12" style=" border-width: 0px 1pt 1pt border-style: none solid solid padding: 0cm 5.4pt width: 8.38% height: 30px " p style=" text-align: center line-height: 150% " 1 /p /td td width=" 98" style=" border-width: 0px 1pt 1pt 0px border-style: none solid solid none padding: 0cm 5.4pt width: 20.36% height: 30px " p style=" text-align: center line-height: 150% " 超高分辨率液质联用质谱系统 /p /td td width=" 55" style=" border-width: 0px 1pt 1pt 0px border-style: none solid solid none padding: 0cm 5.4pt width: 13.1% height: 30px " p style=" text-align: center line-height: 150% " 1 /p /td td width=" 126" style=" border-width: 0px 1pt 1pt 0px border-style: none solid solid none padding: 0cm 5.4pt width: 26.56% height: 30px " p style=" text-align: center line-height: 150% " 仪器分辨率≥50,0000 ( m/z=200);灵敏度不随分辨率增加而降低 /p /td td width=" 24" style=" border-width: 0px 1pt 1pt 0px border-style: none solid solid none padding: 0cm 5.4pt width: 16.04% height: 30px " p style=" text-align: center line-height: 150% " 是 /p /td td style=" border-width: 0px 1pt 1pt 0px border-style: none solid solid none padding: 0cm 5.4pt width: 15.56% height: 30px " p style=" text-align: center line-height: 150% " 1200万元 /p /td /tr /tbody /table p & nbsp /p p strong 二、投标人的资格要求: /strong /p p 1)符合《中华人民共和国政府采购法》第二十二条要求2)本项目不接受联合体投标。3)按本投标邀请的规定获取招标文件。4)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。 /p p strong 三、招标文件的发售时间及地点等: /strong /p p 预算金额:1200.0 万元(人民币) /p p 时间:2017年12月28日 09:00?至?2018年01月06日 17:00(双休日及法定节假日除外) /p p 地点:www.o-science.com;北京市海淀区西三环北路甲2号院科技园6号楼13层01室 /p p 招标文件售价:¥600.0 元,本公告包含的招标文件售价总和 /p p 招标文件获取方式:登录东方在线www.o-science.com注册并购买 /p p strong 四、投标截止时间: /strong 2018年01月19日 14:30 /p p strong 五、开标时间: /strong 2018年01月19日 14:30 /p p strong 六、开标地点: /strong /p p 广州市萝岗区开源大道190号(中国科学院广州生物医药与健康研究院)A栋3楼A334第四会议室 /p p strong 七、其它补充事宜 /strong /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 1、投标文件递交地点:广州市萝岗区开源大道190号(中国科学院广州生物医药与健康研究院)A栋3楼A334第四会议室 /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 2、招标文件采用网上电子发售购买方式: /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 1)有兴趣的投标人可登陆“东方在线”( span style=" text-decoration: none text-underline: none " http://www.o-science.com /span 招标在线频道),完成投标人注册手续(免费),然后登录系统浏览该项目下产品的“技术指标”,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号),在开标现场向东方国际招标有限责任公司索取标书款发票。 /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 开户名称:东方国际招标有限责任公司 /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 开户行:招商银行北京西三环支行 /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 账? 号:862081657710001 /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途( strong 如未标明招标编号,有可能导致投标无效 /strong )。 /p p style=" text-align: left line-height: 150% layout-grid-mode: char " 4、公告期限:5个工作日 /p p strong 八、采购项目需要落实的政府采购政策: /strong /p p style=" text-align: left line-height: 150% vertical-align: bottom layout-grid-mode: char " (1)政府采购促进中小企业发展 /p p style=" text-align: left line-height: 150% vertical-align: bottom layout-grid-mode: char " (2)政府采购支持监狱企业发展 /p p style=" text-align: left line-height: 150% vertical-align: bottom layout-grid-mode: char " (3)政府采购促进残疾人就业 /p p style=" text-align: left line-height: 150% vertical-align: bottom layout-grid-mode: char " (4)政府采购鼓励采购节能环保产品 /p p & nbsp /p
  • 788万!Thermo中标中国农业大学模式动物重大设施建设办公室超高分辨率液质联用系统采购项目
    一、项目编号:XHTC-HW-2024-0018(招标文件编号:XHTC-HW-2024-0018)二、项目名称:中国农业大学模式动物重大设施建设办公室超高分辨率液质联用系统采购项目三、中标(成交)信息供应商名称:北京合众汇美国际贸易有限公司供应商地址:北京市朝阳区光华路7号13层16B1号中标(成交)金额:788.3234000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 北京合众汇美国际贸易有限公司 超高分辨率液质联用系统 Thermo Orbitrap 1套 7883234.00 五、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:中国农业大学     地址:北京市海淀区圆明园西路2号        联系方式:刘老师 18331156956      2.采购代理机构信息名 称:新华招标有限公司            地 址:北京市海淀区莲花池东路39号西金大厦8层            联系方式:张云驰010-63905857、刘佳 010-63905926            3.项目联系方式项目联系人:刘佳电 话:  010-63905926
  • 480万!佛山科学技术学院超高效液相色谱-高分辨率质谱联用仪采购项目
    项目编号:440601-2022-05509项目名称:超高效液相色谱-高分辨率质谱联用仪采购方式:公开招标预算金额:4,800,000.00元采购需求:合同包1(超高效液相色谱-高分辨率质谱联用仪):合同包预算金额:4,800,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他货物超高效液相色谱-高分辨率质谱联用仪1(套)详见采购文件4,800,000.00-本合同包不接受联合体投标合同履行期限:自合同签订生效之日起120个日历天内完成,详见主要商务要求。8a7e875b84675a4a0184a39949a2635b.zip
  • 393万!中国检验检疫科学研究院全二维气相色谱-超高分辨率质谱联用仪设备采购项目
    项目编号:GXTC-C-22500076项目名称:中国检验检疫科学研究院全二维气相色谱-超高分辨率质谱联用仪设备采购项目预算金额:393.0000000 万元(人民币)最高限价(如有):385.9260000 万元(人民币)采购需求:名称数量简要技术需求交货期是否接受进口产品全二维气相色谱-超高分辨率质谱联用仪1台见公告附件《仪器设备采购技术要求》4个月是合同履行期限:供货期,详见附件。本项目( 不接受 )联合体投标。
  • 960万!中国海洋大学液相色谱-超高分辨率质谱联用仪设备采购项目
    一、项目基本情况项目编号:HYHA2024-1067项目名称:中国海洋大学液相色谱-超高分辨率质谱联用仪设备采购项目预算金额:960.000000 万元(人民币)最高限价(如有):960.000000 万元(人民币)采购需求:包号货物名称数量简要技术需求1液相色谱-超高分辨率质谱联用仪1简要技术需求详见招标公告附件。合同履行期限:合同签订后开始履行,至项目完成(质保期满)为止。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年05月20日 至 2024年05月24日,每天上午8:30至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:邮箱(panghaosheng@sdhyha.com)方式:本项目采用网上获取方式(扫码填报信息+邮箱发送资料): (1)扫码填报信息:投标人扫描附件二维码,选取所要参与的项目点击“我要缴费”,根据提示完善投标人信息后保存提交(经办人选择逄昊晟)。 (2)投标人缴纳标书费。 (3)投标人将法人授权委托书原件和被授权人身份证原件的扫描件、标书费汇款凭证的扫描件发至邮箱(panghaosheng@sdhyha.com)。售价:¥300.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国海洋大学     地址: 山东省青岛市崂山区松岭路238号        联系方式: 崔老师 0532-66781979      2.采购代理机构信息名 称:海逸恒安项目管理有限公司            地 址:山东省青岛市崂山区香岭路1号北大资源博雅3号楼22层2203室            联系方式:逄昊晟 曹丽娜 0532-85761207            3.项目联系方式项目联系人:逄昊晟、曹丽娜电 话:  0532-85761207
  • 港东科技:自主研发高分辨率长焦拉曼光谱仪
    目前,基于超快激光的非线性拉曼光谱技术已经越来越成熟了;而且,随着纳米科技的迅猛发展,使得基于纳米结构的表面增强拉曼光谱(SERS)和针尖增强拉曼光谱(TERS)在超高灵敏度检测方面取得了长足的进步,推动拉曼光谱成为迄今很少的、可达到单分子检测水平的技术。  “港东科技”自二十世纪九十年代初就开始研发“拉曼光谱”系列产品。自主研发、生产、制造的LRS-2型和LRS-3型激光拉曼光谱仪以结构简单、便于调整和测量、灵敏度高、稳定性好等特点分别在1998年和2000年世界银行贷款发展项目中二度中标。该仪器现已大量应用于科研院所、高等院校的物理实验室和化学实验室,作为测量和教学拉曼光谱和荧光光谱的实验仪器。LRS-2/3激光拉曼光谱仪  仪器特点:  自动记录拉曼、荧光光谱   高分辨率,低杂散光单色系统   高灵敏度、低噪音单光子计数器做接收系统   大功率半导体激光器作为激发光源   配有稳定性好、精度高的外光路系统   多种附件可选,适用于液体、固体样品的分析   配有用于减小瑞利散射的陷波滤波器。  2008年,港东科技自主研发的,同时也是国内首款LRS-5型微区激光拉曼光谱仪(将具有自主知识产权的高分辨激光共焦显微镜作为收集拉曼散射光系统,长焦长高分辨平场成像输出的单色器,结合自行研制的计算机软件编程等相关实验技术相整合,构建具有自主知识产权的新型高分辨的激光共聚焦显微光谱探测联用设备-激光共焦拉曼光谱仪)研制成功。  这是一项将拉曼光谱分析技术与显微分析技术结合起来的应用技术。微区激光拉曼可将激发光的光斑聚焦到微米量级,从而可以在不受周围环境干扰的情况下,精确获得所检测样品的有关化学成分、晶体结构、分子相互作用以及分子取向等各种拉曼光谱信息。  我们对激光共焦拉曼显微镜的装置设计与技术参数,几何尺寸与配置,显微镜的白光成像照明系统和偏振调光图像处理技术进行了细致的研讨与实际效果的理论计算,为该显微镜的结构定型、技术指标奠定了基础。最终研制成功具有自主知识产权的高性能激光共聚焦拉曼显微镜系统。LRS-5 微区激光拉曼光谱仪  仪器特点:  操作简单,友好的人机对话界面   高分辨率、高稳定性和低杂散光的非对称800mm焦距平场光谱仪系统   接受系统采用具有高灵敏度、低噪音的面阵CCD接收器   外光路系统采用显微镜作为激光会聚和拉曼光收集系统,具有很高的效率和稳定性   配有用于减小瑞利散射的陷波滤波器。  2012年至2016年,“港东科技”作为国内唯一一家研发、生产高分辨率长焦拉曼的企业受邀参加了由北京理工大学牵头,协同中国科学院物理研究所共同研发的“激光差动共焦成像与检测仪器研发及其应用研究”项目,该项目属于“国家重大科学仪器开发和应用专项”。在该项目中我司主要承担“拉曼光谱成像探测系统”的研发任务。普通激光束的直径通常为1.7mm左右,而显微激光拉曼光谱可以对被分析对象表面及其以下部分(透明或半透明材料)进行分层扫描,以获得较大范围内的信息,能够进行微区(小于0.2µm)分析,很好地满足了对复合材料中不同组元结构分析的要求。  对于“拉曼光谱”在未来的发展,那就必须先从“拉曼光谱”与它的姊妹谱——红外光谱的比较说起。  相似之处:“拉曼光谱”与“红外光谱”一样,都能提供分子振动频率的信息,对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。  不同之处:  1.红外光谱的入射光及检测光都是红外光,而拉曼光谱的入射光和散射光大多是可见光。拉曼效应为散射过程,拉曼光谱为散射光谱,红外光谱对应的是与某一吸收频率能量相等的(红外)光子被分子吸收,因而红外光谱是吸收光谱。  2.从分子结构性质变化的角度看,拉曼散射过程来源于分子的诱导偶极矩,与分子极化率的变化相关。通常非极性分子及基团的振动导致分子变形,引起极化率的变化,是拉曼活性的。红外吸收过程与分子永久偶极矩的变化相关,一般极性分子及基团的振动引起偶极矩的变化,故通常是红外活性的。  3.红外光谱制样复杂,拉曼光谱勿需制样,可直接测试水溶液。  姊妹谱的联系:  1、凡有对称中心的分子,若有拉曼活性,则红外是非活性的 若红外活性,则拉曼是非活性的。  2、凡无对称中心的分子,大多数的分子,红外和拉曼都活性。  3、少数分子的振动,既非拉曼活性,又非红外活性。(如:乙烯分子的扭曲振动,在红外和拉曼光谱中均观察不到该振动的谱带。  综上所述,拉曼光谱相对于红外光谱,其优势之一体现在用拉曼研究水溶液中比较方便,而生命科学的许多研究往往需要的水溶液环境。共振拉曼、表面增强拉曼和非线性拉曼光谱以及它们的联用将成为生命科学前沿领域具有重要价值的研究方法,因为21世纪是生命科学的世纪(如:临床医疗、癌症的检测与诊断等),我们以为也是纳米技术和激光技术的世纪,因此我们觉得拉曼光谱的发展和应用是大有可为的。  但就目前来讲,“拉曼光谱”还存在一定的不足,例如:  1、拉曼散射面积   2、不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响   3、荧光散射的干扰   4、在进行分析时,常出现曲线的非线性的问题   5、任何一个物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响。  当然我们也相信,随着相关技术领域的不断进步和提高,这些问题在不远的将来都能得到完善的解决。届时“拉曼光谱”的应用领域也将更为广泛。  “拉曼光谱”揭示了丰富的化学键信息,检测对象从单质到化合物,从纯净物到混合物,从无机物到有机物,从固体到液体甚至到气体。随着技术的进一步发展,便携式拉曼光谱仪的发展趋势将呈现多样化。更加小型化、智能化、应用更加细分(分析化学、安全检查、生物医药、机场安检、爆炸物分析等),将成为发展的主流,而性能却不会随着小型化而缩水。同时,随着应用领域的扩大,适应恶劣的工作环境(高温、高压)也将是发展方向之一。而价格合理化将是便携式拉曼光谱仪发展的终极目标。(内容来源:港东科技)
  • 800万!中国农业大学模式动物重大设施建设办公室超高分辨率液质联用系统采购项目
    一、项目基本情况项目编号:XHTC-HW-2024-0018项目名称:中国农业大学模式动物重大设施建设办公室超高分辨率液质联用系统采购项目预算金额:800.000000 万元(人民币)采购需求:本项目为中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目,简要技术参数:配备独立的可加热的电喷雾离子源(ESI源)、大气压化学电离源(APCI源),安装离子源时即可实现气路电路连接,自动识别,无需进行额外操作等,详见附件采购需求。本项目允许采购进口产品。合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年02月01日 至 2024年02月07日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:北京市海淀区莲花池东路39号西金大厦8层方式:需携带法人授权书原件及被授权人身份证复印件加盖公章。文件售后不退。未从采购代理机构获取招标文件并登记在案的潜在供应商均无资格参加投标。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国农业大学     地址:北京市海淀区圆明园西路2号        联系方式:刘老师 18331156956      2.采购代理机构信息名 称:新华招标有限公司            地 址:北京市海淀区莲花池东路39号西金大厦8层            联系方式:张云驰010-63905857、刘佳 010-63905926            3.项目联系方式项目联系人:刘佳电 话:  010-63905926
  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能[6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • 布鲁克公布1.2 GHz高分辨率蛋白质核磁共振(NMR)数据
    德国柏林——2019年8月26日——布鲁克公司(纳斯达克代码:BRKR)在Euroismar 2019(https://conference.euroismar2019.org)上公布了1.2GHz高分辨率蛋白质核磁共振(NMR)数据。布鲁克2台1.2GHz超导磁体已在布鲁克瑞士磁体工厂达到目标场强,创造了稳定、均匀的NMR磁体的世界纪录,可用于高分辨率和固态蛋白质NMR在结构生物学中的应用,以及用于研究固有无序蛋白质(IDPs)。在EUROISMAR 2019上,布鲁克及其科学合作者展示了1.2 GHz高分辨率NMR数据,这些数据是使用新的1.2 GHz 3 mm三通道反向TCI低温探头获得的。布鲁克独特的1.2GHz超高场核NMR磁体采用了一种新的混合设计,高温超导体(HTS)在里层,低温超导体(LTS)在外层,这两者一起为高分辨率蛋白质NMR提供了极其苛刻的稳定性和均匀性。一旦进一步的系统开发和工厂测试完成,意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授有望成为第一批获得1.2 GHz NMR谱仪的客户,这一过程预计还需要几个月的时间。在1.2 GHz系统上对CERM测试样本进行初始数据采集后,他们表示:“在布鲁克瑞士超高场设备上,已经获得了突触核蛋白的高分辨率谱图数据,突触核蛋白是一种与阿尔茨海默氏症和帕金森氏症等疾病相关的固有无序蛋白质。此外,我们还能对与多种癌症相关的蛋白质的第一个1.2 GHz NMR谱图数据进行了审查。毫无疑问,1.2 GHz仪器分辨率的提高——由于在高磁场中色散的增加而成为可能——将有助于推动结构生物学等重要研究领域的研究。一旦最终开发和工厂评估完成,我们期待在实验室收到1.2 GHz NMR谱仪。"布鲁克 BioSpin集团总裁Falko Busse博士表示:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场NMR客户对我们的信任,并且我们为在1.2 GHz频率下生成世界上第一个高分辨率蛋白质核磁共振(NMR)数据而感到自豪。虽然我们尚未完全完成新1.2 GHz系统的所有开发,但我们最近的快速进展证明了我们致力于创新,并致力于与客户合作开发有利的科学能力。”与先前宣布的Ascend 1.1 GHz磁体类似,Ascend 1.2 GHz混合HTS/LTS磁体是一个标准孔(54 mm)的双层磁体系统,其漂移和均匀性规格与布鲁克现有的900 MHz和1 GHz超高场NMR磁体相似,确保与一系列NMR探头类型和谱仪附件兼容。布鲁克公司的Ascend™ 1.2 GHz NMR磁体利用了先进的导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性,这些技术是为ENC 2019宣布作为产品的Ascend 1.1 GHz磁体成功开发的。1.2GHz 1H-15N 2D BEST-TROSY(左)和1.2GHz 3D 15N编辑的NOESY-HSQC 2D平面,500μM泛素样品,13C/15N标记,溶解在90%H2O和10%D2O溶液中。两个实验均使用3mm TCI低温探头进行记录。
  • 化学所“超高分辨率荧光显微镜”获得方解石中超高分辨率蛋白图像
    近日,记者从中科院化学所获悉,该所胶体、界面与化学热力学重点实验室李峻柏课题组利用其开发的“超高分辨率荧光显微镜”,观测到生物矿化过程中参与结晶的蛋白质分布信息。论文在《德国应用化学》上刊发。  “超高分辨率荧光显微镜”可以超越远场光学显微镜的分辨率极限,直接检测到几十纳米的精细结构。而与能达到相同或更高分辨率的X光显微镜、各类电子显微镜及原子力显微镜相比,超高分辨荧光成像能在常温常压和基本不损伤生物样本活性的条件下,获得其纳米尺度的图像信息。  研究人员介绍,“超高分辨率荧光显微镜”又称为随机光学重建显微镜(STORM),可达到或好于50纳米分辨率。在前期研究中,李峻柏课题组在超高分辨图像采集和数据分析方面发展了实时单分子定位的程序包SNSMIL,该程序包可广泛应用于高背景成像的数据分析。  他们利用STORM观测到方解石中生物矿化过程中参与结晶的蛋白质分布信息,为研究蛋白质诱导生物矿化的机理提供了数据。
  • 日本东京大学研制纳米级量子传感器,实现高分辨率磁场成像
    日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。(a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化。图片来源:东京大学研究团队
  • 耶拿推出最高分辨率的ICP光谱
    仪器信息网讯 2013年10月25日,德国耶拿公司在北京展览馆举行了&ldquo 高分辨ICP-OES新品发布会&rdquo ,推出目前市场同类产品中最高分辨率的ICP-OES新品&mdash &mdash PQ9000。 发布会现场 德国耶拿公司在BCEIA 2013上展示的ICP-OES新品&mdash &mdash PQ9000 (左一:德国耶拿公司CEO Berka,左二:德国耶拿中国区总经理赵泰)   在新品发布会上,仪器信息网(以下简称:instrument)编辑也就相关问题采访了德国耶拿中国区总经理赵泰。   Instrument:多年来,耶拿公司一直以原子吸收的著名厂家而知名,尤其是2004年推出的划时代的连续光源原子吸收,目前中国的ICP市场已被许多品牌领先占据,德国耶拿公司为什么选择当前推出ICP-OES?   赵泰:大家都知道ICP-OES产品经过多年的发展,在化学分析领域有着非常重要的地位,但是ICP的应用技术还是存在很多难以克服的问题,给我们的分析工作带来很大的障碍。   比如,发射光谱的主要缺陷是发射谱线多、光谱干扰严重,很多分析问题都是源于此,所以对ICP-OES分辨率的要求就非常高,理想目标是分辨率达到发射谱线的自然宽度(1-3pm),而目前市场上ICP-OES都未达到这一目标。   还有ICP-OES很难直接测量高盐,痕量类样品,所以也限制了ICP的分析范围。另外,随着技术的进步大家对仪器研发要求越来越高,大家心目中理想的仪器,不仅性能要好,使用成本也要低。   为了能克服不足,满足当前分析的需求,德国耶拿公司就一直在研发这样的ICP-OES。德国耶拿公司在光学仪器制造行业有非常丰富的经验,已经有160多年的发展历史和经验,具有得天独厚的优势,所以在光谱领域一直以来都能推出品质非凡的产品。耶拿新品ICP-OES PQ9000也是在传承历史,经过多年的研发,针对目前的ICP-OES产品的不足之处,为了满足当前分析需求,为分析者&ldquo 量身定做&rdquo 的,所以选择当前隆重推出。   Instrument:耶拿推出的ICP-OES新品与市场上同类产品相比的在技术方面有哪些新的突破,仪器性能有何显著提高?给分析工作带来哪些优越?   赵泰:首先,借助耶拿特有的光学技术优势,加上设计独特的分光系统,PQ9000的光谱分辨率能达到3pm,达到了相当于发射谱线自然宽度的理想目标,在目前市场上同类产品中是最高分辨率的ICP-OES。用户可以轻松应对很多难分析的、光谱干扰严重的样品。光学性能上也有很大的突破,保证了分析的稳定性和准确性。   第二,PQ9000采用了先进的垂直矩管、双向观测设计方式,消除了高盐和基体的影响,不仅能满足各类样品(有机,高盐)的分析,也能满足不同浓度(µ g/L~%)的同时测量,保证了灵敏度和检测限。另外PQ9000采用冷锥加氩气反吹消除尾焰,无自吸,无空气,降低背景 持续氩气对光室和检测器的吹扫,消除空气和水分等对紫外光的吸收,从而使得PQ9000的检出限比常规降低2~10倍,灵敏度达到µ g/L级。从短波到长波,常用元素的检测限都大幅提高。从而解决了&ldquo 复杂基质&rdquo ,&ldquo 痕量分析&rdquo 的难题。   第三,采用高性能的新一代CCD检测器,产生高量子效率和紫外超高灵敏度,可以自动选择最佳积分时间,同时记录元素线与其直接光谱环境,自动扣除背景,检测器只需致冷到零下6到10度即可稳定工作,大大缩短了预热时间(5分钟),能做到真正的即开即用。   第四,耶拿本着创新的理念,PQ9000在其他部分的设计上也充分体现。比如新颖独特的尾焰消除技术,采用最先进的气路设计,即吹扫和冷却用氩气又巡回到等离子体使用,没有额外消耗,大大地降低了氩气的消耗   另外,组合式炬管,体积小,氩气消耗少,从而最大程度降低氩气的消耗。整个外观设计也很精巧,是世界上体积最小的高分辨率ICP-OES。   Instrument:耶拿新品ICP-OES主要在哪些应用领域推出?如何能获得用户的认可?   赵泰:PQ9000在技术上的创新突破,打破了目前ICP-OES的分析局限,带来分析工作带来更多的自由空间。各种样品中低含量、微量和痕量的金属元素以及部分非金属元素的定性和定量分析 尤其适合分析样品量大,检测结果要求高的用户 可广泛应用于石油化工、农业,质检、环保、钢铁、科研、卫生等行业。凡是追求更好分析性能的用户都能认可该技术。   Instrument:您是如何看待原子吸收与ICP-OES未来发展的关系?ICP-OES的推出对原子吸收业务发展有何影响?耶拿如何制定发展规划?战略目标是?   赵泰:原子吸收和ICP-OES技术都是目前无机分析的主力军,两者一直是即有交叉又有互补的关系,应用上各有所长。   ICP-OES的推出对原子吸收业务发展不会有太大影响,只是一些以往必须用石墨炉原子吸收分析的痕量元素现在有更多可能在高分辨率ICP-OES上完成,有更多分析任务可以全部依靠高分辨率ICP-OES完成,而不必分到两种仪器上才能全部满足分析任务的要求。但很多以往特别适合用原子吸收分析项目,如分析元素种类少,或仅靠火焰原子吸收就能完成的分析仍应采用原子吸收更为合适或更加经济。   PQ9000高分辨率ICP-OES的推出,使耶拿公司的原子光谱仪器家族又增加了新的成员,能满足更多的分析需求,可以为更多的用户提供更多的服务,也为信赖耶拿品质的用户提供更大的合作空间。这也加进一步强了耶拿公司在无机分析领域的技术领先地位和市场影响力。耶拿公司将继续不遗余力的做好售后服务和技术支持,借助此超高分辨率ICP-OES的先进性能为用户解决更多的分析难题,增强实验室分析能力,更加简便、有效的完成高质量的分析任务。   耶拿公司的战略目标是不断创新,用更多先进技术巩固和加强光谱技术领先者的市场地位。   Instrument:谈谈新品ICP-OES PQ9000的市场定位和预期?   赵泰:PQ9000高分辨率ICP-OES的市场定位与其它众多耶拿产品一样,仍然是瞄准高端市场,以技术优势和非凡品质赢得广泛用户的信赖。可以预期,期盼有更好、更强分析性能力装备的用户一定会欢迎这一新品,而耶拿公司的PQ9000绝不会让这样懂行的专业用户失望,将再次为德国耶拿赢得光彩夺目的品牌声誉!  Instrument:2013年,在全球经济依然不景气的情况下,耶拿面对市场变化,取得了怎样的销售业绩?在耶拿中国的业绩情况?   赵泰:2013年,德国耶拿一如继往的取得了骄人的业绩,除日本市场外,全球市场继续有较快增长,尤其生命科学业务,有近2位数的增长。   耶拿中国的业绩继续领先全球,业务总量仍然保持2位数的增长速度,对总增长约推高2个百分点的生命科学业务更是增长了近80%! 撰稿人:刘丰秋
  • 发布超高分辨率显微镜新品
    微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。创新点:微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。
  • 「中智科仪新品」撕掉像增强相机低空间分辨率的“标签”- TRC428高分辨率像增强相机
    在科技的不断进步与创新中,像增强相机已成为众多科学问题探索过程中不可或缺的工具。像增强相机是一种利用像增强器对弱信号进行增益放大的特殊相机,它可以极大提高相机的成像灵敏度。但是由于像增强器中起增益放大作用的微通道板(MCP)会极大的限制相机的分辨率,因此,目前市面上的像增强相机空间分辨率一般低于30lp/mm,这大大限制了很多有着较高分辨率要求的应用场景。今天,我们自豪地宣布,中智科仪的最新力作——TRC428高分辨率像增强相机即将面世。这款革命性的产品将带来卓越的空间分辨率、出色的性能表现以及无与伦比的可靠性,将满足您对高分辨率需求的一切期待。TRC428 高分辨率像增强相机搭载了全新的图像传感器芯片,分辨率高达3200x2200,单像素尺寸4.5um,为用户提供了前所未有的图像质量和分辨率,同时,我们集成了新一代的高空间分辨率、高量子效率、低噪声像增强器,且成功突破了高分辨率CMOS相机与增强器实现光纤锥耦合工艺的技术壁垒。这一突破性的技术提升使得相机的整机空间分辨率高达45lp/mm以上,重新定义了像增强型相机成像分辨率的标准。TRC428高分辨率像增强相机具有特点及优势:高空间分辨率:TRC428高分辨率像增强相机采用新一代高空间分辨率像增强器,以及3200x2200高分辨率CMOS图像传感器,利用4um芯径光纤面板将二者进行光学耦合,借助先进的耦合工艺,整机空间分辨率优于40lp/mm,为用户提供了极致的图像分辨率,使您能够捕捉到每一个细微的细节。TRC411相机(左)和TRC428相机(右)空间分辨率测试对比超短光学快门:TRC428高分辨率像增强相机可实现低至500ps的光学快门,可以以皮秒精度捕捉瞬态现象,并大幅降低背景噪声;针对瞬态吸收荧光光谱应用场景,可以实现更高的时间分辨率;针对门控拉曼光谱采集应用场景,抑制荧光和背景光能力更加卓越。特别适用于各种时间分辨成像以及超快过程探测。500ps光学门宽高时间同步精度:TRC428高分辨率像增强相机内置10皮秒精度的3通道同步时序控制器,可以进行相机与外部设备的高精度延迟和同步,无需额外的同步触发设备即可轻松实现多台设备之间的精准同步控制;各个通道可独立控制同步信号脉宽及延时,延迟精度高达10皮秒,通道间同步时间抖动小于35ps(RMS)。10ps延时精度 高快门重复频率:TRC428高分辨率像增强相机快门工作重复频率可高达500kHz,可以更高效的实现高频信号采集;且支持片上积分(IOC)模式,一次CMOS曝光时间内可以支持更多次的“Burst”累积,这在可重复的弱信号采集应用中可有效提高信噪比。在激光诱导荧光光谱采集应用场景下,可以同步更高频率的激发光源,提高光谱信号激发和采集效率;在量子关联成像应用场景下,更高的快门工作频率可以适应更高的光子发生率,从而获取更丰富的成像信息,更快实现关联成像。片上积分(IOC)模式工作示意图方便易用的软件:TRC428高分辨率像增强相机的控制与操作可以完全兼容SmartCapture软件,功能丰富,方便易操作。SmartCapture软件界面及功能特点 高分辨率像增强相机的以上特点和优势除了在成像应用领域为用户带来革命性的应用体验外,在门控光谱仪系统中也将发挥重要的优势。众所周知,探测器的分辨率对于光谱采集系统的光谱分辨率至关重要,但是在一些与时间分辨相关的光谱以及极弱单光子光谱信号采集系统中,单色仪需要配置具有门控功能的像增强相机做为探测器,从而实现时间分辨光谱和极弱单光子光谱信号采集测量。但是,像增强相机的低空间分辨率会极大限制光谱分辨率,相对于普通探测器,配置门控型像增强相机做为探测器的光谱仪分辨率将会降低约1.5倍左右(经验值)。高分辨率像增强相机的问世将在一定程度上解决这一问题。我们将TRC428高分辨率像增强相机与MS5204i光谱仪集成,形成一套纳秒门控光谱仪,利用这套门纳秒控光谱仪进行了极限光谱分辨率测试,并与集成了标准像增强相机的纳秒门控光谱仪测试结果进行了对比:结果如下:TRC428高分辨像增强相机,分辨率26.73pm@546.075nmTRC411像增强相机,分辨率35.64pm@546.075nm集成了TRC428高分辨率像增强相机的纳秒门控光谱仪,极限光谱分辨率可达26.73pm;但集成TRC411标准像增强相机的纳秒门控光谱仪,采用同样的光谱仪设置,对同样的光谱信号进行采集,能够达到的极限光谱分辨率仅为35.64pm。其他更多波长的光谱分辨率对比如下所示(不同波长对应的增益有所不同):波长(nm)253.652365.015404.656435.833546.075579.066TRC411相机35.10pm40.50pm39.96pm32.40pm35.64pm39.69pmTRC428相机24.57pm23.63pm23.31pm25.92pm26.73pm28.35pm由以上对比数据可以看出,使用TRC428高分辨率像增强相机做为探测器的纳秒门控光谱仪,相对于使用TRC411相机做为探测器的纳秒门控光谱仪,在光谱分辨率上有30%以上的提升。配合更长焦距的单色仪,预期光谱分辨率可提升至10pm以内,可应用于等离子光谱以及同位素光谱分析等超高精度要求的应用场景。TRC428高分辨率像增强相机的推出标志着中智科仪对高分辨率成像技术的持续投入和创新。我们相信,TRC428将成为像增强相机行业内的新标杆,为用户提供前所未有的视觉体验和应用价值。同时,TRC428高分辨率像增强相机的问世也证实了像增强相机的空间分辨率有进一步提升的空间,中智科仪将继续努力,持续研发,推动像增强相机的空间分辨率进一步提升。
  • 860万!上海科技大学高分辨率光谱仪采购项目
    一、项目基本情况项目编号:310000000231018136459-00044392项目名称:上海科技大学磁-惯性约束聚变能源系统关键物理技术项目购高分辨率光谱仪1预算编号: 0023-J00046862 预算金额(元): 8600000元(国库资金:8600000元;自筹资金:0元)最高限价(元): 无 采购需求: 包名称:磁-惯性约束聚变能源系统关键物理技术项目购高分辨率光谱仪1 数量:4 预算金额(元):8600000.00 简要规格描述或项目基本概况介绍、用途:上海科技大学磁-惯性约束聚变能源系统关键物理技术项目购高分辨率光谱仪4套及相关售后服务,交货期:合同签订后6个月内交付;质保期:不少于一年 合同履约期限: 合同签订后至合同规定内容全部完成 本项目( 否 )接受联合体投标。二、获取招标文件时间:2023年11月23日至2023年11月30日,每天上午00:00:00-12:00:00,下午12:00:00-23:59:59(北京时间,法定节假日除外)地点:上海市政府采购网方式: 网上获取 售价(元): 0 三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:上海科技大学地 址:华夏中路393号联系方式:021-206851792.采购代理机构信息名 称:上海健生教育配置招标有限公司地 址:上海市瞿溪路350号1楼联系方式:53087656-1053.项目联系方式项目联系人:余大为电 话:53087656-105
  • 中国首台天文观测高分辨率光纤光谱仪通过验收
    高分辨率光谱仪本体,设有主动温控系统,以适应高精度视向速度观测的需要。 1月6日,由中国科学院国家天文台南京天文光学技术研究所为山东大学威海分校研制的中国第一台天文观测高分辨率光纤光谱仪通过验收。验收专家组由国家自然科学基金委、国家天文台、山东大学和北京大学的专家组成。 该仪器配置在山东大学威海天文台的1米望远镜上。光谱仪光学系统采用白瞳设计,光束口径92.5mm。仪器设有良好的恒温、隔震系统,由光纤引导连接到望远镜的卡焦接口,并配备有平场定标,波长定标及碘蒸汽盒定标装置和独立的导星系统。光谱仪一次曝光可覆盖波长范围为375nm~1000nm,光谱分辨率为40000~60000。 该仪器的科学目标是进行恒星视向速度测量,高分辨率、高信噪比的星际参数测量和化学元素丰度测量等。从2010年8月仪器交付使用以来,山东大学威海天文台进行了大量的试观测。试观测期间,光谱仪性能优良,工作状态良好。高稳定度的恒温系统和高精度的碘蒸汽吸收装置为高精度视向速度测量提供了有力的保障。试观测中对于视星等8等的恒星,一小时曝光观测的信噪比好于100。
  • 超高分辨率让“不可能”变为“可能”!
    超高分辨率让“不可能”变为“可能”!史晓磊Isotope Abundance同位素丰度,是指自然界中存在的某一元素的各种同位素的相对含量(以原子百分计)。如1H的同位素丰度为99.985%,2H为0.015%。可用于追踪物质的运行和变化规律,借助同位素原子以研究有机反应历程的方法,称之为同位素示踪法。因其所引用的同位素标记化合物的化学量是极微量的,不会对体内生理过程产生影响,获得的分析结果符合生理条件,在代谢组学研究中被广泛应用。想在不受13C干扰的条件下去测量低丰度的2H示踪以用于代谢研究,是几乎不可能的,由于来自四极杆质谱的M+1质量同位素13C丰度很高,约为 18%,严重干扰了测定2H的标记示踪[1]。但实际上,2H(0.015%)的低自然丰度使得示踪剂剂量在理论上小于0.5%是可能的[2],这需要极高分辨率的质谱才能实现完全的基线分离,而Orbitrap Exploris GC 240出现之后,凭借其240000的超高分辨率,让以往在代谢研究中不可能实现的难题变为可能。今天为大家分享一篇美国德克萨斯大学西南医学中心的研究人员利用Orbitrap Exploris GC 240分析棕榈酸中的2H同位素示踪剂的应用。图1.棕榈酸酯C16H31O2的质量同位素分布摘要新生脂肪生成(De novo lipogenesis, DNL)是由碳水化合物等非脂质营养物质合成的脂肪酸,是长期储存热量和维持细胞膜的主要营养物质[3]。监测DNL在细胞器、细胞、组织活检、小鼠模型和人类等环境中的功能,将有助于发现新的分子生理学和许多不同疾病的潜在干预措施。DNL通量通常通过氘水(2H2O)给药后2H掺入脂肪酸来测量。本文利用GC-Orbitrap解析2H和13C脂肪酸质同位素,允许DNL定量使用较低的2H2O剂量和较短的实验周期。NewOrbitrap Exploris™ GC 240科研利器,引领潮流图2. 稳定同位素2H2O是测定DNL的基础 图3.EI模式下的棕榈酸甲酯的质谱图图4.NCI模式下的棕榈酸五氟苯酯质谱图 通过比较棕榈酸甲酯在EI模式和五氟溴代苯衍生棕榈酸酯在NCI模式下的质谱图,NCI测定五氟苯酯产生了未破碎的棕榈酸盐离子(C16H31O2,精确分子量为255.2324),比EI检测甲酯的效率和灵敏度高1000倍(见图3和图4)。 图5. 采用不同条件验证2H在棕榈酸中的示踪标记 针对不同AGC(自动增益控制)目标的靶向选择离子监测(Target-SIM)(2*104, 2*105和3*106),2H1和13C1的M + 1两种方法都能很好地分辨。而但全扫描数据为易受离子损失,特别是在AGC目标值高的情况下,容易产生空间电荷效应。同时,准确度高(94-107%),精度高(变异系数6.模拟人体水富集到0.3% 2H2O时棕榈酸质量富集作为DNL的函数研究棕榈酸酯13C1和2H1 (M + 1)质量位移需要用165,000的最小分辨率进行分辨,以往用傅立叶变换离子回旋共振质谱法(FT-ICR-MS)可以实现,但扫描时间长,并需要超导磁体[7],不易实现。当GC-Orbitrap商业化之后,成为很多代谢组学实验室进行分辨13C和2H的首选。为了确定这种方法是否比单位分辨率的质谱更有优势,模拟了超高分辨率的质谱0-10%的DNL分数范围和0.3%的体内水富集。结果证明,GC-Orbitrap为检测极低前体和产物富集的DNL提供了主要的理论优势。 图7. 在其他脂肪酸中也可以检测到2H富集 结论 本文介绍了一种HR-Orbitrap-GC-MS方法,该方法解决了其他同位素的2H质谱富集,来研究DNL生成。在棕榈酸中直接检测2H质量同位素可防止在低富集时与13C自然丰度的卷积,实验证明,DNL可以在1小时内检测完成,且2H2O的剂量比以前更低[8]。Orbitrap Exploris GC 240因其超高的24万分辨率解决了代谢组学研究中一直以来的难题,成为代谢组学研究中不可或缺的利器。 参考文献:1. Brunengraber, H., Kelleher, J. K. & Des Rosiers, C. Applications of mass isotopomer analysis to nutritional research. Annu. Rev. Nutr. 17, 559 (1997). 2. Diraison, F., Pachiaudi, C. & Beylot, M. In vivo measurement of plasma cholesterol and fatty acid synthesis with deuterated water: 3. Wallace, M. & Metallo, C. M. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin Cell Dev Biol, https://doi.org/10.1016/j.semcdb.2020.02.012 (2020). 4. Murphy, E. J. Stable isotope methods for the in vivo measurement of lipogenesis and triglyceride metabolism. J. Anim. Sci. 84, E94–E104 (2006). 5. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on orbitraps.Anal. Chem. 89, 5940–5948 (2017). 6. Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H.Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996). determination of the average number of deuterium atoms incorporated. Metabolism 45,817–821 (1996). 7. Herath, K. B. et al. Determination of low levels of 2H-labeling using highresolution mass spectrometry: application in studies of lipid flux and beyond.Rapid Commun. Mass Spectrom. 28, 239–244 (2014). 8. Previs, S. F. et al. Using [(2)H]water to quantify the contribution of de novo palmitate synthesis in plasma: enabling back-to-back studies. Am. J. Physiol.Endocrinol. Metab. 315, E63–E71 (2018).
  • 全国首套多功能高分辨率磁光克尔显微成像系统成功落户清华大学
    2021年5月,多功能高分辨率磁光克尔显微成像系统在清华大学顺利完成安装和调试,并获得用户的高度认可。该系统是由北京航空航天大学集成电路学院赵巍胜教授指导,张学莹老师带领团队根据多年积累的磁畴动力学实验技巧和 新的磁学及自旋电子学领域的热点课题研究需求设计的,也是Quantum Design中国与致真精密仪器(青岛)有限公司合作推出后在国内完成的套安装和验收。 致真精密仪器(青岛)有限公司工程师与用户的现场合影 安装精彩瞬间相比于传统的磁光克尔显微镜,该系统除了拥有高达300 nm的纵向和向克尔成像(分别对应面内和垂直各向异性样品磁畴测量),还增加了灵活的磁场探针台及面内旋转的磁场和高度智能化的软件控制系统。其中磁场探针台可以同时施加面内和垂直的磁场,通过智能控制系统,能够让用户利用软件定义电、磁等多种想要的波形,一键触发后,在样品上可同步施加垂直/面内磁场、电流脉冲、微波信号,进行磁光克尔成像及微区磁滞回线提取、局部饱和磁化强度Ms表征、局部各项异性能K的表征、海森堡交换作用常数Aex,Dzyaloshinskii-Moriya作用的表征等,在磁性薄膜材料和自旋电子器件动力学分析领域有着突出的优势。这套多功能高分辨率磁光克尔显微成像系统历经5年多的研发历程,在北航集成电路学院、北航青岛研究院的支持下,经过了3轮迭代和试用,在致真精密仪器(青岛)有限公司团队进行工程化之后,形成了性能稳定,功能多样,多场景适配改装方便的系统。该产品还获得了青岛市市长杯创新创业大赛一等奖。北航团队在该设备的强大功能支撑下,在DMI测量[1]、自旋轨道矩(SOT)效应研究[2]、磁畴壁动力学[3-4]、磁性材料和自旋电子器件研究[5]等方面,取得了丰富的成果。同时,该设备还可用于永磁材料和硅钢等软磁材料的磁畴分析等。该设备的成功落户标志着国产商用磁光克尔显微镜领域的长期空白得以弥补。作为北航集成电路学院工艺与装备系孵化的公司,致真精密仪器(青岛)有限公司传承了北航文化,响应在高端科研设备方面的需求,与时俱进,精益求精,敢于啃硬骨头,做高品质高可靠性产品。同时,作为本土企业,致真精密仪器会始终与用户保持良好沟通,紧密追踪前沿热点,以用户的需求和科学发展方向为指引,将 新的测试技术融入到产品中去,为新老用户持续做好服务,支持中国甚至全球更多的科研者的科学探索。目前,该系统已经更新至三代,感谢所有提出过建议的老师和同学们,也欢迎大家继续提供宝贵的意见!在此,特别感谢清华大学的老师对我们的信任与支持,祝他们科研顺利,硕果累累!目前,这款多功能高分辨率磁光克尔显微成像系统已经获得了清华大学、中国科学院物理研究所、北京工业大学、上海科技大学等客户多套订单。 产品基本参数: ☛ 向和纵向克尔成像分辨率可达300 nm;☛ 配置二维磁场探针台,面内磁场 高达1 T,垂直磁场 高达0.3 T(配置磁场增强模块后可达1.5 T);☛ 快速磁场选件磁场反应速度可达1 μs;☛ 可根据需要选配直流/ 高频探针座及探针;☛ 可选配二次谐波、铁磁共振等输运测试;☛配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;☛ 4K~800K,80K~500K 变温选件可选。 样机体验:目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供测样体验,欢迎感兴趣的老师或同学通过拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献:[1]. Cao, A. et al. Tuning the Dzyaloshinskii–Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness. Nanoscale 10, 12062–12067 (2018).[2]. Zhao, X. et al. Ultra-efficient spin–orbit torque induced magnetic switching in W/CoFeB/MgO structures. Nanotechnology 30, 335707 (2019).[3]. Zhang, X. et al. Low Spin Polarization in Heavy-Metal–Ferromagnet Structures Detected Through Domain-Wall Motion by Synchronized Magnetic Field and Current. Phys. Rev. Appl. 11, 054041 (2019).[4]. Zhang, Y. et al. Domain-Wall Motion Driven by Laplace Pressure in CoFeB/MgO Nanodots with Perpendicular Anisotropy. Phys. Rev. Appl. 9, 064027 (2018).[5]. Zhang, X. et al. Spin‐Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing. AdvancedScience 8, 2004645 (2021).
  • 半导体所完成水下高分辨率光学成像海试
    近期,中国科学院半导体研究所研发的“水睛”水下高分辨率环视摄像机完成了针对水下礁盘的摸底海试工作。海洋观测是开发海洋资源、保护海洋生态的关键技术,受到全球的关注,但是目前海洋生物群落及环境变化监测技术仍无法满足海洋大时空数据获取的需求,特别是深海。光学成像技术可提供高分辨率、符合人眼视觉特征的图像,但是在保障高分辨率的前提下存在视场小的问题,难以实现大范围的海底详查的需求。针对此种情况,半导体所周燕、王新伟及其科研团队研制了水下高分辨率环视摄像机“水睛”,可实现水下高分辨率大视角的光学成像,具备180°下视走航观测和360°原位环视观测两种模式(图1)。本次海试中,“水睛”搭载半导体所海面移动光学试验平台“冲浪者”号(图2),在约1000平方米海域进行了水下高分辨观测,完成了海上走航式观测、定点原位观测等摸底性观测试验,验证了设备具备5900万像素下良好的实时彩色成像功能。图1 水下环视摄像机的下视及环视工作模式(上图下视模式,下图环视模式)图2 搭载冲浪者号走航式观测过程中的“水睛”摄像机此次海试,研究人员利用水下摄像机多次完成了礁盘生态系统的观测,拍摄了大量的珊瑚、海星、贝类、鱼类等,形成了水下光学彩色图像库(图3),可用于海洋光学图像处理、目标识别等算法研究。图3海域美丽的珊瑚、鱼类、海星、砗磲等除珊瑚及鱼类等生物要素外,本次海试中,在海底还发现了生物附着的碗和盘子各一只(图4)。图4 生物附着的盘子和碗此次海试由半导体所和南开大学共同组织完成,除“水睛”摄像机外,还利用多参量海洋水体测量系统完成了海洋温盐深、核素、水体光学衰减系数等海洋水体多物理化学参量采集。相关工作得到了南方海洋实验室、中科院青促会项目的经费支持。 图5 项目团队及设备在海试现场
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • GE收购超高分辨率显微镜制造商
    4月末,通用电气医疗集团(GE Healthcare)签署了一项协议,收购细胞成像产品制造商Applied Precision,具体收购金额不详。随着这次收购行动,GE Healthcare有望进入快速增长的细胞成像领域。   总部位于华盛顿西雅图郊外的Applied Precision开发并制造高分辨率以及超高分辨率的显微镜仪器,让研究人员能够以其他类型显微镜无法实现的规模来研究细胞过程。   一般显微镜所拥有的分辨率能让研究人员观察到200 nm及以上的物体。因此,对于大小在10 nm左右的胰岛素,一般的显微镜是无法看到的。然而,有了超高分辨率显微镜,研究人员就能看到。电镜的分辨率与超高分辨率显微镜相似,但它们不能活体观察细胞,而后者能做到。   GE Healthcare负责细胞技术的总经理Amr Abid向国外媒体透露,通过在此水平研究细胞功能,研究人员能够对功能异常细胞的机制有了更深入的了解。他举了一些例子,比如利用超高分辨率显微镜来研究HIV病毒如何穿透细胞,这为新药开发提供了信息。   几个世纪以来,科学家们都是利用光学显微镜对肉眼无法看到的结构进行观测,目前光学显微镜已经成为了实验室必备的实验器材之一,但是随着研究的深入,光学显微镜的分辨率已经无法达到科学家们的要求了。2008年,《Nature》杂志将超高分辨率显微技术评为年度技术。   Abid估计,如今整个显微镜市场大概在20亿-30亿美元。其中,超高分辨率显微镜占了约20%。Applied Precision和徕卡(Leica)是硬件方面的行业领先者,他们各自的市场份额大约为30%-35%。   GE目前不提供超高分辨率显微镜,也不曾开发它们。Applied Precision的产品是对GE细胞分析产品线的很好补充。GE也在探索一些方法,将其现有的细胞研究技术与Applied Precision的仪器捆绑起来。   目前,GE在细胞成像方面的旗舰产品是2009年上市的IN Cell平台。IN Cell Analyzer平台提供了一整套从自动化图像获取到数据的定量和深度分析以及可视化的强大工具,来协助整个高内涵分析过程。前不久,GE推出了最新版本的分析平台&mdash &mdash IN Cell 6000。   据Abid透露,由于Applied Precision在高分辨率以及超高分辨率显微镜方面声名卓著,故GE打算保留其名称。该公司还计划保留全部130名员工,并在技术上继续投资。 GE还打算加大力度提高Applied Precision在亚太地区(如中国、印度和日本)的知名度,对于超高分辨率显微镜而言,这些区域是一个增长点,然而,Applied Precision目前的份额还很有限。 关于通用电气(中国)医疗集团生命科学部 GE Healthcare Life Science隶属于通用电气医疗集团,我们的产品和技术主要应用于基因科学、蛋白质科学、药物开发研究、以及生物制药、诊断、法医和环保等行业。 我们为制药公司提供完整解决方案,以减少新药筛选和开发的时间和费用,迅速、简单地将研究成果转为规模化生产,并更好地从药物开发候选方案中选择开发出有效、安全药物的方案,更快地研制新药,为医药研发领域的重大突破铺平道路。我们的Biacore和Microcal非标记分子相互作用分析系统是生物分子间相互作用、动力学和热力学研究的标准方法。我们的AKTA系统是专为生物分子纯化而设计的平台,集成了液相层析系统、软件和预装柱;市场上90% 以上FDA批准的生物药正是使用基于相同设计理念的可放大平台AKTAProcess系统和填料进行生物药物分子的提纯。我们的Whatman品牌提供在全球享有盛誉的过滤产品和技术,为分析领域、医疗保健和生物科学市场提供全新的解决方案。 欲了解更多有关GE医疗集团生命科学部的信息,请访问公司网站www.gelifesciences.com.cn,或垂询800-810-9118。
  • 韩国研发超高分辨率单次测定“核磁共振分析法”
    韩国科学技术研究院(KIST)开发出仅需单次测量就可获得超高分辨率碳原子核磁共振信息的分析法,可用于分析分子结构复杂的天然物质结构。研究结果刊登在《Angebante Chemi》上。  这种“超选择性异种核分极传达法(UHPT)”可在短时间内选择性分析碳、氢原子及它们之间的连接信息,仅需一次测量即可在碳原子核NMR信号中找出与特定氢原子核连接的碳,实现数赫兹(Hz)水平分辨率的碳原子信号。与传统分析法相比,该分析法具有快速、准确和经济性。与超高磁场NMR设备相比,仅用约为五分之一的检测时间,即可获得同等水平的NMR信号解析能力。在天然物质生物产业领域,该技术可用作查明新材料有效成分及规格化的标准分析技术。  本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 海顿科克推出19000系列高分辨率固定轴式直线电机
    海顿科克直线传动是直线传动领域的领导者,最近公司又新推出了高分辨率的19000系列的固定轴式直线电机,这种新的直径只有20mm的永磁式步进电机步距角只有7.5度,所以它可以用在空间更小的地方,达到更高的精度。 海顿19000高分辨率电机有很高的输出功率,非常适合用在需要高分辨率的地方。海顿19000高分辨率电机相比市场差不多尺寸的电机是最出色的,在输出功率,稳定性和定位精度上都要高出许多。 19000高分辨率电机是海顿第4代(G4)直线步进电机的最新产品,G4电机拥有更出色的性能和更长久的寿命。产品使用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承以保证产品在整个使用寿命中都能保持免维护和重复定位精度。 19000高分辨率直线步进电机可以在较小的空间内提供比较大的推力,并且定位精确,因此该电机在打印机,分析仪器,实验室装备等设备上有着普遍的使用,另外在其他小空间需要大推力的场合,海顿电机也是不二的选择。 更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
  • 240万!复旦大学高分辨率晶体衍射仪采购项目(二次招标)
    项目编号:0705-2240 02028108项目名称:复旦大学高分辨率晶体衍射仪采购预算金额:240.0000000 万元(人民币)最高限价(如有):235.2000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高分辨率晶体衍射仪1套最大输出功率:3kW或更优;最大管流达到或优于:60mA,1mA/步,机柜同步数字显示。预算金额:人民币240万元。最高限价:人民币235.2万元。合同履行期限:签订合同后8个月内。 合同履行期限:合同履行期限:签订合同后8个月内。本项目( 不接受 )联合体投标。
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。   光学显微镜的出现及其影响   自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。   此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。   SR技术的发展过程   在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。   在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。   最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。   通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。   这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。   虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。   现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。   除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。   今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。   最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。   SR荧光显微镜在生物学研究中的应用   到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。   通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础   结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。   SR成像有助于人们更好地了解分子间的差异   细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。   SR成像技术还能用于在单分子水平研究蛋白动态组装过程   细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。   上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。   原文检索:   Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233
  • 深圳先进院高分辨率超声成像研究获系列进展
    p   近期,中国科学院深圳先进技术研究院劳特伯医学成像研究中心郑海荣团队在高分辨率超声成像研究中取得一系列进展。 /p p   高分辨率超声主要采用大于15MHz的超声频率进行成像,可获得几十微米量级的成像分辨率。在临床中主要应用于浅表、内窥和眼科等方面的疾病检测。高频超声换能器是成像系统的关键部件,主要基于压电材料进行设计加工。但传统压电材料介电常数较小(夹持介电常数小于1500),造成压电阵元尺寸小的高频换能器的电阻抗会大幅度提升,进而导致换能器成像性能不佳。郑海荣团队邱维宝课题组利用新开发的一种高介电常数、高压电性能的改性PMN-PT陶瓷(夹持介电常数为3500)设计制备了性能优异的40MHz高频超声换能器(阵元尺寸可为0.4mm× 0.4mm),使得制备的高频超声换能器的电阻抗大幅度降低,更容易与电子系统的阻抗相匹配,实现较高的成像灵敏度(-13dB)。此外,该研究中设计制备的超声换能器具有较高的成像带宽(80%)和信噪比,并在高分辨率医学成像领域中展现出应用潜力。相关研究成果已被IEEE Trans Ultrason Ferroelectr Freq Control接收。 /p p   邱维宝课题组在高分辨率超声成像方法和电子系统方面也取得了研究进展。高频超声获得高分辨率医学图像存在衰减系数增大导致成像穿透深度降低的问题。据此,课题组提出了基于编码超声的高频超声成像方法,在激励换能器时,采用带有一定编码的超声信号进行激励,回波接收时通过算法解码恢复出高分辨率图像,使得在成像中既可以维持图像的分辨率,也可以提升超声成像的穿透深度。该技术在浅表和内窥等成像中具有应用潜力。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   在进行高分辨率超声成像时,电子系统需要具有较高的数据采样率,以获取超声回波的原始数据信息,因此需要大幅度提高模数转换器(ADC)的采样频率。然而,传统超声成像系统的ADC采样频率通常为60MHz或者更低,不能满足大于30MHz的高频成像需要。据此,邱维宝课题组提出了一种延迟激励方法,通过将激励波束的时序进行规律性调整,在多次发送后获取多个数据图像,通过延迟复合处理,即可以获得高采样率的图像。该方法有望使临床用的超声设备,在不改动主要电子器件模数转换器的前提下,实现高分辨率超声成像的功能。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   高分辨率超声成像技术在内窥镜领域具有重要的应用潜力,邱维宝课题组在推进血管内超声成像技术的同时,也在尝试新型内窥成像技术。胶囊内窥镜(capsule endoscopy)是一种胶囊形状的内窥镜,它是用来检查人体肠胃的医疗仪器。胶囊内窥镜体积仅有普通胶囊大小,消除了传统检查耐受性差的缺点,能够拍摄食道、胃、小肠、大肠等,从而完成对人体整个消化道的检查。然而目前该技术是采用光学成像方法,仅能观测组织表层的病变信息,不能获得深层次的组织情况。由于超声成像技术的穿透性较好,因此课题组拟尝试进行超声胶囊内窥镜的设计验证,提出了基于高分辨率超声的内窥成像控制方案,采用40MHz的超声频率获得了小于60微米的肠道组织成像分辨率。相关研究成果发表于IEEE Trans Med Imaging。 /p p   以上研究得到了国家自然科学基金、中科院前沿科学重点研究计划、广东省杰出青年基金、深圳市孔雀计划等项目的资助,以及美国南加州大学、宾夕法尼亚州立大学,英国格拉斯哥大学,东北大学等高校的支持与合作。 /p p   论文题目:High Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity /p p style=" text-align: center " img title=" 01.png" src=" http://img1.17img.cn/17img/images/201712/insimg/76653693-b0cd-480d-ab1c-d835a6a2f035.jpg" / /p p style=" text-align: center " strong 图1.(a)高频超声换能器技术参数对比 (b)高频超声换能器结构示意图和实物图 (c)成像性能测试图 /strong /p p style=" text-align: center " img title=" 02.png" src=" http://img1.17img.cn/17img/images/201712/insimg/c0246a6c-4345-4ee5-b1a2-fe74a5030a04.jpg" / /p p style=" text-align: center " strong 图2.(a-c)编码成像原理示意图 (d)编码成像技术可以大幅度提高血管内超声成像的穿透深度 /strong /p p style=" text-align: center " img title=" 03.png" src=" http://img1.17img.cn/17img/images/201712/insimg/86bdbf66-cabb-484d-92d3-d2dc22d62b25.jpg" / /p p style=" text-align: center " strong 图3.左:延迟激励成像原理示意图 右:眼睛组织超声成像图 /strong /p p style=" text-align: center " img title=" 04.png" src=" http://img1.17img.cn/17img/images/201712/insimg/90b38fc1-6ef0-4192-83b1-723cacb12d4c.jpg" / /p p style=" text-align: center " strong 图4.(a-b)胶囊超声内窥镜设想方案示意图 (b)高分辨率肠道组织超声成像图 /strong /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制