当前位置: 仪器信息网 > 行业主题 > >

果实树木茎干生长测量仪

仪器信息网果实树木茎干生长测量仪专题为您提供2024年最新果实树木茎干生长测量仪价格报价、厂家品牌的相关信息, 包括果实树木茎干生长测量仪参数、型号等,不管是国产,还是进口品牌的果实树木茎干生长测量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合果实树木茎干生长测量仪相关的耗材配件、试剂标物,还有果实树木茎干生长测量仪相关的最新资讯、资料,以及果实树木茎干生长测量仪相关的解决方案。

果实树木茎干生长测量仪相关的论坛

  • 叶面积测量仪测量范围是多少

    叶面积测量仪测量范围是多少

    [size=16px]  叶面积测量仪测量范围是多少  叶面积测量仪的测量范围取决于具体的仪器型号和制造商,不同型号的叶面积测量仪可能有不同的测量能力和规格。一般来说,叶面积测量仪的测量范围通常包括以下方面:  叶片面积:叶面积测量仪主要用于测量植物叶片的表面积,其范围可以从小型植物的小叶片到大型树木的大叶片。测量范围通常以平方厘米(cm2)或平方米(m2)为单位。  叶片数量:一些叶面积测量仪具有多个测量通道,可以同时测量多片叶子的面积。这对于效率和大规模叶面积测量非常有用。  叶片形状和尺寸:测量仪通常能够适应不同形状和尺寸的叶片,包括圆形、椭圆形、线性和复杂的形状。  叶片厚度:有些叶面积测量仪还可以估算叶片的厚度,从而提供更详细的叶片特征信息。  具体的测量范围将根据仪器的设计和规格而异,所以在选择叶面积测量仪时,您应该查看仪器的技术规格和制造商提供的信息,以确保它满足您的测量需求。如果需要测量较大范围的叶面积,可能需要考虑使用专业的大型叶面积测量仪或使用多次测量的方法来覆盖整个叶片。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151025162609_7338_6098850_3.png!w690x690.jpg[/img][/size]

  • 【分享】树木施肥时应注意的事项及特点

    根据园林树木生物学特性和栽培的要求与条件,其施肥的特点是:第一,园林树木是多年生植物,长期生长在同一地点,从肥料种类来说应以有机肥为主,同时适当施用化学肥料,施肥方式以基肥为主,基肥与追肥兼施。其次,园林树木种类繁多,作用不一,观赏、防护或经济效用互不相同。因此,就反映在施肥种类、用量和方法等方面的差异。在这方面各地经验颇多,需要系统的分析与总结。从前文得知,园林树木生长地的环境条件是很悬殊的,有荒山,荒地,又有平原肥土,还有水边低湿地及建筑周围等,这样更增加了施肥的困难,应根据栽培环境特点采用不同的施肥方式。同时,园林中对树木施肥时必须注意园容的美观,避免发生恶臭有碍游人的活动,应做到施肥后随即覆土。 1.掌握树木在不同物候期内需肥的特性  树木在不同物候期需要的营养元素是不同的。在充足的水分条件下,新梢的生长很大程度取决于氮的供应,其需氮量是从生长初期到生长盛期逐渐提高。随着新梢生长的结束,植物的需氮量尽管有很大程度的降低,但蛋白质的合成仍在进行。树干的加粗生长一直延续到秋季。并且,植物还在迅速地积累对次春新梢生长和开花有着重要作用的蛋白质以及其他营养物质。所以,树木在整个生长期都需要氮肥,但需求量有所不同。 在新梢缓慢生长期,除需要氮、磷外,也还需要一定数量的钾肥。在此时期内树木的营养器官除进行较弱的生长外,主要是在植物体内进行营养物质的积累。叶片加速老化,为了使这些老叶还能维持较高的光合能力,并使植物及时停止生长和提高抗寒力,此期间除需要氮、磷外,充分供应钾肥是非常必要的。在保证氮、钾供应的情况下,多施磷肥可以促使芽迅速通过各个生长阶段有利于分化成花芽。 开花、坐果和果实发育时期,植物对各种营养元素的需要都特别迫切,而钾肥的作用更为重要。在结果的当年,钾肥能加强植物的生长和促进花芽分化。 树木在春季和夏初需肥多,但在此时期内由于土壤微生物的活动能力较弱,土壤内可供吸收的养分恰处在较少的时期。解决树木在此时期对养分的高度需要和土壤中可给态养分含量较低之间的矛盾,是土壤管理和施肥的任务之一。 树木生长的后期,对氮和水分的需要一般很少,但在此时,土壤所供吸收的氮及土壤水分却很高,所以,此时应控制灌水和施肥。 据河北农业大学对苹果.枣、桃等树木用p32标记观测表明:养分首先满足生命活动最旺盛的器官,即养分有其分配中心,随着物候期的进展,分配中心也随之转移,如‘金冠’苹果,在萌芽期,芽中p32含量多,开花期花中最多,坐果期果实中最多,花芽分化期以花芽中最多。陕西果树研究所的研究表明,如养分分配中心以开花坐果为中心时,如追肥量超过一般生产水平,可提高坐果率,若错过这一时期即使少量施肥,也可促进营养生长,往往加剧生理落果。 树木需肥期因树种而不同,如柑橘类几乎全年都能吸收氮素,但吸收高峰在温度较高的仲夏;磷素主要在枝梢和根系生长旺盛的高温季节吸收,冬季显著减少;钾的吸收主要在5 -11月间。而栗树从发芽即开始吸收氮素,在新梢停止生长后,果实肥大期吸收最多;磷素在开花后至9月下旬吸收量较稳定,11月以后几乎停止吸收;钾在花前很少吸收,开花后(6月间)迅速增加,果实肥大期达吸收高峰,10月以后急剧减少。可见,施用三要素的时期也要因树种而异。了解树木在不同物候期对各种营养元素的需要,对控制树木生长与发育和制定行之有效的施肥方法非常重要。 2.掌握树木吸肥与外界环境的关系  树木吸肥不仅决定干植物的生物学特性,还受外界环境条件(光、热、气、水、土壤反应、土壤溶液的浓度)的影响。光照充足,温度适宜,光合作用强,根系吸肥量就多;如果光合作用减弱,由叶输导到根系的合成物质减少了,则树木从土壤中吸收营养元素的速度也变慢。而当土壤通气不良时或温度不适宜时,同样也会发生类似的现象。 土壤水分含量与发挥肥效有密切关系,土壤水分亏缺,施肥有害无利。由于肥分浓度过高,树木不能吸收利用,而遭毒害。积水或多雨地区肥分易淋失,降低肥料利用率。因此,施肥应根据当地土壤水分变化规律或结合灌水施肥。 土壤的酸碱度对植物吸肥的影响较大。在酸性反应的条件下,有利于阴离子的吸收;而碱性反应的条件下,有利于阳离子的吸收。在酸性反应的条件下,有利于硝态氮的吸收;而中性或微碱性反应,则有利于铵态氮的吸收,即在pH =7时,有利于NH4-的吸收;pH=5~6时,有利于NO3的吸收。 土壤的酸碱反应除了对吸肥有直接的作用外,还能影响某些物质的溶解度(如在酸性条件下,提高磷酸钙和磷酸镁的溶解度。在碱性条件下,降低铁、硼和铝等化合物的溶解度),因而也间接地影响植物对营养物质的吸收。 3.掌握肥料的性质  肥料的性质不同,施肥的时期也不同,易流失和易挥发的速效性或施后易被土壤固定的肥料,如碳酸氢铵,过磷酸钙等宜在树木需肥前施入;迟效性肥料如有机肥料,因需腐烂分解矿质化后才能被树木吸收利用,故应提前施用。同一肥料因施用时期不同而效果不一样,如据北京农业大学园艺系1977年报道,同量的硫酸铵秋施较春施开花百分率高,干径增加量大,1年生枝含氮率也高。因此,肥料应在经济效果最高时期施入。根据山东莱阳农校报道(1972):前期追氮肥,苹果着色好而鲜艳,蜡质多。施肥时期越晚,果实着色差,果皮蜡质少,并与上述结果相反。因为施氮肥较晚,促进营养生长,使养分不能积累所致。关于氮肥的施用时期在什么时候才合适,文献报道也各不相同,有矛盾的地方。因此决定氮肥施用时期,应结合树木营养状况,吸肥特点,土壤供肥情况以及气候条件等综合考虑,才能收到较好的效果。

  • 【云唐】atp测量仪是什么仪器

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403070915305401_3453_5604214_3.jpg!w690x690.jpg[/img]  ATP测量仪是一种用于测量环境中ATP(三磷酸腺苷)浓度的仪器。ATP是生物体内能量转换的重要分子,广泛存在于各种生物体内,包括细菌、病毒、真菌等微生物。因此,ATP测量仪通常被用于环境监测、食品安全、医疗卫生等领域,以检测微生物的存在和数量。  ATP测量仪的工作原理是基于荧光素酶和荧光素的反应。荧光素酶能够催化ATP与荧光素发生反应,产生荧光信号。荧光信号的强度与ATP的浓度成正比,因此可以通过测量荧光信号的强度来推算ATP的浓度。  ATP测量仪具有快速、简便、灵敏度高、可重复性好等优点,因此在环境监测、食品安全、医疗卫生等领域得到了广泛应用。在环境监测方面,ATP测量仪可以用于检测水、土壤、空气等环境中的微生物污染情况,为环境保护提供科学依据。在食品安全方面,ATP测量仪可以用于检测食品中的微生物污染情况,保障食品的安全性和卫生质量。在医疗卫生方面,ATP测量仪可以用于检测医疗器械、手术室、病房等环境中的微生物污染情况,为医疗卫生提供有效的监测手段。  除了以上应用领域,ATP测量仪还可以用于其他领域,如生物研究、制药工业等。在生物研究方面,ATP测量仪可以用于研究细胞代谢、微生物生长等方面的问题。在制药工业方面,ATP测量仪可以用于检测药品生产过程中的微生物污染情况,确保药品的质量和安全性。  总之,ATP测量仪是一种重要的环境监测仪器,具有广泛的应用前景。随着科学技术的不断发展,ATP测量仪的性能和应用范围也将不断提高和扩大,为环境保护、食品安全、医疗卫生等领域的发展提供有力的支持。

  • 【经验】数字化影像测量仪(CNC版)与手摇式影像测量仪的区别!!!!

    影像测量仪(又名影像式精密测绘仪)是在测量投影仪的基础上进行的一次质的飞跃,它将工业计量方式从传统的光学投影对位提升到了依托于数位影像时代而产生的计算机屏幕测量。值得一提的是,目前市面上有一种既带数显屏又接计算机的过渡性产品。从严格意义来说,这种仅把电脑用作瞄准工具的设备不是影像测量仪,只能叫做“影像式测量投影仪”或“影像对位式投影仪”。换句话说:影像测量仪是依托于计算机屏幕测量技术和强大的空间几何运算软件而存在的。影像测量仪又分数字化影像测量仪(又名CNC影像仪)与手摇式影像测量仪两种,它们之间的区别主要表现在如下几个方面:一:数字化CNC技术实现了点哪走哪:手摇影像测量仪在测量点A、B两点之间距离的操作是:先摇X、Y方向手柄走位对准A点,在用手操作电脑并点击鼠标确定;然后摇手到B点,重复以上动作确定B点。每次点击鼠标该点的光学尺位移数值读入计算机,当所有点的数值都被读入后计算机自动进行计算并得到测量结果,一切功能与操作都是分离进行的;数字化CNC影像测量仪则不同,它建立在微米级精确数控的硬件与人性化操作软件的基础上,将各种功能彻底集成,从而成为一台真正义上的现代精密仪器。具备无级变速、柔和运动、点哪走哪、电子锁定、同步读数等基本能力;鼠标移动找到你所想要测定的A、B两点后,电脑就已帮你计算测量出结果,并显示图形供校验,图影同步,既使是初学者测量两点之间距离也只需数秒钟。二:数字化技术实现了工件随意放置:手摇式影像测量仪在进行基准测量时,需要摇动工作平台,然后通过认为判断所要求的点。而数字化影像测量仪可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准距离测量变得十分简便而直观。三: 数字化技术能进行CNC快速测量:手摇式影像测量仪在进行同一工件的批量测量时,需要人工逐一手摇走位,有时一天得摇上数以万计的圈数,仍然只能完成数十个复杂工件的有限测量,工作效率低下。数字化影像测量仪可以通过样品实测、图纸计算、CNC数据导入等方式建立CNC坐标数据,由仪器自动走向一个一个的目标点,完成各种测量操作,从而节省人力,提高效率。数十倍于手摇式影像测量仪的工作能力下,操作人员轻松而高效.如有疑问请登陆www.yr17.net

  • 天泽全自动影像测量仪的特点

    [color=#2f2f2f]来源:http://www.dg[/color][url=https://links.jianshu.com/go?to=http%3A%2F%2Fbbs.elecfans.com%2Fzhuti_715_1.html]ti[/url][color=#2f2f2f]anze.com 作者:天泽精密仪器[/color] [url=http://www.dgtianze.com/]全自动[b]影像测量仪[/b][/url]是现代光学非接触式测量仪器,它是在数字化基础上发展而来的人工智能型测量仪。这种测量仪器继承了数字化运动精度、运动操控的特点,结合视觉软件的创新。全自动影像测量仪具有高精度、高效率、自动化、稳定性好等优点。解决了制造业的几大难题,影像测量仪界的骄傲。天泽精密推出的全自动影像测量仪具有人工测量、CNC扫描、自动学习测量三种方式,还可以将三种性能融合,实现复合扫描。也可以进行跟踪式扫描,实现点哪走哪的测量,并且能够对成像误差进行修正。全自动影像测量仪具有以下特点:1. 高数字化程度 全自动影像测量仪的测量操作全部由鼠标操作,微米数控实现了人机合一点哪走哪的愿望。以前的手动仪器测量过程很繁琐,也容易造成人工误差,而全自动测量仪在这方面就得到改善,摆脱了人工缺陷。增加的非线性误差修正使得仪器在精度、速度上都有巨大提高。 2. 空间运算几何能力 全自动影像测量仪具有高端软件技术,能够实现坐标系旋转和坐标系的复杂运算。就算将被测工件随意放置,也可以对其进行检测,能够直观的看出坐标方向和测量点,一目了然又容易操作。 3. 个性化软件 全自动影像测量仪具有强大的软件功能,能够进行图像的编辑、保存、处理等,还能够很容易的描绘、导入CAD图形。还可以依据客户需求,设计增添个性化的测量模块,为客户量身打造所需测量仪。 全自动影像测量仪高智能化、自动化的特点,使得测量变得简便。融合了机器视觉和自动学习的能力,并结合数字微米走位,使得测量过程能够被仪器记忆和学习。全自动影像测量仪便于操作员使用学习,满足企业抽检和大批量检测的要求,提高企业工作效率,能正真为企业做贡献。 天泽精密仪器作为国内知名仪器制造企业,其励精图治研究开发的的全自动影像测量仪也十分先进。比如全自动系列中的&ldquo VIP大行程龙门式&rdquo 影像测量仪,其功能强大,精度极高,并且能测量大尺寸的工件,测量行程可达2000*1500mm。另外&ldquo VIP系列全自动光学影像坐标测量仪&rdquo 也是天泽精密仪器全自动测量仪中的一个系列,其x/y线性精度高达2+L/3&mu m,显示分辨率高达0.0001mm。而且配有强大的软件功能,还可根据客户需求进行调节设计,售后软件升级也配有保障,客户可以放心选择。

  • 全自动影像测量仪的技术

    全自动影像测量仪是在数字化影像测量仪基础上发展起来的人工智能型现代光学非接触测量仪器,其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更精准的测量需要,解决制造业发展中的又一个瓶颈技术。全自动影像测量仪基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有“点哪走哪”自动测量、CNC走位自动测量、自动学习批量测量,影像地图目标指引,全视场鹰眼放大等优异功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰造影下辅助测高需要(亦可加入触点测头完成坐标测高)。支持空间坐标旋转的优异软件性能,可在工件随意放置的情况下进行批量测量,亦可使用夹具进行大批量扫描测量与SPC 结果分类。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而精准的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。最新推出的全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现“点哪走哪”的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,从而提高关键数据的批测精度。全自动影像测量仪人机界面友好,支持多重选择和学习修正,其优异的高速测量可达1500mm/min,重合精度: ±2μm,线性精度:±(3+L/150)μm。优秀性能使其在各种精密电子、晶圆科技、刀具、塑胶、精密零件、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。SK全自动影像测量仪承续了SK数字化影像仪的以下技术特点:集CNC快速测量、CAD逆向测绘、图影管理于一身。运用了现代光学、计算机屏幕测量、空间几何运算和精密运动控制等前沿技术,是集光、机、电、软件为一体的高度智能化设备。具有三轴数控、点哪走哪、图影同步、实时校验、误差修正、工件随意放置、CNC快速测量等基础性能。具有极高的数字化程度,全部操作均由鼠标完成。柔和的三轴微米数控能力,实现“点哪走哪”、同步读数、人机合一;良好的人机界面将烦琐的操作过程有机集成,摆脱手摇时代的机械局限;实时非线性误差修正使其突破了传统设备中存在的精度与速度极限;便捷的CNC快速测量,通过样品实测、图纸计算、CNC 数据导入等方式建立CNC坐标数据,由仪器自动走向每一个目标点进行测量操作,数十倍于手摇式测量设备的工作能力下人员轻松高效。具有优异的高速性能,基于独有的高速位移传感技术,其±2um测量精度下的速度可达500mm/min,其工作效率是工具手摇式测量仪器的数十倍以上。位移驱动为0.1μm,位移解析度为0.4μm,重合精度达±2μm,线性精度±(3+L/150)μm,这些参数均优于传统设备和同类产品。具有空间几何运算能力,可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准测量变得十分简便而直观,也使分度盘这个机械时代的产物与摇柄一起成为历史。具有支持个性化的软件平台,具有图像保存、编辑、处理等图影管理功能。全新的测绘操作,可轻松描绘或导入CAD图形。还可根据客户需求扩充测量模块,从而满足个性化特点和综合测量的快速需要,使测量设备具有量身定做的软件灵魂。

  • 目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别?

    随着中国市场的科技技术日新月异,制造业对产品的精度要求越来越高,人为测量已无法满足客户要求,大家都开始借助仪器测量。目前市面上对于尺寸的测量主要是有二次元及三次元等。那么这些测量仪的区别在哪儿呢?目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 直线度测量仪在现代工业中有广泛的应用前景

    [font=Tahoma, &][size=16px][color=#444444]在现代的生产中,传统的产品直线度尺寸检验是直尺法、准直法、重力法和直线法等离线检测方法。这种检测方法具有滞后性,检测效率低,而生产企业要想得到快速高质量生产,一台在线直线度测量仪是必不可少的。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪是可进行在线无损直线度尺寸检测的设备,可在生产线上监测直线度的微小变化,提供及时的检测数据,在超差时进行声光提醒,从而实现高质量的生产。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪由3台测量仪构成,每台测量仪内采用成90°交叉分布的2路光电测头测量棒材边缘的位置,利用2路测头的位置数据计算测量点在坐标系中的实际偏差。因此,无论被测物的弯曲方向如何,测量仪均可测得真实的直线度尺寸。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]测径工作介绍:棒材通过测量仪的测量区,每台小型测量仪分别实时采集直径数据。当外径测量的数据超过设定的公差范围时,声光报警器自动声光报警。测量的数据传输到控制柜中进行存储、显示、分析等。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度工作介绍:3台小型测量仪同时采集各截面边沿的位置,计算圆棒的直线度误差,与测径数据采集不冲突。当直线度超过设定的公差范围时,声光报警器自动声光报警,达到合格判定的目的。测量的数据传输到控制柜中进行存储、显示、分析等。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪可兼顾直径与直线度的检测,直线度测量精度≤±0.5mm。整个系统中测量仪安装在轧制现场,控制柜安放在控制室或其它环境适合电脑工作的室内。测量仪的供电电源由控制柜引入,测量仪的测头采用串口服务器合并成1路数据后通过网线或光缆传输至控制柜内的工控机。[/color][/size][/font][font=Tahoma, &][size=16px][color=#444444]直线度测量仪具有检测精度高、响应速度快、抗干扰性好、可靠性高等特点,能够满足棒材生产现场条件的使用要求。能安装于生产线上进行测量,它可实现长距离大范围的连续测量,同时具有精度高,测量准确性好的特点,这种自动化的在线直线度测量仪在现代工业及国民经济建设中有广泛的应用前景。[/color][/size][/font]

  • 【资料】测量仪器的计量特性

    测量仪器的计量特性 测量仪器的计量特性是指其影响测量结果的一些明显特征,其中包括测量范围、偏移、重复性、稳定性、分辨力、鉴别力和示值误差等。为了达到测量的预定要求,测量仪器必须具有符合规范要求的计量学特性。 确定测量仪器的特性,并签发关于其法定地位的官方文件,称为测量仪器控制。这种控制可包括对测量仪器的下列运作中的一项、两项或三项: ——型式批准; ——检定; ——检验。 这些工作的目的是要确定测量仪器的特性是否符合相关技术法规中规定的要求。型式批准是由政府计量行政部门做出的承认测量仪器的型式符合法定要求的决定。所谓型式,是指某一种测量仪器的样机及(或)它的技术文件(例如:图纸、设计资料等),实质上就是该种测量仪器的结构、技术条件和所表现出来的性能。 检定是查明和确认测量仪器是否符合法定要求的程序,它包括检查、加标记和(或)出具检定证书。检验是对使用中测量仪器进行监督的重要手段,其内容包括检查测量仪器的检定标记或检定证书是否有效、保护标记是否损坏、检定后测量仪器是否遭到明显改动,以及其误差是否超过使用中最大允许误差等。

  • 电子测量仪器市场前景看好

    (2006-9-1)   电子仪器是对物质世界的信息进行测量与控制的基本手段。它融合了微电子技术、计算机技术、通信技术、网络技术、新元器件新材料技术、现代测试技术、现代设计制造技术和现代工艺技术等,是现代工业产品中新技术应用最多、最快的产品之一。 近年来,我国电子测量仪器行业在经过一段沉寂后,慢慢开始复苏。   生产与销售大幅增长的主要有两个原因,一是市场的巨大需求,特别是通信、广播电视市场的巨大发展,引发了电子测量仪器市场的迅速增长,二是电子测量仪器行业近几年迅速向数字化、智能化方向发展,推出了部分数字化产品,因而在若干个门类品种上取得了较快增长。值得指出的是,示波器等一些市场较大的产品门类,由于国内在数字化、智能化水平上跟不上市场的要求,因而国内市场大量被国外产品所占据。   据中国电子仪器行业协会介绍,电子测量仪器新产品继续向数字化、软件化、智能化、宽带化、集成化、多功能化、电路专用化、误差分析模型化、测试系统模块化、高精度、高稳定性方向发展。   我国电子测量仪器市场已经成为世界上最具有潜力的电子测量仪器市场之一。展望未来几年,由于我国经济发展形成的巨大需求,电子测量仪器的国内市场仍将呈高速发展的趋势,特别是数字电视和通信市场的高速发展,使我国电子测量仪器行业面临着巨大的挑战和机遇。据预测,“十一五”我国数字电视的市场将达到1000亿~1500亿元/年,将对电子测量仪器产生较大的需求;与此同时,通信市场的发展速度仍然比较强劲,而国产通信电子测量仪器的市场占有率很低,因此,加快国产通信电子测量仪器的开发和商品化已经成为本行业的迫切任务。   面对我国高速发展的电子测量仪器市场,电子测量仪器有关企业将加快技术进步和市场开发的步伐,努力做好国内外市场的开拓工作,真正把中国的电子测量仪器产业做强做大,将更多、更好、更新的电子测量仪器产品提供给广大用户 摘自:北极星

  • 【分享】测量仪器的准确度

    定义 指“测量仪器给出接近于真值的响应的能力”(见JJF1001-1998《通用计量术语及定义》7.18条,以下简称条款)。也就是指测量仪器给出的示值接近于真值的能力,即测量仪器由于仪器本身所造成的其输出的被测量值接近被测量真值的能力。由于各种测量误差的存在,通常任何测量是不可能完善的,所以实际上真值是不可知的,当然接近于真值的能力也是不确定的,因此测量仪器准确度是反映了测量仪器示值接近真值的一种程度,所以在该定义的注中说明准确度是一个定性的概念。 测量仪器准确度是表征测量仪器品质和特性的最主要的性能,因为任何测量仪器的目的就是为了得到准确可靠的测量结果,实质就是要求示值更接近于真值。为此虽然测量仪器准确度是一种定性的概念,但从实际应用上人们需要以定量的概念来进行表述,以确定其测量仪器的示值接近于其真值能力的大小。在实际应用中这一表述是用其他的术语来定义的,如准确度等级、测量仪器的示值误差、测量仪器的最大允许误差或测量仪器的引用误差等。准确度等级是指“符合一定的计量要求,使误差保持在规定极限以内的测量仪器的等别、级别”(7.19条)。即就是按测量仪器准确度高低而划分的等别或级别,如电工测量指示仪表按仪表准确度等级分类可分为0.1、0.2、0.5、1.0、1.5、2.5、5.0等七级,具体说就是该测量仪器满量程的引用误差,如1.0级指示仪表,则其满量程误差为±1.0%FS。如百分表准确度等级分为0、1、2级,则主要是以示值最大允许误差来确定。如准确度代号为B级的称重传感器,当载荷m处于0≤m≤5000v时(v为传感器的检定分度值),则其最大允许误差为0.35v。又如一等、二等标准水银温度计,就是以其示值的最大允许误差来划分的。所以准确度等级实质上是以测量仪器的误差来定量表述测量仪器准确度的大小。有的测量仪器没有准确度等级指标,则测量仪器示值接近于真值的响应能力就是用测量仪器允许的示值误差来表述,因为测量仪器的示值误差就是指在规定条件下测量仪器示值与对应输入量的真值之差,这和测量仪器准确度定义概念是完全相对应的,如长度用半径样板,它就是以名义半径尺寸来规定其允许的工作尺寸偏差值来确定其准确度。因为真值是不可知的,实际上测量仪器可以用约定真值或实际值来计算其误差的大小,通过示值误差、最大允许误差、引用误差或准确度等级来定量进行表述。实际上准确度等级也只是一种表述形式,这些等级的划分仍是以最大允许误差、引用误差等一系列的特性来定量表达的。 这里要注意,从名词术语的名称和定义来看,测量仪器准确度和准确度等级、测量仪器的示值误差、最大允许误差、引用误差等其概念是不同的,测量仪器准确度术语是定性的概念,严格讲要定量地给出测量仪器接近于真值的响应能力,则应该指明给出量值是什么量,是示值误差、最大允许误差、引用误差或准确度等级,不能笼统地称为准确度。我们可以认为测量仪器准确度是它们这些特性概念的总称,测量仪器准确度可以用其它相应的术语来定量表述,这二者是有区别的。准确度1级应称为准确度等级为1级,准确度为0.1%称为其引用误差为0.1%FS。但有时为了制定表格或方便表述,表头则也可写“准确度”,表内填写准确度等级或规定的允许误差。要说明一点,测量仪器准确度是测量仪器最最主要的计量性能,人们关心的就是是否准确可靠,如何来确定这一计量性能大小?通常它是用其它的术语来定量表述而已。

  • 叶面积测量仪测量植物的平均叶面积有多少

    [size=16px]  叶面积测量仪是用来测量植物叶片表面积的设备。植物叶片的形状和大小因植物种类、生长状态以及环境条件而异,因此平均叶面积会根据这些因素而有所不同。  要测量植物的平均叶面积,通常需要采取一定数量的叶片样本,并使用叶面积测量仪测量每片叶片的表面积,然后计算这些样本叶片的平均值。平均叶面积的单位通常是平方厘米(cm2)或平方米(m2),取决于叶面积测量仪的精度和所使用的单位制。  由于不同植物之间存在巨大的变异性,无法提供一个通用的平均叶面积数值。如果您想要测量特定植物的平均叶面积,云唐建议您需要在具体的实验或调查中使用叶面积测量仪进行测量。记住,同一植物在不同生长阶段、生长条件下的叶面积也会有很大的变化。[/size]

  • 【分享】刀具测量仪的特征及功能简介

    刀具测量仪器具有水平及垂直两种光学测量系统,可以在一台仪器上实现刀具的全部测量,是测量复杂刀具的理想工具。刀具测量仪是由花岗石台面作为底座和立柱、精密滚珠丝杆传动、精密线性导轨导向等部件组成,采用独立的工程学设计工作台,配有完整的配电箱,可有效降低温度变化对测量仪器的影响。 刀具测量仪具有使用简捷,高度精确的优点,整个对刀过程不需要在CNC机床上进行,有效避免对工件的损坏以及机订对刀的困难和危险,仪器采用稳定的整体式花岗岩制造,气浮导轨,坚实、抗振动的花岗岩结构和集成的温度补偿器使测量结果能保持可靠的长期稳定性。刀具测量仪采用高分辨率CCD B/W相机,能够用于对刀具边缘进行无接触表面光及透射光测量,和对刀头几何图形进行表面光测量,采用CNC导轨控制以及4个控制轴。确保了仪器完整的精度,确保了刀具测件能够快速、准确的定位。 刀具测量仪主要适用于测量数控机床、加工中心和柔性制造单元上所使用的镗铣类刀具切削刃的精确坐标位置,并能检查刀尖的角度,圆角及刃口精况。刀具测量仪还可用于钻孔、铣削刀具或是极度复杂的切削刀具以及切削钢的制造或精磨。

  • 分享影像测量仪的性能特点

    影像测量仪应用在各个不同的精密产品的行业中,是院校、研究所和计量检定部门的计量室、试验室以及生产车间不可缺少的计量检测设备之一。  影像测量仪的性能:  1、影像测量仪具备基本的点、线、圆、两点距离、角度等基本测量功能及坐标平移的功能,能满足基本的二次元测量要求。  2、花岗石底座与立柱,机构稳定可靠  3、影像测量仪的X、Y轴装有光栅尺,定位精确。  4、Z轴采用交叉导轨加配重块的全新设计,镜头上下升降受力均衡,确保精度。  5、LED冷光源(表面光合轮廓光)避免工件受热变形。  6、激光定位指示器,精确制定当前测量位置,方便测量。  7、影像测量仪可以使用OVMLite软件。  8、影像测量仪的镜头:3DFAMILY-S型0.7X-4.5X连续变倍镜头,影像放大倍率:28X-180X。

  • 基于计算机的测量仪器的内部和外部校准

    基于计算机的测量仪器具有很大的灵活性,应用因而日益普及。通过控制仪器功能,可以开发满足特殊要求的测量系统。对任何测量系统来说,成本是第一个考虑因素。开发一个基于计算机的测量仪器的费用常常比购买一个独立的台式仪器要便宜几倍。这是由于硬件成本较低、软件可重复使用,且一个测试仪器常常可代替若干独立的测量仪器的缘故。 基于计算机的测量仪器与计算机行业联系紧密,它们得益于计算机技术的进步,这包括开放的通信标准、网络服务器和在仪器和桌面应用之间进行电子制表和字处理的简单界面。这些测量仪器也因计算机性能的稳定及价格的降低而获益,从而使基于计算机的测量仪器在没有加价的条件下性能得到持续的提高。 采用校准实现精确测量 大部分测量仪器以精度表的形式提供有关某一测量仪器的测量线路精确性的信息。精度规范表有助于确定测量仪器总的不确定性,然而,这些精确规范仅适用于被成功校准的电路板,因此,你必须在测量调整前后均要运用这些规范来验证板的工作。 测量仪器准确测量物理量变化的能力是按照一定的因子变化的。使用寿命、温度、湿度和暴露在外部环境的情况及误用都会影响测量的准确性。通过对所得测试结果与己知标准进行比较,校准将测量的不确定性进行了量化。它要验证测量仪器是否工作在规定的指标范围内。如果仪器的测量值超过了所公布的不确定性,那么就要调整测量电路以使之符合业已公布的规范。 经过一段时间,用户要对传统的测量仪器进行校准,基于计算机的测量仪器也一样需要校准。用户应当选择具备内部校准(也称自动校准)和外部校准工具的的基于计算机的测试仪器。 内部校准 如果你使用了如示波器这样的仪器,那时你已经完成了内部校准。事实上,当你改变垂直范围设置的时候,大部分示波器已完成了内部校准。基本上仪器将高精确度和板上电压源进行数字化,并将其读数与己知值相比较,然后将校准因子保存在仪器自身携带的电可擦除只读存储器中,这个自身携带的板上电压源也被校准为如NIST之类的大家所知的标准,进行内部校准的主要目的是补偿工作坏境的变化、内部校准温度的变化和可能影响测量的其它因素。 同传统的测量仪器一样,基于计算机的测量仪器应当支持内部校准。基于计算机的测量仪器的内部校准由调用校准测量电路的软件功能来启动。由于测量可立刻进行,并且无须等待这个内部校准无论何时调整垂直范围,因而由软件控制的内部校准技术可节省测试时间。 基于计算机的测量仪器被安装在桌面计算机、PXI/CompactPCI机箱,或VXI/VME 机箱这样的环境中,因为基于计算机测量仪器被安装于多种不同的计算机环境当中,设计人员应当记住基于计算机的测量仪器会受到电磁干扰和电源电压的变化的影响,还要在宽的温度范围下工作。传统的测量仪器由于同个人电脑的集成日益紧密,也面临类似的挑战。 消除电磁干扰的最基本的方案包括:将数字和模拟信号的地平面分开、对电源信号的进行局部过滤、对敏感元件进行屏蔽。为了补偿电压源的变化,可以采用DC-DC转换器提升电源电压,采用电压调节器控制板上电源的电压,采用大电容消除板上电源的谐波。可以采用板上温度传感器和内部校准来完成在操作环境下不同温度的校准。关于上述设计技术的资料,可查询NI网站上一篇题为“以基于PC的数据采集硬件来进行精确测量”的白皮书。

  • 精密测量仪器热卖

    本公司专门供应各种精密测量仪器: 工量具包括:进口/国产游标卡尺、数显/带表卡尺、高度尺、千分尺、标准量块。 光学测量仪器包括:投影仪、影像二维、三坐标测量设备、显微镜等。 各种硬度计:进口/国产洛氏硬度计、维氏硬度计、邵氏硬度计。可测量各种材料的硬度值,可打印测量数据。 另有各种进口测高仪、其它各类仪器。 联系人:柴小姐 13916024531 cdyoyh@sina.com

  • 【分享】如何选配测量仪器

    [size=4][B][color=#DC143C]如何选配测量仪器[/color][/B][/size][center]重庆市计量测试学会主任 周兆丰[/center] 各单位在科研、生产、试验投入和提供用户服务前,依据需要对购入测量仪器进行策划和采购。目前,大多数单位购置测量仪器都严格遵守标准测量器具和被测量器具准确度比列关系(即三分之一原则),但在科研、生产和试验检测中使用的测量仪器大多数未进行测量、技术和经济特性评定,特别是有的单位仅仅满足测量仪器有无的问题,至于测量仪器是否满足预期使用要求,(如准确度、稳定性、量程和分辨力等)进行确认。因此,掌握测量仪器的选配原则、相关要求及评定方法是很有必要的,对确保测量质量、降低成本和提高效率都有好处。[B]一、测量仪器的选配原则[/B]选配时应坚持与本单位科研、生产、试验和经营相适应的原则,即要考虑仪器的先进性又不盲目追求高技术指标,还要注意经济实用,以达到“满足预期使用要求的目的”。选配决策时,应综合考虑企业、事业单位的规模、产品类型或服务对象、技术指标、工艺流程等特点。其具体原则是: 1.实用原则。坚持按被测对象的实际需要选配测量仪器,如:产品的结构、批量、技术性能参数;生产工艺过程中需要测量和监督的有关参数;化学分析中需要检测、控制和调节的参数;进料、出库、投入以及经销方面测量需要;能源计量、安全与环境监测的需要;建立计量标准开展量值传递的需要等进行配备。 2.选配测量仪器应从测量、技术、经济特性综合考虑。 (1) 测量特性 明确测量仪器的计量特性以及为确保计量特性的必要条件是: 1﹥测量仪器应具有预期使用要求的测量特性,包括准确度、稳定性、测量范围、分辨力和灵敏度等,保证测量结果可靠是首要条件。 2﹥测量仪器应能实现量值传递和量值溯源要求。测量仪器的检定或校准能符合现行有效检定规程或校准技术规范的要求。 3﹥接受检定或校准方法和对测量对象进行测量的方法要科学、合理、可行、简便。 4﹥具有合理的检定周期(或确认间隔)。 5﹥能对测量结果进行评价。

  • 各种光谱测量仪要如何区别

    目前市面的二次元测量仪、三次元测量仪、测量投影仪与五次元一键式测量仪的区别??? 现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。

  • 【资料】全自动影像测量仪的技术应用特点

    全自动影像测量仪是在数字化影像测量仪基础上发展起来的人工智能型现代光学非接触测量仪器,其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更精准的测量需要,解决制造业发展中的又一个瓶颈技术。全自动影像测量仪基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有“点哪走哪”自动测量、CNC走位自动测量、自动学习批量测量,影像地图目标指引,全视场鹰眼放大等优异功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰造影下辅助测高需要(亦可加入触点测头完成坐标测高)。支持空间坐标旋转的优异软件性能,可在工件随意放置的情况下进行批量测量,亦可使用夹具进行大批量扫描测量与SPC 结果分类。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而精准的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。最新推出的全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现“点哪走哪”的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,并对其进行标定,从而提高关键数据的批测精度。全自动影像测量仪人机界面友好,支持多重选择和学习修正,其优异的高速测量可达1500mm/min,重合精度: ±2μm,线性精度:±(3+L/150)μm。优秀性能使其在各种精密电子、晶圆科技、刀具、塑胶、精密零件、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。SK全自动影像测量仪承续了SK数字化影像仪的以下技术特点:集CNC快速测量、CAD逆向测绘、图影管理于一身。运用了现代光学、计算机屏幕测量、空间几何运算和精密运动控制等前沿技术,是集光、机、电、软件为一体的高度智能化设备。具有三轴数控、点哪走哪、图影同步、实时校验、误差修正、工件随意放置、CNC快速测量等基础性能。具有极高的数字化程度,全部操作均由鼠标完成。柔和的三轴微米数控能力,实现“点哪走哪”、同步读数、人机合一;良好的人机界面将烦琐的操作过程有机集成,摆脱手摇时代的机械局限;实时非线性误差修正使其突破了传统设备中存在的精度与速度极限;便捷的CNC快速测量,通过样品实测、图纸计算、CNC 数据导入等方式建立CNC坐标数据,由仪器自动走向每一个目标点进行测量操作,数十倍于手摇式测量设备的工作能力下人员轻松高效。具有优异的高速性能,基于独有的高速位移传感技术,其±2um测量精度下的速度可达500mm/min,其工作效率是工具显微镜或测量投影仪等手摇式测量仪器的数十倍以上。位移驱动为0.1μm,位移解析度为0.4μm,重合精度达±2μm,线性精度±(3+L/150)μm,这些参数均优于传统设备和同类产品。具有空间几何运算能力,可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准测量变得十分简便而直观,也使分度盘这个机械时代的产物与摇柄一起成为历史。具有支持个性化的软件平台,具有图像保存、编辑、处理等图影管理功能。全新的测绘操作,可轻松描绘或导入CAD图形。还可根据客户需求扩充测量模块,从而满足个性化特点和综合测量的快速需要,使测量设备具有量身定做的软件灵魂。

  • 电子测量仪器顺势发展 市场潜力大

    目前,测试测量产品的应用行业正在不断被拓宽,工程师对一个产品集成多种功能的需求也越来越明显,因此产品的集成化已经成为测试测量的发展趋势之一。一个产品在集成示波器、函数发生器、任意波形发生器、数字万用表、频谱分析仪、数字记录器和协议分析仪等一系列测试测量仪器的功能的同时,还将集成内置诸如配套培训、软件工具支持等功能。 随着用户对测试自动化、网络化、高效率、高可靠性、界面友善等测试应用的不断追求,电子测试技术与通信技术、计算机技术互相融合的趋势越来越明显,电子测量技术不断向更高精度、更高智能化方向发展。随着电子技术的不断成熟,电子仪器的研发越加多样化,电子测量仪器是其中重要的一部分。近几年我国电子测量仪器市场飞速发展,市场竞争日趋激烈。除了产品自身性能的竞争优势外,现在已经由过去的"卖方市场"改为"买方市场"。各仪器生产厂商的奋斗目标就是生产更便宜、更易使用、更快、更好等能够满足客户需要的仪器。 相关人士认为,教育市场是未来电子测量仪器主要的消费市场之一。近些年国家不断加大教育方面的投入,无论是中小学规模,还是大学规模,都呈现了扩容之势。学校数量的激增使教学仪器仪表的需求急剧上升,其中电子测量仪表所占份额最大,如示波器、万用表等。其中,示波器是高校实验室必备的测量工具,也是配置量最大的仪器,可分为用于教学实验室的中低端示波器和用于科研的中高端示波器。 随着3G越来越普及和"物联网"概念的兴起,作为重要测试工具的电子测试仪器在性能和应用上提出了一些新的功能和要求,其中数字化电子测量仪器的普及率将会逐步提升。数字化关系着一个国家在科技领域核心竞争力的高低,电子测量仪器必须加强重视,一旦失去技术上的领先地位,市场将随之失去。电子测试仪器今后的发展方向就是综合各种高新技术,全面服务于国民经济各个产业市场。 据尚普咨询发布的《2011年中国高精度电子测量仪器市场调研报告》显示,自2003年开始,我国测试仪器市场呈逐年上升态势,一直保持着两位数的增长。许多国内外仪器生产厂商都认为我国是一个潜力很大的市场,我国政府对测试仪器市场的重视更是加强了这一信心。我国家用电器等电子类产品的大规模生产,加大了对电子测量仪器的需求。电子测量仪器市场潜力巨大,发展前景十分看好。

  • 【资料】我国电子测量仪器行业应向高端技术发展

    近年来我国电子测量仪器行业发展迅速,在若干重大科技领域取得了突破性进展,仪器的可靠性和稳定性有了很大的改观。 产业升级为国内仪器行业带来机遇 近年来我国电子测量仪器行业发展迅速,在若干重大科技领域取得了突破性进展,仪器的可靠性和稳定性有了很大的改观。尤其最近几年,我国本土仪器取得了长足的进步,特别是在通用电子测量设备和汽车电子设备的研发方面,与国外先进产品的差距正在快速缩小。模块化和虚拟技术的发展,为我国的测试测量仪器行业带来了新的发展契机,加上国家和各级政府的日益重视,为电子测量仪器产业提供了前所未有的动力和机遇。 目前国内电子仪器行业已经形成了一批电子仪器开发、生产的骨干企业,研究和开发出了一批具有自主知识产权、达到国际同类先进水平的产品。 目前我们国内规模以上的电子仪器企业有500多家,其中电子测量仪器制造企业130多家,电子测量仪器骨干企业几十家,针对目前的“时域”、“频域”、“数域”、“阻抗域”、“调制域”等五域的电子测量仪器,我国都开发了相应的产品,其中有几十个品种产品达到国际同类产品的先进水平,应用到了急需的国防、科研、生产等各个领域,电子测量仪器产量和销售量近900万台,增长幅度都在14%左右,生产产值和销售额都在100亿元左右。 国内电子仪器行业和企业虽然开发了若干个品种和一定数量并达到同类国际先进水平的产品,但是与国际水平相比,在产品结构上,在高端产品的技术水平上,在市场占有率(约占10%左右)上仍然存在着很大差距,有待于国内企业完善。 其实,国内测试仪器行业的市场机会早已来临,市场大门早已打开,关键是我们国内测试仪器企业要抓住机会进入市场,提供优质高水平的产品。目前我国电子仪器行业面临的机遇有: 1.最大的机会是我国产业的全面升级。包括IC在内的几十个信息产业要全面技术升级和产业升级,信息产业以外的其他产业也要全面技术升级和产业升级;家电下乡、电子信息产业振兴规划等政策方针也将进一步扩大市场需求。 2.节能、降耗、减排,为电子仪器提供了新的广阔市场。电子仪器具有双重功能,一是为节能、降耗、减排提供测试检测仪器;二是能够提供节能、降耗、减排电子仪器应用产品。 3.从制造业为主向服务业为主转变、市场家电产品3C技术融合等都为电子仪器提供了新的广阔市场。为了促进经济实力薄弱的电子仪器行业的发展,建议对具有自主开发能力、具有自主知识产权、具有国际先进水平产品的企业,有关部门应认定其为“电子仪器高新技术企业”,国家在相关政策上给予支持。 重点关注五大技术趋势 从技术和市场的角度看,电子仪器今后的发展趋势是各种高技术的综合,全方位服务于各个产业和国民经济市场,具体应关注以下几个方面: 第一,数字化电子测量仪器的普及率必须提升。数字化时代已经到来,数字化时代是社会生活与经济现代化的最新标志,关系着一个国家在科技领域核心竞争力的高低,如果对此重视不够,电子测量仪器将失去在技术上的领先地位,也将失去市场。 第二,总线技术必须跟踪国际发展水平。 VXI、PXI、LXI、USB接口、总线技术在电子测量仪器领域国外已经发展到一个很高的水平。目前,有三个趋势在推动测试测量行业的发展:首先,要有系统就绪的硬件,即模块化的产品,可以很快构建一个系统。其次,要有基于标准的与PC兼容的输入输出接口,以及输入、输出驱动程序,可以基于局域网,也可以基于互联网。最后,要有灵活的软件解决方案,不论客户需要的是Excel界面还是文字界面,都可以给客户灵活的选择。国际电子测量仪器LXI(LANeXtensionforIn-strument)联盟的产生,就是为了迎合这个变化。国外企业已经开发出LXI总线电子测量仪器产品,国内一些大学已开始着手研究,国内电子测量仪器企业尚未开始启动,如果着手太晚,将会再一次拉大我国电子测量仪器与国际技术水平的差距,因此我国电子测量仪器企业应该尽快启动LXI总线技术在电子测量仪器中的应用测量仪器。 第三,软件技术必须尽快提上日程。电子测量仪器“软件”是电子测量仪器智能化的核心技术,而且“软件修正测量误差”是目前修正测量误差既经济又最有效的办法;此外,特别是软件定义的无线电测量仪器,在国外得到了特别的重视和发展。自从无线接收系统从超外差变频结构,转变成无外差变频的零中频结构之后,无线电发射接收系统简化成为数字变频、基带放大器、基带滤波器、数模转换器、模数转换器、数字信号处理器等数字部件,使软件定义无线电(SDR)测量仪器得以实现。SDR的简明定义是,采用软件对无线电信号进行调制和解调制的无线通信系统测量仪器。显然,SDR借助通用的硬件子系统,根据软件定义的无线通信标准,可以灵活快速地构成不同通信标准的发射和接收系统及其测量仪器。总之,电子测量仪器没有软件技术,就好像我们的电子测量仪器还处于“冷兵器”时代,然而软件技术在我们的电子测量仪器中还远远没有充分体现出来。这一点不解决,我们的电子测量仪器就永远不是现代化水平的电子测量仪器。 第四,模块化技术必须加紧跟上。这是国际电子测量仪器发展的方向,实际上模块化技术与总线技术(接口技术)、软件技术是三位一体,我们必须尽快把三者有机地接合起来,形成有竞争力的电子测量仪器产品。 第五,合成仪器必须尽快实施。合成仪器采用可互换的标准模块、标准电路、标准接口,实现从单元电路至系统的积木化结构。由于美国国防部门是全球电子测量仪器的最大采购商,合成仪器将推动美国、欧洲、日本投入更多人力物力,开发从器件、模块、子系统至完整的自动测量系统,成为电子测量仪器技术创新的新动力。 我国电子仪器企业应有一个较大的发展,否则很难满足国内市场的巨大需求。因此,国内仪器企业应密切关注国际市场,了解最新技术走向,不断推陈出新,提升竞争力。

  • 说说影像测量仪的常见故障和维护说明

    影像测量仪是集光、机、电、计算机图像技术于一体的新型高精度、高科技测量仪器。精确、便捷的性能使其成为其它同类仪器的辅助换代产品。特别适合于小件为对象的精密测量或逆向测绘,适用于对塑料零件、五金模具、电子组件、光纤器件、精密零件、钟表零件、小五金,LCD,玻璃,色彩分析等的测量检测分析。广泛应用于模具、螺丝、金属、配件、橡胶、PCB板、弹簧、五金、电子、塑料等领域,在机械、电子、仪表、塑料等行业及高等院校、科研院所等领域具有一定的运用空间。  影像测量仪是复杂而又精密的光学仪器,在野外和矿井坑道内进行作业时,经常要道受风雨、日晒和煤尘、湿气等有害因素的侵蚀。因此,正确的使用、妥善的保养,对于保证仪器的精度、延长其使用期限具有极其重要的意义。那么影像测量仪在使用中容易遇到哪些故障呢?怎么解决故障怎么保养影像测量仪,从而减少仪器故障呢?影像测量仪常见故障分为升降传动故障、工作台故障、投影屏故障、投影成像故障、影像成像故障、电气故障、电子故障以及精度故障等。  1、升降传动故障。常见的有升降有异响、无法上升,下降、下降有坠落感,弹跳、传动时空回间隙大、微调不传动、投影屏框松动等。  2、工作台故障。一般容易出现光杆空转、光杆传动有弹跳、磨擦传动时不顺、工作台运动有响声、工作台运动有卡滞现象等。解决故障时,要要找出故障原因,再对症下药。可调整弹簧的螺丝松紧、更换轴承、新上油、加润滑油、更换光杆、调节或更换光杆支架等方式来解决。  3、投影屏故障。旋转有声响时,可清理端面上的杂质(如锈渍),换新定位轴承等。旋转时磨擦力大,可松开锁紧螺丝,或换磨擦转。旋转时不均匀时,可换新度盘座、磨擦轮、磨擦轮轴等。投影屏旋转不计数时,可扭紧角度磨擦机械,焊接好信号线,接好接插等。  4、投影成像故障。成像模糊、成像有暗区、影像有黑斑、成像对比光线暗等,可以对物镜、投影屏、工作台玻璃、聚光镜、反光镜等进行清洗。对灯丝进行调节或更换,如果灯泡电源电压过低,则加装总电源稳压器。  5、影像成像故障。显示黑屏时可查看电源线是否接好,电源电压等,插紧显示器信号线,如有零件损坏则需要更换显示器或者十字线产生器。当物镜变倍时十字线与描准点偏移大时,重调锁镜筒的螺丝钉,或者换镜筒。当出现被测工作的某一边有暗影时,可调节摄像机或者玻璃四个角上的螺丝,摆正工件。  6、电气故障。常见故障有灯泡不亮、轴流风机不转动、易烧灯泡、易烧保险丝、变压器过热,损坏等。  7、电子故障。如电箱按键失灵,可系统总清、换新面膜;如轴不计数,可换滑座或OP板或整个尺、重新接一下信号线、换主机板等。如数码管缺笔划,则需更换或维修。  8、精度故障。包括a.x.y轴精度不准、两坐标测量精度差、角度示值误差大、不同平面测量误差大等。应对此类故障,要注意校正和调整。  如果想让影像测量仪少发生故障,就要注重平时对仪器进行保养。仪器存放环境相当重要,最好能够放置在清洁干净的场所,放在清洁干燥的房间里避免光学零件表面发霉、金属零件生锈、尘埃杂物剥落等。零件表面要保持清洁,不可以用手触摸,要经常进行清洁。在装卸工件时要特别小心玻璃平台,测量平台上不可放置过重的测量工件。当测量平台附着水气及油雾层时,请使用清洁剂清除污垢。机身外壳遭污染时,用软布擦拭干净。机身外壳的污染并不会影响测量精度,但污染可能扩散至线性滑轨或平台等,对测量精度有影响的机身其他部分。玻璃工件应保持清洁,不可沾上污垢,否则可能导致影像测量仪的成像不清晰,造成测量精度下降。切忌不可用手触碰镜头。如果镜头表面有手纹或油污,可用长纤维脱脂棉球或专用的镜头纸,蘸专用的镜头清洁剂擦拭,也可用纱布浸湿酒精轻轻擦拭。如果灰尘较多,则用吹气球吹掉,或专用的气体清洁剂,镜头毛刷,不可嘴吹。另外,放置测量工件时容易划伤玻璃面,需要特别注意 若沾上油垢或灰尘用软布擦拭。  此外,影像测量仪应放在清洁干燥的室内(室温20℃±5℃,湿度低于60%),避免光学零件表面污损,金属零件生锈,尘埃杂物落入运动导轨,影响仪器机能。而影像仪含有精密部件,如影像系统、工作台、光学尺以及Z轴传动机构等均需精密调校,所有调节螺丝与紧固螺丝均已固定,客户请勿自拆卸,如有问题请通知专业人员,如果自行拆卸会造成影像测量仪出现故障或精度降低,不在保修范围内。需要注意的是,影像测量仪的所有电气接插件,一般不要拔下,如已拔掉,则必须按标记正确插回并拧紧螺丝,不正确的接插,轻则影响仪器功能,重则可能损坏系统。

  • 关于物位测量仪表的一些基础信息

    基本概念: 物位是指物料相对于某一基准的位量,是液位、料位和相界而的总称。 (1)液位。储存在各种容器中的液体液面的相对高度或自然界的江、河、湖、海以及水库中液体表面的相对高度。 (2)料位。容器、堆场、仓库等所储存的固体颗粒、粉料等的相对高度或表面位置o (3)相界面位置。同一容器中储存的两种密度不同旦互不相溶的介质之间的分界面位置。通常指液—液相界面、液—固相界面。物位的测量即是指以上三种位置的测量,其结果常用绝对长度单位或百分数表示。测量固体料位的仪表称为料位计,测量液位的仪表称为液位计,测量相界面位置的仪表称界面计。根据我国生产的物位测量仪表系列和工厂实际应用情况,液位测量占有相当大的比例,故在此主要介绍工厂常用的液位测量仪表,其原理也适应其他物位测量。物位测量仪表的分类:物位测量方法很多,测量范围较广,可从儿毫米到几十米,甚至更高,且生产I艺对物位测量的要求也各不相同。因此,工业上所采用的物位测量仪友种类繁多,技其工作原理可分为:(1)直读式物位测量仪表。它利用连通器原理,通过与被测容器连通的玻璃管或玻璃板来直接显示容器中的液位高度,是最原始但仍应用较多的液位计。(2)静压式物仪测量仪表。它是利用液校或物料堆积对某定点产生压力,测量该点压力或测量该点与另一参考点的压差而间接测量物位的仪表。这类仪表共有压力计式物位计、差压式液位计和吹气式液位计3种。(3)浮力式物位测量仪表。这是一种依据力平衡原理,利用浮于一类悬浮物的位置随液面的变化而变化来反映液他的仪表。它又分为浮子式、浮筒式和杠杆浮球式3种。它们均可测量液位,且后两种还可测量液—液相界面。 (4)电气式物位测量仪表。它是将物位的变化转换为电量的变化,进行间接测量物位的仪表。根据电量参数的不同,可分为电容式、电阻式和电感式3种,其中电感式只能测量液位。(5)声学式物位测量仪表。利用超声波在介质中的传播速度及在不同相界面之间的反射特性来检测物位。它可分为气介式、液介式和固介式3种,其中气介式可测液位和料位;液介式可测液位和液—液相界面;固介式只能测液位,比如:防爆型超声波液位计(6)光学式物位测量仪表。它是利用物位对光波的遮断和反射原理来测量物位的。有激光式物位计,可测液位和料位,: (7)核辐射式物位测量仪表。放射性同位素所放出的射线穿过被测介质时.被吸收而减弱,其衰减的程度与被测介质的厚度(物位)有关。利用这种方法可实现液位和料位的非接触式检测。 除此以外,还有重锤式、音叉式和旋翼式3种机械式物位测量仪表,以及微波式、热电式、称重式、防爆型超声波液位计、射流式等多种类型,且新原理、新品种仍在不断发展之中。物位测量仪表按仪表的功能不同又可分为连续测量和位式测量两种.前者可实现物位连续测量、控制、指示、记录、远传、调节等,后者比较简单价廉,主要用于定点报警和自动进出物料的自动化系统。 返回——仪器仪表网

  • 【原创大赛】铁素体测量仪的一般验收

    【原创大赛】铁素体测量仪的一般验收

    我厂属压力容器制造单位,最近因技术研发项目和满足日常生产需要,准备购置一批新型的仪器,其中在物性测试方面申报了台铁素体含量测量仪。 铁素体测量仪主要用于奥氏体不锈钢产品的原材料,焊缝的铁素体测量,通常奥氏体不锈钢中通常都含有一定数量的铁素体(5% ~ 15%)。铁素体的作用具有双重性,奥氏体不锈钢母材和焊材中一定数量的铁素体(5% ~ 15%)对防止焊接热裂纹,提高焊缝抗晶间腐蚀和应力腐蚀能力都有十分重要的作用,但如果铁素体含量过大,易在高温工作的情况下转变为脆性的σ相,使材料出现裂纹,造成危害。 本周的前半周,厂设备科告知我们申报的铁素体测量仪器已经到货,由于仪器厂家是邮寄过来的,厂家没有来人,所以让我们领回并对其进行验收,有问题要如实反馈。 我们接到仪器后,根据仪器的说明书和实地测量,对该仪器进行了简单的验收,在此给各位略作分享。 此次购置的铁素体测量仪为苏州某仪器公司的,该仪器为屏显电子自动测量仪,中英文菜单,仪器轻便,测量范围大、操作简单。 第一步: 我们先按照装箱单的说明先进行了仪器的外观、内部件的验收,包括主机是否有磕碰现象、主机所带的标样块是否松动、磕碰、测量探头(数据线)有无破损现象,是否完整,仪器是否是原厂包装,说明书、合格证是否齐全等。仪器基本情况见图。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_631189_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/201106302304537242_01_1622447_3.jpg(图1:仪器的中英文说明书)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302307057743_01_1622447_3.jpg(图2:包装箱中的铁素体测量仪)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302309102875_01_1622447_3.jpg(图4:铁素体测量仪全貌)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302310263669_01_1622447_3.jpg(图5:测量探头)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302326002851_01_1622447_3.jpg(图6:仪器上的各个功能键)第二步:外观检查好无误后,开始进行机电池的安装(见图7)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302335412267_01_1622447_3.jpg(图7:主机电源电池的安装)电池安装好后,进行主机和测量探头的连接安装(见图8)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302337557696_01_1622447_3.jpg(图8:测量探头与主机连接)安装好电池,插好锁紧测量探头,一切就绪后,开启测量仪的电源开关(见图9),检查仪器屏幕显示是否正常,在否有缺字、断字的情况。http://ng1.17img.cn/bbsfiles/images/2017/10/201106302342272426_01_1622447_3.jpg(图9:开启仪器电源,检查屏幕情况)开机一段时间稳定后,对仪器所带的2块标样进行测试,看2块标块的测量值是否符合厂家所提供的数值要求(见图10、11)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302352124363_01_1622447_3.jpg(图10:测量标块1#)http://ng1.17img.cn/bbsfiles/images/2017/10/201106302353243095_01_1622447_3.jpg(图11:测量标块2#)待其测量2标块数值准确合格无误后,检查仪器主机上个功能按键的好坏,同时对照说明书检查各功能键所列项目是否齐全,与此同时进行操作的学习(见图12),连接使用中应注意的事项和使用过程中易出现什么样的问题和解决的办法。http://ng1.17img.cn/bbsfiles/images/2017/10/20110701000208962_01_1622447_3.jpg(图12:仪器功能键的检查)第三步,我们根据仪器的检查使用情况,拿了些试件进行了实际的测试,首先把现在使用的铁素体测量仪拿来,用新的铁素体测量仪测量现在使用仪器上的标块,看看准确度如何(见图13),另外还找了些不锈钢焊接试件分别在仪器的2种模式(低和高含量)下进行检测,同时用旧的测量仪做个大概的比较(见图14、15)http://ng1.17img.cn/bbsfiles/images/2017/10/201107010026397274_01_1622447_3.jpg(图13:检验旧仪器的标块)http://ng1.17img.cn/bbsfiles/images/2017/10/201107010028107482_01_1622447_3.jpg(图14:仪器第一种模式下不锈钢试件的实际测量)http://ng1.17img.cn/bbsfiles/images/2017/10/201107010030156856_01_1622447_3.jpg(图15:仪器第一种模式下不锈钢试件的实际测量)通过以上三大步对该仪器的检查验收,我们对该仪器提出了一些疑问:1.仪器测量探头反应比较慢,不是很灵敏。2.测试数据不是很稳定,时有忽高忽低的现象。3.仪器在标块的校准中,标样值差大。由于是仪器的初步验收,还并没有进行细致的学习,可能我们操作中的一些方法也存在某些问题,所以下步计划是在短期之内严格按照说明书要求一步一步的操作, 去熟练仪器,然后根据实际情况不能解决的再向厂家反馈。以上就是铁素体测量仪的一般验收的过程,希望能与使用或懂这方面的版友进行交流,同时也欢迎广大版友批评指正,谢谢 2011年7月1日 lylsg555

  • 【分享】ph测量仪的特征及应用

    pH测量仪是用于测量PH值或氧化还原电位的智能式测量和控制仪表。PH测量仪采用HDPP抗腐蚀轻质外壳,可防水防尘、坚固耐用,配以合适的电极,能够测量pH、氧化还原电位。具有良好的防水性能,可满足野外测量的要求。仪器电极采用不锈钢材质,不仅增强了电极的耐用性,并确保稳定的读数。PH测量仪具有测量准确、操作简单、坚固而耐用、经济实用、使用非常方便等特点,适应于现场、恶劣环境。 PH测量仪操作简单、使用方便,测量数据稳定后自动锁定读数,也可以连续读数,还可以根据需要设定长时间连续读数功能一键校准功能。PH测量仪只需要单键操作,仪表将自动引导完成单点或者多点校准,采用大屏幕液晶显示,可以在pH、毫伏或温度读数之间切换 ,不改变记忆保持上次校正值。PH测量仪的电极无需保养,可自动识别全量程值,电极内置温度传感器和迷你放大器,省去了外置温度探头的需要,并保证良好的电极信号,减少干扰影响。 PH测量仪完全符合各种行业测试需要,应用于水族馆、水产养殖、无土栽培、游泳池和温泉、学校实验室、化工、食品或饮料制造、纺织印染、造纸或纸浆漂白、锅炉、清洗或污水处理等。

  • 【资料】电子测量仪器的分类及应用

    电子测量仪器按其工作原理与用途,大致划为以下几类。1.多用电表  模拟式电压表、模拟多用表(即指针式万用表VOM)、数字电压表、数字多用表(即数字万用表DMM)都属此类。这是经常使用仪表。它可以用来测量交流/直流电压、交流/直流电流、电阻阻值、电容器容量、电感量、音频电平、频率、晶体管NPN或PNP电流放大倍数β值等。2.示波器  示波器是一种测量电压波形的电子仪器,它可以把被测电压信号随时间变化的规律,用图形显示出来。使用示波器不仅可以直观而形象地观察被测物理量的变化全貌,而且可以通过它显示的波形,测量电压和电流,进行频率和相位的比较,以及描绘特性曲线等。3.信号发生器  信号发生器(包括函数发生器)为检修、调试电子设备和仪器仪表时提供信号源。它是一种能够产生一定波形、频率和幅度的振荡器。例如:产生正弦波、方波、三角波、斜波和矩形脉冲波等。4.晶体管特性图示仪  晶体管特性图示仪是一种专用示波器,它能直接观察各种晶体管特性曲线及曲性簇。例如:晶体管共射、共基和共集三种接法的输入、输出特性及反馈特性;二极管的正向、反向特性;稳压管的稳压或齐纳特性;它可以测量晶体管的击穿电压、饱和电流、自或a参数等。5.兆欧表  兆欧表(俗称摇表)是一种检查电气设备、测量高电阻的简便直读式仪表,通常用来测量电路、电机绕组、电缆等绝缘电阻。兆欧表大多采用手摇发电机供电,故称摇表。由于它的刻度是以兆欧(MΩ)为单位,故称兆欧表。6.红外测试仪  红外测试仪是一种非接触式测温仪器,它包括光学系统、电子线路,在将信息进行调制、线性化处理后达到指示、显示及控制的目的。目前已应用的红外测温仪有光子测温和热测温仪两种,主要用于电热炉、农作物、铁路钢轨、深埋地下超高压电缆接头、消防、气体分析、激光接收等温度测量及控制场合。7.集成电路测试仪  该类仪器可对TI1、PM0S、CM0S数字集成电路功能和参数测试,还可判断抹去字的芯片型号及对集成电路在线功能测试、在线状态测试。8.LCR参数测试仪  电感、电容、电阻参数测量仪,不仅能自动判断元件性质,而且能将符号图形显示出来,并显示出其值。其还能测量Q、D、Z、Lp、Ls、Cp、Cs、Kp、Ks等参数,且显示出等效电路图形。9.频谱分析仪  频谱分析仪在频域信号分析、测试、研究、维修中有着广泛的应用。它能同时测量信号的幅度及频率,测试比较多路信号及分析信号的组成。还可测试手机逻辑和射频电路的信号。例如:逻辑电路的控制信号、基带信号,射频电路的本振信号、中频信号、发射信号等。  除以上常用的电子测量仪器外,还有时间测量仪、电桥、相位计、动态分析器、光学测量仪、应变仪、流量仪等。

  • 【资料】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

  • 【转帖】温度测量仪

    温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

  • 轮廓测量仪的使用方法

    在许多的制造业领域如汽配、轴承、航空航天以及一些精密零部件生产企业等,在产品的生产过程中都离不开轮廓测量仪的检测。中图仪器的[b][color=#3333ff]SJ5760轮廓测量仪[/color][/b]改善了国内轮廓测量仪稳定性差、精度低等不足,减小与国外轮廓测量仪的差距,改变因高精度轮廓测量仪被国外高价格垄断的局面。在今年的北京机床展会现场上,SJ5760轮廓测量仪受到来自国内外许多参观者的驻足观赏,甚至有些公司的老板亲自带着自家公司生产的工件,来到展会现场请中图仪器的技术人员进行现场测量。我们通过对展会现场为用户测量工件的实例,来讲解轮廓测量仪的使用方法。[align=center][img]http://www.chotest.com/Upload/2017/6/201706127435008.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg[/img]  在测量工件之前,先做好准备工作,确定轮廓测量仪的正常启动运行,SJ5760轮廓测量仪为全自动测量设备,所以操作人员在测量时不需要太多的手工作业。[align=center][img]http://www.chotest.com/Upload/2017/6/201706124153674.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image004.jpg[/img]  只需要装好被测工件,用中图仪器专用的万向工作台对工件进行固定,在计算机检定软件上设置扫描的起点、终点位置。然后点击“开始”按钮,测量系统会自动驱动测针接触工件表面,并按照事先设置好的位置进行扫描。[align=center][img]http://www.chotest.com/Upload/2017/6/201706125560160.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image006.jpg[/img]  在进行测量的过程中,检定软件会实时将测针获取的参数,在计算机屏幕上以二维图形的方式描绘出轮廓曲线。扫描完成以后,操作人员可以通过轮廓分析工具对生成的轮廓曲线进行评定,得出圆度、角度、距离、间距、直线度等轮廓参数。[align=center][img]http://www.chotest.com/Upload/2017/6/201706127747739.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image008.jpg[/img]  SJ5760轮廓测量仪操作便捷,功能广泛,可对各种工件轮廓的几何参数进行测量,可评定的表面轮廓参数包括:角度、半径、坐标、距离、圆、圆截面,确定各个点、相交各点、坐标轴、直线、垂直线、圆和圆截面,可对轮廓进行直线度、圆度分析等;并可同时实现:1.建立回归直线和圆形;2.建立点、交点、自由点、中心店、最高点和最低点;3.建立坐标系统;4.计算半径、距离、角度、坐标及线性偏差;5.实际值与标称值比较;6.测量程序自动运行。

  • 购买量具、测量仪器的请找我

    本公司专门供应各种精密测量仪器:工量具包括:进口/国产游标卡尺、数显/带表卡尺、高度尺、千分尺、标准量块。光学测量仪器包括:投影仪、二维影像式测量仪器、三坐标测量设备、显微镜等。各种硬度计:进口/国产洛氏硬度计、维氏硬度计、邵氏硬度计。可测量各种材料的硬度值,可打印测量数据。 另有各种进口测高仪、其它各类仪器。欢迎来电垂询,索取资料。 柴小姐13916024531cdyoyh@sina.com

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制