当前位置: 仪器信息网 > 行业主题 > >

模拟皮肤抗穿刺力测试仪

仪器信息网模拟皮肤抗穿刺力测试仪专题为您提供2024年最新模拟皮肤抗穿刺力测试仪价格报价、厂家品牌的相关信息, 包括模拟皮肤抗穿刺力测试仪参数、型号等,不管是国产,还是进口品牌的模拟皮肤抗穿刺力测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合模拟皮肤抗穿刺力测试仪相关的耗材配件、试剂标物,还有模拟皮肤抗穿刺力测试仪相关的最新资讯、资料,以及模拟皮肤抗穿刺力测试仪相关的解决方案。

模拟皮肤抗穿刺力测试仪相关的资讯

  • 注射剂瓶胶塞穿刺力测试仪的原理与应用
    注射剂瓶胶塞穿刺力测试仪的原理与应用在现代医疗与制药行业中,注射剂瓶作为药物传输的关键容器,其密封性与安全性直接关系到患者的健康与生命安全。而注射剂瓶的胶塞,作为连接瓶体与外部世界的“门户”,不仅需具备良好的密封性能,还需在药物输送过程中承受各种穿刺操作而不失效,确保药物的无菌、无污染传递。因此,使用三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02对其进行穿刺力测试,成为了保障药品质量与患者安全不可或缺的一环。注射剂瓶胶塞的使用用途与重要性注射剂瓶胶塞,作为药品包装系统的重要组成部分,其主要功能在于提供可靠的密封屏障,防止药品在储存和运输过程中受到外界污染,同时确保在药物使用过程中(如注射给药)能够顺利穿刺而不泄漏。其材质多为橡胶或热塑性弹性体,需具备良好的弹性、耐化学性、生物相容性及适当的硬度,以适应不同药物的存储需求和穿刺操作。穿刺力测试的必要性与意义随着医疗技术的不断进步和药品包装的多样化发展,对注射剂瓶胶塞的性能要求也日益严格。穿刺力测试作为评估胶塞质量的重要手段之一,旨在模拟实际使用过程中穿刺针或输液针等医疗器械对胶塞的穿刺行为,通过量化分析穿刺过程中的力值变化与位移变化,评估胶塞的耐穿刺性能、密封保持能力及可能的破损风险。这对于确保药品在传输过程中的完整性和无菌性至关重要,直接关系到患者的用药安全与治疗效果。注射剂瓶胶塞穿刺力测试仪的测试原理与技术应用济南三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02采用力学测试技术,将试样装夹在测试仪器的两个夹头之间,通过精密控制的相对运动,使标准要求的穿刺针以恒定速度或预设条件刺入试样。在此过程中,仪器实时记录并显示穿刺力(即刺破试样所需的最大力)和拔出力(即将穿刺针从试样中拔出时所需的力)等关键参数。这些数据不仅反映了胶塞的物理强度特性,还能揭示其潜在的密封失效风险,为产品设计与质量控制提供科学依据。注射剂瓶胶塞穿刺力测试仪的广泛应用领域由于穿刺力测试技术的广泛适用性和重要性,其应用范围已远远超出了注射剂瓶胶塞本身,涵盖了各种薄膜、复合膜、电池隔膜、人造皮肤、药品包装用胶塞、组合盖、口服液盖以及各类医疗穿刺器械(如注射针、穿刺针、输液针、采血针等)的穿刺力强度试验。这些测试在质检中心、药检中心、包装厂、药厂、医疗器械厂等单位得到了广泛应用,成为保障产品质量、提升生产效率、降低安全风险的重要工具。总之,三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02作为现代医疗与制药领域的一项重要检测设备,通过科学、精准的测试手段,为药品包装与医疗器械的安全性与有效性提供了坚实保障。
  • 注射针尖穿刺力测试仪----原理与应用解析
    注射针尖穿刺力测试仪在制药与包装行业中,注射针尖作为药物传递的直接媒介,其性能的稳定与安全性直接关系到患者的健康与安全。随着医疗技术的不断进步和药品包装的多样化发展,注射针尖在各类薄膜、复合膜、电池隔膜、人造皮肤乃至药品包装用胶塞、组合盖、口服液盖等材料的穿刺应用日益广泛。这些材料不仅需要具备良好的阻隔性以保护药品免受外界污染,还需在针尖穿刺时展现适宜的力学特性,以确保药物输送的顺畅与安全。注射针尖在制药包装行业的应用概述在制药过程中,注射针尖常被用于穿透药品包装材料,以实现药物的精准注入或抽取。无论是液体药品的密封瓶、预充式注射器,还是复杂的医疗装置,都离不开注射针尖的高效与准确。同时,随着环保和可持续性理念的深入人心,制药包装材料正逐步向轻量化、可降解方向发展,这对注射针尖的穿刺性能提出了更高的要求。为何需要注射针尖穿刺力测试仪鉴于注射针尖在制药包装中的核心作用,其穿刺性能的优劣直接影响到产品的使用体验和药品的安全性。因此,对注射针尖在不同材料上的穿刺力进行测试显得尤为重要。注射针尖穿刺力测试仪应运而生,它专为评估针尖在穿透各种材料时所需的力值及拔出时的阻力而设计,能够有效帮助制造商、质检机构及研究人员评估材料的适用性,优化产品设计,确保产品质量。广泛应用领域注射针尖穿刺力测试仪广泛应用于质检中心、药检中心、包装厂、药厂、食品厂等多个领域,成为保障产品安全与质量的重要工具。通过精确测量不同材料在穿刺过程中的力值变化与位移情况,可以深入了解材料的物理特性,为材料选择、工艺改进及质量控制提供科学依据。测试原理详解注射针尖穿刺力测试仪的测试原理基于力学原理与精密测量技术。测试时,首先将待测样品装夹在仪器的两个夹头之间,通过精确控制两夹头的相对运动,使标准要求的穿刺针以设定速度刺入样品。在穿刺过程中,仪器会实时记录并显示穿刺力及拔出力的变化曲线,同时监测针尖的位移情况。这些数据不仅反映了材料对针尖的抵抗能力,还能揭示材料内部的力学结构特性,为材料性能评估提供全面而准确的信息。
  • 带针预灌封穿刺力试验仪的重要性
    带针预灌封穿刺力试验仪的重要性在制药包装行业中,带针预灌封技术因其便捷性和安全性而受到广泛应用。这种技术允许药品在无菌条件下预先填充到注射器中,确保了药品的纯净性和使用时的安全性。然而,为了保障药品包装的完整性和使用时的便捷性,对包装材料的穿刺力进行精确测试是必不可少的。带针预灌封的应用带针预灌封技术在制药行业中主要用于生产预充填注射器,这种注射器预先填充了药物,可以直接用于注射,无需再次填充。它广泛应用于生物技术产品、疫苗、血液制品等高附加值药品的包装。这种包装方式不仅提高了药品的稳定性和安全性,也方便了医护人员的使用,减少了操作过程中的污染风险。带针预灌封穿刺力试验仪的重要性尽管带针预灌封技术具有诸多优势,但其性能的优劣直接关系到药品的质量和使用安全。因此,使用带针预灌封穿刺力试验仪对包装材料进行检测变得尤为重要。这种仪器能够模拟实际使用过程中的穿刺行为,评估材料的穿刺力和拔出力,确保包装材料既不会轻易被穿刺损坏,也不会因为穿刺力过大而导致使用困难。测试原理与应用范围带针预灌封穿刺力试验仪的测试原理相对简单而高效:将试样固定在两个夹头之间,通过标准规格的穿刺针对试样进行穿刺,同时测量并记录穿刺过程中的力值和位移变化。这一过程不仅能够精确测量材料的穿刺力,还能评估材料的韧性和弹性。该仪器的应用范围非常广泛,不仅限于药品包装材料,还包括各种薄膜、复合膜、电池隔膜、人造皮肤等。在质检中心、药检中心、包装厂、药厂、医疗器械厂等单位,这种仪器都是确保产品质量和安全性的关键设备。带针预灌封穿刺力试验仪是制药包装行业不可或缺的检测工具。它不仅提高了药品包装的安全性和可靠性,也为相关企业和机构提供了一种科学、准确的测试手段。本文简要介绍了带针预灌封技术在制药包装行业中的应用,并阐述了使用带针预灌封穿刺力试验仪进行检测的重要性和测试原理,以及该仪器在多个领域的广泛应用情况。希望本文能为相关行业提供有价值的参考信息。
  • 大输液三层五层膜穿刺试验用拉力机兼顾胶塞穿刺和膜材穿刺双重功能介绍
    大输液包装通常采用多层复合膜材料,以确保药品的安全性和稳定性。在输液包装的质量控制中,穿刺试验是关键的测试项目之一,它评估包装材料在实际使用中的穿刺性能。拉力机是一种多功能的测试设备,除了基本的拉伸测试外,还可以通过特定的附件和设置,用于模拟胶塞穿刺和膜材穿刺,从而全面评估大输液包装的穿刺性能。胶塞穿刺测试测试目的:模拟实际使用中针头穿透胶塞的过程,评估胶塞的穿刺性能和可靠性。测试方法:使用拉力机的穿刺附件,将胶塞固定在测试台上,调整穿刺速度和力,模拟穿刺过程。数据分析:记录穿刺过程中的力-位移曲线,分析穿刺力、穿刺后的胶塞完整性等参数。膜材穿刺测试测试目的:评估复合膜材料在穿刺过程中的性能,如密封性和穿刺后的恢复性。测试方法:将复合膜材料固定在拉力机的夹具中,使用模拟穿刺头进行穿刺,模拟实际使用中的穿刺条件。数据分析:测量穿刺后的孔径、穿刺力以及材料的恢复性,评估膜材的穿刺性能。拉力机的双重功能多功能性:通过更换附件和设置,拉力机可以同时进行胶塞穿刺和膜材穿刺测试,提供全面的性能评估。高精度:拉力机配备高精度的力值传感器和位移传感器,确保测试结果的准确性和重复性。操作简便:用户友好的操作界面,简化了测试过程,提高了测试效率。试验操作步骤样品准备:按照测试要求准备胶塞和复合膜样品。设备设置:根据测试标准设置拉力机的参数,如穿刺速度、力值范围等。胶塞穿刺测试:将胶塞固定在测试台上,进行穿刺测试,记录数据。膜材穿刺测试:将复合膜固定在夹具中,进行穿刺测试,记录数据。数据分析:分析穿刺力-位移曲线,评估穿刺性能。结论拉力机通过兼顾胶塞穿刺和膜材穿刺的双重功能,为大输液包装的穿刺性能测试提供了一个高效、准确的解决方案。这种多功能的测试设备不仅提高了测试效率,而且通过全面的性能评估,有助于优化包装设计,提高产品的安全性和可靠性。随着医药包装行业的不断发展,拉力机在药品包装材料的穿刺性能测试中将发挥越来越重要的作用。
  • 多层输液袋共挤膜耐穿刺强度测试应该参照哪个标准
    随着医疗技术的不断进步,多层共挤输液袋以其优良的密封性、稳定性和环保特性,逐渐成为现代医疗领域中的主流输液包装材料。为了确保输液袋在使用过程中能够安全可靠,对其耐穿刺强度的测试显得尤为关键。一、多层共挤输液袋的结构与特性多层共挤输液袋采用先进的共挤工艺,将不同材质的薄膜层进行复合,形成具有优异性能的复合膜。其结构通常由多层薄膜组成,包括内层、中层和外层等,每层薄膜的材质和厚度都经过精心设计,以满足不同的功能需求。多层共挤输液袋具有优异的密封性、阻隔性、抗拉伸性和耐穿刺性等特点,能够有效保护输液袋内的药液不受外界污染和损坏。二、耐穿刺强度测试的重要性耐穿刺强度是衡量多层共挤输液袋性能的重要指标之一。在输液过程中,输液袋可能会受到各种外力的影响,如护士在操作过程中不小心刺穿输液袋等。如果输液袋的耐穿刺强度不足,就可能导致药液泄漏、污染等问题,严重影响患者的治疗效果和生命安全。因此,对多层共挤输液袋进行耐穿刺强度测试,是确保其安全使用的重要措施之一。三、耐穿刺强度测试应参照的标准目前,国内外对于多层共挤输液袋耐穿刺强度测试的标准已经相对完善。在国际上,一些知名的标准化组织如ISO、ASTM等制定了相关的测试标准和规范。这些标准通常规定了测试设备的精度、测试方法、测试条件以及评价指标等,为测试工作提供了明确的指导。在国内,国家相关部门也制定了一系列针对医疗包装材料的测试标准,其中就包括了多层共挤输液袋的耐穿刺强度测试。这些标准不仅参考了国际先进标准,还结合了国内医疗行业的实际情况和需求,具有更强的针对性和实用性。在进行多层共挤输液袋耐穿刺强度测试时,应严格按照相关标准的要求进行操作。测试设备应选用符合标准要求的穿刺力试验机,并确保其精度和稳定性符合要求。测试方法应根据标准规定的程序进行,包括样品的准备、测试速度的控制、测试次数的确定等。同时,测试条件也应符合标准的要求,如温度、湿度等环境因素对测试结果的影响应予以考虑。四、测试结果的评价与应用完成耐穿刺强度测试后,需要对测试结果进行科学的评价和分析。通常,测试结果会以一定的数值或等级形式呈现,用于衡量输液袋的耐穿刺性能。根据测试结果,可以对输液袋的质量进行评判,并为其在医疗领域的应用提供科学依据。此外,测试结果还可以用于指导输液袋的生产和改进。通过对不同批次或不同生产工艺的输液袋进行耐穿刺强度测试,可以找出其中的差异和原因,进而优化生产工艺或改进材料配方,提高输液袋的耐穿刺性能。五、结论多层共挤输液袋作为现代医疗领域中的重要包装材料,其耐穿刺强度的测试对于确保其安全使用具有重要意义。在进行测试时,应参照国内外相关标准的要求,确保测试结果的准确性和可靠性。同时,测试结果的评价和应用也是确保输液袋质量和使用效果的关键环节。未来,随着医疗技术的不断进步和输液袋材料的不断创新,耐穿刺强度测试的标准和方法也将不断完善和优化,为医疗行业的发展提供有力支持。
  • NZL-01医用透皮贴剂黏附力测试仪全面介绍
    引言医用透皮贴剂作为现代医学中一种重要的给药方式,广泛应用于镇痛、激素替代、疫苗接种等领域。其有效性不仅依赖于药物成分,更与透皮贴剂的黏附力密切相关。因此,对透皮贴剂的黏附力进行准确的评估显得尤为重要。本文将全面介绍医用透皮贴剂黏附力测试仪的原理、功能、应用及未来发展趋势。一、透皮贴剂的黏附力重要性透皮贴剂的黏附力是指其在皮肤表面保持附着的能力。低黏附力可能导致贴剂脱落,影响药物的释放及吸收;而过高的黏附力又可能导致皮肤损伤。因此,科学地测试透皮贴剂的黏附力,对于确保其安全性和有效性具有重要意义。二、黏附力测试仪的工作原理医用透皮贴剂黏附力测试仪通常基于物理测量原理,如滑动摩擦法、剥离测试法或拉伸测试法。仪器通过模拟实际使用环境,对贴剂与皮肤之间的接触力进行测量。测试过程包括:贴剂安装:将透皮贴剂按照标准方法贴在测试板上;施加力:依据不同的测试标准施加一定的力量;数据记录:通过传感器记录下剥离或滑动过程中所需的力值;数据分析:通过计算得出该贴剂的黏附强度,并与标准要求进行比对。三、仪器的主要功能医用透皮贴剂黏附力测试仪具有多种功能,包括但不限于:黏附力测量:精准测量贴剂与表面之间的黏附力;长期稳定性测试:评估贴剂在不同环境条件下的性能稳定性;多种贴剂测试:支持不同类型和尺寸透皮贴剂的测试;数据存储与分析:具备数据记录与分析功能,方便用户生成报告。四、应用领域医用透皮贴剂黏附力测试仪在多个领域得到广泛应用:药品研发:用于新型透皮贴剂的开发与评估,优化用药方案;质量控制:对生产过程中的贴剂进行监控,确保产品达到标准;临床研究:在临床试验中评估透皮贴剂的实际使用效果;学术研究:为相关研究提供实验数据支持,促进科学发展。五、未来发展趋势随着科技的进步,医用透皮贴剂黏附力测试仪可能会向以下方向发展:智能化:集成人工智能算法,实现自动化数据分析与故障诊断;便携化:研发小型化、便携式的测试设备,方便现场使用;多功能化:结合多种测试方法,提高测试仪器的适应性;生物相容性评估:结合皮肤生理特性进行更全面的评估。结论医用透皮贴剂黏附力测试仪在贴剂的研发、生产及临床应用中扮演着不可或缺的角色。随着技术的不断进步,未来的测试仪器将更加智能、便携和精准,为透皮给药系统的安全性和有效性提供强有力的支持。希望通过对黏附力测试的深入研究,能够推动药物给药方式的进一步创新与发展。
  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到 智能全自动薄膜阻隔性测试仪
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 包装耐压强度测试仪的测试原理解析
    包装耐压强度测试仪的测试原理解析在快速发展的药品、食品及医疗行业中,包装的安全性与可靠性直接关系到产品的质量与消费者的健康。特别是针对输液袋、液态奶包装袋、药品输液袋等液体包装产品,其耐压强度成为衡量包装质量的重要指标之一。为此,济南三泉中石的NLY-05包装耐压强度测试仪应运而生,成为这些行业不可或缺的测试设备,广泛应用于药品、食品生产企业、科研院校、质检机构等多个领域。测试原理解析济南三泉中石的NLY-05包装耐压强度测试仪基于先进的力学测试原理,通过模拟包装在实际运输、储存过程中可能遭受的压力环境,对包装材料的耐压性能进行全面评估。测试过程中,首先将待测样品(如输液袋、液态奶包装袋等)精确装夹在测试仪的两个夹头之间。这两个夹头能够精确控制并施加压力,模拟外部压力对包装的作用。随着测试的进行,位于动夹头上的高精度力值传感器实时采集并记录试验过程中的力值变化。当达到预设的压力值时,测试仪自动进入保压阶段,持续观察包装在恒定压力下的表现。若在整个测试过程中,包装样品未出现破裂、渗漏等现象,则判定为合格;反之,则视为不合格。广泛应用领域食品行业:对于液态食品如牛奶、果汁等的包装袋、纸盒及纸碗,包装耐压强度测试仪能够确保其在运输、储存过程中的安全性,防止因包装破裂导致的食品污染和浪费。医药行业:在药品输液袋、塑料输液瓶、血袋等医疗用品的生产过程中,该测试仪的应用至关重要。它不仅能验证包装的耐压性能,还能通过温度适应性和穿刺部位不渗透性试验,进一步确保医疗用品的安全性和有效性。科研院校与质检机构:作为科研与教学的重要工具,济南三泉中石的NLY-05包装耐压强度测试仪帮助研究人员深入了解包装材料的性能特点,为新材料、新技术的研发提供数据支持。同时,它也是质检机构进行产品认证、市场监管的重要技术手段。
  • 3.67亿元!238台!天津工业大学高端分析测试平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学高端分析测试平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-406182。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备238台(套),主要为基于USRP的大规模MIMO试验系统平台、低温强磁场扫描探针显微镜、纤维纳米红外光谱仪等设备;替换原有老旧设备132台(套),主要为低压透射电镜、真彩色共聚焦显微镜、冷场发射扫描电镜等设备(购置设备清单详见附件)。总投资金额为36675万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学高端分析测试平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1热电性能测试系统12光纤光栅解调仪13全息微观透视成像分析系统14全波段光学材料表征系统15多功能湿法纺丝制备及评价系统16阻抗分析仪17多物理场摩擦、磨损原位测试系统18人体步态体态分析系统19穿戴式身体姿态评估系统110便携式代谢测试系统111肌电与多通道生理信号测试系统112纳米级气溶胶粒子分选计数测试台113多通道薄膜压力测量及手持式自定位三维白光扫描系统114动态水蒸汽吸附分析仪115纺织材料界面风速流场测量仪116织物表面多功能电信号测量仪117多功能高分子材料成型仪118液相色谱仪119气相色谱仪120氧气透过率测试系统121可生物降解测试系统122流阻结构参数测试系统123纺丝-熔喷一体化试验机124霍尔效应测试仪125单向透湿膜材料制备及评价系统126耐高温、高精过滤材料评价系统127滤料测试及仿真模拟平台128热激励去极化电流测量系统129锥形量热仪130能源采集及测试系统131材料高频电磁参数测试系统132Materials Studio 模拟计算系统133全自动比表面积及微孔分析仪134高温燃料电池测试平台135纤维电学力学综合性能测试仪136功能材料电学综合测试系统137高温快速导热仪138头模压力及腕戴产品测试系统139红外运动分析测试系统140智能穿戴人因实体实时采集及综合分析系统141柔性电子原位测试系统142服装内热流场动态测量仪143功能纺织品润湿性评价系统144热界面材料分析仪145纺织元宇宙互动同步实训教学装置1 46纺织知识图谱与教学系统1 47柔性织物微带天线测试系统1 48纤维纳米红外光谱仪1 49基于运动学多参数生物力学采集和分析系统1 50双波长显微拉曼光谱仪1 51产业用纺织品及复合材料力学性能测试系统1 52应力动态分布可视化与裂纹预警测量系统153高性能纤维材料制备与理化环保性能测试系统15464通道无线脑电采集系统155多导睡眠/脑电监测系统156电脑测色及颜色信息管理系统157织物舒适性评价体系实验教学套装158功能纺织面料制备与性能分析实验教学套装159纤维着色与染料分散状态分析测试实验教学设备160机油滤清器流量阻力试验台161滤清器高低温脉冲试验台162滤清器效率和寿命试验台163数字化小样新型纺纱与纱线质量评定虚拟仿真系统164新型浆纱织造生产与质量检测设备系统165气囊式接触压力测试仪166纺织复合材料界面性能测试系统167热电性能分析系统168织物风格测试实验套装系统169转矩流变仪170旋转流变仪171原位X射线衍射仪172织物型水电解隔膜测试系统173纳米静电纺制备与测试系统174电极材料应力原位检测系统175落锤冲击试验机176动态和疲劳试验系统177无损检测仪器178飞秒瞬态吸收光谱系统179高低温万能材料试验机180VTC-600-3HD三靶磁控溅射仪181电动固体表面分析仪182Instron毛细管流变仪183低温强磁场扫描探针显微镜184差分式反射式高能电子衍射仪185激光解吸飞行时间质谱仪186双组份高速纺丝试验机187原位变温相位调制型光学性能分析仪188动态光散射粒度分析仪189光场耦合低温磁电输运测量仪190紫外光刻联用光学显微镜系统191高温真空磁场退火炉192激光测振仪193接触式振动试验台194纺织数据分析平台195自旋转移力矩-铁磁共振测量仪器196频谱分析仪197矢量网络分析系统198四探针测试仪199缺陷测试仪1100光谱椭偏仪1101键合丝推拉力测试机1102基于USRP的大规模MIMO试验系统平台1103高速误码率分析扫频仪1104高性能频谱仪1105故障电机系统测试台架1106电机定子测量仪1107高速电机测试平台1108电机系统振动检测设备1109电机系统局部放电检测设备1110高速高精度传感平台1111高性能多分踪录波平台1112先进电力电子器件动静态测试系统1113多通道高精度功率分析仪1114X射线CT层析仪1115功率磁件性能与损耗测试设备1116高电压局部放电测试系统1117高温栅极偏压测试系统1118高温高湿反偏测试系统1119多芯片智能贴装定位机1120器件封装强度测试仪1121热阻抗网络特性与老化测试机1122纤维面料扫描仪1123电工电子训练全过程智能检测及行为识别系统1124工业智能检测实验平台1125纺织智能制造用纱量检测及自动上纱系统1126彩色3D数据采集系统1127法学智能数据模拟分析平台1128虚实多人云协同测绘系统1129无人船载水域物理及水质分析系统1130水下三维建模系统1131空天地大尺度环境污染监测系统1132高光谱成像系统1133智慧城市实景三维测绘建模系统1134地质灾害实时监测系统1135河湖快速三维建模系统1136耕地质量野外快速监测系统1137环境专业综合训练系统1138纺织行业资源循环与污染控排分析系统1139快速金属元素分析系统1140总有机碳分析仪1141流式细胞仪1142全功能近红外光谱分析仪1143核磁共振变温分析仪1144钨灯丝扫描电子显微镜1145CGS-MTD智能材料光电气湿多场传感特性动态检测系统1146多靶位超高真空磁控溅射仪1147新型光电传感特性分析仪1148示波器1149中红外超短脉冲测量仪1150短波显微拉曼/荧光光谱仪1151柔性电子制备检测平台1152近红外超短脉冲测量仪1153脑电采集设备及运算服务器3154大规模图像数据处理设备4155极端环境医疗器械可靠性测试与评价平台1156脑电信号采集与调控平台1157动物活体成像系统平台1158三色多通道活体光纤记录系统平台1159脑重症无创快速成像系统平台1160生理教学显微成像平台1161分子束光电离飞行时间质谱仪1162发动机部件非线性振动测试系统1163叶片性能分析试验系统1164极端高压物性测试系统1165大数据智能分析实验平台1166眼动分析系统1167面部表情分析系统1168机器视觉图像处理实验平台1169小动物成像仪1170稳态瞬态荧光光谱仪1171单四级杆液相色谱质谱联用仪1172化学生物学专业实验室建设1173基础化学实验创新平台1174基础化学实验虚拟仿真系统1175高效液相色谱仪1176蛋白质纯化仪1177流式细胞仪1178全自动高通量高性能比表面及孔径分析仪1179超高速落地离心机1180高气密性自动在线光催化分析系统1181物理化学测试系统1182模块化智能高级流变仪1183综合化学实验创新平台1184细胞代谢呼吸动态分析仪1185生物分子成像仪1186在线原位光谱检测系统1187在线高通量气体吸脱附系统1188圆二色发光仪器1189手性气-质联用仪1190在线圆二色显微成像仪1191超分辨转盘共聚焦显微镜1192圆二色发光仪器1193药物在线原位分析系统1194药物质量监测与评价系统1195小角X射线散射仪1196低压透射电镜1197真彩色共聚焦显微镜1198冷场发射扫描电镜1199全自动气体吸附仪1200自动进样器的差示扫描量热仪2201Zeta电位及粒度分析仪1202X射线衍射仪1203综合热分析1204傅里叶变换红外光谱仪1205电子背散射衍射仪1206激光导热仪1207原子分辨率球差校正透射电镜1208电感耦合等离子体原子发射光谱仪1209单晶X射线衍射仪1210全自动元素分析仪1211凝胶渗透色谱仪1212与热裂解联用的气相质谱仪1213热电双倾原位透射电镜样品杆1214高效液相色谱-静电场轨道阱高分辨质谱联用仪1215透射电镜旋进电子衍射及纳米晶体分析系统1216原位电化学拉曼光谱仪1217电子万能试验机1218复合材料内部缺陷检测系统12194D显微原位CT系统1220高温RTM试验系统1221复合材料振动测试系统1222四自由度缠绕试验系统1223圆二色光谱仪(Circular Dichroism)1224台式吸收精细结构谱仪 (XAFS)1225微区电化学振幅测试系统1226比表面分析仪1227气质联用仪1228多晶合金制备系统1229蛋白质液相分析仪1230全自动耗散型压电界面分析仪1231多功能酶标仪1232高温偏光荧光显微镜1233原子力显微镜控制器及附件1合计238
  • “川仪造”1E级磁浮子液位计模拟件鉴定试验顺利完成
    3月12日,由川仪自主设计制造的1E级磁浮子液位计模拟件鉴定试验顺利完成,这标志着由川仪股份牵头承担的国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题研究成果即将进入应用阶段,表明我国已拥有CAP1400 1E级磁浮子液位计自主研制能力,打破国外厂商在技术和价格上的垄断,为加快我国核电装备自主化发展和中国核电“走出去”战略提供有力支撑。1E级磁浮子液位计包含堆芯补水箱用1E级磁浮子液位计(CMT液位计)及安全壳淹没用1E级磁浮子液位计(CFU液位计)。CMT液位计用于堆芯补水箱热态液位测量及报警、控制自动卸压系统(ADS)爆破阀开启以缓解LOCA事故、事故后堆芯补水箱内液位监测等功能;CFU液位计可提供事故后监测安全壳内水位,提供安全壳内水位指示及报警等功能。两款1E级磁浮子液位计均为CAP1400非能动堆芯冷却系统中重要测点的专用仪表,对核电站的安全运行起着至关重要的作用。是核电站安全运行的关键设备。全球各大核电强国背后,均有强大的设计研发能力及装备制造业作为支撑。与核电建设速度和规模相比,衡量一国核电实力和产业竞争力的更核心指标是自主化能力。如今,三代核电自主化成果“国和一号”,即CAP1400压水堆技术,将实现100%的设备国产化能力,在这背后是600余家单位、3.1万名技术人员,历时十几年科研攻关,可以说,“国和一号”集中了中国三代核电技术和产业创新之大成。此前,通过核电重大专项及引进技术AP1000项目中,1E级磁浮子液位计从前期采购到中期调试使用再到后期的维护,均由国外厂商垄断,导致产品成本居高不下高、供货周期长,不利于核电厂稳定运行。解决“卡脖子”问题,开发出功率更大、具有自主知识产权的CAP1400已迫在眉睫,核电厂1E级磁浮子液位计国产化研制也提上了议事日程。川仪股份始终心怀国之大者,坚持锻造川仪所长、服务国家所需,以“川仪造”助力我国重大装备自立自强。2018年,川仪股份联合上海核工程研究设计院有限公司(以下简称:上海核工院)承担国家科技重大专项“核电厂1E级磁浮子液位计国产化研制”课题。川仪股份作为课题责任单位,牵头组织、统筹制定项目整体方案与实施计划,并负责堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的设计、制造、鉴定工作;上海核工院作为课题联合单位,开展核电厂用1E级磁浮子液位计的功能需求及鉴定验证相关研究工作。该课题根据CAP1400堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的使用需求,提出两种1E级磁浮子液位计的研制和鉴定要求,历经四年产学研联合攻关,在鉴定方法的研究、浮子适应不同介质测量研究、密封性能研究、永磁材料的研究、使用寿命要求研究等关键核心技术上取得突破,先后攻克大型先进压水堆核电站中堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位在结构设计、制造工艺、精度测量、性能试验验证等方面的技术难题,完成堆芯补水箱用1E级磁浮子液位计和安全壳淹没用1E级磁浮子液位计的研制和鉴定。通过本课题研究工作的开展,全面掌握了CAP1400 1E级磁浮子液位计设计、制造和鉴定试验的核心技术,形成了一套CAP1400 1E级磁浮子液位计的设计制造流程、试验/验证方法、企业标准,满足CAP1400核电机组对1E级磁浮子液位计的抗震、耐高温、耐高压、耐辐照、高密封性、长寿命、快响应等应用要求,技术指标达到同类产品先进水平,将有力保障我国核电厂运行的安全性和可靠性。 核电厂1E级磁浮子液位计的研制成功,打破国外厂商在技术和价格上垄断,摆脱了对进口核电仪表的依赖,降低了核电站的设备成本,缩短了供货周期,后期维护稳定可靠,满足国内核电高质量发展要求,表明川仪股份具备了向CAP1400示范工程提供具有自主知识产权的民族品牌关键仪表设备的能力,为我国三代核电自主化成果“国和一号”实现全面国产化能力,加速我国核电站的海外出口贡献了力量。川仪股份勇担使命,以助力核电装备自主可控的实际行动践行“两个维护”。核电厂1E级磁浮子液位计的研制成功,是川仪股份坚持科技自立自强,持续对标赶超、攻坚克难的成果缩影,“川仪造”背后是对“中国制造”的坚守,承载了一代代川仪人产业报国的心血,也传递着“星星之火”的红色信仰。下一步,川仪股份将以习近平新时代中国特色社会主义思想为指导,认真学习贯彻党的二十大精神,心系“国之大者”,深入贯彻落实习近平总书记“四个面向”重要指示,心无旁骛聚焦主业,持续对标赶超、攻坚克难,在助力国民经济关键领域高端装备自主可控上体现更大担当!
  • 薄膜拉力测试仪在医药包装性能测试中的重要性
    随着医药行业对包装材料性能要求的不断提升,薄膜拉力测试仪在评估和确保包装质量中的作用显得尤为重要。本文将探讨薄膜拉力测试仪如何满足医药包装性能的测试需求。1. 医药包装的特殊要求医药包装不仅需要保护药品免受外界因素的影响,还需符合安全、有效、便捷等多重要求。因而,包装材料的机械性能,特别是拉力强度、耐撕裂性和耐穿刺性等,成为了检测的重点。2. 薄膜拉力测试仪的基本原理薄膜拉力测试仪通过施加均匀的拉力,测量材料在受力下的变形及断裂情况。它能够提供精确的数据,帮助研发和生产团队分析包装材料的性能。3. 应对医药包装性能需求的优势3.1 精确测试薄膜拉力测试仪具备高精度测量功能,可以准确评估医药包装材料在不同环境条件下的拉伸性能,从而确保药品在运输和储存过程中的安全性。3.2 多功能性除了拉力测试,许多现代薄膜拉力测试仪还配备了其他功能模块,如撕裂强度、穿刺强度等测试。这使得其能够全面评估包装材料的性能。3.3 兼容性强薄膜拉力测试仪适用于多种材料,包括塑料薄膜、复合材料等,符合当今医药包装日益多样化的趋势。4. 数据分析与质量控制4.1 结果的可视化薄膜拉力测试仪常配备数据分析软件,能够将测试结果以图表形式展示,便于研发团队直观分析。这有助于发现潜在问题,并及时进行改进。4.2 质量管理体系的支持测试数据可以作为品质保证的依据,帮助企业建立和完善质量管理体系,符合国际标准和法规要求。5. 展望未来随着科技的不断进步和医药行业需求的变化,薄膜拉力测试仪也在不断发展。未来,智能化、自动化的测试设备将更好地服务于医药包装行业,提升包装材料的质量和安全性。结语薄膜拉力测试仪在医药包装性能测试中扮演着不可或缺的角色。不仅能提供精准的测试数据,还能通过多功能性和数据分析,提高包装材料的质量与安全性。随着行业的发展,薄膜拉力测试仪的应用前景将更加广阔。
  • 面料的干湿摩擦性可以用同一台摩擦系数测试仪检测吗
    在纺织行业,面料的摩擦性能是一个至关重要的物理指标,它直接关系到面料的舒适性、耐用性以及其在各种环境下的适用性。而在评估面料的摩擦性能时,干湿两种状态下的表现往往都需要考虑。那么,问题来了:面料的干湿摩擦性是否可以用同一台摩擦系数测试仪来检测呢?一、摩擦系数测试仪的工作原理在深入探讨这个问题之前,我们首先需要了解摩擦系数测试仪的工作原理。摩擦系数测试仪是一种用于测量物体间摩擦系数的专用仪器,它通过模拟物体在实际使用中的摩擦过程,测量并计算出物体间的摩擦系数。在纺织行业中,这类测试仪通常被用于评估面料与皮肤、面料与面料或其他材料之间的摩擦性能。二、干湿摩擦性的差异干湿摩擦性的差异主要源于水分对面料表面性能的影响。在干燥状态下,面料表面的纤维和纱线之间的摩擦主要受到纤维本身的物理性能和纱线结构的影响。而在湿润状态下,水分会改变面料表面的润滑性和粘附性,使得面料之间的摩擦性能发生变化。这种变化可能会影响到面料的穿着舒适性、防滑性以及耐磨损性等方面。三、同一台摩擦系数测试仪的适用性针对上述差异,我们需要评估同一台摩擦系数测试仪在测量干湿摩擦性时的适用性。一般来说,现代的摩擦系数测试仪都具备较高的灵活性和可调节性,可以通过更换不同的测试头、调整测试参数等方式来适应不同的测试需求。因此,从理论上讲,同一台摩擦系数测试仪是可以用于测量面料的干湿摩擦性的。然而,在实际操作中,我们还需要注意以下几点:测试条件的控制:为了准确测量面料的干湿摩擦性,我们需要确保测试条件的稳定性和一致性。这包括温度、湿度、压力等环境因素的控制,以及测试速度和加载方式等测试参数的设置。测试头的选择:不同的测试头适用于不同的面料和测试需求。在选择测试头时,我们需要考虑面料的纤维类型、纱线结构以及测试目的等因素,以确保测试结果的准确性和可靠性。数据处理和分析:在获得测试结果后,我们需要对数据进行适当的处理和分析。这包括数据的清洗、异常值的剔除、统计分析和结果解释等步骤。通过科学的数据处理和分析方法,我们可以更准确地评估面料的干湿摩擦性能,并为后续的产品开发和质量控制提供有力的支持。四、结论综上所述,面料的干湿摩擦性是可以使用同一台摩擦系数测试仪进行测量的。然而,在实际操作中,我们需要注意测试条件的控制、测试头的选择以及数据处理和分析等方面的问题。通过科学的测试方法和严格的质量控制流程,我们可以更准确地评估面料的干湿摩擦性能,并为后续的产品开发和质量控制提供有力的支持。
  • SDL Atlas公司多款纺织新型测试仪器将亮相ITMA上海展会
    SDL Atlas公司将参加6月22-26 日在上海新国际博览中心举办的2010年中国国际纺织机械展览会暨ITMA亚洲展览会(ITMA Asia + CITME 2010),届时我们将会在E3馆的E3A04展台展出日晒色牢度试验机、强力仪、燃烧仪以及多款SDL Atlas生产的新型功能性测试仪器,敬请光临! -- 色牢度性能测试 包括全球纺织实验室最通用的日晒色牢度试验机(Atlas Ci3000+),和水洗色牢度测试仪(Rotawash)。 -- 物理性能测试 包括纺织强力仪H5KS、数字式撕破强度测试仪(Digital Elmendorf Tearing Tester)、气压自动胀破强度测试仪(PnuBurst Tester)、防雨性测试仪(Rain Tester)、耐磨性及起球性测试仪(Martindale)、起球及勾丝测试仪(ICI/M&S Pilling Box)。 -- 功能性测试 包括液态水分管理测试仪(MMT)、热阻湿阻测试仪(Sweating Guarded Hotplate)、耐静水压测试仪(Hydrostatic Head Tester)、透气性测试仪(Digital Air Permeability Tester)、燃烧仪等一系列先进纺织测试仪器。 液态水分管理测试仪(MMT)可测试与评估面料织物的水分动态转移特性,以提高服装的穿着舒适度。该仪器已通过新颁布的美国AATCC195-2009及GB/T21665.2-2009标准认可,并正被越来越多的运动服和功能性面料生产商用于研发与质量控制,获得市场相当高的认可! 热阻湿阻测试仪(SGHP)能模拟人体皮肤产生的热量和水蒸汽穿透织物的过程。在稳态条件下,可以测量多种材料的热阻及湿阻值。该仪器符合ISO11092、GB/T11048-2008测试标准。 耐静水压测试仪符合EN 20811 及AATCC 127测试标准,可以对织物在静压下的透水性进行快速、可靠和可重现性的测试。适用于各种织物,包括进行了防水处理的织物。 透气性测试仪的技术优势在于能测试包括机织物、非机织物、气囊织物、毯、绒毛织物、针织物、层状织物、绒织物的透气性能,还能测试板状的、多层的、模制的多孔产品的透气性,比如聚氨酯泡沫等。该仪器符合ASTM D 737、D3574、ISO 9237多种测试标准。
  • 美开发出仿皮肤可穿戴式设备 既能监测心血管疾病又能对皮肤保湿
    科技日报讯 美国西北大学和伊利诺伊大学厄巴纳-尚佩恩分校的研究人员开发出一种仿皮的可穿戴式医疗设备,可以迅速对有心血管问题的人预警,或者给皮肤进行保湿。这项研究成果刊登在最新一期的《自然· 通信》在线版上。   据每日科学网、物理学家组织网近日报道,该小型装置大约5厘米见方,可直接放置在皮肤上,全天候进行健康监测。该无线技术采用柔性基板上数以千计的细小液晶来感测温度。当设备颜色变化,佩戴者便知道哪部分出状况了。   西北大学高级研究员黄永刚(音译)说:&ldquo 我们的设备是可不见的机械,它超薄、舒适,就像皮肤本身一样。该设备可在人们的手腕上测试。可想而知化妆品公司会有兴趣采用这种便携、非侵入性的方式来测量皮肤的干燥度。这是同类产品中的首个设备。&rdquo   该技术在皮肤的表面采用了瞬时温度变化,以确定血流量,这直接关联到心血管健康、皮肤水合作用的水平(当皮肤脱水,其热导率特性发生变化)。该研究联合第一作者、西北大学土木与环境工程研究助理教授张辉(音译)说,&ldquo 该设备非常实用,当你的皮肤被拉伸、压缩或扭曲,这个设备也随之拉伸、压缩或扭曲。&rdquo   该设备含高达3600个液晶数组,布置于一个薄、柔软、可拉伸的衬底。凭借3600个液晶,该光子器件具有3600个温度点,提供亚毫米级的空间分辨率,相当于目前在医院使用的红外技术。但红外技术比较昂贵,使用受限于临床和实验室设置,而新设备具有成本低和便携性。研究人员说,当晶体感应到温度变化后就会改变颜色,一个算法将温度数据转换为准确的健康报告,所有这一切在不到30秒内生成。   该论文的联合作者、伊利诺伊大学材料科学与工程教授约翰· A· 罗杰斯说:&ldquo 这些结果提供了第一个&lsquo 表皮&rsquo 光子传感器的例子,这项技术大大扩展了附着皮肤设备功能的范围,超出了单独使用电子产品的可能性。&rdquo 该技术和相关性基本药物已在这个研究中被证明,虽然在将该装置投入使用之前需要附加测试。
  • R&S推出全新LCX测试仪,强化高性能阻抗测量产品组合
    R&S LCX系列的LCR表能够用于传统的阻抗测量以及针对特定元件类型的专门测量,并提供研发所需的高精度以及生产测试和质量保证所需的高速度。用于高精度阻抗测量的R&S LCX LCR测量仪。   罗德与施瓦茨推出的新款高性能通用阻抗测试仪系列能够覆盖广泛的应用领域。R&S LCX支持的频率范围为4Hz至10 MHz,不仅适用于大多数传统家用电源的50或60 Hz频率以及飞机电源的400 Hz频率,还适用于从低频震动传感器到工作在几兆赫的高功率通信电路的所有设备。   对于选择合适的电容、电感、电阻和模拟滤波器来匹配设备应用的工程师来说,R&S LCX提供了市场领先的高精度阻抗测量。与此同时,LCX还支持以生产使用精度进行更高速度的质量控制和监控测量。测试方案包含生产环境所需的所有基本软件和硬件,包括远程控制和结果记录,仪器的机架安装,以及用于全系列测试的夹具。   R&S LCX使用的自动平衡电桥技术通过测量被测设备的交流电压和电流(包括相移)来支持传统的阻抗测量。然后用该数据来计算任何给定工作点的复阻抗。作为一种通用LCR测量仪,R&S LCX涵盖了许多应用,如测量电解电容和直流连接电容的等效串联电阻(ESR)和等效串联电感(ESL)。   此外,除了全方位的阻抗测量之外,用户还可以测试变压器及测量直流电阻。为了研究元件的阻抗值在不同频率和电平下的变化,选配装置R&S LCX-K106能支持以频率、电压或电流作为扫描参数,进行动态阻抗测量。   R&S LCX系列推出两个型号:R&S LCX100的频率范围为4 Hz至300 kHz,R&S LCX200的基本配置频率范围为4 Hz至500 kHz,可选配覆盖高达 10 MHz 所有频率的选件。两种型号均配备出色的测量速度、精度和多种测量功能。包括:配备大型电容式触摸屏和虚拟键盘,支持所有主要测量工作的点击测试操作。   用户也可以使用旋钮设置电压、电流和频率值。不常用的功能则可以使用菜单操作。设置、结果和统计数据可以显示在屏幕上,还能导出以便进行自动后处理。用户最多可选择四个测量值并绘制成时间曲线,将最大值和最小值显示在屏幕上,一目了然地进行通过/失败分析。   罗德与施瓦茨的子公司Zurich Instruments AG生产的MFIA阻抗分析仪作为R&S LCX的完美补充,能够支持更多材料的阻抗研究。通过MFIA,研究人员可以表征半导体或进行材料研究,范围包括绝缘体、压电材料、陶瓷和复合材料,组织阻抗分析、细胞生长、食品研究、微流体和可穿戴传感器。
  • 超声?穿刺?CT?两人中就有一人有的甲状腺结节,如何诊断?|甲状腺系列科普(六)
    医生:你的超声检测结果显示你有甲状腺结节,你可以考虑做一个细针穿刺活检,进一步判断下结节的性质。小李:我平时也没有感觉咽喉不舒服,为什么突然会有甲状腺结节?医生:很多人都会有甲状腺结节,不过大多数人的结节都是良性的,只需要定期检查就可以,但不排除少数形态不好的结节有恶性的可能。因此我建议你先做一个细针穿刺活检,来判断结节的良恶性。小李(害怕):结节是良性还是恶性,超声检测不出来吗?细针穿刺活检是什么,听起来挺可怕的…… 甲状腺结节,图片来自hopkinsmedicine.org相信大家不免疑惑:既然医生说很多人都会有甲状腺结节,那我是不是也得去查一下?甲状腺结节是个坏家伙吗?细针穿刺活检又是个啥样的检查? 实际上,甲状腺结节的患病率高达50%。古有“三人行,必有我师焉”,今有“二人行,或有一结节”,手机屏幕前的你,或许就是“结节”大军中的一员。甲状腺结节是由于甲状腺组织的异常过度生长导致的,可能是一个,也可能有多个。在大多数情况下,甲状腺结节都是良性的,少数为恶性。发现了甲状腺结节,到底需不需要切除或者治疗?这就涉及到诊断甲状腺结节的良恶性的问题。目前常用的诊断甲状腺结节的方法有超声和细针穿刺活检(Fine needle aspiration,FNA)等。常用的诊断方式1:超声诊断超声往往被看作是甲状腺常规检查的首选,一般常规体检中也会用到,具有灵敏性高、特异性强等特点。超声检查不仅可以判断甲状腺结节是单发还是多发;是囊性、实性还是混合性的;结节的回声是否均匀;边缘是否光滑;是否突出包膜、或包膜是否被连续性破坏;结节内有无钙化以及钙化的性状如何;有无血流以及血流是否丰富……此外,还可以了解甲状腺与邻近组织如颈动脉、颈静脉的关系。在甲状腺结节的超声检测中,还有一种更方便易懂的分级方式:TI-RADS分级。这个分级主要是根据结节的大小、边界、回声、血流、钙化程度来进行综合评估和分类,这种方法可以帮助分辨出甲状腺结节的良恶性。 Ti-RADS分级TI-RADS分级分为六个等级,其中4级中又分4A、4B、4C。总体而言,1、2级总体上都是良性的,随着级数的递增,恶性的概率也逐渐增加,最严重的6级,是指通过FNA已经证实结节中有癌细胞。通常来讲,1~3级不用太关心,随访观察即可,4~6级则需要找医生就诊。常用的诊断方式2:FNA(细针穿刺)诊断FNA检查是在超声的引导下对甲状腺结节进行穿刺,并取出一部分结节组织来进行病理检查,根据结节中是否具有癌细胞,来进一步判断甲状腺结节的良恶性,从而进一步判断患者是否确实需要进行甲状腺手术等治疗。细针穿刺手术,图片来自haodf.com复杂吗?不用担心,FNA诊断中也有贴心的分类——贝塞斯达(Bethesda)分类标准,这个分类方法的依据是FNA获取的组织样本的病理检查结果。美国国立卫生研究院(NIH)把贝塞斯达分为以下六个类别:1.标本无法判断或不满意(Nondiagnostic or Unsatisfactory),这种情况通常是组织样本中的细胞含量不足,无法给出明确的诊断。2.良性(Benign),这种情况常见于一些增生性或者炎性的反应。3.意义不明确的非典型性病变或意义不明确的滤泡性病变(Atypia of Undetermined Significance(AUS)or Follicular Lesion of Undetermined Significance),这种情况往往是细胞学上有一些异常,但是异常程度不足以进行诊断。 4.滤泡性肿瘤或可疑滤泡性肿瘤(Follicular Neoplasm or Suspicious for a Follicular Neoplasm),这种情况是确定在组织样本中发现有滤泡型的肿块,但是细胞学上并不能确定肿块的良恶性。5.可疑恶性肿瘤(Suspicious for Malignancy),这种情况是通常已经有肿瘤的特征,不过细胞含量比较少,或者是出现了比较严重的炎症反应,因此高度怀疑是恶性肿瘤。6.恶性肿瘤(Malignancy),即恶性肿瘤。 贝塞斯达分类,图片来源haodf.com除了超声和FNA这两种检测方法外,临床上使用的还有一些其他的手段也可以用于甲状腺结节的诊断。其他诊断方式除了超声和FNA外,常用的甲状腺结节的诊断方式还有视诊、触诊、CT扫描、磁共振成像(Magnetic Resonance Imaging,MRI)等。这些方式在诊断甲状腺结节时又各有优势和不足。视诊和触诊很容易理解,就像古人说的“望闻问切”一样。甲状腺的触诊非常重要,它比视诊更能明确甲状腺疾病的状态,因为医生可以通过触诊触摸到甲状腺的大小、有无震颤以及有无结节,同时根据患者的临床表现,以确定甲状腺发生了什么样的疾病。CT和超声类似,都是影像学检查方法,各有优缺点。在常规的诊断中,CT影像能够提供更多的信息给医生。但是在甲状腺结节的检测上,超声则更胜一筹。CT影像,图片来自frontiersin.orgCT比较适合用于检查比较大的肿瘤,但是甲状腺结节往往较小,面对1~2厘米的小结节,超声检查则相对比较灵敏和准确。此外,由于甲状腺位置表浅,因此相对更适合通过超声进行检查。与CT检查一样,磁共振通常也不是甲状腺影像学检查的首选方法。一方面,头颈部器官结构特殊,有鼻咽、口咽、喉和鼻窦等空腔脏器,容易在磁共振成像中产生伪影。此外,常规的吞咽、呼吸、颈部血管搏动等也会导致图像变形失真。另一方面,磁共振在确定结节有无钙化的问题上不及超声,况且检查费用昂贵,因此临床上一般不考虑采用磁共振检查。总的来说,视诊和触诊通常是甲状腺结节诊断的第一步,体检过程中也可以通过超声检测出甲状腺结节,而FNA诊断往往是为了更进一步确定甲状腺结节的良恶性,这对后续治疗方案的确定十分重要。 甲宝玉(西湖欧米) | 撰文参考资料1. B超、CT、磁共振检查甲状腺结节-有来医生 (youlai.cn)2. Bethesda Categorization of Thyroid Nodule Cytology and Prediction of Thyroid Cancer Type and Prognosis - PubMed (nih.gov)
  • 华腾地毯购置莫帝斯铺地材料热辐射测试仪
    华腾地毯(新余)产业园有限公司(VOXFLOR Industrial Park Co., Ltd.)是江西省新余市高新技术经济开发区与华源集团地毯有限公司合作创立的。项目总投资1.5亿元人民 币,一期占地266亩,一期厂房面积3万平方米,拥有抽丝、纺纱、簇绒、染色、覆底等高度一体化地毯加工生产线及设备,簇绒设备36台,方块毯簇绒产能位居亚洲第一。1997年华腾研发了国内第一款尼龙提花地毯。华腾也是中国地毯协会唯一指定的色彩图案研发中心。多年来华腾一直专注做中国最专业的方块地毯生产商。产品从发展之初,就努力与世界同步。产业园现已聚集了近10家地毯相关厂商,先后接待各省、市、地区代表团参观指导近百余次,公司目标是在江西建设中国最大的地毯产业集群。为了强化“华腾地毯”的品牌建设,推进公司的业务市场国际化进程,2014年1月1日,原公司名称江西华腾地毯产业园有限公司(CTTCC)更改为华腾地毯(新余)产业园有限公司(VOXFLOR Industrial Park Co., Ltd.)。 为确保华腾地毯品质的完美体现,华腾在原料上严格把关。在纱线使用上,华腾一直采用世界知名的英威达Antron尼龙66,环球尼龙66和首诺尼 龙66纱线,保证了产品的优异品质。通过对原料供应的控制,使所有产品经过抗静电、防污、阻燃、抗菌防螨整理,具有耐磨损,易清洗,无异味的特点。对于出售产品华腾予以长达15年以上的质量保证承诺。2012年,华腾和美国杜邦TM签订协议,杜邦TM在中国独家授权华腾在方块毯生产中使用杜邦TM最新研发的绿色环保Sorona?纱线。Sorona?纱线部分由可再生植物制造,具有天然的抗污,抗压,耐氯漂洗和抗紫外线的特点。可以做到很多污渍仅仅用水就可以清洁。Sorona?纱线的使用让华腾产品在品质和环保上都得到了一次大的飞跃。在地毯底背的研发上,华腾不断推陈出新。华腾的Mix-BacTM由回收可降解材料制作,脚感柔软,舒适耐用,尺寸稳定,弹性持久。从纱线采购到生产销售,华腾兼顾环保需要;同时做到了产品的部分可回收利用。华腾地毯拥有业内一流的研发力量。产品开发部由多名高素质的专业人员组成,并被中国工艺美术协会地毯专业委员会授权为行业新品开发中心,在技术开 发、图案 设计、配色等每一个环节上都配备专业人员负责深入研究;硬件配置上,采用国际一流的地毯设计、实样模拟软件和澳大利亚进口的专业地毯打样机,保证我们的设 计意图能够更快、更具体地得到体现。 经过多家对比,华腾地毯选择莫帝斯燃烧技术作为其合格供应商,用于其地毯的阻燃性能检测。 莫帝斯燃烧技术(中国)有限公司成立于2008年,100%的中国民族企业,其产品品牌为“莫帝斯”,其取义为Metis,她在古希腊神话中是水文和聪慧女神,是大洋河流之神俄刻阿诺斯和大洋女神泰西斯的女儿,也是雅典娜的母亲,她在一切生物中是最聪明的。“莫帝斯”品牌的寓意在于,我们的目标就是要制造出人性化和智能化的测试仪器,同时,当我们走出国门,进行品牌的推广时,便于提高海外市场的认知程度,避免因为品牌直译而产生的歧义。 莫帝斯燃烧技术(中国)有限公司自成立以来,在国内拥有众多知名用户,如公安部四川消防研究所、公安部天津消防研究所、公安部上海消防研究所、公安部沈阳消防研究所、中国标准化研究院、中国铁道科学研究院、中国船级社远东防火检测中心、中国科学院力学研究所、中国科技大学、北京理工大学、浙江理工大学、北京化工大学、浙江工业大学、中原工学院、中国南车、德国TUV南德意志集团、瑞士SGS通标标准技术服务有限公司等,莫帝斯致力于提供优质的燃烧测试仪器,为中国的阻燃材料以及燃烧测试研究提供最为有力的科研及检测武器。 www.motis-tech.com
  • 百亿元市场贡献却沦为皮肤病“真凶”,这困局谁来解?
    关于镍的历史听到这个字,你可能非常的陌生。而对于化工等行业的人来说,化学镀镍及电镀镍想必并不陌生。在中国,对于镍的工业化使用起步较晚,但发展迅速。目前我国是全球*的镍铁生产和消费国,每年的化学镀镍市场总规模在百亿元左右,并且以每年10%~15%的速度发展。而随着我国现代电镀技术的不断发展和进步,镍镀层的应用场景也不断得到扩展,主镍镀层已被广泛的应用于在工业、运输、海洋工程和建筑领域,被用于超过30万种产品。镍与人们的生活息息相关你觉得镍与我们并没什么关系?不!事实上,你可能每天都在日常生活中见到它。镍镀层作为最重要的防护装饰性镀层之一,被广泛应用在人们日常生活中所接触到的金属表面,如拉链、纽扣、铆钉等服饰中的金属配件,耳环、项链、手镯、戒指等珠宝饰品,表带、眼镜框等日常用品。 图1:镍在日常生活中的应用另一方面,随着社会的发展,电子产品逐渐走入人们的日常生活,如智能手机、笔记本电脑等,因此人们与电子产品中用于电子元件上镍镀层的接触也愈发密切。并且,在电子设备小型化、轻型化、便捷化、智能化的发展趋势下,智能可穿戴设备(如智能眼镜、智能手表等)正成为激发社会需求的热点产品。据并呈现快速发展的趋势。可以预见:未来用于可穿戴设备上的镍镀层与人们的接触机会也将急剧增加。但镍难道百利而无一害吗?镍也有“正反两面”镍镀层在与人体的皮肤长期接触后易被汗液腐蚀,产生镍释放现象,对人体造成过敏等危害。镍过敏常常会导致患者皮肤出现经久不愈的湿疹与皮炎,且可能会无限期的持续下去。在一项北美接触性皮炎研究中,据数据统计,在所有接触性皮炎患者中,由镍过敏引起的大约占13%左右。随着社会发展,人们与金属的接触将愈发频繁。出于安全的考量,国际上也出台了相关规定,限制了与人体密切接触的金属材料的镍释放量。而在释放量测定试验中,配制人工汗液是最重要的环节,会直接影响到测试的准确性。Pickering Laboratories人工体液人工汗液配置人工汗液的配制应特别关注配方及pH 值的控制,并要保证测试过程的基体一致性。因为上述因素都会影响测试的准确性。因此,为了保障实验,需要一款更贴近真实人体体液且质量较高的人工汗液产品——Pickering Laboratories人工体液。Pickering Laboratories人工体液依据多种测试标准配置的一种即用型溶液,此溶液有一定的PH值,含有无机盐、乳酸和含硫氨基酸等数十种成分,以模拟真实并严苛的测试环境。Pickering人工体液产品详情产品一 ✦BS EN1811:2011缓冲人工汗液(PH值:6.5)用于测试珠宝或其他长期与皮肤接触的电子穿戴设备的镍的释放度。产品二 ✦BS EN1811:2011人工汗液(PH值:6.5)适用于测试插入耳洞及其他用于穿过人体的部件镍的释放度。产品三 ✦ISO3160人工汗液(改配方PH值:4.7)改配方用于检测金合金的耐腐蚀性,适用于镀金合金的表壳和附件。产品四 ✦ANSI-BHMAA156.18人工汗液依据美国建筑五金制造商协会(BHMA)相关方法配制,适用于检测各种建材。产品五 ✦ISO 12870人工汗液适用于眼科光学—眼镜架的耐汗性和耐腐蚀性。小贴士Pickering人工汗液类产品均为即用型产品,根据客户的需求分为稳定版和非稳定版两个版本,稳定版汗液中添加了不影响产品使用性能防腐成分,可室温储存1年;非稳定版汗液不含防腐成分,需冷藏或冷冻保存。我们还可提供其他类型人工体液:人工唾液、人工皮脂、人工肺液、人工尿液、人工耳垢等参考文献:「1」金属中镍的释放机理及影响镍的释放量的部分因素分析—张恒等「2」离子液体电沉积Al-Mn 合金镀层的人工汗液腐蚀研究—徐静「3」含镍18K 金首饰在人工汗液中的腐蚀性研究—李桂华等「4」“镍”无处不在,什么人最容易镍过敏?_金属镍 (sohu.com)关于Pickering Laboratories美国Pickering Laboratories公司是全球专业提供人工测试体液和柱后衍生化学试剂、色谱柱、分析方法等柱后衍生分析整体解决方案的机构,其不断创新及良好的信誉被众多的美国政府机构如EPA、ATF、FDA、AOAC和世界知名的厂商所认可。
  • 为何薄膜拉力机、摩擦系数仪、密封性测试仪是食品包装企业品控必须仪器
    食品包装企业在确保产品质量和安全方面扮演着至关重要的角色。薄膜拉力机、摩擦系数仪和密封性测试仪是品控过程中不可或缺的仪器,它们各自在包装材料的测试和质量控制中发挥着独特的作用:薄膜拉力机:薄膜拉力机用于测量包装材料(如塑料薄膜、复合材料等)的拉伸强度、断裂伸长率、弹性模量等力学性能。这些参数对于评估包装材料的耐用性、抗破损能力和在实际使用中的可靠性至关重要。通过拉力机测试,可以确保包装材料能够承受一定程度的物理冲击和拉伸,从而避免在运输和存储过程中出现破损。摩擦系数仪:摩擦系数仪用于测定包装材料的滑动摩擦系数,这对于评估包装材料在生产线上的运行特性非常重要。低摩擦系数可以减少包装过程中的磨损,提高生产线的效率,同时也可以降低包装材料在储存和运输过程中的粘连问题。适当的摩擦系数有助于确保自动包装机械的顺畅运作,减少停机时间和材料浪费。密封性测试仪:密封性测试仪用于检测包装的完整性和密封强度,这对于食品包装尤为重要,因为密封的可靠性直接关系到食品的保质期和卫生安全。通过密封性测试,可以确保包装无泄漏,防止外界污染物和微生物的侵入,保障食品的质量和安全。密封性测试也有助于检测包装材料的耐压性和耐穿刺性,特别是在包装易碎或易受外界环境影响的食品时。综上所述,薄膜拉力机、摩擦系数仪和密封性测试仪是食品包装企业品控的必备仪器,它们分别从材料的力学性能、生产线的运行效率和产品的安全密封性等方面,为保证食品包装质量提供了强有力的技术支持。通过这些仪器的严格测试和控制,食品包装企业能够提供更加可靠和安全的包装解决方案,满足消费者和法规的要求。更多相关产品信息、解决方案、行业动态可关注山东泉科瑞达仪器官网
  • 新品发布 | 破茧成蝶,热成像穿戴泄露测试仪加持AI技术重磅亮相!
    标准早有规定:对于医用防护型口罩,《GB 19083-2010 医用防护口罩技术要求》中规定了口罩的密合性参数。另外,对于呼吸防护装备,《GB 2626-2019 呼吸防护自吸过滤式防颗粒物呼吸器》与《EN 149 Respiratory protective devices — Filteringhalf masks to protect against particles — Requirements, testing, marking》中规定了泄露率参数。适合因子和泄露率都是用数据来表示口罩与面部的贴合程度,其数据获得原理主要是在真人佩戴口罩的条件下按照要求做动作模拟生活中的运动,同时实时监测口罩内外的颗粒物浓度,通过对应公式计算来获得。经过多年科研攻关,青岛众瑞推出质变新品:ZR-1240型红外热成像穿戴泄露测试仪。这款产品是青岛众瑞参加国家“十三五”传染病防治重大专项的成果转化,为口罩泄漏率的检测方式带来了革命性的改变,真正做到了实时快速检测!那么如此先进的检测方式,这款仪器是如何做到的呢?这主要是依靠人工智能的加持!简单来说,就是能够通过红外成像获得实时口罩内气体流动情况,利用人工智能算法分析判断是否出现泄露,而且算法和人一样还能自己学习,变得越来越准确!ZR-1240是众瑞向着高精尖设备制造迈进的里程碑之作,解决了传统检测方式的不足。智能化的产品不仅适用于口罩生产厂商的质量自控以及其他单位的质量监督,也适用于医院洁净病房、P3/P4级生物实验室以及GMP制剂车间等医疗场所和人流量、车流量大的公共场所(如车站、地铁站、机场、高速检查站、机关单位、学校、银行、商场以及电影院)进行口罩密合度筛查。真正实现了一机打通生产到使用的全部通道,具有极高的普适性。智能机器人应用场景不断扩展,大量产品应用到社会生产生活的方方面面,青岛众瑞也将在生物安全领域不断发力,在个人防护类、实验室检测类与环境采样等方面,助力抗击疫情。我们秉持用心做好仪器的信念,积极推动传统制造业的产业升级,以创新精神实现“中国智造”。
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
  • 药典0952第四法 贴膏剂黏着力测试仪
    药典0952第四法 贴膏剂黏着力测试仪在现代医药领域,贴膏剂、贴剂、橡胶膏剂及凝胶剂等外用制剂因其使用方便、疗效显著而备受青睐。这些制剂的黏附性能直接关系到其治疗效果与患者使用的舒适度。因此,准确测定这些产品的黏着力成为制药厂家、药检机构等单位的重要任务之一。依据《中国药典》中的0952黏附力测定法第四法要求,济南三泉中石研制了一款高性能的NLT-30S贴膏剂黏着力测试仪,旨在为行业提供精准、可靠的测试解决方案。一、仪器概述本NLT-30S贴膏剂黏着力测试仪专为贴膏剂、贴剂、橡胶膏剂、凝胶剂及医用辅料等材料的胶粘表面设计,能够精确测量这些材料在敷贴于模拟皮肤或实际皮肤后所产生的黏附力大小。其独特的卧式结构结合精密丝杠传动系统,确保了测试过程中的位移精度与稳定性,为科研与生产提供了坚实的技术支撑。二、济南三泉中石的NLT-30S贴膏剂黏着力测试仪-技术特点1.高精度传动系统:采用精密丝杠传动,有效减少传动过程中的摩擦与误差,确保测试结果的准确性。2.微电脑控制器:内置高性能微电脑控制器,实现测试过程的自动化控制,包括测试参数的设定、数据采集与处理、结果显示与打印等,操作简便快捷。3.微型打印机:配备微型打印机,可即时打印测试报告,便于数据记录与存档。4.广泛适用性:不仅适用于贴膏剂、贴剂等传统剂型,还兼容凝胶剂、医用辅料等多种材料的黏着力测定,满足多样化测试需求。三、济南三泉中石的NLT-30S贴膏剂黏着力测试仪-应用领域制药厂家:在产品研发、质量控制及生产过程中,使用本仪器对贴膏剂、贴剂等产品的黏附性能进行定期检测,确保产品质量符合标准。药检机构:对市场上流通的贴膏剂、贴剂等产品进行抽检,保障公众用药安全。科研机构:在药物研发、材料科学等领域,用于研究不同配方、工艺对黏附性能的影响,推动技术创新与进步。
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。   前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。   “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。   据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。   据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 滚球法初粘性测试仪和环形初粘力测试仪检测的是同一种性能吗
    在探讨滚球法初粘性测试仪与环形初粘力测试仪是否检测同一种性能之前,我们首先需要深入理解这两种测试仪器的工作原理、应用场景以及它们各自所侧重测量的物理属性。通过对比分析,我们可以更清晰地认识到两者之间的异同点。一、测试原理与机制滚球法初粘性测试仪工作原理:滚球法初粘性测试仪,顾名思义,是通过观察特定重量的钢球在倾斜的试样表面滚落的最远距离,来评估材料的初粘性。测试时,将试样水平固定在测试台上,上方放置一定质量的钢球,并逐渐调整测试台的倾斜角度,直至钢球开始滚动并记录下滚动的最远距离。这个距离反映了材料表面对钢球的初始粘附能力,即初粘性。机制解析:此方法的核心在于模拟了材料在实际应用中,与轻小物体接触时产生的瞬间粘附效果。它侧重于测量材料表面的动态粘附特性,即在一定条件下,材料表面能够短暂保持接触物体不立即脱落的能力。环形初粘力测试仪工作原理:环形初粘力测试仪则采用了不同的测试原理。它利用一个特定形状和尺寸的环形压头,以恒定的速度或压力压在试样上,随后将环形压头与试样分离,通过测量分离过程中所需的最大力或能量,来量化材料的初粘力。这个过程模拟了材料在受到外力作用时,抵抗分离所需的力学性能。机制解析:环形初粘力测试仪更多地关注于材料表面在静态或准静态条件下的粘附强度,即材料表面与另一物体接触并尝试分离时,所展现出的抵抗分离的能力。这种测试方法对于评估材料的密封性、粘接强度等方面具有重要意义。二、检测性能的差异动态与静态的区分从上述原理可以看出,滚球法初粘性测试仪侧重于测量材料表面的动态粘附特性,即材料在受到外力作用(如倾斜角度变化导致的重力作用)时,表面能够短暂保持接触物体不脱落的能力。而环形初粘力测试仪则更侧重于评估材料在静态或准静态条件下的粘附强度,即抵抗分离所需的最大力或能量。应用场景的不同这两种测试方法的应用场景也因此而有所差异。滚球法初粘性测试仪因其简单快捷、易于操作的特点,广泛应用于胶带、不干胶、保护膜等材料的初粘性评估。它能够有效反映材料在实际使用过程中的粘附表现,为产品质量的控制提供重要依据。而环形初粘力测试仪则更适用于需要精确测量材料粘附强度的场合,如密封材料、粘合剂等领域的研发与质量控制。三、综合分析与结论综上所述,滚球法初粘性测试仪与环形初粘力测试仪虽然都涉及对材料初粘性能的测试,但它们所检测的具体性能并不完全相同。滚球法侧重于材料表面的动态粘附特性,而环形初粘力测试仪则更关注于静态或准静态条件下的粘附强度。因此,在选择测试方法时,应根据具体的应用场景和测试需求来确定使用哪种仪器,以确保测试结果的准确性和可靠性。此外,值得注意的是,随着科技的进步和测试技术的发展,新的测试方法和仪器不断涌现。在实际应用中,我们还可以结合多种测试手段,对材料的粘附性能进行全面、深入的评估,以更好地满足产品研发、质量控制以及市场应用的需求。总之,滚球法初粘性测试仪与环形初粘力测试仪各有其独特的测试原理和应用场景,它们共同构成了材料粘附性能测试领域的重要工具。通过科学合理地选择和使用这些工具,我们可以更加准确地了解材料的粘附性能,为相关领域的研发和创新提供有力支持。
  • 天霁大气采样器完成模拟高海拔采样测试
    天霁HN-ASA1双模正压大气采样器在中国计量科学研究院成功完成了模拟高海拔低温条件下的采样测试。测试分别模拟了珠峰大本营(海拔5100米、0.5大气压、-10℃)和前进营地(海拔6500米、0.42大气压、-20℃)的气压和温度条件,天霁HN-ASA1双模正压大气采样器在这些极端条件下均可以正常启动,并成功完成了气体样品的采集工作,采集的样品压力均可满足后续分析的要求。 这批采样器随“巅峰使命2022”第二次青藏科考北京大学分队赴珠峰进行高海拔空气采样工作。这是我国首次在珠峰营地开展针对甲烷和含氟气体的采样实验,所得数据对于珠峰地区乃至全球的温室气体浓度分布与传输状况的研究具有重要意义。此前,天霁采样器还曾搭乘“雪龙号”极地考察船,在南极圆满完成了空气采样工作。天霁系列大气采样器专门为环境空气正压采样所开发,采用便携拉杆箱设计,携带方便,稳定可靠。采样器具有独特的抽气-充气双模式切换功能,在现场只需一台采样器即可完成采样罐的冲洗和采样,极大提高空气采样效率和样品可靠性。天霁大气采样器还提供全自动(ASP2)、多通道可编程(ASP8)等多个型号,并可选配流量控制、内置电池等模块,满足各种场景下的空气采样需求。
  • 1.0026亿元 天大光纤力热复合测试仪器专项获批
    10月31日,国家科技部正式下发文件(国科发财[2013]636号),支持66个国家重大科学仪器设备开发专项项目立项。由天津大学作为项目牵头单位,精密仪器与光电子工程学院刘铁根教授作为项目负责人的&ldquo 光纤力热复合测试仪开发和应用&rdquo 获得正式立项批复。该项目开发周期为4年,项目总经费预算为1.0026亿元,其中国家科学仪器设备开发专项经费资助5288万元。   2011年7月,国家科技部会同国家财政部正式启动并组织实施《国家重大科学仪器设备开发专项》,旨在贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,支持重大科学仪器设备开发,提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设和社会发展。   本项目在以刘铁根教授为首席科学家的国家973计划项目&ldquo 新一代光纤智能传感网与关键器件基础研究&rdquo 成果基础上,将着力开展光纤力热复合测试仪的工程化开发和产业化推广。通过系统集成、软件开发和应用开发,丰富仪器功能,优化技术方案,形成具有自主知识产权、功能健全、质量稳定可靠的光纤力热复合测试仪产品,为我国航空航天等工程提供测试技术支撑。项目共有23家参研单位,除天津大学一家高校外,其余均为企业、科研院所,为仪器的工程化和产业化奠定了良好基础。该项目的立项,标志着天津大学光纤传感领域研究水平再攀新高,显示天津大学在仪器仪表领域内的雄厚实力,同时也将为天津大学产学研合作探索出一条新路。   项目负责人刘铁根教授,是天津大学光学工程国家重点学科学术带头人,国家973 计划项目首席科学家,2012 年度全国优秀科技工作者,2010年度天津市劳动模范,享受国务院政府特殊津贴。长期从事光纤技术和光电检测等领域的研究和教学工作,以第一完成人获得天津市技术发明一等奖、中国仪器仪表学会科学技术奖一等奖和教育部科学技术进步奖一等奖。发表论文210 余篇,其中SCI、EI 检索近115 篇。申请国家发明专利40 余项,其中授权15 项。以起草组组长身份主持制定国家军用标准《光纤气体传感器测试方法》。此外,刘铁根教授还是光电信息技术教育部重点实验室(天津大学)主任,全国仪器仪表学会光机电集成分会理事长和中国光学学会光电技术专业委员会副主任。
  • 中南大学陈翔/陈泽宇/赵爽《Small》:Transwell集成化类器官芯片用于模拟肿瘤转移
    肿瘤异质性一直被认为是阻碍个体化诊疗进步的一大障碍。其中,肿瘤转移性与肿瘤异质性密切相关,是恶性肿瘤的一种常见并严重的表现,对患者的生存率和生活质量有着极大的影响。肿瘤类器官是源自肿瘤组织中肿瘤特异性干细胞通过三维组织培养形成的细胞簇,它可模拟体内肿瘤特征及肿瘤细胞异质性,该技术的应用为肿瘤研究和治疗提供了可靠的模型,特别是为个性化肿瘤诊疗开辟了新的方案。目前,在体外利用肿瘤类器官技术评估肿瘤转移性的方法仍然十分缺乏。传统的评估细胞迁移能力的方法包括Transwell、细胞划痕等,这些方法无法模拟原发性肿瘤转移的过程,因此无法有效评估肿瘤的转移性。器官芯片技术能够模拟人体器官的功能,通过将微型芯片和生物材料组合,可以更加准确地研究和测试药物的效果、了解疾病的有关机制以及开发个性化诊疗方法等。但目前用于研究肿瘤转移的器官芯片大多仍采用传统的肿瘤细胞系构建模型,由于传统的肿瘤细胞系与患者来源的肿瘤细胞存在较大差异,因此难以重建真实的肿瘤转移过程,使得现有方法无法满足临床上的应用需求。近期,中南大学湘雅医院皮肤科、中南大学机电工程学院、重庆大学三峡医院等研究团队在《Small》(IF=13.3)期刊上在线发表题为“Mimicking Tumor Metastasis Using a Transwell-Integrated Organoids On-a-Chip Platform”的原创性论著。该研究提出了一种用于评估肿瘤转移性的肿瘤类器官芯片。该芯片可以模拟人体内肿瘤生长和转移的生理过程,能够有效评估患者肿瘤细胞的侵袭能力和生长能力,为研究肿瘤的转移性以及相应的肿瘤治疗和药物研究提供了重要的工具。据悉,这项研究的第一作者和第一通讯作者单位均为中南大学。21级硕士研究生陈迈科和20级博士研究生单晗为该论文共同第一作者;中南大学湘雅医院皮肤科陈翔教授、赵爽副研究员、中南大学机电工程学院陈泽宇教授、重庆大学三峡医院印明柱教授为该论文共同通讯作者。首先,作者阐述了肿瘤异质性的原理以及肿瘤转移的过程,并在传统评估细胞迁移能力方法的基础上,提出了Transwell集成的肿瘤类器官芯片精准评估肿瘤转移策略。 图1 Transwell集成的肿瘤类器官芯片用于评估肿瘤转移和药物筛选然后,作者使用高精度3D打印技术(摩方精密nanoArch® S140,精度:10μm)制作了芯片腔室的六边形支架,并使用激光切割技术制造了芯片主体,最终装配成了集成Transwell单元的仿生肿瘤类器官芯片。图2 仿生肿瘤类器官芯片制造作者进一步使用肿瘤类器官芯片评估了患者来源的粘膜黑色素瘤类器官和肢端黑色素瘤类器官的肿瘤转移能力。通过在类器官芯片内建立营养梯度,使外侧腔室中的营养物质浓度高于中心腔室,中心腔室的肿瘤类器官会逐渐转移到外侧的腔室中。观察发现,两种黑色素瘤类器官展现出了不同的肿瘤转移能力。图3 肿瘤类器官芯片评估肿瘤转移接着,作者分别从蛋白和基因层面研究了转移出的细胞团簇与中心腔室中未发生转移的肿瘤类器官团的差异性。结果表明,转移出的细胞团簇中与转移相关的蛋白和基因表达均显著高于未转移的类器官团。这有效说明肿瘤类器官芯片评估肿瘤转移的能力。图4 肿瘤类器官一致性评估和流式分析图5 肿瘤转移相比蛋白比较图6 肿瘤转移相比基因比较 最后,作者利用类器官芯片进行了药物筛选测试。通过在类器官芯片内添加不同浓度的抗肿瘤药物,发现肿瘤类器官的转移性有所区别。随着药物浓度的提高,肿瘤的转移得到了明显抑制。图7 肿瘤类器官芯片药物筛选与其他用于评估细胞迁移能力的方法相比,该工作提供的用于评估肿瘤转移性的肿瘤类器官芯片,集成了仿生的Transwell腔室,能够高效模拟肿瘤转移的过程。另外,所设计的用于评估肿瘤转移性的肿瘤类器官芯片,使用了患者来源的肿瘤类器官进行肿瘤转移性评估,能够真实地反映人体内肿瘤生长和转移的生理过程。该工作在肿瘤患者个体化诊疗、精准医学等临床研究中具有良好的应用前景。
  • 预灌封注射器针头护帽拔出力测试仪的应用
    预灌封注射器针头护帽拔出力测试仪的应用在医疗器械行业中,预灌封注射器作为一种集成了药物与注射装置于一体的产品,其安全性和有效性至关重要。其中,针头护帽作为保护注射针尖免受污染和意外刺伤的关键部件,其拔出力特性直接关系到产品的使用便捷性和安全性。因此,对预灌封注射器针头护帽的拔出力进行精确测试,是确保产品质量的重要环节。本文将详细介绍一种基于三泉中石的预灌封注射器针头护帽拔出力测试仪YYB-03的测试方法及其应用。一、测试仪器概述预灌封注射器针头护帽拔出力测试仪YYB-0是一种专门设计用于测量针头护帽从注射针管上拔出所需力量的设备。该测试仪通过模拟实际使用场景中的拔出力条件,对针头护帽的固定强度进行评估,确保其在运输、储存及使用过程中不会因外力作用而轻易脱落,同时也不会因拔出力过大而给用户带来使用困难或安全隐患。二、三泉中石的预灌封注射器针头护帽拔出力测试仪YYB-03的测试方法1. 测试准备样品准备:选取适量符合标准的预灌封注射器作为测试样品,确保样品未受物理损伤且处于正常存储条件下。仪器校准:对测试仪进行校准,确保测试速度和力量测量的准确性。校准后,将测试仪设置为指定的试验速度范围(100 mm/min ± 5 mm/min)。夹具安装:将针头护帽和注射针管分别固定在测试仪的上、下夹具内。确保夹具稳固,避免测试过程中产生滑动或偏移,影响测试结果。2. 预灌封注射器针头护帽拔出力测试仪YYB-03的测试步骤启动测试:启动测试仪,以设定的速度(100 mm/min ± 5 mm/min)开始测试。测试仪将自动记录并显示针头护帽从注射针管上拔出所需的力量。数据记录:在测试过程中,注意观察并记录测试仪显示的拔出力数值。根据标准要求,合格的针头护帽拔出力应在4.0~45.0N之间。重复测试:为提高测试结果的可靠性,建议对同一批次的多个样品进行重复测试,并计算平均值和标准差。3. 三泉中石的预灌封注射器针头护帽拔出力测试仪YYB-03的结果分析合格判定:根据测试结果,判断针头护帽的拔出力是否符合规定的范围(4.0~45.0N)。若所有测试样品的拔出力均在此范围内,则认为该批次产品的针头护帽拔出力特性合格。异常处理:若测试结果超出规定范围,需进一步分析原因,如材料质量、生产工艺等,并采取相应的纠正措施。三、预灌封注射器针头护帽拔出力测试仪的应用意义济南三泉中石实验仪器的预灌封注射器针头护帽拔出力测试仪YYB-03的应用,不仅有助于提升医疗器械产品的质量控制水平,保障安全,还能促进生产企业的技术进步和产品创新。作为专业从事包装检测仪器的行业制造商-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 中国铁道科学研究院订购莫帝斯热辐射火焰传播测试仪
    p 铁科院始建于1950年,是我国铁路唯一的多学科、多专业的综合性研究机构。按照国家科技体制改革的总体部署,根据铁道部《关于铁道部科学研究院转制方案的批复》(铁政法函[2000]461号)要求,2000年开始由事业单位转制为企业单位。目前已发展成为集科技创新、技术服务、成果转化、咨询监理、检测认证、人才培养等业务为一体的大型科技型企业。 /p p & nbsp /p p 铁科院下设17个单位,包括机车车辆研究所、铁道建筑研究所、通信信号研究所、运输及经济研究所、金属及化学研究所、电子计算技术研究所、节能环保劳卫研究所(铁路节能环保技术中心、铁路卫生技术中心)、标准计量研究所(铁道部产品质量监督检验中心、中铁铁路产品认证中心、国家轨道衡计量站、国家铁路罐车容积计量站)、科学技术信息研究所、基础设施检测研究所(铁道部基础设施检测中心)、铁道科学技术研究发展中心、国家铁道试验中心、铁道技术研修学院(铁路继续教育培训中心)、铁科院(北京)工程咨询有限公司、深圳研究设计院、后勤服务中心、嘉苑饭店。院属全资公司32个、控股公司7个。 /p p 铁科院现有职工5800余人。其中中国工程院院士2人,双聘院士1人;百千万人才工程国家级人选2人,享受国家政府特殊津贴的科技人员193人,现任铁路专业技术带头人22名。 /p p & nbsp /p p 铁科院拥有亚洲唯一的国家环行铁道试验基地,以及国家铁路智能运输系统工程技术研究中心、高速铁路系统试验国家工程实验室、高速铁路轨道技术国家重点实验室、机车和动车组牵引与控制国家重点实验室、国家城市轨道交通装备试验线等5个国家级实验室,装备有各类专业实验室40余个,实验装备6991台套。 /p p & nbsp /p p img style=" WIDTH: 448px HEIGHT: 436px" title=" 37-IMO火焰传播测试仪-500k.jpg" src=" http://img1.17img.cn/17img/images/201509/uepic/2d99eb84-6fa2-4b05-b4aa-12de77bbbe1c.jpg" width=" 633" height=" 634" / /p p 近日,中国铁道科学研究院金属及化学研究所订购莫帝斯IMO热辐射火焰传播测试仪,用于轨道交通非金属材料的测试及研究。这是继公安部四川消防研究所、国家船舶制品检测中心、广州建筑工业研究院有限公司、中国南车株洲时代新材有限公司以及江苏科技大学后的该测试仪器的第六个客户。 /p p & nbsp /p p 莫帝斯所生产的IMO热辐射火焰传播测试仪,充分吸收了国外先进仪器的制造经验,结合了更为现代的燃气和空气混合及控制方式,热辐射通量曲线同标准完美符合,质量上乘,深受使用客户的信赖。 /p p & nbsp /p p 相信和中国铁道科学研究院金属及化学研究的再度合作,可为我国轨道交通阻燃事业提供强有力的设备保障,同时为我国高铁的安全运行保驾护航! /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制