当前位置: 仪器信息网 > 行业主题 > >

绝缘电气击穿强度试验仪

仪器信息网绝缘电气击穿强度试验仪专题为您提供2024年最新绝缘电气击穿强度试验仪价格报价、厂家品牌的相关信息, 包括绝缘电气击穿强度试验仪参数、型号等,不管是国产,还是进口品牌的绝缘电气击穿强度试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合绝缘电气击穿强度试验仪相关的耗材配件、试剂标物,还有绝缘电气击穿强度试验仪相关的最新资讯、资料,以及绝缘电气击穿强度试验仪相关的解决方案。

绝缘电气击穿强度试验仪相关的资讯

  • 长春智能生产绝缘材料电气强度测试仪
    GJW-50kV计算机控制电压击穿试验仪 一、适用范围 本机主要适用于固体绝缘材料如:绝缘漆、树脂和胶、浸渍纤维制品、云母及其制品、、陶瓷和玻璃等在工频电压下击穿电压,击穿强度和耐电压的测试,符合GB1408.1-2006标准常温状态下的测试。 二、主要技术参数及精度 1、输入电压: AC220V 2、输出电压: 0~50KV(交直流) 3、测量范围: 5kV~50kV 4、高压分级及升压速率 1)0~5kV 升压速率 0.5kV/S 2)>5kV 升压速率 1kV/S 3)升压速率连续可调 5、耐压试验电压: 0~50KV连续可调整 6、耐压时间: 0~4H 7、功率: 5KVA 8、电源: AC220V ± 10% 50-60HZ 三、精度等级:1级 四、主要功能 该仪器采用计算机控制,能过人机对话方式,完成对、绝缘介质的工频电压击穿,工频耐压试验,主要适用于固体绝缘材料。并对实验过程中的各种数据快速、准确地进行采集、处理、存取、显示、打印。本仪器属我公司首创,国家专利批为我公司专利 五、基 本 配 置 1、主机 2、试验台一个 3、油箱一个 4、试验电极三个 5、试验软件 6、清华同方计算机一套 7、A4彩色喷墨打印机一台 公司名称:长春市智能仪器设备有限公司 地址:长春市经济开发区昆山路2755号 联系电话:0431-848644218 13944864580 传真:0431-84642036 联系人:芮小姐 Http://www.znyq.com. E-mail:rsm-72@163.com
  • 绝缘油击穿电压测定仪在润滑油行业中应用
    润滑油作为机械设备的润滑剂,其电气性能对设备的正常运行至关重要。击穿电压作为评价润滑油电气性能的重要指标之一,能够帮助工程师判断润滑油的电气性能是否达到设备要求。下面我们就来具体了解一下击穿电压在润滑油行业中的应用。1. 润滑油电气性能的表征润滑油的电气性能主要包括介电常数、介质损耗因数、电阻率等参数。其中,介电常数反映了润滑油在电场作用下的极化能力,介质损耗因数反映了电流通过润滑油时所消耗的能量,电阻率则反映了润滑油的导电性能。而击穿电压则可以进一步评价润滑油的电气绝缘性能,即当电压达到某一数值时,润滑油内部将产生放电现象,导致电流突然增加,这一电压值就是击穿电压。2. 击穿电压在润滑油选择中的应用在选择润滑油时,需要根据设备的运行工况和润滑油厂商提供的产品手册来选择合适的润滑油牌号在。产品手册中,通常会提供不同牌号润滑油的介电常数、介质损耗因数、电阻率和击穿电压等电气性能参数。在选择润滑油时,需要综合考虑这些参数,尤其是击穿电压,以确保设备在正常运转时,润滑油的电气性能能够满足设备要求。3. 击穿电压在润滑油品质控制中的应用在润滑油的生产过程中,由于原材料、生产工艺等因素的影响,润滑油的电气性能会发生一定的变化。为了确保生产出的润滑油符合产品要求,需要对润滑油的电气性能进行检测和监控。其中,击穿电压作为一项重要的检测指标之一,可以用于评估润滑油品质的稳定性。通过定期检测润滑油的击穿电压,可以对生产工艺和原材料进行及时调整,以确保生产的润滑油具有良好的电气性能。
  • 绝缘油击穿电压测定仪:采用干式变压器组合
    A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性强。6、数据自动存储,并可随时调出和打印。7、采用干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • 【技术知识】绝缘油介电强度测定仪的作用有哪几点?
    绝缘油介电强度测定仪介绍绝缘油介电强度测定仪测试系统,在电力系统厂矿及企业都有大量的电器设备。其内部绝缘油大都是充电绝缘型的。绝缘油的介电强度测试是常规测试项目。为了适应电力行业发展的需要。产品都是依据的国家标准GB/T507-2002、行标DL429.9-91以及的电力行业标准DL/T846,7-2004设计制造,采用微机控制,机电一体全部自动化,测试精度高,提高了工作效率,同时也大大减轻了工作人员的劳动强度。绝缘油介电强度测定仪的作用01绝缘油介电强度测定仪使变压器心子与外壳及铁芯有良好的绝缘作用,变压器的绝缘油,是充填在变压器心子和外壳之间的液体绝缘。充填于变压器内各部分空隙间,使变压器外壳内没有空气,加强了变压器绕组的层间和匝间的绝缘强度。同时,对变压器绕组绝缘起到了防潮作用。02绝缘油介电强度测定仪使变压器运行中加速冷却,变压器的绝缘油在变压器外壳内,通过上、下层间的温差作用,构成油的对流循环。变压器油可以将变压心子的温度,通过对流循环作用经变压器的散热器与外界低温介质(空气)间接接触,再把冷却后的低温绝缘油,经循环作用回到变压器心子内部,如此循环,起到了加速冷却变压器的作用。03灭弧作用,变压器油除能起到上述两种作用外,还可以在某种特殊运行状态时,起到了加速变压器外壳内的灭弧作用。绝缘油介电强度测定仪由于变压器油是经常运动的,当变压器内有某种故障而引起电弧时,能够加速电弧的熄灭。相关仪器A1160绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9
  • 绝缘油介电强度测定仪如何排除常见故障?
    绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。绝缘油介电强度测定仪常见故障排除方法 这样做就可以了⑴ 电源指示灯不亮,屏幕无显示① 检查电源插头是否插紧;② 检查电源插座内的保险管是否完好;③ 检查插座是否有电。⑵ 油杯无击穿现象① 检查线路板接插件插接是否到位;② 检查箱盖高压开关是否接触好;③ 检查是否高压接点无吸合;④ 检查是否存在高压断线。⑶ 显示器对比度不够① 调节线路板上的调节电位器。⑷ 打印机不打印① 检查打印机电源线是否插接到位;② 检查打印机数据线是否插接到位。
  • 【技术指导】绝缘油介电强度测定仪的油杯清洗方法及注意事项
    绝缘油介电强度测定仪油杯清洗方法、注意事项A1160技术指导产品介绍产品名称:绝缘油介电强度测定仪产品型号:A1160概 述:绝缘油介电强度测定仪用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专门的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。 适应标准:GB/T507、DL/T846.7、DL/T429.9油杯清洗方法⑴ 用洁净的绸布反复擦拭电极表面和电极杆。⑵ 用标准规调整好电极间距。⑶ 用石油醚(忌用其它有机溶剂)清洗3次,每次须按以下方法进行:② 将石油醚倒入油杯,占油杯容量的1/4~1/3。 ② 把一块用石油醚冲洗过的玻璃片盖住油杯口,均匀摇晃一分钟,注意要有一定力度。 ③ 将石油醚倒掉,用吹风机吹2~3分钟。⑷ 用待测油样清洗1~3次。 ② 将待测油样倒入油杯,约1/4~1/3。 ② 用吹干的玻璃片盖住油杯,均匀摇晃1~2分钟,注意要有一定力度。 ③ 倒掉剩余油样之后即可做打压实验。搅拌桨清洗方法⑴ 用干净的绸布反复擦拭搅拌桨,直至表面无细小颗粒,忌用手接触搅拌桨表面。⑵ 用镊子夹住搅拌桨,浸入石油醚中反复洗涮。⑶ 用镊子夹住搅拌桨,用吹风机吹干。⑷ 用镊子夹住搅拌桨浸入待测油样内反复洗涮。油杯储放方法1:实验完毕后,用质量较好的绝缘油倒满油杯,并将油杯平稳放置。方法2:按上述清洗方法用石油醚清洗吹干后放入真空干燥器中储存。注:第一次测试前和测试劣质油后必须按上述方法清洗油杯和搅拌浆。注意事项1、试验前油样的选择,安放及电极间的距离应符合国标及行标。2、电源接通后,严禁操作人员或其它人员触及外壳,以免发生危险。3、本仪器在使用过程中如发现异常,应立即切断电源。4、新油杯或新清洗的油杯应先击穿24次才可进行试验,油杯在不进行试验时应用干净的油侵泡。
  • 技术升级|得利特升级版绝缘油介电强度测定仪(耐压仪)
    借助美国页岩气的大规模开采,北美新建或扩建乙烷裂解装置产能从2016年起开始逐步释放,预计2020年北美乙烯及下游衍生物净出口将从2015年550万吨增加到1400万吨,2025年将进一步增加至1800万吨以上。美国低成本页岩气开发将影响世界石化产品区域格局。(二)2020年新冠疫情对行业冲击明显,由于投资惯性难以迅速停止,预计全球石化产品产能整体供过于求的态势将会加剧。(三)世界经济环境“逆全球化”苗头显现,国际形势激烈变动,贸易环境复杂多变。根据中投产业研究院发布的《2021-2025年中国石油化工行业投资分析及前景预测报告》,我国目前仍是全球最主要的石化产品净**国之一,贸易逆差巨大,但同时又是下游纺织、轻功等制品全球最主要出口国,国际贸易环境变化及不确定性将带来石化行业发展格局的深刻变化。A1160绝缘油介电强度测定仪符合GB/T507 、DL/T429.9标准,用于检验绝缘油被水和其他悬浮物质物理污染的程度。测定方法是将试油放在专业的设备内,经受一个按一定速度均匀升压的交变电场的作用直至油被击穿。可广泛应用于电力、石油、化工等行业。仪器特点1、采用双CPU微型计算机控制。2、升压、回零、搅拌、显示、计算、打印等一系列操作自动完成。3、具有过压、过流、自动回零保护装置,安全可靠。4、采用自动正弦波产生装置和无级调压方式加压,使测试电压稳定可靠。5、2KV/S和3KV/S两种加压速度供选择,适应性更强。6、数据自动存储,并可随时调出和打印。7、采用先进的干式变压器组合,具有体积小巧、重量轻、使用方便。技术参数升压速度:2.0~3.02KV/S可调准确度:2%测量范围:0~80KV分辨率:0.01KV试验次数:6次(1-9次可调)实验杯数:1杯显示方式:液晶显示搅拌时间:磁力搅拌静止时间:15分 (0~59分可调)间隔时间:3~5分 (0~9分可调)工作电源:AC220V±10%,50Hz环境温度:5℃~40℃ 环境湿度:≤85%外形尺寸:460mm×380mm×360mm重 量:30kg
  • “绝缘”又“导热”,突破尖端电子装备发展瓶颈
    聚合物是一类重要的电工绝缘材料,然而聚合物材料的导热性普遍性较差,提升聚合物的导热性往往以牺牲绝缘性能为代价。“绝缘和导热的矛盾”是制约聚合物材料在尖端电气电子装备应用的瓶颈之一。3月2日,《自然》刊发上海交通大学化学化工学院教授黄兴溢团队与合作者的最新研究成果。研究人员通过等规链段层状排列构建阵列化纳米区域,并在阵列化纳米区域中引入亲电陷阱基团,在大幅提升柔性聚合物电介质薄膜导热性能的基础上使电阻率提升了一个数量级,解决了聚合物材料导热和绝缘的矛盾。这种聚合物电介质薄膜性能稳定,且具有良好击穿自愈性,因此在电磁能装备、新能源汽车、电力电子等领域将有广阔应用前景。导热和绝缘矛盾聚合物电介质薄膜电容器具有极高的能量转换速率,在电磁能装备、电力电子以及新能源装备等领域的作用至关重要。随着装备、器件往紧凑化、轻量化、工作环境极端化方向发展,对聚合物电介质薄膜储能密度及耐高温性能的要求越来越高。电荷存储密度和电场强度的平方成正比。因此,电介质薄膜承受电场的能力增强,电荷存储密度就会快速增加。然而,聚合物薄膜在高电场下以电子电导为主,不再符合欧姆定律,电导电流随电场强度增加呈指数增大,会产生大量的热。传统聚合物电介质的导热系数普遍较低,且散热效率也很低,这会造成介质温度快速升高,进而引起电导指数增加、耐电强度急速降低等连锁反应,造成器件、装备失效等严重问题。尽管可以通过引入纳米添加等方式增加聚合物电介质的导热系数,但这往往以牺牲耐电强度为代价,更重要的是,纳米添加给薄膜制造工艺也带来极大挑战。因此,开发耐高温、本征高导热的聚合物电介质薄膜是最好选择。设计双链结构共聚物为解决此类问题,黄兴溢团队设计出一种双链结构共聚物(PSBNP-co-PTN)。该共聚物通过π-π堆叠作用自组装成高度有序阵列。通过偏振拉曼光谱测试发现,共聚物薄膜的偏振信号在平面上呈各向同性,在断裂面上呈各向异性。“这表明有序阵列平行于表面,因此,电介质薄膜在垂直平面方向表现出高导热系数。”黄兴溢说。研究团队通过密度泛函理论分析和热刺激电流实验发现,这种共聚物的链结构段间,存在深度为1.51 eV的电荷陷阱,且随着外电场强度增加,电荷陷阱深度进一步增大。在PSBNP有序阵列中引入一定量的PTNI分子,共聚物能表现出最优的电气绝缘性和最高的电击穿强度。电极化储能测试表明,其最大放电能量密度远优于现有的聚合物及其复合电介质薄膜。突破电子装备发展瓶颈普通聚合物和聚醚酰亚胺(PEI,已知最好的商品耐高温聚合物电介质薄膜)连续充-放电循环过程中的发热现象,在这种高导热的共聚物电介质薄膜中并未出现,研究人员甚至未观察到局部热积聚现象。实验证明,这种共聚物电介质薄膜连续充-放电循环寿命是PEI薄膜的6倍。值得一提的是,该薄膜的碳含量相对较低,这赋予了其优异的自愈性,电镜图像清晰显示了电击穿区域四周的铝金属电极被蒸发除去,碳化通道孤立于金属电极,使击穿后的金属化聚合物薄膜整体仍保持高绝缘性。自愈后的储能性没有出现明显劣化,仍能进行连续充-放电循环。“这种共聚物电介质薄膜厚度方向的本征导热系数为1.96 ± 0.06 W/(mK),是目前报道的绝缘聚合物本征导热系数的最高值。”该论文共同第一作者、助理研究员陈杰介绍说,“共聚物电介质薄膜在50000次充-放电循环后储能性依然稳定,且具有良好击穿自愈性。”“这一研究是电气工程、化学、材料、工程热物理等多学科的深度交叉融合。”黄兴溢介绍说,上海交通大学江平开教授、朱新远教授、于春阳副研究员、钱小石教授、鲍华教授,以及西安交通大学李盛涛教授和西南交通大学吴广宁教授都参与了本项研究。目前,相关技术已获发明专利授权,相关产品将在电磁能装备、新能源汽车、电力电子等领域得到广泛应用。
  • 绝缘油析气性测量仪的工作原理是什么?
    电气绝缘油在高强度电场的作用下,部分烃分子会发生裂解而产生气体,这部分气体以微小的气泡从油中释放出来。如果小气泡量增多,它们会互相连接而形成大气泡。由于气体与油的电导率有很大的差异,在高压电场的作用下,油中会产生气隙放电现象,而有可能导致绝缘的破坏,这种现象在超高压输变电设备中显得尤为突出。为克服这种倾向,用于超高压设备的变压器应满足析气性指标要求。 绝缘油的吸气性又称为气稳定性,是指油在高电场强的作用下,烃分子发生物理/化学变化时,吸收气体或放出气体的特性,如果绝缘油易放出气体,那么就会形成气体穴存在油中,会发生局部放电或过热,严重的会导致油击穿。因此,希望绝缘油是吸气的,芳香烃是吸收气体的,为改变绝缘油的吸气性,一般采用往油中添加浓缩芳烃或人工合成的芳香烃化合物。
  • 超高压高强度瓷绝缘子研发成功
    在科技部的组织下,国家科技支撑计划项目“500kV以上超高压高强度盘形悬式瓷绝缘子产业化关键装备技术研发”,日前在贵阳顺利通过了项目验收。   据介绍,该项目是新中国成立以来贵州省承担的第一个重大装备类国家科技支撑计划。由贵州九天高原电瓷有限公司、贵州大学、郑州一邦电工机械有限公司、西安高压电器研究院与中国科学院地球化学研究所等国内多家优势企业和学术单位进行联合攻关,经过3年努力完成。   专家组认为,该项目在盘形悬式绝缘子材料及关键工艺方面完成了原材料物理化学性能分析研究、材料及关键配方研究、原材料粒度及除杂控制研究、烧成等关键工艺控制研究 研制了高性能练泥机、盘形悬式瓷绝缘子坯件成型自动化生产线、全自动燃气抽屉窑与自动胶装机,并通过第三方检测,满足相关标准要求,形成了超高压高强度盘形悬式瓷绝缘子年产40万片的生产能力。   据悉,这一项目的实施提升了电瓷绝缘子相关产业的技术水平,形成了一批具有自主知识产权的核心技术及主机产品,将满足“西电东送”和“黔电送粤”等重大项目的需求,带动电力企业及配套装备制造企业的规模扩张,形成产业联盟和集成创新。项目成果在行业推广后,可带动贵州省矿产资源的综合利用、装备制造业发展及瓷绝缘子产业升级。   据了解,超高压高强度盘形悬式瓷绝缘子是高压输变电线路的重要组成部分,对于满足我国超高压、大电流、大跨距电力线路的需求具有重要意义。
  • 应用 | 检测方法对电气绝缘油界面张力的影响
    研究背景变压器油是变压器内部重要的绝缘材料,油品质量直接影响到变压器的电气性能和运行寿命。在运行中,变压器油在电气设备中因受湿度、光线、金属催化、水分及电场等因素的影响,会生成羧酸、醇等亲水极性物质在油-水界面的定向排列会改变界面上分子排列状况,从而降低界面张力。因此,界面张力是变压器油标准中的一项重要指标,能够反映新油在精炼时的纯净程度和在运行中油的氧化程度。实验仪器仪器:本文采用德国KRÜ SS力学法表界面张力仪K11测定界面张力。最新款表界面张力仪型号Tensíío。KRÜ SS 力学法表面张力仪Tensíío方法:不同产品标准所采用的界面张力检测方法不同,具体如表1和2所示。可以看出,各方法的测量原理相同,测定绝缘油的界面张力的方法大都采用的是圆环法,主要区别就是界面形成后即非平衡条件、接近平衡条件及平衡条件下测试的保持时间不同。表1 变压器油界面张力检测方法表2 不同界面张力检测方法试验条件对比结论与讨论由表3和图1可得,界面张力均随界面保持时间延长而降低。其中,新变压器油的酯类油比矿物油的界面张力低很多,这是由于酯类油的分子结构具有亲水性,使其界面张力相应减小。 表3 新油不同试验条件界面张力检测结果对比 图1 新油的界面张力随时间变化曲线表4和图2试验结果表明,老化后的矿物油和酯类油的界面张力也随界面保持时间延长而降低。与新油比,老化后变压器油的界面张力均比新油的界面张力低,尤其是矿物油D油的界面张力从新油46mN/m左右降至16mN/m左右。表3数据显示该样品抗老化、氧化性较差,因此容易生成醛、酮、羧酸等老化产品,而这些老化产物均为极性物质,在油水界面上做定向排列,从而使油品老化后油水间界面张力降低。E和F油为合成酯变压器油,虽然本身界面张力不高,但其氧化稳定性较好,老化前后界面张力变化不明显。表4 老化油不同试验条件界面张力检测结果对比 图2 老化油的界面张力随时间变化曲线对比图3和图4发现,老化油界面张力随着两相界面的保持时间呈较明显下降趋势,说明这一过程在老化变压器油中比在新变压器油中更为明显。图3 新矿油和老化矿油的界面张力随时间的变化曲线 图4 新酯类变压器油和老化酯类变压器油界面张力随时间变化的曲线IEC62961:2018方法介于ASTMD971方法和EN14210方法之间,在界面形成180s时测量界面张力更加符合实际,同时测量时间对测量结果影响较小。从图3和图4也可以看出,老化油的界面张力随时间变化较为明显,主要表现在界面张力曲线从30s到180s的变化斜率较大,而在界面形成的180s时测量界面张力数值与300s的测量数据很接近,可以提供一个较为真实的界面张力值,并且检测时间相对较短。新颁布的变压器油国际标准IEC60296:2020《电工流体电气设备用矿物绝缘油》,其界面张力检测规定采用ASTMD971-2020方法和IEC62961:2018两种方法,为了得到更有效的数据和满足实验室快速高效的日常检测工作,推荐采用IEC62961:2018方法为宜。结论界面张力是反映变压器油精制过程中洁净程度的指标,并与油品的老化程度密切相关。国内外检测变压器油界面张力方法的主要区别在于界面形成后的保持时间不同。实验室通过采用圆环法考察测量时间对界面张力值的影响,结果表明老化油的界面张力受时间影响较为明显,同时也说明变压器油的界面张力与油的劣化程度密切相关。通过考察不同方法测量时间对测量结果的影响,推荐采用IEC62961:2018方法对变压器油进行界面张力的检测,该方法既能减小因测试时间不同而引起的误差,又能快速进行检测。参考文献[1]张绮,张昱,周东等.不同检测方法对电气绝缘油界面张力的影响[J].润滑油,2024,39(01):43-47.DOI:10.19532/j.cnki.cn21-1265/tq.2024.01.009.
  • 我国科学家制出绝缘纳米新材料
    合肥5月25日电近日,中国科学技术大学俞书宏院士团队研制出一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替环境等,成为今后深入探索的主要障碍。在极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对极端环境的耐受性,但金属材料面临密度过高重量过大的问题,而陶瓷材料则面临脆性和难以加工等问题。聚合物具有轻质和可塑的特点,但目前大多数聚合物基复合材料在极端环境长期服役会产生高温软化和低温脆性等问题。因此,设计和制备一种能长期在极端环境下服役的高性能防护材料是材料领域面临的难题之一。在大自然中,珍珠母的“砖-泥”结构为其提供了极好的力学性能。近年来,这种精巧的有序结构的其他功能(如隔水、隔氧以及对能量场的均匀分散等)逐渐成为研究热点。受天然珍珠母“砖-泥”结构的启发,研究人员首先采用气溶胶辅助生物合成方法,利用细菌产出的纤维素纳米纤维将分散的合成云母纳米片均匀而紧密地缠结得到复合水凝胶,然后通过热压的方式,得到最终的仿珍珠母结构的纳米纸材料。得益于纳米纸内部精细的“砖-泥”结构和连续三维网络,该纳米纸表现出高强度、高模量、高韧性、可折叠性和抗弯曲疲劳性等优异的力学性能。同时,材料内部的“砖-泥”结构充分发挥了云母的高介电强度,从而赋予了该纳米纸较高的电击穿强度。与纯纤维素纳米纸相比,该复合纳米纸的耐电晕寿命显著提高,甚至超过了商用聚酰亚胺薄膜。此外,该项研究中的高性能纤维素基纳米纸在高低温交替、紫外线和原子氧等极端条件下,仍表现出优异的综合性能,这为未来人们对极端环境的探索提供了一个极好的防护材料选择。
  • 用细菌制造出高性能绝缘纳米纸
    中国科学技术大学俞书宏院士团队研制出了一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。 复合纳米纸的的制备与结构示意图 中国科大供图随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替环境等,已经成为今后深入探索的主要障碍。在这些极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对极端环境的耐受性,但金属材料面临密度过高重量过大的问题,而陶瓷材料则面临脆性和难以加工等问题。聚合物具有轻质和可塑的特点,但目前大多数聚合物基复合材料在极端环境长期服役会产生高温软化和低温脆性等问题。因此,设计和制备一种能长期在极端环境下服役的高性能防护材料是材料领域面临的难题之一。在大自然中,珍珠母的“砖-泥”结构为其提供了极好的力学性能。近年来,这种精巧的有序结构的其他功能(如隔水、隔氧以及对能量场的均匀分散等)也逐渐成为研究热点。受天然珍珠母“砖-泥”结构的启发,在此次工作中,研究人员首先采用气溶胶辅助生物合成方法,利用细菌产出的纤维素纳米纤维将分散的合成云母纳米片均匀而紧密地缠结得到复合水凝胶,然后通过热压的方式,得到最终的仿珍珠母结构的纳米纸材料。得益于纳米纸内部精细的“砖-泥”结构和连续三维网络,该纳米纸表现出高强度、高模量、高韧性、可折叠性和抗弯曲疲劳性等优异的力学性能。同时,材料内部的“砖-泥”结构充分发挥了云母的高介电强度,从而赋予了该纳米纸较高的电击穿强度。与纯纤维素纳米纸相比,该复合纳米纸的耐电晕寿命显著提高,甚至超过了商用聚酰亚胺薄膜。此外,该项研究报道的高性能纤维素基纳米纸在高低温交替、紫外线和原子氧等极端条件下,仍表现出优异的综合性能,这为未来人们对极端环境的探索提供了一个极好的防护材料选择。
  • 苏州热工研究院验收我司100kv电压击穿试验仪
    苏州热工研究院验收我司100kv电压击穿试验仪和ATI-212电阻率测试仪,我司工程师上门安装调试,成功验收得到客户的好评,下面是客户调试现场
  • 一路火花带闪电,危险的电气事故该如何有效避免?
    上面这组“燃”炸了的镜头,可绝不是什么炫技表演!这一张张堪比科技大片的画面,其实是高压电气设备局放和发生故障时电弧放电、起火的场景。据电网统计,局部放电是造成高压电气设备最终发生绝缘击穿的重要原因,也是绝缘劣化的重要标征,因此检测局放是预防电气设备故障的重要手段。那么在危险重重的高压电气设备中穿行,电气检修人员们要如何做才能实现便捷高效安全的局放检测呢?FLIR Si124让声波“显形”,局放故障无所遁形FLIR Si124是菲力尔推出的一款简单易用的智能声波成像系统,能够将声波呈现出可视化效果。高压电气设备产生局放时,会伴随产生超声波反应,Si124通过接收电气设备超声波进行检测,能够及时发现故障点。FLIR Si124机身轻便,重量仅微超980克,支持单手操作更便利。测量距离为0.3-100米,让检修人员在安全距离内进行检测。声像实时叠加可见光数码图像功能,使用户可以准确地查明声音来源、区分问题。耳听八方,定位声源FLIRSi124内置124个麦克风,能更全面“听”见声音,更精确找出声源的具体位置,发现潜在故障点。电气设备运行期间会产生噪音,这就使得电厂环境音嘈杂,Si124的接收频率范围(2 kHz至31 kHz)涵盖了可听声和超声波,可以过滤背景噪声,生成精确的声像。FLIR云服务,故障深度分析报告Si124搭载FLIR Acoustic Camera Viewer云服务,实时上传、存储和备份数据。云端人工智能引擎进行处理,创建报告,便于电气检修人员快速掌握设备局放状况、判断绝缘劣化程度,迅速做出是否需要维护或更换设备的决策。FLIR的云端分析还可以即时区分局部放电/电晕类型(包括表面放电、漂浮放电和空气放电),帮助电气设备检修人员判断局放不同类型采取对应措施,提升电气设备运行的可靠性,减少设备故障和宕机。FLIR Si124助力电气设备局放检测高效、安全、准确!
  • 上海光机所在基于激光诱导击穿光谱的中药重金属检测方面取得进展
    近期,中国科学院上海光学精密机械研究所信息光学与光电技术实验室在基于激光诱导击穿光谱的中药重金属定量检测方面取得进展,研究团队利用纳米金增强和稀有气体吹扫相结合的方法提高了中药重金属汞元素定量检测灵敏度。相关研究成果以“High-sensitivity analysis of mercury in medicinal herbs using nanoparticle-enhanced laser-induced breakdown spectroscopy combined with argon purging”为题,发表于Journal of Analytical Atomic Spectrometry。激光诱导击穿光谱技术(Laser-induced breakdown spectroscopy, LIBS)是一种原子光谱分析技术,具有样品制备简单、可实时检测、检测速度快、多元素同时检测等优点,被称为元素分析领域的“未来巨星”。当采用LIBS检测中药残留重金属元素时,激光诱导等离子中汞原子的复合速率远高于其他原子,且空气中的氧气会引起汞特征谱线Hg Ⅰ 253.65nm上能级的猝灭,导致汞元素检测灵敏度远低于其他重金属元素。图1 纳米金增强LIBS结合稀有气体吹扫检测过程示意图图2 滴加在中药表面的纳米金液滴 (a)表面未处理,干燥前;(b)表面未处理,干燥后;(c)超疏水处理,干燥前;(d)超疏水处理,干燥后研究团队利用激光与纳米金颗粒作用过程中纳米金内部传导电子震荡和表面等离子激元共振特性,通过在中药样品表面沉积一层纳米金颗粒,提高了激光诱导等离子辐射光谱强度;通过对中药表面进行超疏水处理,优化了纳米金沉积过程,抑制了“咖啡环效应”,提高了光谱信号稳定性;在此基础上采用氩气吹扫样品表面,为等离子演化过程创造无氧环境,进一步提高了等离子辐射光谱强度。实验结果表明,采用纳米金增强结合氩气吹扫后,汞元素特征谱线强度提高6.19倍,检测灵敏度提高9.73倍。图3 纳米金增强结合稀有气体吹扫前后中药样品在253.0-254.0 nm范围内的激光诱导击穿光谱(扣除背景光谱)图4 中药汞元素定量分析校准曲线 (a)LIBS (b)纳米金增强LIBS结合氩气吹扫
  • 首台智能化高性能激光诱导击穿光谱仪成功登录中国
    2008年10月21日,上海凯来实验设备有限公司成功地完成了清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)的安装调试工作。目前这套Spectrolaser 4000 Target LIBS系统标配有532nm激光源,*能量为1064nm,300mj,4通道光谱仪,CCD检测器,内置图像2维扫描系统,将协助该中心进行煤炭领域的研究工作,最终目标将在煤矿,发电厂等企业实现在线快速分析,这标志着中国在煤炭的元素分析领域将掌握一种崭新的分析手段。    清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)    LIBS应用专家讲解中    激光源导出系统实验    在大气环境中激发效果    外置激光源空气中测试名片中元素含量的实验    标煤(GBW111 O2i)    标煤(GBW111 O2i)LIBS 图谱1    标煤(GBW111 O2i)LIBS 图谱2   标煤(GBW111 O2i)结果显示,该样品煤中含有Si, Fe, N, Ti, C, Mg, Ba, Na, Sr, K, Ca, O、H、Al等多种元素,其中总S含量为33.51%(偏差为0.18%),挥发性硫含量为24.92%(偏差为0.29%),C含量为49.83%(偏差为0.35%),H含量为2.98%(偏差为0.14%),N含量为0.90%(偏差为0.03%),完全符合标准。   传统的煤分析方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。   煤炭分析背景资料   煤炭是我国国民经济发展的物质基础,煤炭企业生产的煤炭产品不仅要在数量上满足国民经济各物质生产部门的生产和人民群众的生活需要,而且也要在质量上满足不同用户的使用要求。   长期以来,我国煤炭供需关系总的来讲一直比较紧张,只要将煤炭从地下采出,销售就不成问题,这在一定程度上也淡化了人们的质量意识。但发展到今天,煤炭质量问题己引起越来越多用户的高度重视,对煤炭企业提出了严峻的挑战。从目前煤炭市场情况看,煤质不好,不仅价格较低,而且煤炭的利用率较低,浪费严重。据统计,我国煤炭平均利用率约在30%左右。一般来说煤炭燃烧时,煤质越差,热损失越多,热效率也就越低,耗煤数量也越多。如普通锅炉使用灰分为4O%的原料煤与使用灰分为90%的原料煤相比,热效率至少相差10%。可见,由于煤质不好或供煤品种的不对路,其浪费是惊人的。   同时,我国每年因燃煤而产生的硫的氧化物和氮的氧化物的总量在1000万t以上,这些有害的酸性气体排入大气后,在一定的条件下与雨水一起再降到地面。相当于从空中降下2000多万t强酸,对环境污染很大,特别是烟煤中所含苯并芘对人体危害*,其浓度每增加百万分之一,癌发率上升5%。由上可见,提高煤炭质量,不仅可以达到节约煤炭,降低用户生产成本的目的,而且有利于环境的保护,减轻煤炭利用对环境的污染。   为了严格控制煤炭的质量,1987年,国家标准局发布《煤质分析试验方法一般规定》(GB/T 483-1987)。其中包括:煤的元素分析方法 煤中碳和氢测定方法电量—重量法 煤中全硫的测定方法 煤中各种形态硫的测定方法 煤中磷的测定方法 煤中砷的测定方法 煤中氯的测定方法 煤中氟的测定方法 煤中锗的测定方法 煤中镓的测定方法 煤灰中钾、钠、铁、钙、镁、锰的测定方法(原子吸收分光光度法) 煤中铬、锡、铅的测定方法 煤中铀的测定方法 煤中钒的测定方法 煤中硒的测定方法 煤中汞的测定方法等等(详见GB/T 483-1987)。   传统的方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。    实验室留影1    技术交流会议合影留念   LIBS 技术背景介绍   激光诱导击穿光谱仪(LIBS),无论是在样品制备、检测元素及分析时间上都明显优异于传统分析技术。其基本原理是使用高能量激光光源在分析材料表面形成高强度激光光斑(等离子体),使样品激发而发光, 通过检测系统对激发光信号的分析从而对待测样品元素进行定性和定量分析。   早在1961年,相关技术的论文已发表在了Brech上,但由于当时的激光发射器造价较高,实际生产的应用并不多见。随着激光发射器的商业化,LIBS已经逐渐应用在各行各业:环境:土壤,微粒,沉积物 材料分析:金属,矿渣,塑料,玻璃、煤炭 法医和生物医学:牙齿,骨头 计量学:硅晶片,半导体材料 生物学研究:植物,谷物 国防和军事:爆破,生化武器 艺术品修复和保存:颜料 宝石学和冶金术:贵金属,宝石。   上海凯来拥有一支理论知识扎实和实践经验丰富的团队,秉承着为客户提供完善技术服务的理念,与清华大学BP清洁能源研发与教育中心合作开发LIBS在煤炭领域中的应用。此次合作也对LIBS技术的肯定,欢迎任何对此技术方法感兴趣的分析工作者一起探讨,同时我们可以提供测试服务。相信在不久的将来,LIBS将具有广阔的市场前景。
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • 聚光科技发布CALIBUS系列手持式LIBS激光诱导击穿光谱仪新品
    英国阿朗科技公司至今已服务于金属元素成分分析行业近40年。40年间ARUN公司共推出10多款产品,覆盖现场及实验室金属材料检测领域。CALIBUS系列手持式LIBS激光诱导击穿光谱仪是ARUN最新推出的手持产品,有着绝佳的元素分析性能,尤其是C元素检测分析性能优异,是目前分析检测碳元素最稳定的手持光谱仪。 检测范围宽 全谱元素检测,可精准稳定检测C及合金材料中的Li、B、Be元素,填补了XRF的检测盲区;分析能力强 全新高分辨率的光学系统设计,搭配CMOS传感器,使得检测精度更高;无辐射 采用激光诱导击穿技术,没有辐射危险,产品通过《设备使用安全认证》;分析速度快 1s完成分辨牌号,快速分析检测;样品适应性广 无需样品前处理,样品适应性广:不要求导电,不要求消解,不要求大量;易用性高 智能触摸屏,人性化交互界面,操作简单便捷,大大提高工作效率。 应用领域: 冶金制造:CALIBUS手持式LIBS光谱仪优异的定量定性检测能力,能解决客户在冶金制造全过程中的质量控制、材料分类、安全防范、事故调查等检测要求,无论是黑色金属还是有色金属,CALIBUS都可以快速、准确给出准确可靠的测试数据,获得接近实验室级别的分析结果。轻金属材料分析:CALIBUS是一款超高分辨率、宽波段范围的手持激光光谱仪,有着强大的分析能力,能够准确分析以往X射线荧光分析仪不能识别的轻元素,即可对C,Si,Mg,B,Be,Li,Na等原子序数小于13的元素的现场快检,满足一切金属材料检测应用场景。材料可行性鉴定:材料检验是确保金属制品使用合格材质的关键。CALIBUS的出现,使工业生产过程中对金属材料的100%全检替代抽样检验成为现实,只需扣动扳机,元素含量及牌号1秒即可准确清晰显示在彩色触摸屏上,并可适应各种现场检测条件。金属交易:在金属废料交易市场中,进行快速可靠的现场分析检测是非常必要的,CALIBUS能够快速准确的对大量的废旧金属(碳素钢、不锈钢、铸铁、铝合金、铜合金等)进行现场检测和分拣,为购销双方在交易时做出迅速可靠的判断。创新点:阿朗CALIBUS系列手持激光诱导击穿光谱仪是英国阿朗科技公司的最新光谱产品。 创新点一 CALIBUS的谱线范围190nm-800nm,可对C,Si,Al,Mg,B,Be,Li,Na等原子序数小于13的元素进行现场快检。尤其是其优异的C元素检测能力,解决了广大黑色金属应用领域客户的痛点,弥补了XRF技术检测的不足与空白; 创新点二 CALIBUS采用三光室光学系统设计,CMOS探测器,分辨率低于0.1nm。另外它的氩气吹扫功能够消噪增强谱线信号强度,保证检测的准确性,搭配标样可实现金属材料的定量分析; 创新点三 CALIBUS内置高频纳秒级激光器,可在极短时间内完成多次分析,并迅速稳定下来,且无辐射危险,即CALIBUS激光光谱仪1s即可对金属材料完成准确安全的检测分析; CALIBUS系列手持式LIBS激光诱导击穿光谱仪
  • 层压板弯曲强度及弯曲模量试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合三点弯曲夹具,根据《IPC-TM-650试验方法手册》第2.4.4节层压板的弯曲强度(室温下),进行了层压板的三点弯曲试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应层压板的弯曲试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 层压板 PCB基板 弯曲试验 弯曲模量层压板是层压制品中的一种。层压制品是由两层或多层浸有树脂的纤维或织物经叠合、热压结合成的整体。层压制品可加工成各种绝缘和结构零部件,广泛应用在电机、变压器、高低压电器、电工仪表和电子设备中。随着电气工业的发展,高绝缘性。高强度、耐高温和适应各种使用环境的层压塑料制品相继出现。印制电路用的覆铜箔层压板也由于电子工业的需要迅速发展。层压制品的性能取决于基材和粘合剂以及成型工艺。按其组成、特性和耐热性,层压制品可分为有机基材层压板和无机基材层压板,本次应用选用电路板行业常用的PCB基板-环氧玻纤层压板作为样品进行试验,通过万能材料试验机可以进行层压板的各项力学试验,表征层压板的各项力学性能,从而做好层压板的质量控制。鲲鹏试验机配备的三点弯曲夹具具备较高的刚度,可以确保弯曲过程中受力分析的准确性,同时配备快速接头和可调支座,可以快速实现安装以及支座调整,另外配备的试样对中限位装置可以实现样品快速摆放及确保每次摆放的位置一致,确保结果的重现性。除夹具外,试验机主机的高精度以及超过1000Hz的采集频率,可以完整的记录弯曲过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机三点弯曲夹具Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级) 加载试验速率:0.76mm/min跨距:25.4mm压头及支座直径:10mm1.3样品及处理本次试验,选取的层压板尺寸为76.2mm×25.4mm×1.57mm,数量5个。图1 标准试样尺寸图2 试验样品2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品平放在下支座中,中间压头以0.76mm/min的速率进行试验。测量过程中的力以及位移数据,并生成弯曲试验曲线。 图3 测试系统图(主机、夹具)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图4-试验曲线图5-试验后样品从上(表1)数据以及试验曲线可以看出,压头持续下压过程中,试样受力持续上升到最大力点,样品受力至断裂,软件可以记录整个过程中完整的试验曲线,可以获取最大力、应力、应变、位移行程等各项数据用于分析,试样破坏后,试验机监测断裂后自动停止设备,全部5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合三点弯曲夹具可以完全满足《IPC-TM-650试验方法手册》第2.4.4节层压板的弯曲强度(室温下)标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得层压板材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 激光诱导击穿光谱(LIBS)研究领域再次取得重要进展
    激光诱导击穿光谱技术(LIBS)又称激光诱导等离子体光谱,是一种基于原子发射光谱法的元素分析技术,在多元素分析、实时快速原位检测等方面具有突出优势,并且在痕量物质定性定量分析领域具有重要的应用前景。目前该技术已在深空深海探测、地质勘探、生物医药,以及环境监测等众多领域得到广泛应用。但在普遍应用中,LIBS技术面临信号波动大、光谱强度低、信噪比差、探测灵敏度低等不利因素。瞬态光学与光子技术国家重点实验室汤洁研究员课题组近年来开展了激光等离子体光谱研究领域的技术攻关。放电辅助增强策略可实现大幅度的激光等离子体光谱增强。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,这不可避免地导致能源浪费和环境污染相关问题。2023年2月份,瞬态光学与光子技术国家重点实验室汤洁研究员课题组与Vassilia Zorba教授团队合作共同提出一种离子动力学调制方法,对克服传统放电辅助LIBS技术(D-LIBS)放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该项工作借助于这种方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。然而,这一方法在液态样品的探测中受液相对放电过程的干扰导致LIBS信号波动大,影响探测光路甚至无法探测,极大阻碍了放电辅助LIBS(DA-LIBS)在液态样品中痕量物种定性或定量分析方面的应用。近日,针对放电辅助LIBS在液态样品探测中面临的关键技术性难题,该团队提出了DA-LIBS结合滤纸采样的方法,促进等离子体中更多的物质被持续加热、电离,致使其寿命从几微秒延长至近百微秒,等离子体光谱强度增加1–2个数量级,滤纸均匀采样巧妙克服了液相干扰放电过程及信号稳定性差等不利因素,显著增强激光烧蚀样品的稳定性,等离子体光谱信号稳定性得以提升33%。凭借显著的光谱增强效应,痕量Ca、Ba元素检出限降低至ppb量级( 1ppb=10-9=十亿分之一),相比于传统单脉冲LIBS,检出限降低近2个数量级。相比于其他LIBS增强技术(如双脉冲LIBS),该方法不仅享有同等高水平的探测灵敏度,还具备低成本、低能耗、装置简易等优势,将在环境与生态废油污染监测中,对污染物质的溯源,以及预防措施的制定,展现出巨大的应用潜力和价值。图片来源于中国科学院西安光学精密机械研究所该项研究成果发表于分析化学领域顶级期刊 Analytical Chemistry(Nature Index 收录,IF:8.0)。
  • 华东师大重庆研究院首次提出多维等离子体光栅诱导击穿光谱技术
    近日,华东师范大学重庆研究院的科研团队与精密光谱科学与技术国家重点实验室进行合作,在超快激光诱导击穿光谱的研究中取得重要进展,团队首次提出多维等离子体光栅诱导击穿光谱(Multidimensional-plasma-grating induced breakdown spectroscopy,MIBS)技术,并实验证实新技术比常规激光诱导击穿光谱具有更高的探测灵敏度和克服基体效应。相关成果以题为Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating发表在光谱类一区期刊Journal of Analytical Atomic Spectrometry杂志(胡梦云,施沈城,闫明,武愕,曾和平,JAAS,2022)。《Journal of Analytical Atomic Spectrometry》杂志刊登曾和平教授团队研究成果激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)是一种非常实用的分析测试工具,可以用于确定固体,液体和气体的元素成分。传统的纳秒激光诱导击穿光谱受基体效应与等离子体屏蔽等干扰,而飞秒光丝激发(Filament-induced breakdown spectroscopy,FIBS)受限于峰值功率钳制,灵敏度难以提高。团队前期发展飞秒等离子体光栅诱导光谱(Plasma-grating-induced breakdown spectroscopy, GIBS)技术,基于两束飞秒光丝非共线耦合形成等离子体光栅,突破峰值功率钳制效应,光功率及电子密度提高近2个量级,等离子光栅中多光子电离与电子碰撞激发协同,提高探测灵敏度(胡梦云,彭俊松,牛盛,曾和平,Advanced Photonics, 2020, 2(6), 065001);GIBS等离子体干涉激化可克服基体效应,首次实现成分探测自定标。为了进一步提高对样品的激发效果,延长激发产生的等离子体寿命,增强光谱信号,团队提出基于等离子体光栅的多脉冲耦合激发诱导击穿光谱MIBS新技术。团队利用三束非共线、非共面的飞秒脉冲进行相互作用对样品进行激发,成功观察到等离子体光栅的衍射效应,等离子体光栅实现从一维突破到二维。二维等离子体光栅对样品进行激发时,二维等离子体通道中具有更为精细的周期性结构和更高阶的非线性效应,提升了等离子体密度和光功率密度,多光子激发以及电子碰撞双重激发更为明显,从而进一步提高探测灵敏度,克服基体效应。MIBS实验装置,二维等离子体光栅的周期性结构使得三次谐波发生衍射值得一提的是,研究发现所获得的谱线信号会随着激光能量的提升而增强,当单脉冲能量超过2 mJ时,MIBS技术将取得更明显的优势。此外,MIBS技术仅在激发源上进行了改进,并未引入复杂的样品处理步骤以及额外的装置,与大多数改进技术相比保留了LIBS技术原有的快速、简单、便捷的优点,这使得其能够满足特定场景中的原位实时检测需求。随着GIBS/MIBS技术的研究发展与应用拓展,为了适应野外恶劣环境下移动作业,实现非接触式在线实时探测,对激发光源提出了更高要求,需要性能更加稳定的高能量飞秒光源进行激发。与此同时,华东师范大学重庆研究院发展高能量飞秒脉冲激光光源。基于掺Yb光纤种子脉冲产生与固体再生放大相结合的飞秒激光放大方案,通过搭建宽带可调谐的光纤脉冲种子源解决信号光和放大介质光谱窄化和增益失配的问题,实现激光高效率放大;结合啁啾脉冲放大和固体再生放大技术,抑制激光放大过程中的非线性累积,提升放大效率和功率,输出mJ级高能量飞秒脉冲激光。高集成化、高稳定性混合系统1030nm mJ级高能量飞秒激光光源满足实验室以外苛刻环境下应用,为GIBS/MIBS技术试验野外在线检测提供了技术和仪器的支撑。1030nm高能量飞秒激光器此外,华东师范大学重庆研究院开发多个系列超快飞秒激光光源,形成多款超快飞秒激光器产品,其中包括:FemtoCK,FemtoLine和FemtoStream等。针对GIBS/MIBS技术、强场激光物理、微纳加工等应用研究,开发的1030nm mJ级高能量飞秒激光器YbFemto HP采用光纤固体混合放大技术方案,种子源采用全保偏光纤结构的振荡器FemtoCK产生稳定脉冲序列;该光源通过啁啾脉冲放大技术,结合掺镱增益介质的固体再生放大技术,输出中心波长1030nm、能量达毫焦(mJ)量级,脉冲宽度小于300fs的高能量飞秒激光脉冲。该光源重复频率调谐范围覆盖单脉冲~ 250 kHz,增加定制模块可进行倍频操作,实现515nm、343nm等飞秒脉冲激光输出,满足科研、工业等多场景应用需求。华东师范大学重庆研究院将依托自研的毫焦级高能量飞秒激光器,输出高稳定的激化光源,与GIBS/MIBS技术相结合,集成实现轻量化高灵敏检测仪器,实现技术创新,仪器创新,装备创新,进而实现土壤、液体自标定痕量分析等应用创新,深入优化仪器系统的稳定性与可靠性,使更多野外极限环境下应用成为可能,进一步应用于环境监测、深海勘探、地质勘探、工业冶金、航天探测以及生物制药等领域。激光诱导击穿光谱技术应用毫焦级高能量飞秒激光器不仅仅在LIBS上产生重要应用,同时可用于设备集成,面向如半导体芯片制备、柔性OLED显示器件切割、玻璃切割、非金属/金属材料加工、打孔以及微纳加工等重要应用。另一方面,可用于光谱检测、非线性光学、高次谐波产生、医疗成像、双光子3D打印、相控阵等科研应用。
  • “激光诱导击穿光谱(LIBS)定量化技术及应用”通过2018年度教育部科研优秀成果奖候选审查公示
    p   2018年8月31日,教育部公布了《关于2018年度高等学校科学研究优秀成果奖(科学技术)通用项目/候选人形式审查结果的公示》。推荐工作截止后,累计收到高校、专家推荐或提名的项目与候选人共计1266项,经审查合格的有1069项,《激光诱导击穿光谱(LIBS)定量化技术及应用》位列技术发明奖候选名单。 /p p style=" text-align: center " strong 激光诱导击穿光谱(LIBS)定量化技术及应用 /strong /p p 主要完成单位: strong span style=" color: rgb(255, 0, 0) " 清华大学 /span /strong /p p   激光诱导击穿光谱(LIBS)具有实现在线或原位分析的优势,被称为化学分析的“未来超级巨星”,是光谱分析领域的重点研究方向。但长期受测量不确定性较高和测量误差较大这两大关键瓶颈的制约,一直未能实现精确定量化,也未实现大规模商业化应用。本项目通过研究LIBS测量过程中不确定性及测量误差的产生机理及抑制机制,发明了一系列提高LIBS定量化性能的方法,在不增加系统复杂性和成本条件下,实现了精确定量化,并在应用中得到了证实,为LIBS大规模商业化奠定了技术基础。 /p p   项目的主要发明点包括:1、揭示了光谱信号不确定性产生的机理,明确提出降低测量不确定性的主要机制是降低收光系统观测到的待测元素总粒子数密度波动的影响,并发明了等离子体调制技术和光谱标准化方法,分别通过调节等离体子的演化过程以产生稳定核心测量区域和把光谱强度折合到标准状态以减少等离子体特性参数波动对测量的影响,从而提高测量可重复性。在煤炭或金属样品的应用中,等离子体调制技术可以把原始谱线强度的相对标准差(RSD)降低近20%,而经过光谱标准化方法后的RSD则比目前常用的光谱面积归一化方法降低了近4倍。2、发明了基于主导因素偏最小二乘(PLS)定标方法:利用基于物理模型的主导因素对测量过程中能够利用物理规律描述的部分进行建模,然后利用基于统计学方法的偏最小二乘方法(PLS)对尚不能用物理规律描述的过程及不确定过程进行残差修正,克服了传统物理模型和统计学模型各自的缺陷,提高了测量准确度。在金属样品的测试中,其预测均方根误差比常规PLS模型相对下降近2.5倍,并扩大了模型的适用范围。3、提出定量化新思路,发明了基于自适应数据库的光谱辨识技术:建立包含光谱强度和不确定性的数据库,并判断待测样品光谱是否来自于库中样品 对确定是库内的样品直接读取浓度信息,而对新样品则预测浓度并更新数据库,使新样品变成老样品,从而解决测量重复性问题。在煤炭样品测试中,辨识正确率达100%,所有样品测量结果100%可重复。 /p p   本成果专利以许可或转让方式通过美国TSI、国电科学技术研究院等国内外多个公司获得成果转化,在LIBS领域首次实现中国专利技术向发达国家领头企业逆向输出。成果已在煤质分析、金属分析、水泥生料在线控制方面得到了应用,测量重复性和准确性显著优于国内外同类技术,并为社会创造经济价值1.2亿元,推动了LIBS技术以及相关应用领域的进步。2017年,经中国仪器仪表学会组织,由包括金国藩、张玉奎、尤政、顾大钊等四位院士的鉴定委员会鉴定:“在国际上率先突破了LIBS测量不确定度高和准确性差这两大瓶颈的制约,形成了一套LIBS精确定量化技术 创新程度高,在LIBS定量化技术上取得了突破性进展,整体处于国际领先水平”。本项目成果累计发表SCI论文39篇,WOS核心集他引640次。授权发明专利22项(1国际专利),总专利转让金额近1500万元(含200万美元外汇)。获2017中国仪器仪表学会科学技术奖一等奖、第九届国际发明展览会金奖。 /p
  • 重大突破!我国科学家开发出面向新型芯片的绝缘材料
    集成电路是现代技术进步的基石,但在尺寸缩小方面面临着严峻的挑战。作为组成芯片的基本元件,晶体管的尺寸随着芯片缩小不断接近物理极限,其中发挥着绝缘作用的栅介质材料十分关键。中国科学院上海微系统与信息技术研究所研究员狄增峰团队开发出面向二维集成电路的单晶氧化铝栅介质材料——人造蓝宝石,这种材料具有卓越的绝缘性能,即使在厚度仅为1纳米时,也能有效阻止电流泄漏。相关成果以《面向顶栅结构二维晶体管的单晶金属氧化物栅介质材料》为题,8月7日发表于国际学术期刊《自然》。中国科学院上海微系统与信息技术研究所成果登上《自然》。(海报由受访团队提供)二维集成电路是一种新型芯片,用厚度仅为1个或几个原子层的二维半导体材料构建,有望突破传统芯片的物理极限。然而,二维半导体沟道材料缺少与之匹配的高质量栅介质材料,导致二维晶体管实际性能与理论存在较大差异。中国科学院上海微系统与信息技术研究所研究员狄增峰说。狄增峰表示,传统的栅介质材料在厚度减小到纳米级别时,绝缘性能会下降,进而导致电流泄漏,增加芯片的能耗和发热量。为应对该难题,团队创新开发出原位插层氧化技术。“原位插层氧化技术的核心在于精准控制氧原子一层一层有序嵌入金属元素的晶格中。”中国科学院上海微系统与信息技术研究所研究员田子傲说,“传统氧化铝材料通常呈无序结构,这会导致其在极薄层面上的绝缘性能大幅下降。与非晶材料相比,单晶氧化铝栅介质材料在结构和电子性能上具有明显优势,是基于二维半导体材料晶体管的理想介质材料。其态密度降低了两个数量级,相较于传统界面有了显著改善。”&emsp &emsp 氧化铝薄膜晶圆。(受访团队供图)&emsp &emsp 狄增峰介绍,团队成功以单晶氧化铝为栅介质材料制备出低功耗的晶体管阵列,晶体管阵列具有良好的性能一致性。晶体管的击穿场强、栅漏电流、界面态密度等指标均满足国际器件与系统路线图对未来低功耗芯片的要求,有望启发业界发展新一代栅介质材料。
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 川大研制出便携式激光诱导击穿光谱仪(LIBS)
    日前,由四川大学生命学院分析仪器研究中心牵头承担的国家重大科学仪器设备开发专项成果&mdash &ldquo 便携式激光诱导击穿光谱仪(LIBS)&rdquo 亮相第九届中国西部国际科学仪器展览会。该产品是国内自主研发的首例便携式LIBS仪器。除了具有与实验室台式LIBS相似的优点之外,其方便,便携,可现场,在线分析等优势受到国内外用户和参展商的高度关注。这一成果也标志着我国激光诱导击穿光谱仪器自主研制能力的提升。   与传统的技术相比较,该便携式仪器用途更加广泛,能够更好地服务于冶金、地质、医学,生物,环境污染监测等多个领域,为相关产业提供有效的现场、原位、快速分析的技术装备,从而加快检测速度,缩短分析时间,降低分析成本,提高生产效率,有广阔的市场前景和空间。 四川大学自主研制的便携式激光诱导击穿光谱仪亮相第九届中国西部国际科学仪器展览会
  • 银川市投资2050万元面向全国发布3项“揭榜挂帅”科技项目榜单
    9月13日,银川市科学技术局面向全国发布2022年银川市“揭榜挂帅”科技项目榜单,符合条件的区内外高等院校、科研院所和企业等产学研单位均可以参与揭榜。2022年银川市“揭榜挂帅”科技项目榜单有3项,主要涉及新型材料、装备制造、清洁能源三个重点产业,总投资金额2050万元。榜单详情如下:需求项目1:制氢用分裂变压器低压绕组耦合机理及抑制措施研究与应用所属行业领域:新能源、电气设备制造需求背景:氢能与电能结合将成为构建现代能源体系的重要途径。电能是多种能源间灵活高效转化的关键媒介,能量转换效率通常在90%以上,而变压器又是电能输送的关键设备,在制氢、储氢、供能等多个环节有着不可替代的作用。制氢供电设备中用的分裂变压器,需要两个低压之间减少相互干扰,在两个线圈同时运行时,相互之间磁耦合影响最低,以达到提高二次供电效率,确保电解槽稳定高效电解制氢的目的;变压器的绕组采用的是铜箔绕制,本身存在电磁屏蔽效果导致同一铁芯柱上的上下两个绕组耦合严重,造成变压器等效阻抗随电流发生变化,当阻抗值下降到一定程度时可能发生过流跳闸。故解决氢储能供电设备用分裂变压器低压绕组消除耦合影响瓶颈问题迫在眉睫。主要研究内容:1.分析低压绕组间耦合影响因素,揭示耦合机理;2.提出抑制低压绕组间耦合方法和措施;3.试制满足耦合率要求的分裂变压器样机。考核指标:额定容量:12MVA,额定电压:35kV/0.53kV/0.53kV,解耦率≥93%,其他参数依照发榜方整流变压器相关参数要求。预期效益:项目完成后为企业带来良好经济效益,对同类变压器稳定性和可靠性的有效提升提供理论依据和技术支持。时限要求:2022年9月-2023年10月揭榜方条件:科研院所、高校、企业均可;须具备仿真分析能力,技术方案符合变压器制造业企业需求;项目产权归需求发榜方所有,项目结束后的持续研究成果归研究方所有。发榜方:卧龙电气银川变压器有限公司榜单金额:发榜金额120万,总投资300万。需求项目2:特种轴承陶瓷覆膜关键技术研究所属行业领域:轴承行业、材料加工需求背景:我国风电新增装机容量和累计装机容量位居全球第一。风力发电机组增速器轴承、发电机轴承、2.5MW以上主轴承主要依赖进口,其中发电机轴承等陶瓷覆膜绝缘技术制约我国风电产业的发展,是亟需突破的行业领域关键技术问题主要研究内容:1.研究特种轴承陶瓷覆膜技术与使用寿命问题;2.研究特种轴承陶瓷覆膜无损伤表面加工技术;3.研究陶瓷覆膜封孔及检测技术。考核指标:实现覆膜轴承的抗弯强度≥900MPa,韦布尔模数≥ 12;密度均匀,气孔率≤0.02%;直流击穿电压≥2000V;在极限转速≥2000r/min、平均转速1200r/min和P5级轴承精度的条件下,预期使用寿命达到7年;提供一套陶瓷覆膜技术及检测技术评价方案报告。时限要求:2022年9月-2022年12月预期效益:完成项目技术指标,实现产业化要求;获得适用于轴承陶瓷覆膜的加工工艺;实现封孔性能的技术检测,强化轴承的绝缘性能,提高绝缘涂层的环境适应性;技术实现产业化后年产值达2000万元,推动特种轴承陶瓷覆膜技术的推广应用。揭榜方条件:具有技术研发实力的独立法人资格单位,知识产权归发榜方,利益分配另议。发榜方:西北轴承有限公司榜单金额:发榜金额200万,总投资500万需求项目3:泡生法生长大尺寸钛宝石激光晶体生长的装备和关键工艺技术研究所属行业领域:光学材料需求背景:目前大部分已经商用的钛宝石晶体是热交换法生长的,尺寸偏小、钛离子浓度低、浓度均匀性不足。随着蓝光LD泵浦源、先进激光制造和十拍瓦~百拍瓦的高功率激光系统的进一步发展,未来对高浓度、大尺寸、高FOM值的钛宝石晶体元件的需求将日益增大。因此发展大尺寸高品质钛宝石激光晶体制备关键核心技术显得十分迫切。主要研究内容:1.研究大尺寸晶体生长机理及结晶过程关键参数定量化技术;2.研究大尺寸晶体生长缺陷的形成、发展、演变规律与机理;3.研究晶体生长装备制造技术,实现高功率激光输出的大尺寸、低吸收、高均匀性钛宝石激光晶体材料的产出。考核指标:研究的技术目标包括:钛宝石晶片口径≥200mm,重量≥100Kg,晶片位错密度≤103/cm2,元件的光学均匀性优于5×10-4,吸收≥1.5cm-1@532nm,品质因子FOM值150,C面晶向偏差±0.1度、平行度10″、光洁度5-10、平面度≤λ/4。可实现调谐范围650-1100nm、100fs超短脉冲激光输出。预期效益:应用于建设的数十拍瓦激光装置,为我国规划建设的超强激光装置提供基础材料支撑,实现相关技术自主可控,每年新增激光晶体产值不低于3000万元。时限要求:2022年9月-2025年6月揭榜方条件:1. 揭榜单位应具有较强的研究实力和基础,具有稳定的人才团队等有能力完成发榜单位提出的任务;能够提供完成研究任务所需相关设备、平台及各方面保障条件,运行状况良好且管理规范;承担过省及以上的重大科技研发项目并通过结项验收;具有良好的科研道德和社会诚信,无不良信用记录。2. 项目负责人应应在新材料技术领域具有较高的科研水平,具有组织协调管理大型科研项目的能力,在项目中承担实质性任务,每年用于项目的工作时间不少于6个月。3. 项目团队成员应包含理论研究人才和基础应用型人才,教授、研究员、高级工程师、博士、工程师等人数不低于10人。发榜方:天通银厦新材料有限公司榜单金额:发榜金额500万,总投资1250万链接:关于发布2022年银川市“揭榜挂帅”科技项目榜单的通知
  • 激光诱导击穿光谱(LIBS)分析技术的几个重要发展趋势
    LIBS是一种激光烧蚀光谱分析技术,激光聚焦在测试位点,当激光脉冲的能量密度大于击穿阈值时,即可产生等离子体。基于这种特殊的等离子体剥蚀技术,通常在原子发射光谱技术中分别独立的取样、原子化、激发三个步骤均可由脉冲激光激发源一次实现。等离子体能量衰退过程中产生连续的轫致辐射以及内部元素的离子发射线,通过光纤光谱仪采集光谱发射信号,分析谱图中元素对应的特征峰强度即可以用于样品的定性以及定量分析。   自从1960年第一台红宝石激光器的发明为原子光谱分析注入新鲜血液之后,类似于火花源的激光光束聚焦击穿现象即见诸文献报道。1962年 Jarrell-Ash的Brech发表第一篇关于用激光产生等离子体进行分析的文章,标志着激光烧蚀分析技术的诞生。1964年,得益于激光器Q开关脉冲技术,使得激光烧蚀无需通过辅助电极放电,直接通过激光产生等离子体进行分析,这也是今天LIBS的雏形。至20世纪80年代,美国Los Alamos实验室利用激光等离子体的光谱信息实现了对于物质元素信息的测量,从而将该技术正式命名为LIBS (Laser Induced Breakdown Spectroscopy)。本世纪分析领域的一大新闻就是美国NASA采用LIBS技术作为火星车表面矿物分析手段&mdash &mdash ChemCam,并出色地完成了科考任务。因而,LIBS技术的应用也相应地成为了一大研究热门。与其他常用元素分析的方法相比,其主要优点有:   (1) 利用激光特有的性能,可实现远程、实时、在线元素检测。   (2) 仪器体积相对较小,适用于现场分析、可在恶劣条件下进行测定。   (3) 可用于各种形态的固体、液体甚至气体分析,而且无需繁琐的样品前处理过程,分析简便、快速。   (4) 可测定难溶解的高硬度材料,对样品尺寸要求不严格,且对样品的破坏性小,实现微损甚至近于无损检测,样品消耗量极低(约0.1&mu g-0.1mg)。   (5) 分析时间短,从激光脉冲发射到信号收集的整个过程仅仅需要毫秒级别的时间。   (6) 可进行多元素同时检测。   远距离辐射光接收技术及光纤传感技术的迅速发展使得激光技术对高温、恶劣环境下的非接触分析得以实现,对环境的较好适应性使其成为优秀的原位监测手段,赋予其优异的实用性。凭借着以上优势,LIBS技术在光谱分析领域的舞台上崭露头角。在过去的三十多年中,国际研究者对LIBS的理论基础进行了大量的研究工作。主要集中于高速相机拍摄LIBS等离子体形貌、不同物质时间分辨谱图、LIBS等离子体温度及电子数密度的估算、激光与物质相互作用机理的研究等。   基于LIBS技术的痕量分析和在线检测的仪器设备已经开始进入市场。国外已出现较为成熟的商品化仪器,但是,昂贵的销售价格限制了其使用对象,核心技术的垄断以及可能涉及到的重要战略作用,成了束缚国内研究及应用领域的一根铁链。国内LIBS技术相对起步较晚,目前虽有一些高校及科研单位从事LIBS技术的研究,但大部分仍偏向于理论及方法的探索,研究目的多为对基础理论的探讨与改进。作为高新技术产业,国内没有相应的自主研发及集成的技术企业,相关产品均来自国外。但目前国内市场中的LIBS进口仪器并没有形成垄断地位或者一家独大的状况,行业处于多家企业共存,百家争鸣的状态,具有代表性的主要有IVEA、Applied Phonics、Applied Spectra、TSI、牛津等公司。作为一种新兴技术,上述公司的不同型号产品也都是在近几年刚刚进入中国市场。   从目前LIBS发展现状来看,主要有以下几大方向:   趋势一:便携化   近年来,随着对工业节能减排的要求,以及环境污染事件频发、食品安全等一系列问题、快速检测仪器得到了极大的重视。对于军事国防业及突发事件对快速响应的需求,环境监测与地质对在线监测的需求,历史文化遗产对于不可移动物质判别的需求,LIBS技术以其无样品预处理,多形态分析以及无辐射危害的优势成为现场检测技术最新发展的热点,而便携化无疑是这一技术的一大发展趋势。这类仪器不但要考虑仪器的集成度和稳定性等基本指标,还需要考虑能耗、抗振动、工作环境等问题。   无论是IVEA的手持LIBS还是TSI的车载小型LIBS仪器,都是在现有仪器基础上形成的小型化仪器,此外,牛津的手持仪器已经可以实现电池操控,五秒内对钢铁样品实现分类定性,这是商业化LIBS的一大进步,值得所有面向应用的科研团队学习。而对于国内的LIBS技术来说,依然多是基于实验室的研究仪器,需要复杂的参数调节与严格的检测环境。在此背景下,我们分析仪器研究中心团队首次实现了便携式激光诱导击穿光谱分析仪器的国产化。便携式激光光谱分析仪(LIBS Mobile)以及体积更小、质量更轻,更适用于野外现场样品快速分析的手持式LIBS仪器:手持式激光光谱分析仪(LIBS Mini),均能在数秒之内在原地完成对固体、液体甚至气体形态的物质的完整在线元素分析,因此该类便携式仪器可用于地质、环境、安保、古董、冶金、表面处理及电子器件现场分析。   趋势二:专用化   在实际应用中,要摒弃&ldquo 一机多用&rdquo 的面面兼顾思维模式,不仅浪费资源,也往往使仪器不能达到最优的使用效果。对于不同的使用需求,要开发各种有针对性的实用仪器。专用仪器的使用成本和检测精度都会得到有效的改善。针对特定的检测对象和检测指标,关键还要有大量的、稳定可靠的校正模型以及模型的维护和二次开发能力。以牛津mPulseTM为例,其抓住钢铁分类为应用点,采用聚类分析的手段,虽然限制了LIBS技术的应用范围,但是同时也降低了仪器成本,提高了测定速度与准确率。只有跟用户单位的有效沟通和通力协作才能够实现LIBS技术的真正专用,比如我们分析仪器研究中心的LIBS仪器,就是在基于成熟的便携LIBS系统的基础上,根据来自地质研究院以及钢铁集团的实际需求,对仪器的硬件参数与软件操作进行改进与升级。同时,建立了LIBS技术用于岩性识别的方法体系,并借助于化学计量学手段开展基体校正研究,探索了地层样品的LIBS元素定量-半定量分析的模型部分。   趋势三:核心零部件研制和创新   国家对于国产科学仪器的发展给予了高度的关注和资金支持,而核心零部件性能对于仪器整体性能的提升至关重要。光栅是光谱仪器的核心部件,光栅刻划集精密机械、光学技术于一身。但目前我国光栅、检测器、扫描装置等部件多依赖于进口。因而,积极采用以及自主研发国产部件对于最终成型仪器的商品化上市以及产品的竞争力具有极大的推动作用。优质光电倍增管检测器 光谱分析用多维固体检测器&mdash 线阵、面阵式CCD检测器 高刻线密度、高光通量全息光栅 中阶梯闪耀光栅 高强度短弧氙灯-连续光源等,这些国内或较少有自主产品,或相应的质量和性能不及国外产品。最重要的是,仪器成本往往取决于相关部件的成本,若我们仅仅靠装配组装技术,永远无法掌握真正的核心技术,也难于形成有国际竞争力的产品。反过来,LIBS技术的大力发展,不仅对于技术本身有积极意义,对于零部件国产化的进程也具有极大的促进作用。许多业内人士都曾呼吁大家关注仪器核心零部件的研制。在这一点上,我们的LIBS研发团队对此也深有体会。   趋势四:分析方法的创新   只有单纯的谱图,是远远无法满足工业分析需求的。而简单的线性拟合方法,又会受到基质效应等因素的影响。对于分类方法来说,固定不变的参数同样会因为外界基质的变动而在实际应用中产生较大误差。大多数LIBS分析软件依赖于光谱仪的操控,仅仅是获得元素的谱图,而后续再采用第三方软件进行处理 亦或是通过最小化参数的改变来实现定性测定的要求。可以说,没有合适分析方法的LIBS仪器仅仅是硬件的堆积。只有加入分析方法学,统计算法学等,才能够实现LIBS技术的有效应用。这一点也是国外现有LIBS技术的一个共性问题,其操作或过于繁复,或过于简单,用户需要自己考量的部分太多。因此,我们的研发团队在对于分析参数的变动与软件的简化,实现原位物质瞬时定性与快速定量等方面,结合光谱特征谱线识别与标定方法,在整体上完成了自动化实验平台的研发与设计,为整个LIBS实验过程的自动化控制打下了坚实的基础。   趋势五:技术联用   近年来,由于激光光谱仪器部件的趋同性,技术发展的一大趋势是将之与其他检测技术联用,例如将LIBS多元素检测能力和拉曼技术或荧光技术在分子层面的检测能力相结合,得到更为全面的物质成分信息。我们提出开发兼具原子光谱和分子Raman光谱的LIBRAS(Laser Induced Breakdown Raman Spectroscopy)系统,实现激光光谱仪对样品中元素和物质种类的鉴别和量化,这是分析技术的一次重点跨越,在推进分析测试技术方面将具有革命性的意义。另外,通过与传统富集方法的结合或者是创新的信号增强技术也是目前LIBS技术研究工作中的一个重要方向。随着网络技术的发展,分析仪器与移动网络和云技术的联用可以对于远距离测试,异地操控等实际应用有极大价值,其潜力亦不可忽视。   趋势六:遥测   目前纳米脉冲激光器的使用已经可以进行长达百米左右距离的固体目标遥测。通过使用有效的聚焦透镜对激光束远程高度聚焦,已经实现了远距离的等离子体激发和收集。随着LIBS仪器的日趋成熟,今后可能将其安装在遥控操作式载体上,完成对空气、地面甚至水下检测任务。以火星探测为例,在航天应用时,不可能将探头固定于某一位点,应用LIBS技术,在非接触的远距离条件下即可获得岩石的测定结果,因而LIBS技术继火星车ChemCam之后又一次被选为金星探测用仪器。   趋势七:提高可靠性   可靠性是分析仪器的灵魂和生命线。对于当前的LIBS系统,可靠性仍然是发展中亟待解决的问题之一。此外,在仪器完善过程中,必须采取一系列可靠性设计分析工作,做好可靠性试验与验证工作。当务之急是建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性,尽快制定出完善的检测标准,得到行业的认可,从而以最快速度扩大LIBS技术的应用范围。为此,我们的研发团队在前期激光等离子体空间分辨性质研究的基础上,对仪器的光学收集系统进行了创造性地改良,保证了信号收集效率的增强,提高了仪器的灵敏度,并通过光学技术的进步,采用单脉冲双光束激发的LIBS专利技术,能够有效地避开等离子体的遮蔽效应,使最终激光能量受外界环境干扰因素显著地降低。   综上所述,LIBS技术的发展正呈现出突飞猛进的势头,其研究热点主要集中于更高的灵敏度、更高的准确性、更好的选择性、更高的自动化程度、仪器的小型化和智能化等方面。在国外已经被广泛地应用于环境、国防、航空、冶炼等领域中,并且在很多领域中展现出取代传统的原子光谱技术占据主导地位的势头。对LIBS系统的设计装配,坚固耐用与用户友好型的商业化过程是LIBS未来发展的关键。毫无疑问,LIBS要更加充分地发挥其市场潜力,必将在现在的价格上进行大幅调整,向低成本迈进。同时,必须发展现场便携式系统,建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性。总而言之,LIBS的未来比过去任何时刻都要光明,作为元素分析领域最耀眼的一颗新星,需要我们以国人特有的顽强精神和锐意进取的态度,做大做强,赶超国际领先水平,让世界感受到国际化标准下国产仪器的崭新面貌,在LIBS发展史上留下浓墨重彩的一笔。 (撰稿人:四川大学分析仪器研究中心 段忆翔教授)   注:文中观点不代表本网立场,仅供读者参考
  • 中科院研制出基于激光诱导击穿光谱技术的新型环境监测系统
    p   近日,中科院安徽光学精密机械研究所研究员赵南京研制出一种新型环境监测系统——“工业排放废水重金属在线监测技术系统”,可对工业排放废水中多种重金属进行实时在线自动监测。该系统已通过专家组验收。 /p p   目前,对水体中重金属的在线测量主要采用比色法和电化学分析法,这两种方法各有缺陷,有的不能同时测量多种离子,有的灵敏度较低。 /p p   据了解,该系统基于激光诱导击穿光谱技术,以石墨基片为水样载体,通过自动加载与卸载石墨基片、水样自动进样与精确滴定、样品烘干、光谱测量与分析,从而实现废水重金属含量的连续在线自动监测,可同时测量铅、镉、铬、铜、镍、锌等多种重金属元素。 /p p   科研人员在一家金属冶炼厂进行了为期两周的外场示范运行试验,结果显示测量稳定性误差在5%以下,相对误差在0.02%至9.1%之间。系统连续运行期间,无人值守但运行稳定、可靠。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制