快速热化学气相沉积系统

仪器信息网快速热化学气相沉积系统专题为您提供2024年最新快速热化学气相沉积系统价格报价、厂家品牌的相关信息, 包括快速热化学气相沉积系统参数、型号等,不管是国产,还是进口品牌的快速热化学气相沉积系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速热化学气相沉积系统相关的耗材配件、试剂标物,还有快速热化学气相沉积系统相关的最新资讯、资料,以及快速热化学气相沉积系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

快速热化学气相沉积系统相关的厂商

  • 400-860-5168转3241
    载德半导体技术有限公司是专业的半导体及微电子领域仪器设备供应商,载德所代理的仪器设备广泛用于高校、研究所、半导体高新企业。载德半导体技术有限公司目前代理的主要产品包括: - 霍尔效应测试仪(Hall Effect Measurement System); - 快速退火炉(RTP); - 回流焊炉,真空烧结炉(Reflow Solder System); - 探针台(Probe Station),低温探针台(Cryogenic Probe Station); - 贴片机(Die Bonder),划片机(Scriber),球焊机/锲焊机(Wire Bonder); - 原子层沉积系统(ALD),等离子增强原子层沉积设备(PEALD); - 磁控溅射镀膜机(Sputter),电子束蒸发镀膜机(E-beam Evaporator),热蒸发镀膜机(Thermal Evaporator),脉冲激光沉积系统(PLD) - 低压化学气相沉积系统(LPCVD),等离子增强化学气相沉积系统(PECVD),快速热化学气相沉积系统(RTCVD); - 反应离子刻蚀机(RIE),ICP刻蚀机,等离子体刻蚀机; - 加热台、热板、烤胶台 (Hot Chuck / Hot Plate); - 扫描开尔文探针系统(Kelvin Probe),光反射膜厚仪(Reflectometer); 等等...
    留言咨询
  • 400-860-5168转6134
    南通宏腾微电子技术有限公司(NTHT Semiconductor Technologies Limited)是一家专业的微纳材料、半导体和微电子材料及器件研发仪器及设备的供应商。南通宏腾微电子技术有限公司所销售的仪器设备广泛用于高校、研究所、以及半导体和微电子领域的高科技企业。南通宏腾微电子目前代理的主要产品包括: - 霍尔效应测试仪; - 快速退火炉; - 回流焊炉,共晶炉,钎焊炉,真空烧结炉; - 电子束蒸发镀膜机,热蒸发镀膜机 - 探针台,低温探针台,微探针台; - 金刚石划片机; - 球焊机,锲焊机; - 磁控溅射镀膜机; - 原子层沉积系统,等离子增强原子层沉积设备; - 电化学C-V剖面浓度分析仪(ECV Profiler); - 扫描开尔文探针系统; - 光学膜厚仪;-PECVD\CVD;-脉冲激光沉积系统-PLD-纳米压印;-等离子清洗机、去胶机;-反应离子刻蚀RIE - 光刻机、无掩膜光刻机; - 匀胶机; - 热板,烤胶板; -少子寿命、太阳能模拟器;-NMR-瞬态能谱仪-外延沉积-等离子清洗机光刻胶光刻机(针尖/电子束光刻机EBL,紫外光刻机,激光直写光刻机),镀膜机(磁控溅射机,电子束蒸发机,化学沉积机,微波等离子沉积机,原子层沉积机 等等…
    留言咨询
  • 公司名称(现用名):北京维意真空技术应用有限责任公司公司名称(曾用名):北京科立方真空技术应用有限公司覆盖区域:北京、天津、河北 北京维意真空技术应用有限责任公司,原名北京科立方真空技术应用有限公司,创立于2013年,位于中国首都北京密云经济技术开发区,主体经营分为真空配件销售、真空设备定制、浅蓝纳米科技三个部分,是北京从事真空产品设计、制造、销售、维修、保养于一体的专业性的公司,公司拥有一支专业、优秀的产品技术工程师和维修技术工程师,具有丰富的行业经验,同时还与北京工业大学联合研发等离子体增强化学气相沉积系统,与北京交通大学联合研发原子层沉积系统,满足高校、研究所的教学、科研使用,同时减少相关进口设备的市场占有率,并力争创造外汇,打出中国创造的名牌! 我们的客户遍布北京各高校和研究院所、部分军工单位和电力试验所、各级的材料、物理、化学、纳米等研究领域尖端的实验室,期待您就是我们的下一位客户、朋友! 您的满意微笑是我们一直努力追求的经营目标!技术创新、业务专业、服务诚信是我们一直遵循的经营理念!我们热诚欢迎国内外先进的仪器制造商及科学工作者与我们联系开展各层面的合作,打造成一流的真空系统产品、等离子体增强化学气相沉积系统和原子层沉积系统供应商。
    留言咨询

快速热化学气相沉积系统相关的仪器

  • 快速热化学气相沉积系统 (RTCVD)生产商:韩国Ecopia RTCVD快速热化学气相沉积设备广泛用于多晶硅、氧化硅、氮化硅等常见半导体薄膜的沉积和制备。 性能和特点:- 温度范围:室温 ~ 1500°C - 升温速度:200°C/s - 气体混合能力(带有质量流量计) - 真空度:~10-6Torr
    留言咨询
  • 脉冲激光沉积、分子束外延薄膜制备系统美国BlueWave公司是半导体设备、材料生产商。BlueWave提供多种薄膜制备系统,包括脉冲激光沉积(PLD)、电子束蒸发、热蒸发、反应溅射、热丝化学气相沉积(HFCVD)、热化学气相沉积系统(TCVD)。这些系统是理想的薄膜与涂层合成设备。可制备的薄膜包括氮化物、氧化物、多层膜、钻石、石墨烯、碳纳米管、2D材料。Blue Wave还提供相关系统配件,例如基片加热装置、原位监测工具。此外,BlueWave还为您提供标准的薄膜以及材料涂层,例如氧化物涂层、导电薄膜、无定型或纳米晶Si/SiC、晶体AlN-GaN、聚合物、纳米钻石、HFCVD钻石涂层以及器件加工。1、脉冲激光沉积系统产品特点:◆ 电抛光多空不锈钢超高真空腔体◆ 可集成热蒸发源或溅射源◆ 可旋转的耐氧化基片加热台◆ 流量计或针阀控制气体流量◆ 标准真空计◆ 干泵与涡轮真空泵◆ 可选配不锈钢快速进样室 ◆ 可选配基片-靶材距离自动控制系统◆ 可制备:金属氧化物、氮化物、碳化物、金属纳米薄膜、多层膜、超晶格等。 2、物理气相沉积系统(Physical Vapor Deposition Plus)产品特点◆ 超高真空不锈钢腔体◆ 电子束、热蒸发、脉冲激光沉积可集成◆ 立衬底加热,可旋转◆ 多量程气体流量控制器◆ 标准气压计◆ 机械、分子、冷凝真空泵可选不锈钢快速进样室◆ 衬底和源距离可控◆ 可用于金属氧化物、氮化物、碳化物、金属薄膜 3、热化学气相沉积系统(TCVD)产品特点◆ 高温石英管反应器设计◆ 温度范围:室温到1100℃◆ 多路气体控制◆ 标准气压计◆ 易于操作◆ 可配机械泵实现低压TCVD◆ 可用于制备金属氧化物、氮化物、碳化物、金属薄膜◆ 液体前驱体喷头◆ 2英寸超大温度均匀区4、热丝化学气相沉积系统(HFCVD)产品特点:◆ 水冷不锈钢超高真空腔◆ 热丝易安装、更换 ◆ 4个不同量程气体控制器◆ 标准气压计◆ 衬底与热丝距离可调节◆ 2英寸衬底加热、可旋转 ◆ 制备金刚石和石墨烯
    留言咨询
  • 1. 产品概述EPEE系列 等离子化学气相沉积系统,单片和多片式架构。2. 设备用途/原理EPEE系列 等离子化学气相沉积系统。先进的单片和多片式架构,满足量产和研发客户需求。高效传输系统,智能软件调度算法。高效远程等离子体清洗系统,优异的颗粒控制。支持气态硅烷、液态 TEOS 和碳膜等工艺。支持在线膜厚和清洗终点实时监测。3. 设备特点晶圆尺寸 4/6/8 英寸兼容,适用材料 氧化硅、氮化硅、氮氧化硅、磷硅玻璃、硼磷硅玻璃、非晶硅、非晶碳。适用工艺 氧化硅图形化衬底层、钝化层、绝缘层、掩膜层。适用域 科研、化合物半导体、新兴应用、集成电路。
    留言咨询

快速热化学气相沉积系统相关的资讯

  • 十一种化学气相沉积(CVD)技术盘点
    CVD(化学气相沉积)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。化学气相沉积法是传统的制备薄膜的技术,其原理是利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,而在基体上形成薄膜。化学气相沉积包括常压化学气相沉积、等离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积等。不过随着技术的发展,CVD技术也不断推陈出新,出现了很多针对某几种用途的专门技术,在此特为大家盘点介绍一些CVD技术。等离子体增强化学气相沉积(PECVD)等离子体增强化学气相沉积是在化学气相沉积中,激发气体,使其产生低温等离子体,增强反应物质的化学活性,从而进行外延的一种方法。该方法可在较低温度下形成固体膜。例如在一个反应室内将基体材料置于阴极上,通入反应气体至较低气压(1~600Pa),基体保持一定温度,以某种方式产生辉光放电,基体表面附近气体电离,反应气体得到活化,同时基体表面产生阴极溅射,从而提高了表面活性。在表面上不仅存在着通常的热化学反应,还存在着复杂的等离子体化学反应。沉积膜就是在这两种化学反应的共同作用下形成的。激发辉光放电的方法主要有:射频激发,直流高压激发,脉冲激发和微波激发。等离子体增强化学气相沉积的主要优点是沉积温度低,对基体的结构和物理性质影响小;膜的厚度及成分均匀性好;膜组织致密、针孔少;膜层的附着力强;应用范围广,可制备各种金属膜、无机膜和有机膜。【市场分析】上海市采购量独占鳌头——半导体仪器设备中标市场盘点系列之CVD篇高密度等离子体化学气相淀积(HDP CVD)HDP-CVD 是一种利用电感耦合等离子体 (ICP) 源的化学气相沉积设备,是一种越来越受欢迎的等离子体沉积设备。HDP-CVD(也称为ICP-CVD)能够在较低的沉积温度下产生比传统PECVD设备更高的等离子体密度和质量。此外,HDP-CVD 提供几乎独立的离子通量和能量控制,提高了沟槽或孔填充能力。但是,HDP-CVD 配置的另一个显著优势是,它可以转换为用于等离子体刻蚀的 ICP-RIE。 在预算或系统占用空间受限时,优势明显。听起来可能很奇怪。但是这两种类型的工艺确实可以在同一个系统中运行。虽然存在一些内部差异,例如额外的气体入口,但两种设备的核心结构几乎完全相同。在HDP CVD工艺问世之前,大多数芯片厂普遍采用PECVD进行绝缘介质的填充。这种工艺对于大于0.8微米的间隔具有良好的填孔效果,然而对于小于0.8微米的间隙,PECVD工艺一步填充具有高的深宽比的间隔时会在间隔中部产生夹断和空洞。在探索如何同时满足高深宽比间隙的填充和控制成本的过程中诞生了HDP CVD工艺,它的突破创新之处在于,在同一个反应腔中同步地进行沉积和刻蚀工艺。微波等离子化学气相沉积(MPCVD)微波等离子化学气相沉积技术(MPCVD)适合制备面积大、均匀性好、纯度高、结晶形态好的高质量硬质薄膜和晶体。MPCVD是制备大尺寸单晶金刚石有效手段之一。该方法利用电磁波能量来激发反应气体。由于是无极放电,等离子体纯净,同时微波的放电区集中而不扩展,能激活产生各种原子基团如原子氢等,产生的离子的最大动能低,不会腐蚀已生成的金刚石。通过对MPCVD沉积反应室结构的结构调整,可以在沉积腔中产生大面积而又稳定的等离子体球,因而有利于大面积、均匀地沉积金刚石膜,这一点又是火焰法所难以达到的,因而微波等离子体法制备金刚石膜的优越性在所有制备法中显得十分的突出。微波电子回旋共振等离子体化学气相沉积(ECR-MPCVD)在MPCVD中为了进一步提高等离子体密度,又出现了电子回旋共振MPCVD(Electron Cyclotron Resonance CVD,简称ECR-MPCVD)。由于微波CVD在制备金刚石膜中的独有优势,使得研究人员普遍使用该方法制备金刚石膜,通过大量的研究,不仅在MPCVD制备金刚石膜的机理上取得了显著的成果,而且用CVD法制备的金刚石膜也广泛的用于工具、热沉、光学、高温电子等领域的工业研究与应用。超高真空化学气相沉积(UHV/CVD)超高真空化学气相沉积(UHV/CVD)是制备优质亚微米晶体薄膜、纳米结构材料、研制硅基高速高频器件和纳电子器件的关键的先进薄膜技术。超高真空化学气相沉积技术发展于20世纪80年代末,是指在低于10-6 Pa (10-8 Torr) 的超高真空反应器中进行的化学气相沉积过程,特别适合于在化学活性高的衬底表面沉积单晶薄膜。石墨烯就是可以通过UHV/CVD生产的材料之一。与传统的气相外延不同,UHV/CVD技术采用低压和低温生长,能够有效地减少掺杂源的固态扩散,抑制外延薄膜的三维生长。UHV/CVD系统反应器的超高真空避免了Si衬底表面的氧化,并有效地减少了反应气体所产生的杂质掺入到生长的薄膜中。在超高真空条件下,反应气分子能够直接传输到衬底表面,不存在反应气体的扩散及分子间的复杂相互作用,沉积过程主要取决于气-固界面的反应。传统的气相外延中,气相前驱物通过边界层向衬底表面的扩散决定了外延薄膜的生长速率。超高真空使得气相前驱物分子直接冲击衬底表面,薄膜的生长主要由表面的化学反应控制。因此,在支撑座上的所有基片(衬底)表面的气相前驱物硅烷或锗烷分子流量都是相同的,这使得同时在多基片上实现外延生长成为可能。低压化学气相沉积(LPCVD)低压化学气相沉积法(Low-pressure CVD,LPCVD)的设计就是将反应气体在反应器内进行沉积反应时的操作压力,降低到大约133Pa以下的一种CVD反应。LPCVD压强下降到约133Pa以下,与此相应,分子的自由程与气体扩散系数增大,使气态反应物和副产物的质量传输速率加快,形成薄膜的反应速率增加,即使平行垂直放置片子片子的片距减小到5~10mm,质量传输限制同片子表面化学反应速率相比仍可不予考虑,这就为直立密排装片创造了条件,大大提高了每批装片量。以LPCVD法来沉积的薄膜,将具备较佳的阶梯覆盖能力,很好的组成成份和结构控制、很高的沉积速率及输出量。再者LPCVD并不需要载子气体,因此大大降低了颗粒污染源,被广泛地应用在高附加价值的半导体产业中,用以作薄膜的沉积。LPCVD广泛用于二氧化硅(LTO TEOS)、氮化硅(低应力)(Si3N4)、多晶硅(LP-POLY)、磷硅玻璃(BSG)、硼磷硅玻璃(BPSG)、掺杂多晶硅、石墨烯、碳纳米管等多种薄膜。热化学气相沉积(TCVD)热化学气相沉积(TCVD)是指利用高温激活化学反应进行气相生长的方法。广泛应用的TCVD技术如金属有机化学气相沉积、氯化物化学气相沉积、氢化物化学气相沉积等均属于热化学气相沉积的范围。热化学气相沉积按其化学反应形式可分成几大类:(1)化学输运法:构成薄膜物质在源区与另一种固体或液体物质反应生成气体.然后输运到一定温度下的生长区,通过相反的热反应生成所需材料,正反应为输运过程的热反应,逆反应为晶体生长过程的热反应。(2)热解法:将含有构成薄膜元素的某种易挥发物质,输运到生长区,通过热分解反应生成所需物质,它的生长温度为1000-1050摄氏度。(3)合成反应法:几种气体物质在生长区内反应生成所生长物质的过程,上述三种方法中,化学输运法一般用于块状晶体生长,分解反应法通常用于薄膜材料生长,合成反应法则两种情况都用。热化学气相沉积应用于半导体材料,如Si,GaAs,InP等各种氧化物和其它材料。高温化学气相沉积(HTCVD)高温化学气相沉积是碳化硅晶体生长的重要方法。HTCVD生长碳化硅晶体是在密闭的反应器中,外部加热使反应室保持所需要的反应温度(2000℃~2300℃)。高温化学气相沉积是在衬底材料表面上产生的组合反应,是一种化学反应。它涉及热力学、气体输送及膜层生长等方面的问题,根据反应气体、排出气体分析和光谱分析,其过程一般分为以下几步:混合反应气体到达衬底材料表面;反应气体在高温分解并在衬底材料表面上产生化学反应生成固态晶体膜;固体生成物在衬底表面脱离移开,不断地通入反应气体,晶体膜层材料不断生长。中温化学气相沉积(MTCVD)MTCVD硬质涂层工艺技术,在20世纪80年代中期就已问世,但在当时并没有引起人们的重视,直到20世纪90年代中期,世界上主要硬质合金工具生产公司,利用HTCVD和MTCVD技术相结合,研究开发出新型的超级硬质合金涂层材料,有效地解决了在高速、高效切削、合金钢重切削、干切削等机械加工领域中,刀具使用寿命低的难高强度题才引起广泛的重视。目前,已在涂层硬质合金刀具行业投入生产应用,效果十分显著。MTCVD技术沉积工艺如下。沉积温度:700~ 900℃;沉积反应压力:2X103~2X104Pa;主要反应气体配比: CH3CN:TiCl4:H2=0.01:0.02:1;沉积时间:1一4h。金属有机化合物化学气相沉积(MOCVD)MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。MOCVD是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V主族、Ⅱ-Ⅵ副族化合物半导体以及它们的多元固溶体的薄层单晶材料。通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用直流加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。MOCVD适用范围广泛,几乎可以生长所有化合物及合金半导体,非常适合于生长各种异质结构材料,还可以生长超薄外延层,并能获得很陡的界面过渡,生长易于控制,可以生长纯度很高的材料,外延层大面积均匀性良好,可以进行大规模生产。激光诱导化学气相沉积(LCVD)LCVD是利用激光束的光子能量激发和促进化学气相反应的沉积薄膜方法。在光子的作用下,气相中的分子发生分解,原子被激活,在衬底上形成薄膜。这种方法与常规的化学气相沉积(CVD)相比,可以大大降低衬底的温度,防止衬底中杂质分布截面受到破坏,可在不能承受高温的衬底上合成薄膜。与等离子体化学气相沉积方法相比,可以避免高能粒子辐照在薄膜中造成损伤。根据激光在化学气相沉积过程中所起的作用不同可以将LCVD分为光LCVD和热LCVD,它们的反应机理也不尽相同。光LCVD是利用反应气体分子或催化分子对特定波长的激光共振吸收,反应分子气体收到激光加热被诱导发生离解的化学反应,在合适的制备工艺参数如激光功率、反应室压力与气氛的比例、气体流量以及反应区温度等条件下形成薄膜。光LCVD原理与常规CVD主要不同在于激光参与了源分子的化学分解反应,反应区附近极陡的温度梯度可精确控制,能够制备组分可控、粒度可控的超微粒子。热LCVD主要利用基体吸收激光的能量后在表面形成一定的温度场,反应气体流经基体表面发生化学反应,从而在基体表面形成薄膜。热LCVD过程是一种急热急冷的成膜过程,基材发生固态相变时,快速加热会造成大量形核,激光辐照后,成膜区快速冷却,过冷度急剧增大,形核密度增大。同时,快速冷却使晶界的迁移率降低,反应时间缩短,可以形成细小的纳米晶粒。除以上提到的薄膜沉积方法外,还有常压化学气相沉积(APCVD)等分类技术。
  • 快速热化学反应过程分析仪样机研制成功
    “热”诱发或驱动的化学反应是工业反应的主体,占工业企业二氧化碳排放量的90%,反应诱发和反应进程快,因此难以实施“快速热化学反应”的在线精准测试。如何对其进行科学测试与精准分析,一直是科学仪器研制和技术研究领域的热点和难点。记者从不久前召开的“快速热化学反应过程分析仪”项目研究进展与成果产业化推进会上获悉,经过研发团队的科技攻关,该项目已成功研制出我国首台“快速热化学反应过程分析仪”样机,并已与行业龙头企业展开合作,加快推进国产化进程。由于国内外长期缺乏快速热化学反应特性测试和反应动力学分析的有效方法和仪器,2022年,“基础科研条件与重大科学仪器设备研发”专项设立了“快速热化学反应过程分析仪”项目,在辽宁省科技厅组织下,由沈阳化工大学牵头,联合中国科学院过程工程研究所等10家产学研相关机构,在热化学快速反应转化器和小分子、大分子、杂原子等气体产物的快速在线检测方法和仪器方面联合开展科学研究和仪器研制。该项目负责人、长期从事热化学反应测试与分析领域研究的沈阳化工大学校长许光文教授介绍,通过联合攻关,科研人员将研制出我国首套完全国产化、潜在领先国际同类仪器的热化学反应过程分析仪系统,用来分析产物生成反应动力学、测试全产物质量动态演变特性。2005年以来,许光文创建了利用微型流化连续平推流反应器,开展热化学反应测试与分析的方法并研制出系列仪器,取得较系统的基础研究和转化应用成果。这些成果成功应用于国内外100余家科研机构及相关企业,填补了我国热化反应分析领域自主成果的空白。据悉,该项目的研究,将进一步形成有效科学手段,深入研究和认识快速热化学反应规律,揭示反应产物生成过程特性,为碳达峰碳中和目标的实现提供有力的科学方法和手段。目前,沈阳化工大学、中国科学院过程工程研究所已与我国颗粒测试技术领域龙头企业达成合作,全面推进热化学反应分析仪的国产化和产业化进程,以促进研究成果的快速转化应用。
  • 国家重点研发计划 “快速热化学反应过程分析仪”项目已形成样机产品
    由沈阳化工大学等10家单位组成的国家重点研发计划“快速热化学反应过程分析仪”项目组今天召开研究进展与成果产业化推进会。该项目2022年立项,经过项目团队一年多的科技攻关,现已形成“快速热化学反应过程分析仪”样机产品,并开始加快推进成果产业化。据该项目负责人沈阳化工大学教授许光文介绍,过程分析是科学仪器发展的热点和前沿方向,受仪器原理和结构限制,国内外仍缺乏对高温快速反应过程特性的有效监测手段和分析仪器,难以对气相产物全组分信息在线精准采集。2022年,在辽宁省科技厅组织下,由沈阳化工大学牵头,联合中国科学院过程工程研究所、杭州谱育科技发展有限公司等10家在热化学快速反应转化器和小分子、大分子、杂原子等气体产物在线检测仪两方面的产、学、研、用突出单位成功申报国家重点研发计划“基础科研条件与重大科学仪器设备研发”专项立项“快速热化学反应过程分析仪”项目。据悉,该项目主要研制我国首套完全国产化、潜在领先国际同类仪器的快速热化学反应过程分析仪系统,分析产物生成反应动力学、测试全产物质量动态演变特性,提出分别利用快速过程质谱、高分辨率质谱和TDLAS激光光谱仪相结合的综合测试和表征技术方法,测试“小分子永久性气体生成曲线”定量动力学、获取“中等质量数以上产物全质量谱图”研究产物生成特性及其随反应时间的变化、并解决“含N、S等杂原子化合物实时释放”的测试难题,成果可形成有效手段,揭示快速反应气相产物生成过程特性,以全面研究认识反应。据了解,该项目创新之处在于,在“微型平推流”中以高温颗粒加热方式于高压下快速诱发在线伺样的物料发生化学反应、通过微型平推流高保真导出产物信息、全产物在线快速检测产物生成动态特性、解析反应动力学和反应机理,将针对典型物质的快速热化学反应过程特性试验并验证分析仪及系统的应用性能,建设分析仪产品的生产线、构建产业化平台,通过应用推广,推动我国快速反应分析仪及其应用技术的持续发展和核心竞争力。

快速热化学气相沉积系统相关的方案

  • 微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代
    目前微波等离子体化学气相沉积(MPCVD)系统中的真空压力控制装置普遍采用美国MKS公司的控制阀和控制器。本文介绍了采用MKS公司产品在实际应用中存在控制精度差和价格昂贵的现象,介绍了为解决这些问题的国产化替代方案,介绍了最新研发的真空压力控制装置国产化替代产品,并验证了国产化替代产品具有更高的控制精度和价格优势。
  • 天津兰力科:稀土化学沉积数据库系统设计与应用研究
    在科技日新月异的今天,新材料的发展水平已经成为衡量一个国家高科技水平和综合国力强弱的重要标志,化学镀是在材料领域中发展起来的一类新兴技术,化学沉积钻基合金不需要电流,可在各种基体材料上沉积以及具有优异的磁学性能,但它存在镀液稳定性差、沉积速度和均镀能力不理想等问题。由于稀土元素在电镀、表面化学热处理中能有效提高镀液稳定性、沉积速度和渗速,可以改善材料的可焊性、硬度和耐磨性等功能特性作用,所以展开了稀土元素介入化学沉积钻基合金的尝试。稀土元素介入化学沉积钻基合金是一个具有良好发展前景的研究方向,为了加速其实际应用的步伐,对在试验过程中获得大量数据,以中文VisualFoxPro6.O为工具,开发出化学沉积数据库系统应用软件。该软件系统分别建立了镀覆工艺、显微硬度和磁学性能三个数据库。以此为基础,开发了六个应用模块,分别为文件管理模块、编辑处理模块、数据管理模块、图片管理模块、打印管理模块、退出系统模块。通过该软件,我们可以方便的管理所有的试验数据。根据试验数据,用数值分析的方法进行数据处理,拟合出试验数据的近似函数表达式。用正交表对基础配方进行分析,得到最佳配方,并进行相应方差分析 用样条函数和最小二乘法分析镀覆工艺试验数据,绘制出三次样条函数和三次近似多项式的图形,获得化学沉积速度最大时各因素浓度所在的区间。本文的研究是对试验数据处理的一种探讨,为稀土化学沉积数据库系统的建立探索出一条途径,为获得最佳的钻基合金镀层性能奠定了基础,具有较大的理论和现实意义。
  • 电化学原子力显微镜(EC-AFM)实时监测铜在金表面的电沉积
    近年来,对电化学过程的理解如电沉积(也称电镀)在各种科学技术中的作用变得非常凸显,包括括微电子、纳米生物系统、太阳能电池、化学等其他广泛应用。〔1,2〕电沉积是一种传统方法,利用电流通过一种称为电解质的溶液来改变表面特性,无论是化学的还是物理的,使得材料可适合于某些应用。基于电解原理,它是将直流电流施加到电解质溶液中,用来减少所需材料的阳离子,并将颗粒沉积到材料的导电衬底表面上的过程[3 ]。此项技术会普遍增强导电性,提高耐腐蚀性和耐热性,使产品更美观。良好的沉积主要取决于衬底表面形貌〔4〕。因此,一项可以在纳米等级上测量,表征和监测电沉积过程的技术是非常必要的。有几种方法被应用到了这种表面表征。例如像扫描电子显微镜(SEM)和扫描隧道显微镜(STM)。这些技术可以进行纳米级结构的测量,但是,其中一些为非实时下的,一些通常需要高真空,而另一些则由于其耗时的图像采集而不适用于监测不断变化的过程。[2,5] 为了克服这些缺点,电化学结合原子力显微镜(通常称为EC-AFM)被引入进来。 这种技术允许用户进行实时成像和样品表面形貌变化的观测,并可以在纳米级的特定的电化学环境下实现。[ 6 ]在此次研究中,成功地验证了铜颗粒在金表面的沉积和溶解。利用Park NX10 AFM在反应过程中观察铜颗粒的形态变化,并在实验过程中使用恒电位仪同时获得电流-电压(CV)曲线。

快速热化学气相沉积系统相关的资料

快速热化学气相沉积系统相关的试剂

快速热化学气相沉积系统相关的论坛

  • [下载]纯物质热化学数据手册

    纯物质热化学数据手册包含近3300组物质与物相的热化学数据,温度范围最高可达3500度。采用国际单位制,是迄今收集物质总数最多、温度范围最宽的一部纯物质热化学数据手册。对做热分析的朋友应该会有帮助的,拿出来和大家分享!需要的朋友请到资料中心下载!这是上卷的地址: http://www.instrument.com.cn/download/shtml/026187.shtml

  • 【分享】纯物质热化学数据手册(上、下册)

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=110630]纯物质热化学数据手册(上)[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=109141]纯物质热化学数据手册(下)[/url]

  • 【分享】著名水热化学专家、中科院院士--冯守华教授

    著名水热化学专家、中科院院士--冯守华教授冯守华,男,1956年3月14日生。2005年当选中国科学院院士。现任吉林大学化学学院院长,无机合成与制备化学国家重点实验室主任。  他长期开展水热合成化学研究,取得开创性成果。水热合成化学是在湿法冶金和地球模拟化学基础上,针对工业上沸石分子筛催化剂、石英及新材料的需求,逐步发展起来的。在2006年8月的第八届国际水热反应研讨会上,成立了首届国际溶剂热与水热协会(ISHA,冯守华院士是该国际协会11位创建人之一),标志着水热化学学科在材料、能源、环境、生命和地球领域的重要地位并趋于成熟。早在上世纪80年代初,他开发出系列全新微孔晶体,并于1987年第一次在国外期刊 ChemCommun上报道其成果。90年代初,他开发了固体电解质与高温湿敏传感材料的水热合成路线,在Chem. Mater.上发表系列成果。之后,他将水热化学应用于无机固体功能材料的合成,并在具有代表性的功能复合氧化物与复合氟化物体系获得突破。特别是应邀于2001年在美国化学会Acc. Chem. Res.上发表“水热合成新材料”的综述。他在水热控制缺陷、混合价态、纳米粒子、无机螺旋链的生成及发展生物水热化学方面处于国际该领域发展的前沿。   他领导的课题组在长期的水热化学研究中,发现单一元素在稳定晶体氧化物中存在三种不同氧化态的现象,即三重价态。基于三重价态锰钙钛矿单晶和单晶膜呈现接近理想的开关整流特性,构成了阵列式原子尺度p-n结(此前,在该结构体系曾发现高温超导和巨磁阻现象)。该单晶及其薄膜可以作为全新的集成微电子器件,在能源和信息领域的应用前景广阔,其研究成果为自主知识产权。另外,他们于2001年启动了水热生物化学研究,在从二氧化碳到多肽的水热转化方面,取得对生命及手性起源具有启示性的研究成果。   冯守华于1994年获国家杰出青年科学基金,1996年获香港求是基金会杰出青年学者奖,1997年被评为国家有突出贡献的中青年专家,1999年被评为教育部特聘教授,2001年被评为国家基金委创新群体学术带头人。兼任教育部科技委委员,中国化学会副秘书长,J. Nanosci. & Nanotech.、J. Solid State Chem.、《中国科学》等编委,Mater. Res. Bull.、《中国化学》与《无机化学学报》副主编。2002年中国国际固体化学研讨会和2003年第七届国际水热反应研讨会会议主席。他承担了多项国家级研究项目,发表论文200余篇。研究成果曾获1992和1994年教育部科技进步一等奖、1996年教育部科技进步二等奖、1999年国家自然科学三等奖、2002年教育部提名国家自然科学一等奖。教学成果获2000年宝钢教育基金会优秀教师特等奖,2001年国家级教学成果二等奖。   他肯花气力建设实验室,认为实验室是化学学科建设的三个主要支撑点之一(实验室,人和传承)。自1993年开始建设无机水热合成教育部重点实验室以来,他以身作则,团结同事,提倡“埋头苦干,不图虚名;奉献科学,端正学风。相互配合,形成团队;不断积累,锐意创新”32字方针,白手起家,艰苦创业。2001年5月31日国家批准建立了无机合成与制备化学国家重点实验室。目前,该实验室已具备了国家要求的科技创新平台条件,实验室和他也双双获得国家实验室建设“金牛奖”。   学院建设,千头万绪,他团结一班人,首先制定“化学学院发展规划26条”,从教学、科研、学生和行政管理4个方面精心规划,顶层设计。他从实际出发,以稳定为大局,以基础和人文环境建设为中心,以管理为纽带,充分发挥导向和协调的领导功能,使得学院各学科协调发展,稳中有升。他从学科建设就是知识体系建设的基本概念出发,提出学科建设的最终目的是科学发现和技术发明,学科建设的作用和意义是贡献社会,包括社会进步和经济发展。为达到这个目的,就需要教师和学生的创造性劳动。而学科建设的三个支撑点中的“传承”是由知识体系本身的特点决定的,包括教学和学术积累,是由讲授、论著与学术评价组成的。他认同“学科就是人”的观点,从教学的角度看每个学科都要有人,而现代学院要求教师除了教学必须从事科学研究。为了建设好学院,他付出很多,但他认为这正是这一代人必须完成的事业,与学术研究一样,不断耕耘,惠及丰硕。

快速热化学气相沉积系统相关的耗材

  • 脉冲激光沉积用准分子激光器
    IPEXTM 840/860 PLD系列 脉冲激光沉积用准分子激光器Excimer Lasers for Pulsed Laser Deposition基于轻工机械最畅销的Ipex系列工业级准分子激光器,为PLD应用优化了激光器优秀的光束匀称性,脉冲到脉冲能量稳定和短脉冲持续时间在所有重复率能量恒定最长气体寿命和最低运行成本的ICONTM(在镍集成陶瓷)技术EasyClean自动光学密封,以保持填充气体,减少维护时停机时间高亮度镜头,适用于要求低光束发散或延长相干长度定制光束传输系统IPEX-840/860系列准分子激光器在脉冲激光沉积(PLD)领域展现了优异的性能、耐用性、可靠性和满足研究人员和系统集成商要求的易于集成性能。稳定性能得到可靠PLD结果:能量恒定IPEX-840/860系列激光器的指定脉冲能量从单脉冲到最大重复频率都是恒定的。这与其他有竞争力的激光器智能在地重复频率能量恒定和能量岁脉冲重复率上升而快速下降形成鲜明对比。LightMachinery的方法使PLD的工艺参数与激光重复率是一个恒量。恒定脉冲稳定性在PLD应用中,脉冲能量受一个先进的能量监视器监控,能够准确的调节放电电压和混合气体,在任何操作条件,包括PLD需要的突发脉冲,恒定输出能量。指向性恒定不变高稳定性使镜片座能够有200m-radian指向稳定性和光学维护后不需要调制光束角度光束质量稳定性IPEX-840/860系列激光器的光束强度分布被设计为边缘陡峭,顶部平坦,特别是激光管寿命的微小变化。PLD光束传输系统我们可以针对任何特定的PLD要求提供完整的激光传输系统规格 设备电源: 单相,200-240V,20A,50/60Hz冷却水:5 litres/minute,5-20℃,40-60psig激光气体:预混合气,具体请联系我们
  • 电子显微镜专用用碳沉积
    CARBON FILL,MGIS碳沉积(多支气体注入系统专用)用于原厂电子显微镜多支气体注入系统,碳沉积(多支气体注入系统专用)是一种存放碳化合物的容器,将药品加热到一定温度,药品气化,在真空压差和可控阀门的作用下,将药品气体喷洒在样品表面,同时在离子束的诱导作用下将碳分子沉积在样品表面。以实现对样品表面形貌的保护,或对样品进行导电处理。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • Eachwave 专业提供镀膜服务 磁控溅射镀膜 气相沉积镀膜 电子束蒸发镀膜 其他光谱配件
    上海屹持光电技术有限公司专业提供各种镀膜服务:典型实例 1,磁控溅射合金膜2,ICPPECVD 制备高厚低应力氧化硅薄膜3,沉积细胞定位电极4,磁控溅射的 制备的 Au/TiO2 连续 主要设备:1,磁控溅射镀膜系统2,磁控溅射镀膜机3,磁控溅射真空镀膜机4,电子束蒸发镀膜仪5,高密度等离子体增强化学气相沉积设备
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制