当前位置: 仪器信息网 > 行业主题 > >

宽频带铁磁共振谱测试仪

仪器信息网宽频带铁磁共振谱测试仪专题为您提供2024年最新宽频带铁磁共振谱测试仪价格报价、厂家品牌的相关信息, 包括宽频带铁磁共振谱测试仪参数、型号等,不管是国产,还是进口品牌的宽频带铁磁共振谱测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宽频带铁磁共振谱测试仪相关的耗材配件、试剂标物,还有宽频带铁磁共振谱测试仪相关的最新资讯、资料,以及宽频带铁磁共振谱测试仪相关的解决方案。

宽频带铁磁共振谱测试仪相关的资讯

  • 国内首次光伏发电宽频阻抗现场实测成功
    近日,中国电力科学研究院新能源研究中心(以下简称“中国电科院新能源中心”)联合国网宁夏电力有限公司在宁夏回族自治区海原县第六十六光伏电站,顺利完成光伏发电宽频阻抗现场实测。这是国内首次对光伏逆变器完成全工况扫频实测试验,表明我国在探索和解决新能源并网宽频振荡等方面取得新的突破。据了解,电力系统受扰后会产生几赫兹到几千赫兹的振荡,造成系统功率传输不稳,威胁电网安全稳定运行。随着国内新能源发电装机规模的快速发展,新能源基地宽频振荡风险日益增大。阻抗特性分析是新能源宽频振荡问题分析与策略验证的有效手段。此次现场实测的组串式光伏逆变器具有单机容量小、同一发电单元内多机耦合强等特点,给阻抗特性实测提出更大挑战。据介绍,6月5日,宁夏海源县330千伏变电站出现69赫兹超同步振荡。该变电站接有3个风电场、5个光伏电站,新能源总装机容量1220兆瓦。在振荡发生后,中国电科院新能源中心依托可再生能源并网全国重点实验室,通过仿真分析,复现了现场震荡现象,精准定位振荡风险源,并提出采用逆变器多参数协调优化的阻抗重塑振荡抑制方法。8月24日,在宁夏中卫第六十六光伏电站,中国电科院新能源中心利用新能源发电宽频阻抗测量装置,对振荡抑制策略改造前后光伏逆变器阻抗特性进行了宽频带(2—1000赫兹)、全工况(大功率、中功率、小功率)扫频实测试验,证实现场光伏逆变器震荡抑制策略优化成功。国网宁夏电力有限公司称,此次现场实证试验的成功,进一步验证了阻抗特性分析及阻抗重塑技术在解决实际工程振荡问题的有效性,是探索和解决新能源并网宽频振荡问题的又一里程碑事件。试验为宽频振荡问题的分析和解决提供新思路、新方法、新装备,为解决沙戈荒、深远海等大规模新能源基地宽频振荡问题,提升新能源基地并网稳定性及送出能力提供了技术支撑。
  • 2021重大仪器专项申报指南:开发核心部件国产化的核磁共振波谱仪
    日前,1月28日,科技部基础研究司发布“十四五”国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项2021年度项目申报指南(征求意见稿)。  文件中指出,2021 年,本重点专项围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持45 个研究方向。在科研仪器方向的高端通用科学仪器工程化及应用开发方面共包括辉光放电质谱仪、第三代基因测序仪、超高分辨活细胞成像显微镜、核磁共振波谱仪、宽频带取样示波器、高灵敏手性物质离子迁移谱与质谱联用仪、复杂微结构三维光学显微测量仪、聚焦离子束/电子束双束显微镜、高性能流式细胞分选仪9个方向。  其中,核磁共振波谱仪方向研究内容如下:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在化学化工、生命医学、食品制药和环境能源等领域的应用。  相关的考核指标如下:  磁场强度≥14 T 室温孔径≥50 mm 磁场稳定度≤9 Hz/h;磁场均匀度≤0.05 ppm 支持多核素频谱分析范围1H、13C、15N、31P、129Xe 等 射频带宽50~650 MHz;波谱频率分辨率≤0.003 Hz 射频发射通道数≥2 通道 液氦补充时间≥150 天。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于8级 至少应用于2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  另外在核心关键部件开发及应用方面,特别详细阐述了磁共振成像低温探头方向的研究内容:开发磁共振成像低温探头,突破高密度射频 12 阵列、超低温制冷系统、低噪声前置放大等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产 权、质量稳定可靠的部件产品,实现在高场磁共振成像仪、 波谱分析仪等仪器的应用。  考核指标:通道数≥2;扫描孔径≥2 cm;射频探头匹配 ≤-15 dB;探头温度≤30 K;前置放大器噪声系数≤1 dB;灵敏 度提高(低温/常温)≥4 倍。项目完成时通过可靠性测试和 第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪 度达到9 级;至少应用于2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量 生产能力,经指定用户试用,满足用户使用要求。  详细内容请查看附件:“十四五”国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项2021年度项目申报指南(征求意见稿).pdf
  • 盘点2020年央企科技创新成果中的分析测试仪器
    5月30日,国务院国资委确定并发布了《中央企业科技创新成果推荐目录(2020年版)》(以下简称《目录》)。本次《目录》发布的成果涉及22项核心电子元器件、14项关键零部件、8项分析测试仪器 、10项基础软件、41项关键材料、12项先进工艺、53项高端装备和18项其他类型成果,共计178项成果,相关成果主要来自54家央企。《目录》中涉及的8项分析测试仪器成果如下,37分布式光纤传感系统航天科技分析测试仪器38全视角高精度三维测量仪航空工业集团分析测试仪器39色度亮度计兵器工业集团分析测试仪器40短波长X射线衍射仪兵器装备集团分析测试仪器414051系列信号/频谱分析仪中国电科分析测试仪器42汽车变速器齿轮试验测试装备机械总院集团分析测试仪器43电感耦合等离子体质谱仪中国钢研分析测试仪器44分布式高精度应变、温度、振动光纤传感测试仪中国信科分析测试仪器据了解,航天科技的分布式光纤传感系统是一种集光、机、电、算于一体的高性能新型传感系统,可以实现对探测目标的连续不间断测量,并形成全面的、精细的、准确的数字化描述。分布式光纤传感系统利用光纤后向散射效应与光时域反射技术,实现对应变/温度场的连续测量与定位 传感光纤既是传感介质也是传输媒介,是一宗集待测物理量感知和信号传输于一体的传感手段。传感光纤本身无源、抗干扰、耐腐蚀,是一种本征安全的材料,并且在性能指标和产品功能上均优于传统的电学传感技术。分布式光纤传感系统特别适用于易燃易爆场合;典型的应用领域包括长输油气管线的安安防监测、基础设施的结构健康监测、火灾预警、电缆效率分析、地热开采分析等。井下温度分布测量应用场景(图源 国资委)航空工业集团的这款全视角高精度三维测量仪,针对大部件变形和大空间内运动体参数实时监控的迫切需求,突破大视场、超清晰、高精度光学测量关键技术,解决测量距离大、精度要求高、测量环境复杂等技术难点,研制全视角高精度三维测量仪,填补国内空白,并在航空、航天等领域进行了应用验证。全视角高精度三维测量仪(图源 国资委)亮度色度计采用三色值过滤的测定方法,可测定亮度、色度、色温cielab、cieluv、色差等,4个量测角度可以切换。可适用于需要小范围量度角度(0.1°/0.2°)的低亮度领域的测定场合,若作远距离量测可选用延长线将主机与感应器分开进行测量。仪器附加键盘(选配)可作多种功能使用,包括输入颜色系数和亮度偏差。另外,也可在计算机中的进行数据的存储、分析、打印,在照明工程、电影和电视、建筑等领域中有较为广泛的应用。而兵器工业集团的色度亮度计可测量亮度范围为(1~3000)cd/m2,亮度测量精度为±4%,色度测量精度为(x,y)≤±0.004(10cd/m2以上,标准A光源。色度亮度计(图源 国资委)短波长X射线衍射仪是拥有自主知识产权的短波长特征X射线衍射技术产品,首先解决了我国无损测定厘米级厚度工件内部(残余)应力、织构、物相、晶界缺陷及其分布的难题,填补了国内外无损检测分析内部衍射信息的小型化仪器设备空白。该仪器利用重金属靶X射线管作为辐射源,采用光量子能量分析的无强度衰减单色化、精密测量分析等技术,最大可测厚度达40mm铝当量,晶面间距测试误差小于±0.00006nm,内部(残余)应力测试误差小于±25MPa。可应用于先进材料、先进制造和基础研究领域,如预拉伸铝板、涡轮叶片、装配件、焊接件、热处理件等控形控性的加工工艺优化和制造,以及材料/工件内部应力及其分布等的演变规律研究。短波长X射线衍射仪(图源 国资委)4051系列信号/频谱分析仪重点突破了110GHz超宽频带、大带宽、高灵敏度接收技术以及宽带信号高速处理技术,实现了最高同轴测试频率110GHz、最大分析带宽550MHz、显示平均噪声电平≤-135dBm/Hz@110GHz等核心指标,且具有全频段信号预选能力,打破了国外技术封锁,总体性能达到国际先进水平,在高精尖测量仪器方面实现了自主可控和自主保障,在航空航天、通信、雷达、频谱监测等军民领域得到广泛应用,为我国“载人航天”、“探月工程”、“北斗导航”等国家重大工程做出了重要贡献,解决了宽带卫星通信系统功放模块数字预失真测试、新型预警和跟踪雷达脉冲信号测试、超宽频带频谱测量等测试难题。4051系列信号/频谱分析仪(图源 国资委)汽车变速器齿轮试验测试装备是国家重点支持的发展专项;测试技术含量和技术水平高,创新性强,属国内首创;突破了汽车变速器传递误差测试方面的技术壁垒,解决了汽车变速器急需解决的啸叫难题;扭转了汽车变速器测试台架主要依赖进口的局面。试验台既可实现单对齿轮又可以实现变速器总成传递误差的测量,可以模拟齿轮啮合错位量工况,使得传递误差测量结果更具实际意义,可以更有效指导齿轮修形设计,达到减振降噪目的。试验台角度测量精度1ʺ,加载扭矩最大20000Nm。汽车变速器齿轮试验测试装备(图源 国资委)ICP-MS技术是将ICP的高温电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的最强有力的元素分析、同位素分析和形态分析技术。该技术具有检出限低、动态线性范围宽、干扰少、分析精度高、速度快、可进行多元素同时测定等优异的分析性能,已从最初在地质科学研究的应用迅速发展到环境保护、半导体、生物、医学、冶金、石油、核材料分析等领域。电感耦合等离子体质谱仪(图源 国资委)分布式高精度应变、温度、振动光纤传感测试仪主要用途是为石油天然气管线、高速铁路、高速公路、电力输送线路等大型基础设施的状态监测与安全管理提供完整先进的分布式高精度应变、温度、振动光纤传感测试仪,显著提升相关大型基础设施的运营能力、安全管理水平与应急管理能力。其基于光栅阵列的新一代光纤传感技术具有网络容量大、探测精度高、传感距离长、响应速度快、可靠性好等方面的突出优点,可实现超大容量、超长距离、超高精度的应变、温度、振动传感监测。光纤分布式温度探测器(图源 国资委)附件:中央企业科技创新成果推荐目录(2020年版).doc
  • 牛津仪器发布宽带多核台式核磁共振谱仪X-Pulse新品
    p style=" text-align:center " img src=" https://img1.17img.cn/17img/images/201911/pic/8c9c2c18-690f-4b3c-b935-dc07a2f992b4.jpg!w400x400.jpg" alt=" 牛津仪器宽带多核台式核磁共振谱仪X-Pulse" / /p h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " strong X-Pulse /strong 提升了台式核磁共振波谱技术的灵活性。X-Pulse融汇了真正的宽频X-核能力、流动化学、反应监测、变温特性,同时具有高分辨率;利用X-Pulse,在您实验室的工作台上就可以完成各种实验。 /span /h5 h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " strong X-Pulse /strong 采用60MHz永磁体,均匀性优异,热稳定性高,在实验室中安放方便,无需液体制冷剂。X-Pulse既能使用标准的5mm核磁管,也可搭配我们易用的流通池使用。 /span /h5 h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " 系统由我们的新改进版SpinFlow数据采集软件控制,常规实验更为方便;高端用户使用起来,也更为灵活。 /span /h5 h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " 标配中就包含的脉冲场梯度和定制射频脉冲可用于相干选择、选择性激励、水与溶剂抑制。 /span /h5 p br/ /p p 创新点: /p p 1.X-原子核:真正的多核的能力X-Pulse 是一台提供真正多核能力的台式核磁共振系统。该系统无需改变NMR探头便可轻松调整任何核从 29Si 到 31P 。这意味着用户可以在一个设备上选择他们想要的原子核。2.变温流动化学独特的流动池和变温探头,可在20° C到60° C之间连续监测动态化学反应,帮助用户详细了解反应过程和动力学。3.高分辨率新一代匀场技术可获得半峰宽低于0.35Hz和0.55%高度处峰宽10Hz的谱线形状,使其更容易分离重叠的峰和识别更低的化合物浓度。高稳定性经典的磁体设计和高热容量的磁体使 X-Pulse 无论是静态还是流动的样品温度变化都不敏感,从而消除了样品温度假峰。 /p p a href=" https://www.instrument.com.cn/netshow/C368934.htm" style=" font-size:22px text-decoration: underline " target=" _blank" strong 牛津仪器宽带多核台式核磁共振谱仪X-Pulse /strong /a /p
  • 磁性薄膜测量新突破:铁磁共振FMR实现全方位搭配、升级!
    2018年度“亚洲磁学联盟奖”(aums award)于6月4日在韩国揭晓,物理所韩秀峰研究员凭借“基于磁性缘体的磁子阀效应”项目荣获此奖。韩秀峰研究员团队创新性地采用yig磁性缘体作为磁性电、au作为中间层研制出了高质量、新型磁性缘体/金属/磁性缘体(mi/nm/mi)磁子阀结构,并且在该结构中次观测和发现了磁子阀效应(magnon valve effect),揭示了磁子阀比值主要取决于磁性缘体/金属界面磁子-电子自旋转换效率的原理。[1] 图1:(a) 磁子阀结构、原理和测量示意图(b)-(c) ggg/yig和yig/au/yig区域的透射电镜图该项工作的相关研究进展发表在 phys. rev. lett.[2],并且作为亮点文章在prl网站页重点推荐。在此我们祝贺quantum design的ppms和microsense vsm用户韩秀峰研究员团队,也祝愿他们今后能够再创辉煌!在上述的研究中,yig作为磁性缘体材料,有着其特的物理性能,其拥有低的gilbert阻尼因子。sun[3]等利用铁磁共振系统对yig薄膜进行了阻尼的测试研究,测出yig的阻尼因子大小约10-4。在对磁性材料的研究中,阻尼因子α是一个比较重要的参数,可以帮助我们提升电路及电子器件的传输效率和传输速度。图2:铁磁共振测试系统主机:phasefmr(常温);cryofmr(低温)quantum design携手nanosc提供的高精度铁磁共振测试系统,可以快速有效地获取阻尼系数α,以及有效磁矩 meff、旋磁比γ、非均匀展宽δho等动态磁学参数,也可以表征静态磁学性能,如饱和磁化强度ms、各向异性、交换偏置等。该系统基于共面波导技术,无需矢量网络分析仪,可以提供宽频2~40ghz测试,并应用锁相测试技术,大大提高了信噪比,可以测试到1.4nm厚的薄膜。 图3 :室温测试用共面波导 图4:用于ppms(versalab)铁磁共振样品杆图5:montana低温恒温器升cryofmr铁磁共振测试系统目前该系统可以应用于室温(基于电磁铁平台)、低温(配合ppms、versalab、montana恒温器),在上有包括中国科学院物理研究所、南京理工大学、三峡大学等用户在内的多套设备在运行,并使用该系统在prb等期刊上发表多篇文章。如franco[4]等用铁磁共振测试系统phasefmr对垂直磁化各向异性[cofeb/pd]n多层膜进行了研究,发现有效垂直各向异性随多层重复次数的增加而增大,部分测试数据见图6。 图6:phasefmr用户文章数据铁磁共振测试系统参数如下: 配置 带宽 温度范围 磁场大小phasefmr 2-18ghz 室温 根据电磁铁大小而定phasefmr-40 2-40ghzcryofmr 2-18ghz4-400k:ppms® /dynacool™ 55-400k: versalab™ 10-350k: mi cryostation±9, 14, 16 t:ppms® /dynacool™ ±3 t: versalab™ ±0.7 t: mi cryostationcryofmr-40 2-40ghz 如果您拥有电磁铁平台,快来升铁磁共振测试系统吧!如果您拥有ppms或者versalab,快来升铁磁共振测试系统吧!如果您拥有montana标准型低温恒温器,快来升铁磁共振测试系统吧!如果您也想在squid上进行铁磁共振测试,目前quantum design的工程师正在努力研发中,相信不久后,我们将会为您带来在squid上成功应用fmr的好消息! 参考文献:[1]中国科学院物理研究所官网http://www.iop.cas.cn/xwzx/snxw/201806/t20180605_5021775.html[2] h. wu, l. huang, c. fang, b. s. yang, c. h. wan, g. q. yu, j. f. feng, h. x. wei, and x. f. han, phys. rev. lett. 120, 097205 (2018)[3] y. sun, h. chang, m. kabatek, y. y. song, z. wang, m. jantz, w. schneider, m. wu, e. montoya, b. kardasz, b. heinrich, s. g. e. te velthuis, h. schultheiss, and a. hoffmann, phys. rev. lett. 111, 106601(2013).[4] a. f. franco, c. gonzalez-fuentes, j. a° kerman, and c. garcia, phys. rev. b 95, 144417 (2017) 相关产品及链接:1、铁磁共振仪(fmr):http://www.instrument.com.cn/netshow/c221410.htm2、ppms综合物性测量系统:http://www.instrument.com.cn/netshow/c17086.htm3、多功能振动样品磁强计versalab系统:http://www.instrument.com.cn/netshow/c19330.htm4、montana instruments超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/c122418.htm5、超导量子干涉仪器件squid:http://www.instrument.com.cn/netshow/c17093.htm
  • 西安光机所安排专项经费支持高端科学仪器国产化
    所属各研究单元:  为落实中科院2022年重点工作安排,进一步支撑我院科研仪器设备研发,推动我所科研仪器设备自主研制和创新发展,促进原创性科技创新成果产出, 所级公共技术中心以关键核心部件攻关及关键核心技术突破,围绕国家基础研究与科技创新重大战略需求,安排专项经费支持高端科学仪器国产化工作。经对相关科研人员开展问卷调查后,现就2022年度高端科学仪器国产化及核心部件开放基金申报工作通知如下:  一、基金申请基本条件  1、申请人应确保有足够精力从事开放基金课题的研究   2、项目以满足高端科学仪器的实际需求为目的,应有独到的设计思想、切实可行的技术方案和明确的验收指标,并能产出实用的关键器件或核心技术。  3、重点资助“院特别研究助理、院/所青促会会员、35岁以下在职博士”(女性适当放宽)人员   4、开放基金的经费管理与使用严格按照《西安光机所科研项目经费“包干制”管理办法》(西光财资字2020[62]号)。资助经费一次核准分阶段下达。  二、开放基金重点支持研究方向  1、国家“高端光电仪器”—国产化核心技术及关键部件  突破高分辨计算光学成像、多维超快相干光谱技术、皮秒光学精密测量、高效能光子极端制造、极限光制造与测量等关键技术,研发新一代单细胞及分子功能可视化、光电多模态多尺度医学诊断、核磁共振成像等系列光电装备。  2、国家“基础科研条件与重大科学仪器设备研发”计划  (1)高端科学仪器的核心技术及关键部件(详见附件)  高端通用科学仪器工程化及应用开发、高分辨率二次离子质谱分析仪、单细胞质谱分析仪、高速高空间分辨生物组织成像质谱仪、快速热化学反应过程分析仪、高灵敏数字化生物气溶胶直接分析仪、多模态超高分辨率成像仪、高通量拉曼流式细胞分选仪、紫外-可见光高分辨率光谱仪、扫描式光场辐射度计、紫外光电子谱分析仪、多自由度非接触三维光学扫描仪、微探头传感器式激光干涉仪、光电集成电路及器件参数综合测试仪、全光纤非线性单光子显微光谱仪、多功能扫描探针显微镜、高分辨地球电磁特性综合测量仪、高精度超导重力仪、形貌动态显微成像仪、三维复杂结构非接触精密测量与无损检测仪、高频阵列超声成像分析仪、超宽带高性能噪声系数分析仪、天线环境效应多参数综合测试仪、毫米波与太赫兹材料电磁特性测试仪、高性能物联网综合测试仪、多通道混合信号示波器、微观电磁物性自旋量子精密测量仪、超导低温电流比较仪、自主创新科学仪器、核磁共振波谱仪、宽频带取样示波器、高灵敏手性物质离子迁移谱与质谱联用仪、活细胞超分辨高速全景成像系统关键部件研发及应用等。  (2)核心关键部件开发与应用(详见附件)  大功率端窗型X射线光管、450kV X射线源、120kV热场发射电子枪、裂解源、宽带半导体增益激光器、1560 nm激光直接激发太赫兹源、高分辨率电源测量模块、宽带射频功率放大器、正电子断层成像探测器、抗辐照硅单光子探测器面阵、半导体伽马射线成像探测器、微型非放射离子迁移传感器、二维平面中子探测器、光谱色散式膜厚探测器、光学麦克风、高性能紫外成像探测器、碲镉汞制冷红外探测器、电磁力配衡重量检测器、可转运磁共振成像探测阵列、程控升降温与称重多功能探测器、高灵敏度大动态范围微电流计、微型比例阀、抗振动分子泵、微焦点X射线准直装置、宽频带同轴开关、毫米波隔离器、宽频带微型化双定向耦合器、扩口微通道板、热场发射电子源、磁共振成像低温探头、X射线能谱探测器、太赫兹超导混频器。  3、中国科学院科学仪器研制共性关键技术重点方向  (1)量子科学、生命医疗、大科学装置用高端科学仪器  (2)仪器研制共性关键技术(详见附件)  探测器技术、传感器技术、激光器技术、质谱技术、电子显微技术、核磁共振技术、光谱与成像技术、光学成像技术、极低温技术 以及重大设施中的光学仪器及器件、生命医疗领域的仪器及器件、量子科学中的的仪器及器件  4、国产高端科学仪器头部企业及前沿用户需求  (略)清单可至所级中心查阅  三、受理时间  1、提交《拟申请开放基金汇总表》时间:2022年3月20日~2022年4月5日。  2、开放基金申报受理时间:2022年3月20日~2022年4月20日。  四、评议程序、资助方式、课题及成果管理  1、西安光机所大型科研装备规划及共享管理委员会+中国仪器仪表学会专家+“前沿”用户专家+头部企事业单位专家   2、每年支持基金4项,每项30万,周期1年(择优后持续支持)   3、标注形式:  (1)资助课题发表论文均需注明“西安光机所所级中心高端科学仪器国产化及核心部件开放基金项目资助”或“The project was supported by theLocalization and core components of high-end scientific instruments Open Research Fund of Institutional Center for Shared Technologies and Facilities, XIOPM, CAS”。  (2)全部经费资助课题,西安光机所所级中心为第一署名单位 部分经费资助或以基础条件资助课题,西安光机所所级中心至少是第二署名单位。  所级中心联系人:赵阳 029-88887812,13891811660  邮 箱:zhaoyang@opt.ac.cn  所级公共技术中心  2022年3月18日  附件:   1.国家基础科研条件与重大科学仪器设备研发专项方向.pdf  2.中国科学院科学仪器研制共性关键技术及重点方向.docx  3.高端科学仪器国产化及核心部件开放基金实施方案.docx  4.拟申请开放基金项目汇总表.xls  5.开放基金项目所内评审标准.doc
  • 我国自主研制成功电子变压器测试仪,有望打破国外垄断
    记者21日从常州大学获悉,该校科研团队成功研制出由软件算法、硬件驱动、智能治具构成的电子变压器测试仪,实现测试频率2MHz到5MHz的技术突破,填补了国内高频段电子变压器测试领域空白。常州大学华罗庚学院机器人产业学院莫琦副教授介绍,这是国内唯一可测试20赫兹到5兆赫兹宽频条件下电子变压器参数的测试仪,可在千兆网卡、变压设备、微型电机等应用场景进行使用。目前,已申请发明专利3项,样机通过中国机械工业联合会科技成果鉴定,总体技术达到国际先进水平。“我国电子行业发展迅猛,预计到2023年,仅电子元器件市场规模将达2.1万亿元。而电子变压器作为电子行业基本的元器件之一,其性能参数直接影响电子产品的性能、安全性等指标,电子变压器测试成为电子产业链中不可或缺的环节,广泛的应用于消费电子、国防军工、医疗器械等领域中。但多年来,高精度测试仪市场被国外垄断。因此,2年前,我们团队在导师指导下,就开始自主研发高频、高效化的电子变压器参数测试仪。”常州大学华罗庚学院薛子盛说。薛子盛告诉记者,2年来,由多学科师生组成的科研团队,针对20Hz~5MHz测试信号源、宽频条件下自动平衡电桥、矩阵式治具智能扫描、自动平衡电桥频率拓展等关键核心技术进行攻关。如,20Hz~5MHz测试信号源技术,系统采用基于模拟乘法器可控增益放大电路,将信号源的电平调节分段实现,并采用放大-衰减的方法降低噪声,为电桥的平衡奠定了基础;宽频条件下自动平衡电桥技术,采用新型矢量合成技术产生高精度误差信号源,保证电桥的稳定平衡。记者了解到,该测试仪能够在20Hz-5MHz宽频带范围内,实现宽频条件下电子变压器性能参数的高精度自动测试,样机在四川长虹器件科技有限公司、常州瑞博电气有限公司试用报告显示:最快可达到13ms的测量速度,且能保证测试的稳定性,同—产品的重复测试值一致性好,大大提高了批量测试效率,而且在高速测试的同时,能够保证测试的稳定性,有效提高了生产效率。“目前,我们正在加快该技术成果的产业化,今后形成量产后,将有望打破国外垄断,有效解决我国相关产业实际测试情景人工误差大、测试耗时长等问题。”莫琦说。
  • 2000亿贴息贷款影响初显?某高校11月现4.5亿仪器采购大单!
    最近的财政贴息贷款引爆了整个仪器圈,引发了科学仪器行业的高度关注。这两大重磅政策(详见下文介绍)不仅提供极低利息的贷款给消费端提前进行设备购置和更新改造,同时对于科学仪器行业来说也是重大利好。2022年9月13日,国务院常务会议决定对部分领域设备更新改造贷款阶段性财政贴息和加大社会服务业信贷支持,政策面向高校、职业院校、医院、中小微企业等九大领域的设备购置和更新改造。贷款总体规模预估为1.7万亿元。2022年9月28日,财政部、发改委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),对2022年12月31日前新增的10个领域设备更新改造贷款贴息2.5个百分点,期限2年,额度2000亿元以上。因此今年第四季度内更新改造设备的贷款主体实际贷款成本不高于0.7% (加上此前中央财政贴息2.5个百分点)。仪器信息网更是围绕这一热点话题发布了《2000亿贴息贷款,引爆科学仪器采购热潮!》、《2000亿贴息贷款超536亿已签,各省份战况如何?》、《1.7万亿?2000亿?仪器采购究竟获多少支持?》等资讯内容,不仅对政策进行了解读,更是解答了一部分大家十分关注的问题,比如两笔贷款有何不同、各省进展程度等。实际上,早在今年9月初,教育部科学技术与信息化司就已经在组织高校开展重大仪器设备采购和配套设施建设项目的储备工作,并于2022年9月30日前汇总需求情况反馈给教育部科学技术与信息化司。2022年10月12日,中国政府采购网上一则公告悄然发布——四川大学发布了2022年11月的政府采购意向,仅仅在2022年11月这一个月内,拟采购约181台(套)仪器,涉及的总采购金额高达约4.5亿元(单位:人民币),拟采购仪器类型包括球差校正透射电子显微镜、X射线显微镜、小角X射线散射-流变联用仪(Rheo-SAXS)、流变-小角X射线散射联用分析仪、针尖增强拉曼光谱仪、多接收电感耦合等离子体质谱仪、超高时空分辨率显微镜、飞行时间电感耦合等离子体质谱仪、X射线光电子能谱仪等大量高端仪器。(文末附四川大学11月仪器采购仪器清单)此次四川大学发布的公告,无论从采购数量上还是采购金额上都不同寻常。纵观2022年的整体采购情况,多所高校全年的采购意向金额大约在千万到上亿之间,并且高校全年仪器设备采购意向金额过亿的情况也不十分多见,而此次四川大学在2022年11月一个月内拟采购金额就高达4.5亿元。根据政府采购法,四川大学这样大批量的仪器采购都会按相关规定发布招标公告。其他各大高校是否将在2022年第四季度陆续放出上亿的仪器采购大单?仪器信息网将持续关注。作为业内知名的科学仪器行业B To B专业门户网站,公司致力于以信息化带动中国科学仪器及分析测试行业健康快速发展,从而促进中国产品质量提升,推动中国科技进步。2014 年,北京信立方科技发展股份有限公司成功登陆“新三板”(股票代码:831401)。作为专业的仪器导购平台,仪器信息网囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,900余个仪器品类,收录3万+台优质仪器。其核心宗旨是帮助仪器用户快速找到优质的仪器设备。经过多年的持续建设,平台实现了可以同时从价格、品牌、行业、口碑、产品横向对比等多维度快速查找仪器产品的功能,助力千万级的用户轻松找到了靠谱的仪器。为此,仪器信息网将特别围绕此次贴息贷款政策推出系列活动。系列活动一:仪咖说vol.15:专家共议乘万亿设备更新改造政策“东风”仪器信息网将于2022年10月21日举办第十五期仪咖说活动,活动主题为专家共议乘万亿设备更新改造政策“东风”,活动将邀请中国计量科学研究院院长方向、北京大学分析测试中心副主任周江、北京国家质谱中心主任汪福意三位嘉宾围绕财政贴息设备更新改造贷款政策落地、仪器设备更新采购需求及诉求等问题共同探讨。此外,活动中还会有两位神秘嘉宾现身直播间,帮助仪器用户更好地进行用户选型。系列活动二:推出“仪器优选--高校版”导购选型工具针对本次高校量大、多品类、采购急的痛点,仪器信息网10月21日将上线“仪器优选--高校版”导购选型工具,精选200余个优势品类,整理国内外主流产品,帮助高校采购用户快速选型,降本增效。系列活动三:助力高校用户进行仪器选型将在10月24日--11月11日期间、集中组织50+主流厂商为高校用户提供选型指导。系列活动四:2022财政贴息设备更新改造贷款之仪器选型专题为了更好地帮助仪器用户通过此次财政贴息贷款选购适合的仪器设备,仪器信息网拟联合多家优质仪器厂商上线专门的仪器展示专题,提升用户选购仪器的效率。(专题拟于10月17-21日期间上线)系列活动五:仪器厂商征稿活动仪器信息网面向广大仪器厂商进行征稿活动,仪器厂商可围绕“2000亿贴息贷款政策下,如何助力快速选型采购”这一主题进行原创稿件创作(字数不少于1500字),稿件一经采用将发布在仪器信息网上并收录到相关专题中。活动截止时间:2022年12月31日系列活动六:仪器用户原创稿件征集仪器信息网面向广大仪器用户进行征稿活动,如果您是仪器用户,除了可以联系我们发布仪器采购需求外,还可围绕以下主题之一进行原创内容创作(字数不少于1500字):1.仪器采购经验分析2.对于此次贴息贷款政策的理解和解读原创稿件一经采用将发布在仪器信息网上并收录到相关专题及原创大赛活动,投稿用户还将获得800元(税后)稿酬。活动截止时间:2022年12月31日可以预见的是,2022年第四季度科学仪器市场势必风起云涌,涌现大量的仪器采购商机,采购规模更胜往年。如何在这样激烈竞争的市场环境下,掌握第一手商机,请持续关注仪器信息网!四川大学2022年11月采购意向清单如下:序号采购项目名称采购品目采购需求概况预算金额(万元)1双激光单颗粒装置A03专用仪器详见项目详情1402MICA全场景显微分析平台A03专用仪器详见项目详情1803高通量测序仪A03专用仪器详见项目详情2804Celigo全视野细胞扫描分析仪A03专用仪器详见项目详情2005临床多人协同沉浸式体验增强现实交互系统A03专用仪器详见项目详情2006护理学四川省重点实验室精准护理基础实验仪器套装A03专用仪器详见项目详情3517四川省护理与材料医工交叉研究中心“护理+材料”研发实验仪器套装A03专用仪器详见项目详情175.58先进高分子功能薄膜成型与测试系统A03专用仪器详见项目详情10009极高温光纤激光烧结打印智造平台A03专用仪器详见项目详情26010大吨位高速精密注塑机A03专用仪器详见项目详情18011极限微尺度光固化3D打印系统A03专用仪器详见项目详情18012挤出式3D打印一体机A03专用仪器详见项目详情12013超临界注塑发泡设备A03专用仪器详见项目详情20014小角X射线散射-流变联用仪(Rheo-SAXS)A03专用仪器详见项目详情80015X射线显微镜A03专用仪器详见项目详情90016X射线光电子能谱仪A03专用仪器详见项目详情45017场发射扫描电子显微镜A03专用仪器详见项目详情40018高精度X射线衍射仪A03专用仪器详见项目详情19919核磁共振变温分析仪A03专用仪器详见项目详情13020冷冻超薄切片机A03专用仪器详见项目详情17021原子力显微镜A03专用仪器详见项目详情20022智能转靶X射线衍射仪A03专用仪器详见项目详情19523太赫兹频段矢量网络分析仪A03专用仪器详见项目详情35024材料基因工程计算系统A03专用仪器详见项目详情12025材料动态疲劳测试平台A03专用仪器详见项目详情24026微尺度原位扫描电化学测试系统A03专用仪器详见项目详情18027宽频介电阻抗谱仪A03专用仪器详见项目详情19828电子拉扭动静态材料试验机A03专用仪器详见项目详情19629高压电缆材料绝缘性能检测集成系统A03专用仪器详见项目详情24030电场型分子运动规律评价系统A03专用仪器详见项目详情25031多场原位宽频介电阻抗谱仪A03专用仪器详见项目详情18032复杂环境极端条件下异种/同种材料摩擦磨损跨尺度分析平台A03专用仪器详见项目详情19833高分子功能材料电磁性能测试系统A03专用仪器详见项目详情18034核反应截面测量实验终端A03专用仪器详见项目详情22035COLTRIMS实验探测器A03专用仪器详见项目详情13036ERDA谱仪系统A03专用仪器详见项目详情15037超高时空分辨率显微镜A03专用仪器详见项目详情60038激光共聚焦显微镜A03专用仪器详见项目详情18039流式细胞分选仪A03专用仪器详见项目详情20040超快瞬态光谱测量系统A03专用仪器详见项目详情28641飞秒激光加工系统A03专用仪器详见项目详情20042时间关联计数相机A03专用仪器详见项目详情13043计算服务器A03专用仪器详见项目详情15044分布式存储A03专用仪器详见项目详情12045数字工厂虚拟仿真系统A03专用仪器详见项目详情18046自动化控制系统A03专用仪器详见项目详情27047超灵敏微量差示扫描量热仪A03专用仪器详见项目详情12048电子顺磁共振波谱仪A03专用仪器详见项目详情14049针尖增强拉曼光谱仪A03专用仪器详见项目详情75850400M核磁共振波谱仪A03专用仪器详见项目详情28051高分辨场发射扫描电子显微镜及配套制样系统A03专用仪器详见项目详情4205218角度激光光散射尺寸排阻色谱联用系统 SEC-MALSA03专用仪器详见项目详情20053高分辨质谱A03专用仪器
  • 1080万!北京大学核磁共振谱仪和国家地质实验测试中心X射线吸收精细结构谱仪采购项目
    一、项目一(一)项目基本情况项目编号:HCZB-2024-ZB0706项目名称:核磁共振谱仪预算金额:580.000000 万元(人民币)采购需求:本次拟采购的核磁谱仪为公共测试服务平台仪器,主要需满足学生自主上机和送样检测多样化的测试需求,同时需实现高分子聚合物或高粘度体系扩散系数的检测。采购需求:超导磁体液氦维持时间≥360天;谱仪能实现近年新发展出的核磁共振实验;探头为宽频探头,能提供三共振检测模式,实现1H、19F间相互去耦的实验,以及1H/19F和1H/31P同时去耦的实验;变温操作易于实现和控制;提供Z-方向梯度场超过17T/m和相应的扩散探头。具体详见招标文件第四章采购需求。合同履行期限:合同签订后365日内交货并安装完毕本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年06月04日 至 2024年06月12日,每天上午8:00至14:00,下午12:00至21:00。(北京时间,法定节假日除外)地点:华采招标集团有限公司(北京市丰台区广安路9号国投财富广场6号楼1601室)方式:现场获取,携带现金,500元人民币每本,招标文件售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京大学     地址:北京市海淀区颐和园路5号        联系方式:吴老师62758587      2.采购代理机构信息名 称:华采招标集团有限公司            地 址:北京市丰台区广安路9号国投财富广场6号楼1601室            联系方式:010-63509799-8037/8079            3.项目联系方式项目联系人:崔丽洁、赵娜、刘金秀、金珊电 话:  010-63509799-8037/8079二、项目二(一)项目基本情况项目编号:TC240R776项目名称:TC240R776预算金额:500.000000 万元(人民币)最高限价(如有):490.000000 万元(人民币)采购需求:详见附件。合同履行期限:签署中标合同后10个月内交货至采购人指定地点本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年06月03日 至 2024年06月10日,每天上午9:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:中招联合招标采购平台(http://www.365trade.com.cn)方式:网上获取详见特别告知售价:¥0.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:国家地质实验测试中心     地址:北京市西城区百万庄大街26号        联系方式:赵怀颖 010-68999577      2.采购代理机构信息名 称:中招国际招标有限公司            地 址:北京市海淀区学院南路62号中关村资本大厦9层911b            联系方式:王宏达 010-61954027            3.项目联系方式项目联系人:侯学翔、王宏达电 话:  18656832561、010-61954027
  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 2102万!浙江省地震局巨灾防范工程项目观测系统建设专业仪器设备采购项目
    一、项目基本情况项目编号:ZJ-2460428项目名称:浙江省巨灾防范工程项目观测系统建设专业仪器设备采购项目预算金额:2102.310000 万元(人民币)采购需求:标项一标项名称:绝对重力仪设备数量:1套预算金额(元):4000000.00简要规格描述或项目基本概况介绍、用途:绝对重力仪1套。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注:标项二标项名称:宽频带地震计等设备数量:1批预算金额(元):4394000.00简要规格描述或项目基本概况介绍、用途:含宽频带地震计、加速度计、井下宽频带地震计、井下宽频带地震计安装涉及摆线及配件等其他、宽频带地震计(小型一体式)、烈度计、六通道数采等。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注: 标项三标项名称:北斗接收机等设备数量:1批预算金额(元):2170000.00简要规格描述或项目基本概况介绍、用途:含气象仪(北斗接收机)、气象三要素观测仪、扼流圈天线、北斗接收机等。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注: 标项四标项名称:水位仪、水温仪等设备数量:1批预算金额(元):1221500.00简要规格描述或项目基本概况介绍、用途:含地应变仪(钻孔体积、新钻井)、水位电子测钟、便携式电子水位计、便携式高精度温度计、流量计、水位仪、水温仪。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注: 标项五标项名称:相对连续重力仪等设备数量:1批预算金额(元):2540000.00简要规格描述或项目基本概况介绍、用途:含倾斜仪(洞体摆式)、倾斜仪(洞体水管)、地应变仪(洞体伸缩)、相对连续重力仪等。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注: 标项六标项名称:便携式离子色谱仪、气相色谱仪等设备数量:1批预算金额(元):3509600.00简要规格描述或项目基本概况介绍、用途:含便携式PH计、便携式测汞仪、便携式电导率仪、便携式氦分析仪、便携式离子色谱仪、便携式气相色谱仪、测氡仪(人工)、超纯水机、纯水仪、实验室色谱分析组件(含万分之一天平、移液枪、超声清洗机等)、水的氢氧同位素分析仪、地球化学分析辅助设备、流速计、高精度标准测氡仪、高精度水汞仪、井下电视等。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注: 标项七标项名称:寻北仪等设备数量:1批预算金额(元):614000.00简要规格描述或项目基本概况介绍、用途:含寻北仪、异常核实通用装备包、便携式振动测量仪等。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注: 标项八标项名称:磁通门磁力仪、磁通门经纬仪等设备数量:1批预算金额(元):1001000.00简要规格描述或项目基本概况介绍、用途:含电磁背景干扰测试仪、电缆故障综合测试仪、地电场仪、地电阻率仪、磁通门磁力仪、磁通门经纬仪、感应式磁力仪、质子磁力仪等。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。备注: 标项九标项名称:气相色谱仪、离子色谱仪、离子色谱仪(实验室)等数量:1批预算金额(元):1573000.00简要规格描述或项目基本概况介绍、用途:含气相色谱仪、离子色谱仪、离子色谱仪(实验室)等。具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。合同履行期限:标项1,45日历天内完成供货、90日历天内完成安装调试测试以及验收;标项2,45日历天内完成供货、90日历天内完成安装调试测试以及验收;标项3,45日历天内完成供货、90日历天内完成软硬件调试和25个台站的设备安装测试以及验收;标项4,45日历天内完成供货,90日历天内完成安装调试测试以及验收。标项5,45日历天内完成供货、90日历天内完成安装调试测试以及验收;标项6,45日历天内完成供货与安装,90日历天内完成安装调试测试以及验收;标项7,45日历天内完成供货与安装,90日历天内完成安装调试测试以及验收;标项8,45日历天内完成供货,90日历天内完成安装调试测试以及验收;标项9,45日历天内完成供货与安装,90日历天内完成安装调试测试以及验收。本项目( 接受 )联合体投标。二、获取招标文件时间:2024年04月30日 至 2024年05月22日,每天上午8:00至14:00,下午12:00至21:00。(北京时间,法定节假日除外)地点:政采云平台(https://www.zcygov.cn/)方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件)。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:浙江省地震局     地址:杭州市西湖区古荡湾塘苗路7号        联系方式:项目联系人(询问):田沛迪 项目联系方式(询问):0571-86472028 质疑联系人:骆天天 质疑联系方式:0571-86472038      2.采购代理机构信息名 称:浙江国际招投标有限公司            地 址:浙江省杭州市西湖区文三路90号1号楼3楼            联系方式:项目联系人(询问):董福利 项目联系方式(询问):0571-81061818 质疑联系人:周峰 质疑联系方式:0571-81061837            3.项目联系方式项目联系人:董福利电 话:  0571-81061818
  • 2023年国家重点攻关的科学仪器清单
    为落实“十四五”期间国家科技创新的有关部署,国家重点研发计划启动实施“基础科研条件与重大科学仪器设备研发”重点专项。日前,该重点专项2023年度项目申报指南发布,指南部署围绕科学仪器、科研试剂、实验动物和科学数据等4个方向进行布局,涵盖53种高端通用科学仪器和48种核心关键部件。  清单如下:  高端通用科学仪器工程化及应用开发  1 超高分辨静电离子阱傅里叶变换质谱仪  2 超高分辨质谱分析仪  3 高通量核酸质谱分析仪  4 超高效液相色谱仪  5 纳升液相色谱仪  6 电子顺磁共振波谱分析仪  7 低场核磁共振宽频测量仪  8 磁共振直接神经电成像仪  9 高通量生物分子相互作用仪  10 高通量细胞多参数成像分析仪  11 高通量核酸片段分析仪  12 循环肿瘤细胞富集和染色全自动检测分析仪  13 超高速离心机  14 蛋白质层析纯化系统  15 高灵敏度臭氧层消耗物质连续检测分析仪  16 高灵敏高分辨红外激光光谱仪  17 暗弱目标高分辨率紫外光谱仪  18 超分辨扫描显微检测仪  19 超高分辨激光汤姆孙散射光谱仪  20 超宽带瞬态光谱分析仪  21 空间微孔三维形貌非接触扫描测量仪  22 高速高光谱荧光显微成像分析仪  23 大视场双光子显微镜  24 超分辨光声成像分析仪  25 高时空分辨率光学和能谱显微CT双模态成像仪  26 大口径复杂面形高精度测量仪  27 高分辨率三维缺陷检测仪  28 高能激光微光斑动态特性测量仪  29 高能激光辐射光压功率计  30 光纤频域反射测量仪  31 超高分辨率光纤光谱分析仪  32 场发射扫描电子显微镜  33 正电子发射计算机断层成像与磁共振双模态成像分析仪  34 X射线吸收精细结构波谱分析仪  35 三维原子探针精密测量仪  36 环境空气中放射性惰性气体探测仪  37 高动态燃烧场温场与产物分子浓度场成像仪  38 超声波显微镜  39 磁致伸缩阵列超声导波检测仪  40 远距离瞬态振型测量分析仪  41 高应变率微纳米冲击力学测试仪  42 远距离激光多普勒振动测试仪  43 物质内部结构与元素耦合高精度中子分析仪  44 X射线光电子能谱分析仪  45 宽量程高真空测量仪  46 高性能雷达信号模拟器  47 宽带电磁信号全景接收与实时检测分析仪  48 高性能太赫兹芯片测试仪  49 超高速数据网络测试仪  50 多通道星网链信道仿真模拟器  51 智能网联终端多参数综合测试仪  52 半导体器件动态伏安特性参数综合测试仪  53 电磁多参数阵列测量仪  核心关键部件开发与应用  1 细聚焦氩离子源  2 超短脉冲中子发生器  3 大气压电喷雾与电弧等离子体离子源  4 紫外-可见-红外宽谱光源  5 中红外单频固体激光光源  6 电子-声子耦合超宽带激光器  7 真空深紫外全固态激光光源  8 200kV场发射电子枪  9 高稳定X射线源  10 微焦点金刚石复合靶X射线源  11 多路宽范围高稳定度高压电源  12 太赫兹宽频带辐射源  13 太赫兹高功率辐射源  14 可调谐太赫兹辐射源  15 光纤耦合间接电子探测器  16 一维线性阵列X射线探测器  17 伽玛射线飞行时间阵列探测器  18 低功耗低噪声超快半导体探测器  19 新型3He替代中子探测器  20 超高分辨全局曝光制冷高速相机  21 高精度电子背散射衍射探测器  22 脉冲电子捕获检测器  23 氦放电离子化检测器  24 耐高压水中溶解气体探测器  25 高灵敏双通道脉冲火焰光度检测器  26 超低噪声光谱探测器  27 宽场扫描荧光显微焦面探测器  28 分光干涉型厚度测量模块  29 微型光学放大内窥探头  30 低功耗高温超导量子干涉磁场探测器  31 超高灵敏动态磁扭矩探测器  32 宽场同轴三维测量模块  33 高温高压声波换能器  34 电容式微机械超声波换能阵列  35 超声波多普勒三维流速探测器  36 多种解离反应离子阱  37 低漏磁离子泵  38 低温显微物镜  39 液氦温区低振动大冷量脉管制冷机  40 光学数字微镜器件  41 高精度可调谐光学滤波器  42 极端环境下压电纳米探针台  43 电化学流体通道电极  44 高通量微流控精密移液器  45 长寿命高温等离子体质谱接口锥  46 生物全组织三维成像前处理装置  47 固体样品直接进样器  48 超光滑特种反射元件  “基础科研条件与重大科学仪器设备研发”重点专项的总体目标是加强我国基础科研条件保障能力建设,着力提升科研试剂、实验动物、科学数据等科研手段以及方法工具自主研发与创新能力 围绕国家基础研究与科技创新重大战略需求,以关键核心部件国产化为突破口,重点支持高端科学仪器工程化研制与应用开发,研制可靠、耐用、好用、用户愿意用的高端科学仪器,切实提升我国科学仪器自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略实施。
  • phase-FMR铁磁共振测量系统:新技术带来的革命性突破
    对于研究磁学的科研工作者来说,市场上有不少测量静态磁学的仪器设备:高端的有Quantum Design公司著名的MPMS3(SQUID)以及功能更为丰富的PPMS系统;中等的有各种振动样品磁强计(VSM);低端一些的有磁滞回线测试仪。另外还有一些辅助的磁学测量手段,例如磁光克尔效应测量,磁扭矩测量,磁弹性测量等,可以说静态磁学测量系统的手段是非常丰富的。然而静态磁学测量手段反映的只是宏观统计的测量结果,无法反映微观磁相互作用的结果。比较为大家所熟知的动态磁学测量手段就是铁磁共振测量。但是铁磁共振测量涉及到高频信号传输和复杂的数据分析,通常需要用昂贵的矢量网络分析仪来搭建,对于大多数科研工作者来说是非常困难的任务,而且信噪比难以达到较高的水平。瑞典NanOSC公司的phase-FMR铁磁共振测量系统,采用了两种特殊技术,在大提高测量信噪比的同时,对测量人员的技术要求也大为降低。先,phase-FMR采用了亥姆霍兹线圈加锁相放大器技术,使得交流信号测量的精度得到大提升,下图是系统的测量原理图。其次,phase-FMR使用了更加容易操作的CPW共面波导板作为高频信号的传输部件。使得测量频率范围更宽,也不再象谐振腔那样,限于几个特殊的频率点。可以在2-40GHz范围内的任何频率下进行测量。通过铁磁共振测量,获得不同频率下的共振线宽,就可也拟合出样品的相关动态磁学参数,主要有:有效磁矩: Meff,旋磁比: γ,阻尼系数: α,非均匀展宽: ΔHo。同时也可以获得饱和磁化强度Ms的信息。测量实例: 1、1.5纳米CFO薄膜的铁磁共振原始测量曲线及测量软件自带的数据分析曲线。即使使用高精度的MPMS系统,1.5纳米的薄膜测量起来已经比较困难了。Phase-FMR依然能获得较好的测量曲线。 2、退火对样品的磁学性能的影响 3、磁性薄膜的PSSW和FMR效应相关产产品链接:1、高精度铁磁共振仪 http://www.instrument.com.cn/netshow/SH100980/C221410.htm2、美国Montana无液氦超低振动低温光学恒温器 http://www.instrument.com.cn/netshow/SH100980/C122418.htm3、PPMS 综合物性测量系统 http://www.instrument.com.cn/netshow/SH100980/C17086.htm
  • 核磁之旅、伴您前行:90MHz无液氦核磁共振波谱仪在山西医科大学交付使用
    2019年5月,Quantum Design中国在山西医科大学顺利安装调试了EFT-90无液氦核磁共振波谱仪,并对仪器用户进行了详细的仪器介绍和操作培训。 核磁共振技术在药物表征方面有着越来越重要的作用,其可通过对化合物谱图分析,鉴定合成结果。传统的超导核磁价格昂贵,需要高额的后期维护成本,严苛的实验室条件,专业的人员操作等等,难以实现实验室内快速使用。Quantum Design中国将为您提供高性能、易操作、易维护且低成本的台式EFT-60 (60MHz)、EFT-90 (90MHz) 科研用核磁共振波谱仪(NMR)。 EFT系列无液氦核磁共振波谱仪:1. 采用AlNiCo的永磁体,帮助用户摆脱液氮、液氦的使用需求,后期维护成本低;2. 可以实现快速测试:H谱单次测量仅需10s;3. 为满足不同用户的需求,EFT系列无液氦核磁共振波谱仪提供宽频调谐技术,可以测1H,13C,19F, 31P等不同核子以及一维和二维谱图,如H谱、C谱、H-H COSY谱和HETCOR等。4. 基于EFT系列无液氦核磁共振波谱仪测量得到的数据已多次发表在国际的化学类期刊和杂志上,如J Am Chem Soc;J Med Chem;Chem Mater;Org Lett;Organometallics等。 测试案例: PMP样品(1-苯基-3-基-5-吡唑酮),H谱采集16次,耗时约3min PMP样品,碳谱采集100次,耗时约10min QN样品(奎宁),氢谱采集16次,耗时约3min QN样品,碳谱采集500次,耗时约40min 目前,已经有超过700套EFT-60/90运行在全球各大高校、研究所、高科技企业里,并时刻助推着行业的技术及研究工作不断向前进步,相信全球700多个用户的共同选择,也同样可以给您的研究工作带来帮助。
  • 这段文字告诉你:布鲁克核磁共振波谱仪有多强悍
    p   众所周知,在化学化工、生命科学及医药研究等领域,对物质结构的分析和鉴定是开展科研工作最基本的要求。核磁共振波谱分析是确定小分子有机化合物、药物、聚合物以及生物分子结构最常用的分析方法,并可应用于混合物的纯度分析和鉴定,在化工、制药、材料、环境、生物和医学等各学科得到了广泛使用。 /p p   目前,河南科技大学化工与制药学院正承担“国家自然科学基金”、“国家863计划”、“国家973计划”及河南省科技攻关项目等各级各类科研项目数十项,相关课题组在新型有机材料、新型药物载体、野生植物药材提取、高分子复合材料、环境污染物等方面开展了大量的研究工作,这些研究工作的顺利开展和进行都离不开核磁共振波谱分析的大力协助和密切配合,没有核磁共振波谱仪,这些研究工作的时间进度和完成质量将受到极大的影响。 /p p   经充分调研,河南科技大学化工与制药学院拟以单一来源方式购买布鲁克公司生产的AVANCE III HD 400型号核磁共振波谱仪。这是因为:该仪器主要由超导磁体、射频系统、二合一宽带观察探头、计算机工作站等组成。操作软件具有强大的数据管理功能,可保证数据的完整性和安全性 原始数据、仪器条件和处理参数等关联信息由软件自动建立,采用检索方式可方便地从在数据库中调取和使用 仪器使用维护成本较低,开展分析性价比高 并为未来的谱仪升级奠定基础。该仪器的购置可满足河南科技大学化学化工、材料科学、环境科学、生物制药等学科平台的科学研究、人才培养及社会服务。 /p p   1. 布鲁克公司是世界上生产NMR谱仪的最专业化厂家,在超导材料制备、电子控制、用户软件开发等方面有着雄厚的实力,其 span style=" color: rgb(255, 0, 0) " 最新产品Avance 系列核磁共振波谱仪性能卓越、运行稳定、自动化程度高、用户界面友好,在全球占有超过70%市场份额,在中国国内拥有非常高的用户认可度,有超过80%的市场份额。 /span 在中国的售后服务团队技术力量雄厚,工程师拥有多年的波谱仪安装和维修经验。在北京办公室有液体和固体探头维修中心,可以在国内修理大部分常见探头故障,这样缩短了探头维修时间,节省了费用。现有技术力量雄厚的核磁应用专家和专职核磁维修工程师队伍,先进齐全的安装维修工具,在上海建有保税库,充足的零配件备份。专职应用工程师在北京应用实验室或者上海周边定期开展多层次的培训班。 /p p   2. 核磁共振波谱仪的探头用于激发检测核并探测核磁共振信号,其性能对核磁共振实验至关重要。由于河南科技大学本次拟购置的核磁共振波谱仪主要为化学化工、材料科学、环境科学、生物制药等相关学科的化合物分子结构及分子之间相互作用研究提供服务,需要配备灵敏度较高的探头,并且具备检测H、P、C、F图谱的功能。在调研中发现:布鲁克公司提供的BBFO SmartProbeTM宽带二合一探头,检测范围:1H、19F及31P-15N,具有非常高的1H、19F、13C、31P灵敏度。该探头配备全自动调谐/匹配附件,极大方便了检测核之间的切换。同时,该探头的梯度场强度为50 G/cm,是同类产品中梯度场强度最高的产品。由于目前大多数核磁实验都是基于脉冲梯度场的实验,梯度场强度越高,对实验效率帮助越高。 /p p   3. 布鲁克公司提供的BBFO SmartProbeTM二合一宽频探头能够提供1H/19F去偶功能。1H/19F的耦合引起的19F谱裂分将会对19F的分析造成很大困难,19F/13C去偶对含氟化合物研究意义不大,而1H/19F去偶实验对于含氟化合物的研究有很大帮助意义。目前只有布鲁克公司生产的BBFO系列探头具备具有1H/19F去偶功能。 /p p   4. 超导磁体的作用是提供一个稳定均匀的高强度磁场,其稳定性和均匀性对核磁共振谱仪至关重要。在调研中发现:布鲁克400MHz核磁共振谱仪的磁场漂移 & lt 6 Hz/小时,配备36组匀场线圈保证磁场高度均匀性, 液氦消耗量& lt 13 ml/h,液氦保持时间大于300天,配备的EDSTM外部干扰抑制系统对外部电磁干扰抑制效率超过99%。 span style=" color: rgb(255, 0, 0) " 在磁场的稳定性和均匀性方面,布鲁克公司的400MHz核磁共振谱仪性能都要优于其他公司产品。 /span 并且,液氦消耗作为核磁共振谱仪日常维护最重要的一部分,布鲁克公司的产品液氦消耗量要小于一般的进口设备。因此,从超导磁体的稳定性、均匀性以及日常维护来讲,布鲁克公司产品的性能都更加优越。 /p p   5. 软件支持。布鲁克除了功能强大的谱仪控制软件和数据分析软件TopSpin外,还能提供种类丰富地辅助分析软件,如:CMC-Assist辅助分析软件:能够对1H的谱峰归属、多重峰分析、定量分析、图谱与已知结构的一致性进行辅助确认;CMC-se小分子结构辅助分析软件:能够对未知结构的小分子根据测得的图谱进行结构辅助推导;NUS非均一采样软件:能够极大缩短多维谱的采样时间 /p p   6. 从今后的谱仪升级来看,布鲁克可以提供适用于半固体(凝胶、组织等)样品研究的高分辨魔角旋转探头(HR-MAS),独家生产的多种氦气超低温探头、液氮低温探头(灵敏度高,购买和使用成本较低)及全套液相-固相萃取-核磁-质谱联用附件可供升级做微量样品,天然产物或代谢产物,而且所有更高灵敏度探头都可以具备独家生产的全自动调谐功能。 /p p   学校组织行业内技术专家对该项目进行了论证,一致认为AVANCE III HD 400型号核磁共振波谱仪能够满足河南科技大学化学化工、材料科学、环境科学和生物制药等学科研究的的需求且仅能从唯一供应商采购,建议进行单一来源采购。 /p p   最终,布鲁克AVANCE III HD400核磁共振波谱仪中标该项目,仪器报价为205万元,产品供应商为河南朗恩仪器有限公司。 /p
  • 重大科学仪器设备研发重点专项2021项目申报指南发布(附全文)
    5月17日,科技部发布“基础科研条件与重大科学仪器设备研发”重点专项2021年度项目申报指南及“揭榜挂帅”榜单。该重点专项申报指南围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持39个项目,拟安排国拨经费概算5.39亿元。此外,拟支持16个青年科学家项目,拟安排国拨经费概算4800万元,每个项目300万元。拟支持项目如下:1. 高端通用科学仪器工程化及应用开发:1.1 辉光放电质谱仪;1.2 第三代基因测序仪;1.3 超高分辨活细胞成像显微镜;1.4 核磁共振波谱仪;1.5 宽频带取样示波器;1.6 高灵敏手性物质离子迁移谱与质谱联用仪;1.7 复杂微结构三维光学显微测量仪2. 核心关键部件开发与应用:2.1 快速可调谐激光器;2.2 热场发射电子源;2.3 侧窗型光电倍增管;2.4 磁共振成像低温探头;2.5 X射线能谱探测器;2.6 高精度哈特曼—夏克波前传感器;2.7 高通量生物样品真空传递装置;2.8 深地声学探测器;2.9 太赫兹超导混频器;2.10 分离打拿极电子倍增器;2.11 宽频带同轴探针;2.12 精密大带宽锁相放大器;2.13 相位型液晶空间光调制器;2.14 X射线椭球聚焦镜;2.15 双频短相干激光光源;2.16 高稳定度高压电源;2.17 多通道可变分辨率数据采集卡3. 高端化学试剂研制:3.1 高端金属与配体试剂制备关键技术研发;3.2 有机氟试剂研制4. 应用于重大疾病诊断的生物医学试剂创制与应用:4.1 近红外活体荧光成像诊断试剂体系研究开发;4.2 先进高场磁共振设备高分辨影像试剂研究开发5. 同位素试剂:5.1 典型同位素试剂研发与科研试剂评价技术标准研究6. 人类疾病动物模型创制研究:6.1 人类重大传染病基因修饰动物模型研发;6.2 心血管、代谢性疾病等基因修饰动物模型研发;6.3 基于特色实验动物的人类疾病动物模型创建及关键技术研究7. 国家实验动物资源库服务质量提升:7.1 国家实验动物资源库服务科技创新能力提升关键技术研究与示范8. 实验动物质量评价:8.1 实验动物质量评价关键技术研究(青年科学家项目);8.2 实验动物病原快速检测新技术研究(青年科学家项目)9. 科学数据分析挖掘应用关键技术与软件系统:9.1 生物大数据管理和分析关键技术与系统;9.2 微生物科学数据管理与挖掘关键技术与应用;9.3 生态系统大数据智能管理与挖掘关键技术及应用;9.4 场景驱动的海洋科学大数据挖掘分析关键技术与应用;9.5 卫生健康科学大数据智能分析与挖掘关键技术与应用;9.6 面向国家科学数据中心的基础软件栈及系统10. 科学数据自主应用软件:10.1 科学数据自主应用软件研发(青年科学家项目)“基础科研条件与重大科学仪器设备研发”重点专项2021年度项目申报指南详细内容如下:为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“基础科研条件与重大科学仪器设备研发”重点专项。根据本重点专项实施方案的部署,现发布2021年度项目申报指南。本重点专项的总体目标是加强我国基础科研条件保障能力建设,着力提升科研试剂、实验动物、科学数据等科研手段以及方法工具自主研发与创新能力;围绕国家基础研究与科技创新重大战略需求,以关键核心部件国产化为突破口,重点支持高端科学仪器工程化研制与应用开发,研制可靠、耐用、好用、用户愿意用的高端科学仪器,切实提升我国科学仪器自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略实施。2021年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持39个项目,拟安排国拨经费概算5.39亿元。此外,拟支持16个青年科学家项目,拟安排国拨经费概算4800万元,每个项目300万元。科学仪器方向各项目自筹经费与国拨经费比例不低于1:1。项目统一按指南二级标题(如1.1)的研究方向申报。同一指南方向下,原则上只支持1项,仅在申报项目评审结果相近、技术路线明显不同时,可同时支持2项,并建立动态调整机制,根据中期评估结果,再择优继续支持。除特殊说明外,所有项目均应整体申报,须覆盖全部研究内容和考核指标。项目执行期原则上为3~5年。一般项目下设的课题数不超过5个,项目参与单位数不超过10家。项目设1名负责人,每个课题设1名负责人。科研试剂和科学仪器两部分指南方向(除5.1外)须由科研机构与从事相关领域生产并具有销售能力的企业联合申报,建立产、学、研、用相结合的创新团队。青年科学家项目(项目名称后有标注)支持青年科研人员承担国家科研任务。青年科学家项目不再下设课题,项目参与单位总数不超过3家。项目设1名项目负责人,青年科学家项目负责人年龄要求,男性应为1983年1月1日以后出生,女性应为1981年1月1日以后出生,原则上团队其他参与人员年龄要求同上。专项实施过程中,涉及实验动物和动物实验,应遵守国家实验动物管理的法律、法规、技术标准和有关规定,使用合格的实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。涉及高等级病原微生物实验活动的,必须符合国家病原微生物实验室有关要求,并具备从事相关研究的经验和保障条件。涉及人体被试和人类遗传资源的科学研究,须遵守我国《中华人民共和国人类遗传资源管理条例》《涉及人的生物医学研究伦理审查办法》《人胚胎干细胞研究伦理指导原则》等法律、法规、伦理准则和相关技术规范。本专项2021 年度项目申报指南如下。1. 高端通用科学仪器工程化及应用开发1.1 辉光放电质谱仪研究内容:针对高纯材料、高温合金、绝缘固体样品等材料中主成分、微量和痕量元素检测需求,以及针对材料剥层分析、材料元素深度分布检测、涂层材料表面分析等需求,突破直流辉光放电离子源、绝缘固体第二阴极系统、高分辨电磁双聚焦质量分析器、法拉第杯与电子倍增管双检测器等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的辉光放电质谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在半导体、高纯稀土、高温合金等材料科学研究领域的应用。考核指标:质量分析范围(4~250)amu;质量分析稳定性≤25ppm/8h;分辨率LR300/MR4000/HR10000;平均背景≤0.5cps;灵敏度≥1×109cps;丰度灵敏≤20ppb;主成分重复性≤3%RSD;微量成分重复性≤5%RSD;痕量成分重复性≤10%RSD。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级;至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.2 第三代基因测序仪研究内容:针对DNA基因测序的无扩增、长读长直接测序、大容量生物特征信息获取等检测需求,突破DNA精确长读长直接测序、极微弱光或极微弱电信号测量等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的第三代基因测序仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在基因工程、病毒检测、生物安全检测、体外诊断等领域的应用。考核指标:序列平均读长≥15kb;最长读长≥500kb;DNA直接测序最高准确率≥95%;采样率≥1kHz;单个通道测序速度≥400nt/s;可溯源量值定值和质量评价方法≥3种;基因组比对一致性≥99%;组装连续度NG50≥1M碱基;结构变异检测精度与检出率≥90%(片段长度≥50bp)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级;至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.3 超高分辨活细胞成像显微镜研究内容:针对实时观察活细胞精细结构动态变化的检测需求,突破超高分辨活细胞成像显微、精密光机电控制、图像实时处理和成像标定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的超高分辨活细胞成像显微镜产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在细胞学、微生物学、生物物理学和药理学等领域的应用。考核指标:视场≥10µm×10µm;横向分辨率≤150nm;纵向分辨率≤350nm;时间分辨率≥15帧/秒(2D成像);时间分辨率≥8帧/秒(3D成像)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级;至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.4 核磁共振波谱仪研究内容:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在化学化工、生命医学、食品制药和环境能源等领域的应用。考核指标:磁场强度≥14T;室温孔径≥50mm;磁场稳定度≤9Hz/h;磁场均匀度≤0.05ppm;支持多核素频谱分析范围1H、13C、15N、31P、129Xe等;射频带宽50~650MHz以上;波谱频率分辨率≤0.003Hz;射频发射通道数≥2通道;液氦补充时间≥150天。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级;至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.5 宽频带取样示波器研究内容:针对5G移动通信、光纤通信设备和高速网络设备的宽带模拟电路和高速数字电路开发与检测需求,突破85GHz采样器、超低抖动时钟产生与触发、高速时钟恢复、高精度波形采集与恢复、信号完整性分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的宽频带取样示波器,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在光纤通信、5G移动通信、雷达、卫星通信与卫星导航等领域的应用。考核指标:电采样模块:通道数量2;测试带宽≥85GHz;采样率≥150kSa/s;抖动≤80fs;采样分辨率16bit;光采样模块:波长范围800~1600nm;光接收灵敏度优于-7dBm;测试带宽≥65GHz;采样率≥150kSa/s;抖动≤250fs;采样分辨率16bit。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级;至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.6 高灵敏手性物质离子迁移谱与质谱联用仪研究内容:针对生物样品分析、临床诊断和药物开发等领域对手性分子同分异构体快速识别、高灵敏高准确定量分析的需求,突破离子迁移过程模型仿真与控制、手性物质高选择性试剂制备、手性气相离子高效选择性存储、高分辨手性气相离子构型差异分析与质量分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏手性物质离子迁移谱与质谱联用仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生命科学、临床医学和药物学等领域的应用。考核指标:手性分子纯度检测范围0.1%~99.9%,离子迁移谱分辨率≥300;手性物质分析检出限≤10-10摩尔/升;质谱质量分辨率≥100000;手性分子分析时间≤10分钟/样品;建立手性物质数据库1套。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级;至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.7 复杂微结构三维光学显微测量仪研究内容:针对光电探测器、MEMS微系统、半导体集成电路等微小型器件和光学器件表面和亚表面缺陷检测需求,突破高倾斜光滑微结构、深V结构、混合材料层叠微结构、层叠结构亚表面等复杂微结构三维几何形状表征、三维几何参数精密测量、亚表面缺陷检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的复杂微结构三维光学显微测量仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在超光滑光学表面损伤、半导体集成电路、光电集成电路等领域的应用。考核指标:显微视场≥100μm×100μm;水平方向表面显微分辨率≤250nm;水平方向亚表面显微分辨率≤400nm;垂直方向分辨率≤20nm;光滑微结构测倾斜角度≥50°;单一材料台阶高度测量误差≤5%;多层材料台阶高度测量误差≤10%;亚表面缺陷检测深度≥110μm;缺陷检出灵敏度≤200nm;深度定位精度≤2μm;高能损伤缺陷判定准确率≥80%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级;至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2. 核心关键部件开发与应用原则上,每个项目下设课题数不超过4个,项目参与单位总数不超过4个,实施年限不超过3年。2.1 快速可调谐激光器研究内容:开发波长调谐范围大、调谐速度快的可调谐激光器,突破大范围无跳模腔体设计、高速微腔调制制备、高速数字化激光模块驱动电路设计和模式补偿算法、波长非线性修正等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光学相干层析检测、高精密光谱分析和共焦测量等仪器中的应用。考核指标:中心波长1060nm和1310nm;输出功率≥15mW;波长调谐范围≥110nm;重复频率≥100kHz;相干长度≥15mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.2 热场发射电子源研究目标:开发热场发射电子源,突破单晶钨制备、尖端取向和形状控制、氧化锆处理、电子枪结构设计、灯丝对中控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在扫描电子显微镜、透射电子显微镜等仪器中的应用。考核指标:微尖曲率半径范围1.2µm~0.4µm(可控),误差≤±0.05µm;阴极温度1750K~1800K;栅极电压-200~-600V(可调);角电流密度200µA/sr;引出电压3~6kV(可调);最大电子束流≥150nA;电流稳定度≤1%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.3 侧窗型光电倍增管研究内容:开发高性能多碱阴极侧窗型光电倍增管,突破宽光谱及高灵敏度反射式多碱光电阴极制备、高增益电子倍增极结构设计、高二次电子发射材料制备、低暗计数率等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光谱分析、电子显微分析和X射线分析等仪器中的应用。考核指标:探测面积≥8mm×24mm;阴极光谱响应范围≥165nm~900nm;阴极积分灵敏度≥250μA/lm;增益≥1×107;暗计数率≤1000cps;暗电流≤10nA(1000V);上升时间4ns;渡越时间弥散3ns。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.4 磁共振成像低温探头研究内容:开发磁共振成像低温探头,突破高密度射频阵列、超低温制冷系统、低噪声前置放大等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在高场磁共振成像仪、波谱分析仪等仪器的应用。考核指标:通道数≥2;扫描孔径≥2cm;射频探头匹配≤-15dB;探头温度≤30K;前置放大器噪声系数≤1dB;灵敏度提高(低温/常温)≥4倍。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.5 X射线能谱探测器研究内容:开发X射线能谱探测器,突破大面积硅漂移探测、电荷前置放大、数字多道分析、漏电流噪声抑制、真空封装等关键技术;开展工程化开发、应用示范和产业化推广;形成具有自主知识产权、质量稳定可靠的部件产品,实现在X射线能谱仪、电子显微能谱分析仪等仪器以及同步辐射大科学装置的应用。考核指标:探测器尺寸≥30mm2;能量分辨率≤127eV(MnK);探测元素范围Be~Am;最大输出计数率≥300kcps(最大输入计数率1000kcps);窗口材料铍、氮化硅(≤100nm)或无窗。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.6 高精度哈特曼—夏克波前传感器研究目标:开发高精度哈特曼—夏克波前传感器,突破高质量微透镜阵列制备、微透镜阵列与探测器高精度耦合、超高精度误差标定、快速高精度波前重构等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束质量分析、自适应光学系统和三维测量等仪器中的应用。考核指标:空间分辨率≥128×128;倾斜测量范围≥±3°;倾斜测量精度≤1μrad;相对波前测量精度(RMS)≤λ/150;绝对波前测量精度(RMS)≤λ/100;重复性精度(RMS)≤λ/200;工作波长范围400~1100nm;频率≥7Hz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.7 高通量生物样品真空传递装置研究内容:开发高通量生物样品真空传递装置,突破小样品精细操作、真空低温精密运动、低温样品镀膜等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在透射电镜和扫描电镜等仪器中的应用。考核指标:最低存储温度≤-160℃;真空度≤5×10-4Pa;运动精度≤100μm;样品存储数量≥12grids;镀膜真空度≤4Pa;镀膜样品台温度≤-160℃。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.8 深地声学探测器研究内容:开发具有耐高温、耐高压、高性能和高稳定性的声学探测器,突破耐高温高压材料调控、小体积低频宽带结构以及界面粘接机理和工艺等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在三维远程声波探测仪、深地超声成像测井仪等仪器中的应用。考核指标:单极换能器(长度伸缩):工作频带5~20kHz,最高耐温≥260℃,最高耐压≥200MPa;偶极换能器(弯曲振动):工作频带1~4.5kHz,最高耐温≥230℃,最高耐压≥172MPa;多极接收器:工作频带1~20kHz,最高耐温≥230℃,最高耐压≥172MPa;超声换能器:工作频带250~700kHz,最高耐温≥205℃,最高耐压≥172MPa。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.9 太赫兹超导混频器研究内容:开发太赫兹超导混频器,突破超导混频器芯片设计与制备、超导混频器与低温低噪声放大器集成、一维相干探测接收机阵列集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在太赫兹频谱仪、太赫兹安检仪和射电天文接收机等仪器中的应用。考核指标:探测器中心频率0.1~0.3THz;中频带宽≥5GHz;噪声温度≤7倍量子噪声;动态范围≥30dB;像素≥1×10。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.10 分离打拿极电子倍增器研究内容:开发分离打拿极电子倍增器,突破检测器高纯打拿极合金及膜层制备、高精度封装、空气中安全存储、脉冲和模拟双模式检测等关键技术,开发具有自主知识产权、质量稳定可靠的部件产品,开展工程化开发、应用示范和产业化推广,实现在磁质谱仪、四极杆质谱仪上的应用。考核指标:增益≥105(模拟工作状态下),增益≥107(脉冲计数方式下);暗电流≤1pA;暗计数率≤50cps;单离子脉冲宽度/半高宽≤7ns。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.11 宽频带同轴探针研究目标:开发宽频带同轴探针,突破弹性件热处理与表面处理工艺、精密微组装、微小零件加工等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微波集成电路在片测试仪、片上天线测试仪、三维封装天线测试仪等仪器中的应用。考核指标:2.92mm连接器探针:工作频率DC~40GHz,插入损耗≤1.5dB;2.4mm连接器探针:工作频率DC~50GHz,插入损耗≤1.5dB;1.85mm连接器探针:工作频率DC~67GHz,插入损耗≤2.0dB。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级;至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.12 精密大带宽锁相放大器研究目标:开发精密大带宽锁相放大器,突破大带宽数字调制、高分辨率数模转换和高精度相位解调等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微弱信号探测、光谱测量及分析、电子束测量及能谱分析等仪器中的应用。附件:附件1-形审要求.pdf附件2-专家名单.pdf
  • “重大科学仪器设备开发”重点专项2023项目申报指南征求意见发布
    3月28日,科技部发布关于对国家重点研发计划“大科学装置前沿研究”等3个重点专项2023年度项目申报指南征求意见的通知。其中,包括“基础科研条件与重大科学仪器设备研发”重点专项2023年度项目申报指南(征求意见稿)。据征求意见稿,2023年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等4个方向进行布局,拟支持124个项目,同时,拟支持11个青年科学家项目。因指南征求意见严禁转载发布,本文仅整理拟支持的124个项目,供行业人士参考。详情请登录国家科技管理信息系统公共服务平台(https://service.most.gov.cn/),在“公开公示-指南意见征集”菜单栏中查看。“基础科研条件与重大科学仪器设备研发”重点专项2023年度项目申报指南(征求意见稿)拟支持项目一、科学仪器1.高端通用科学仪器工程化及应用开发1.1 超高分辨静电离子阱傅里叶变换质谱仪1.2 超高分辨质谱分析仪(深圳部市联动项目)1.3 高通量核酸质谱分析仪1.4 超高效液相色谱仪1.5 纳升液相色谱仪(安徽省部省联动项目)1.6 电子顺磁共振波谱分析仪1.7 低场核磁共振宽频测量仪1.8 磁共振直接神经电成像仪(深圳部市联动项目)1.9 高通量生物分子相互作用仪1.10 高通量细胞多参数成像分析仪1.11 高通量核酸片段分析仪1.12 循环肿瘤细胞富集和染色全自动检测分析仪(青岛部市联动项目)1.13 超高速离心机1.14 蛋白质层析纯化系统1.15 高灵敏度臭氧层消耗物质连续检测分析仪1.16 高灵敏高分辨红外激光光谱仪(安徽省部省联动项目)1.17 暗弱目标高分辨率紫外光谱仪1.18 超分辨扫描显微检测仪1.19 超高分辨激光汤姆孙散射光谱仪1.20 超宽带瞬态光谱分析仪1.21 空间微孔三维形貌非接触扫描测量仪1.22 高速高光谱荧光显微成像分析仪(青岛部市联动项目)1.23大视场双光子显微镜(深圳部市联动项目)1.24 超分辨光声成像分析仪(深圳部市联动项目)1.25 高时空分辨率光学和能谱显微CT 双模态成像仪1.26 大口径复杂面形高精度测量仪1.27 高分辨率三维缺陷检测仪(安徽省部省联动项目)1.28 高能激光微光斑动态特性测量仪1.29 高能激光辐射光压功率计1.30光纤频域反射测量仪1.31超高分辨率光纤光谱分析仪1.32 场发射扫描电子显微镜1.33 正电子发射计算机断层成像与磁共振双模态成像分析仪(深圳部市联动项目)1.34 X 射线吸收精细结构波谱分析仪1.35 三维原子探针精密测量仪1.36 环境空气中放射性惰性气体探测仪1.37 高动态燃烧场温场与产物分子浓度场成像仪1.38 超声波显微镜1.39 磁致伸缩阵列超声导波检测仪1.40 远距离瞬态振型测量分析仪1.41 高应变率微纳米冲击力学测试仪1.42 远距离激光多普勒振动测试仪(深圳部市联动项目)1.43 物质内部结构与元素耦合高精度中子分析仪(青岛部市联动项目)1.44 X 射线光电子能谱分析仪(青岛部市联动项目)1.45 宽量程高真空测量仪1.46 高性能雷达信号模拟器1.47 宽带电磁信号全景接收与实时检测分析仪1.48 高性能太赫兹芯片测试仪1.49 超高速数据网络测试仪1.50 多通道星网链信道仿真模拟器1.51 智能网联终端多参数综合测试仪1.52 半导体器件动态伏安特性参数综合测试仪1.53 电磁多参数阵列测量仪1.54 自主创新科学仪器1.55 青年科学家自主创新项目2. 核心关键部件开发与应用2.1 细聚焦氩离子源2.2 超短脉冲中子发生器2.3 大气压电喷雾与电弧等离子体离子源2.4紫外-可见-红外宽谱光源2.5 中红外单频固体激光光源2.6 电子-声子耦合超宽带激光器(青岛部市联动项目)2.7 真空深紫外全固态激光光源(青岛部市联动项目)2.8 200kV 场发射电子枪2.9 高稳定X 射线源2.10 微焦点金刚石复合靶X 射线源2.11多路宽范围高稳定度高压电源2.12 太赫兹宽频带辐射源2.13 太赫兹高功率辐射源2.14可调谐太赫兹辐射源(安徽省部省联动项目)2.15 光纤耦合间接电子探测器2.16 一维线性阵列X 射线探测器2.17 伽玛射线飞行时间阵列探测器2.18低功耗低噪声超快半导体探测器2.19 新型3He 替代中子探测器2.20 超高分辨全局曝光制冷高速相机2.21 高精度电子背散射衍射探测器2.22 脉冲电子捕获检测器2.23 氦放电离子化检测器2.24 耐高压水中溶解气体探测器2.25 高灵敏双通道脉冲火焰光度检测器2.26 超低噪声光谱探测器2.27 宽场扫描荧光显微焦面探测器2.28 分光干涉型厚度测量模块2.29 微型光学放大内窥探头2.30 低功耗高温超导量子干涉磁场探测器(青岛部市联动项目)2.31 超高灵敏动态磁扭矩探测器2.32 宽场同轴三维测量模块2.33 高温高压声波换能器2.34电容式微机械超声波换能阵列(安徽省部省联动项目)2.35 超声波多普勒三维流速探测器2.36 多种解离反应离子阱2.37 低漏磁离子泵2.38 低温显微物镜2.39 液氦温区低振动大冷量脉管制冷机2.40 光学数字微镜器件2.41 高精度可调谐光学滤波器2.42极端环境下压电纳米探针台2.43 电化学流体通道电极2.44 高通量微流控精密移液器2.45 长寿命高温等离子体质谱接口锥2.46 生物全组织三维成像前处理装置2.47 固体样品直接进样器2.48 超光滑特种反射元件二、科研试剂3. 高端化学试剂研制3.1 高端元素有机试剂3.2 前沿高技术高分子材料研发用关键单体试剂3.3 用于高端微电子产业的超高纯配方型有机试剂4.应用于重大疾病诊断的生物医学试剂创制与应用4.1 多元素磁共振造影剂与成像技术应用4.2 单细胞测序相关试剂的研究开发4.3 高效药物靶向递送与基因转染试剂4.4拉曼光谱、光/声驱动的疾病诊断与治疗试剂研发4.5 X 射线/荧光医学CT 造影剂标准化研究5.标准物质5.1 环境监测重点领域急需标准物质及关键技术研究5.2 重大新发突发人兽共患病诊断与防控评价标准物质研究三、实验动物6 实验动物资源创制与评价6.1 特色模式动物的实验动物化研究6.2 心肾移植猪源供体标准化体系研究(海南部省联动项目)6.3 药物评价用动物模型创制与应用研究7 实验动物应用保障体系建设7.1 实验动物福利指标量化与评估技术研究四、科学数据8. 科学数据分析挖掘技术与集成平台8.1 知识驱动的科学数据智能分析方法和系统8.2 数据驱动的林草科学数据智能分析关键技术与应用8.3材料腐蚀数据分析挖掘技术与数字孪生系统8.4 面向科技文献的智能处理软件系统研发和应用9.科学数据自主应用软件(青年科学家项目)9.1 科学数据分析挖掘的关键核心软件9.2 创新性科学数据分析挖掘技术和软件9.3 科技文献文本内容的对象化知识表示与推理的关键技术与软件系统
  • 超额完成目标! “高性能微波频谱分析仪研制与应用开发”重大专项通过初步验收
    p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " strong 超额完成目标 形成仪器套餐 /strong /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " strong 应用效果显著 力争专项标杆 /strong /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " strong ——国家重大科学仪器设备开发专项 “高性能微波频谱分析仪研制与应用开发”通过初步验收 /strong /span /p p   测量仪器是人类认识世界、探究未知的工具和手段,是国家经济社会发展和国防安全的重要保障。高性能微波频谱分析仪是电子测量领域最重要的通用测试仪器之一,是航空、航天、通信、导航、电子对抗、频率管理、电磁兼容、信息安全等领域科研、生产、测试、试验和计量的必备仪器。 /p p   长期以来,国产频谱分析仪总体性能与国外先进水平差距较大,市场长期被国外公司垄断,67GHz频谱分析仪更是对我国实行严格的技术封锁和产品禁运。这种受制于人的被动局面严重制约着我国信息化设备和武器装备的发展,阻碍了我国经济建设和国防建设的步伐。 /p p   为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,财政部、科技部共同设立了国家重大科学仪器设备专项项目支持资金,旨在支持重大科学仪器设备开发,以提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设。党的“十八大”也提出“科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置”。 /p p   为提高我国高性能微波频谱分析仪的自主创新能力,加速产业化进程,实现自主可控和自主保障,中国电子科技集团公司第四十一研究所于2012年承担了国家重大科学仪器设备开发专项“高性能微波频谱分析仪研制与应用开发”,重点开展高性能微波频谱分析仪的整机研制、应用开发以及工程化产业化。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/99d87369-e6d5-4d5f-a72e-371139d37ffe.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " strong 项目负责人李立功研究员 /strong /p p   研制之初,项目负责人李立功研究员对团队提出要求:“超额完成目标、形成仪器套餐、应用效果显著、力争专项标杆”。在他的带领下,团队精心组织,高标准、严要求、高质量地进行项目的开发。项目涉及专业领域广,包括电子测试仪器领域的前沿技术研究、应用开发研究以及加工、制造、工艺、检验等一系列内容。为确保项目各项工作的顺利推进,项目成立了总体组、技术专家组和用户委员会,在项目实施过程中实行项目负责人总负责, 总体组、技术专家组和用户委员会等机构协调共管的运行机制 成立了专项管理办公室,建立了财务管理制度、物资管理制度、仪器管理制度等专项管理制度 制定了切实可行的工作计划,明确目标,责任落实到人,严控节点,对项目节点进行严格控制,实行“周清周高” 建立了良好的沟通、协调与共享机制,团队成员通力协作,发挥每个成员的技术优势,集体完成技术难题的攻关,共同完成研究任务。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f7df5b7b-09cb-4041-8335-af7336cad7f8.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " strong 李立功研究员同项目组成员进行技术研讨 /strong /p p   “通过创新占领技术制高点”。在项目研制过程中,李立功研究员十分注重技术创新。接收动态范围和频响平坦度是项目的核心技术指标,此前与世界最先进水平存在较大的差距。李立功研究员提出“全局入手,关键模块重点突破”的指导思想,从分析接收通道噪声模型入手,创新设计通道电平自动调节系统及调节方法以及一种提高宽带信号分析仪器灵敏度和动态范围的装置,大幅度优化了整机灵敏度指标,实现67GHz全频段测试灵敏度优于-130dBm/Hz,达到世界领先水平。上述技术已获2项发明专利授权(一种提高宽带信号分析仪器灵敏度和动态范围的装置及方法,ZL201310507416.8 超外差接收分析仪器通道输出电平的自动调节系统及方法,ZL201310304365.9)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/cb475a95-a906-4516-848e-0146089d63c9.jpg" title=" 3_副本.jpg" / /p p style=" text-align: center " strong 项目成果高性能微波频谱分析仪 /strong /p p   团队历经5年的潜心研究和刻苦攻关,充分发挥专业技术优势,打破国外技术封锁,在宽带接收测试基础理论、方法和工艺等方面有重大创新,完成国家标准1项,申请发明专利80项、外观专利1项,申请软件著作权23项,发表学术论文42篇。项目创新建立了频率范围覆盖67GHz的宽频带、大带宽、高灵敏度微波毫米波频谱分析仪平台,实现了从“窄带分析”到“宽带分析”的测试跨越 建立了宽频带大带宽信号快速接收处理模型和频谱直方图实时统计模型,突破大分析带宽下的实时处理技术瓶颈,使国产频谱分析仪首次具备大带宽瞬态信号实时测试能力,实现了从“稳态测试”到“瞬态测试”的跨越 建立了多参数分析体制,突破由单一频谱分析跨越到时域、频域和调制域多域关联信号分析的技术瓶颈,形成基于国产频谱分析仪的通信信号、雷达脉冲信号、RFID信号、广播电视信号等全面的测试解决方案,实现了从“单域分析”到“多域分析”的跨越 建立了核心整部件故障自诊断、嵌入式自测试自校准、整机环境适应性扩展等技术方法,突破工程化技术瓶颈,使整机环境适应性和测试稳定性显著增强,并且得到了市场的检验,受到用户好评 建立了开槽中心导体程序、光刻胶掩膜图形电镀、自动点胶贴片、自动测调等关键工艺方法,形成了设备数控化、装配调测自动化、生产数字化、管理信息化的产业化生产线,具备年产1000台套高端频谱分析仪的产业化能力。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/91a06eab-d0a1-4aad-bdd8-42bfa834b2e6.jpg" title=" 4_副本.jpg" / /p p style=" text-align: center " strong 实现国产微波毫米波频谱分析仪高效、高质量的生产制造 /strong /p p   项目成果形成14款系列化高性能微波频谱分析仪产品,产品通过国家权威计量机构的测试检验以及俄罗斯国家科学计量研究所的测试认证,并通过欧盟CE和RoHS认证,获得电子测量仪器行业“产品设计奖”以及“中国好仪器”等荣誉称号,在航空航天、通信、雷达、频谱监测等军民领域的100多家用户中得到广泛应用。另外,系列产品已出口德国、意大利、俄罗斯、巴西国家,俄罗斯希望引入产品生产线进行本土化生产。项目成果打破了国外技术封锁和市场垄断,实现了自主可控和自主保障,在“载人航天”、“探月工程”、“北斗导航”、“深空探测”等国家重大项目的研制、生产、试验过程中发挥了重要的测试与保障作用,为我国经济建设、国防建设做出了重要贡献,经济效益和社会效益显著。 /p p   项目的立项、实施过程中,得到了国家科技部、中国电科集团领导的高度重视、殷切期望和大力支持。2017年9月18日至23日,在中国电科第41所“Ceyear”品牌发布会现场,专项成果作为重点成果展出。19日科技部党组书记王志刚、副部长黄卫在中国电科董事长熊群力和总经理刘烈宏的陪同下,重点观看了专项成果并现场听取了李立功研究员对专项的汇报。王志刚书记对专项取得的成效给予充分肯定,并对专项做成标杆项目充满期待和信心。他强调,测量仪器在国民经济发展和国防建设中发挥着关键作用,41所作为仪器项目的第一名,要继续在科学研究、技术创新、成果形成和转化以及产业化方面不断突破,将仪器产业的整个链条进一步做大做强。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/c5a53a2d-8274-48ab-ae8d-854af9225644.jpg" title=" 5_副本.jpg" / /p p style=" text-align: center " strong 国家科技部党组书记王志刚等领导在品牌发布会现场 /strong /p p   2017年10月25日,项目通过了由中国电子科技集团公司组织的国家重大科学仪器设备开发专项初步验收,与会专家对该项目给予高度评价:技术复杂,研制难度极大,在宽带接收测试基础理论、方法、材料、工艺以及工程化等方面有重大创新......打破了国外技术封锁,填补了国内空白 项目成果总体性能居国际先进水平,部分核心指标方面优于当前国际同类产品,达到国际领先水平 项目成果是我国电子测量仪器行业的重大科技创新成果,提升了行业的技术水平和自主创新能力,引领了行业发展,对行业的科技创新和产业化发展起到了很好的示范和辐射作用 项目产品已走出国门,提升了我国测试仪器行业在国际上的影响力。 /p
  • 牛津仪器推出X-Pulse—宽带多核台式核磁共振谱系统
    牛津仪器推出了 X-Pulse —60 MHz台式高分辨率核磁共振系统。 X-Pulse 为实验室里的研究化学家提供了更多研究助力,而这些以前只能在复杂而昂贵的高场核磁共振波谱仪这类专业设施中获得。X-原子核:真正的多核的能力X-Pulse 是一台提供真正多核能力的台式核磁共振系统。该系统无需改变NMR探头便可轻松调整多种核,从 29Si 到 31P 。这意味着用户可以在一个设备上选择多个需要的原子核。变温流动化学独特的流动池和变温探头,可在20°C到70°C之间连续监测动态化学反应,帮助用户详细了解反应过程和动力学。高分辨率新一代匀场技术可获得半峰宽低于0.35Hz和0.55%高度处峰宽10Hz的谱线形状,使其更容易分离重叠的峰和识别更低的化合物浓度。高稳定性经典的磁体设计和高热容量的磁体使 X-Pulse 无论是静态还是流动的样品温度变化都不敏感,从而消除了样品温度假峰。牛津仪器核磁共振部战略产品经理James Sagar博士说:“X-Pulse代表着台式核磁共振波谱仪的能力迈出了重要的一步。研究人员和工业领域的化学家无需在指标上寻求折中,也不必局限于某些实验——X-Pulse已经做到了这一点。”
  • 十四五开局!6亿国拨经费支持科学仪器、试剂
    5月18日,“基础科研条件与重大科学仪器设备研发” 重点专项项目申报指南发布。为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“基础科研条件与重大科学仪器设备研发” 重点专项。根据重点专项实施方案的部署,现发布 2021 年度项目申报指南。本重点专项的总体目标是加强我国基础科研条件保障能力建设,着力提升科研试剂、实验动物、科学数据等科研手段以及方法工具自主研发与创新能力;围绕国家基础研究与科技创新重大战略需求,以关键核心部件国产化为突破口,重点支持高端科学仪器工程化研制与应用开发,研制可靠、耐用、好用、用户愿意用的高端科学仪器,切实提升我国科学仪器自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略实施。2021 年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持 39 个项目,拟安排国拨经费概算 5.39 亿元。此外,拟支持 16 个青年科学家项目,拟安排国拨经费概算 4800 万元,每个项目 300 万元。科学仪器方向各项目自筹经费与国拨经费比例不低于 1:1。项目统一按指南二级标题(如 1.1)的研究方向申报。同一指南方向下,原则上只支持 1 项,仅在申报项目评审结果相近、技术路线明显不同时,可同时支持 2 项,并建立动态调整机制,根据中期评估结果,再择优继续支持。除特殊说明外,所有项目均应整体申报,须覆盖全部研究内容和考核指标。项目执行期原则上为 3~5 年。一般项目下设的课题数不超过 5 个,项目参与单位数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。科研试剂和科学仪器两部分指南方向(除 5.1 外)须由科研机构与从事相关领域生产并具有销售能力的企业联合申报,建立产、学、研、用相结合的创新团队。青年科学家项目(项目名称后有标注)支持青年科研人员承担国家科研任务。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1983 年 1 月 1 日以后出生,女性应为 1981年 1 月 1 日以后出生,原则上团队其他参与人员年龄要求同上。专项实施过程中,涉及实验动物和动物实验,应遵守国家实验动物管理的法律、法规、技术标准和有关规定,使用合格的实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。涉及高等级病原微生物实验活动的,必须符合国家病原微生物实验室有关要求,并具备从事相关研究的经验和保障条件。涉及人体被试和人类遗传资源的科学研究,须遵守我国《中华人民共和国人类遗传资源管理条例》《涉及人的生物医学研究伦理审查办法》《人胚胎干细胞研究伦理指导原则》等法律、法规、伦理准则和相关技术规范。本专项 2021 年度项目申报指南如下。1 高端通用科学仪器工程化及应用开发1.1辉光放电质谱仪研究内容:针对高纯材料、高温合金、绝缘固体样品等材料中主成分、微量和痕量元素检测需求,以及针对材料剥层分析、材料元素深度分布检测、涂层材料表面分析等需求,突破直流辉光放电离子源、绝缘固体第二阴极系统、高分辨电磁双聚焦质量分析器、法拉第杯与电子倍增管双检测器等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的辉光放电质谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在半导体、高纯稀土、高温合金等材料科学研究领域的应用。考核指标:质量分析范围(4~250)amu;质量分析稳定性≤25ppm/8h;分辨率 LR300/MR4000/HR10000;平均背景≤0.5cps; 灵敏度≥ 1×109cps ; 丰度灵敏度≤ 20ppb ; 主成分重复性≤ 3%RSD;微量成分重复性≤5%RSD;痕量成分重复性≤10%RSD。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.2 第三代基因测序仪研究内容:针对 DNA 基因测序的无扩增、长读长直接测序、大容量生物特征信息获取等检测需求,突破DNA 精确长读长直接测序、极微弱光或极微弱电信号测量等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的第三代基因测序仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在基因工程、病毒检测、生物安全检测、体外诊断等领域的应用。考核指标:序列平均读长≥15kb;最长读长≥500kb;DNA直接测序最高准确率≥95%;采样率≥1kHz;单个通道测序速度≥400nt/s;可溯源量值定值和质量评价方法≥3 种;基因组比对一致性≥99%;组装连续度 NG50≥1M 碱基;结构变异检测精度与检出率≥90%(片段长度≥50bp)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.3超高分辨活细胞成像显微镜研究内容:针对实时观察活细胞精细结构动态变化的检测需求,突破超高分辨活细胞成像显微、精密光机电控制、图像实时处理和成像标定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的超高分辨活细胞成像显微镜产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在细胞学、微生物学、生物物理学和药理学等领域的应用。考核指标:视场≥10µm×10µm;横向分辨率≤150nm;纵向分辨率≤350nm;时间分辨率≥15 帧/秒(2D 成像);时间分辨率≥8 帧/秒(3D 成像)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级; 至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.4核磁共振波谱仪研究内容:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在化学化工、生命医学、食品制药和环境能源等领域的应用。考核指标:磁场强度≥14T;室温孔径≥50mm;磁场稳定度≤9Hz/h;磁场均匀度≤0.05ppm;支持多核素频谱分析范围1H、13C、15N、31P、129Xe 等;射频带宽 50~650MHz 以上;波谱频率分辨率≤0.003Hz;射频发射通道数≥2 通道;液氦补充时间≥150 天。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.5宽频带取样示波器研究内容:针对 5G 移动通信、光纤通信设备和高速网络设备的宽带模拟电路和高速数字电路开发与检测需求,突破 85GHz 采样器、超低抖动时钟产生与触发、高速时钟恢复、高精度波形采集与恢复、信号完整性分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的宽频带取样示波器,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在光纤通信、5G 移动通信、雷达、卫星通信与卫星导航等领域的应用。考核指标:电采样模块:通道数量 2;测试带宽≥85GHz;采样率≥150kSa/s;抖动≤80fs;采样分辨率 16bit;光采样模块: 波长范围 800~1600nm;光接收灵敏度优于-7dBm;测试带宽≥ 65GHz;采样率≥150kSa/s;抖动≤250fs;采样分辨率 16bit。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。1.6高灵敏手性物质离子迁移谱与质谱联用仪研究内容:针对生物样品分析、临床诊断和药物开发等领域对手性分子同分异构体快速识别、高灵敏高准确定量分析的需求, 突破离子迁移过程模型仿真与控制、手性物质高选择性试剂制备、手性气相离子高效选择性存储、高分辨手性气相离子构型差异分析与质量分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏手性物质离子迁移谱与质谱联用仪, 开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生命科学、临床医学和药物学等领域的应用。考核指标:手性分子纯度检测范围 0.1%~99.9%,离子迁移谱分辨率≥300;手性物质分析检出限≤10-10摩尔/升;质谱质量分辨率≥100000;手性分子分析时间≤10 分钟/样品;建立手性物质数据库 1 套。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。1.7复杂微结构三维光学显微测量仪研究内容:针对光电探测器、MEMS 微系统、半导体集成电路等微小型器件和光学器件表面和亚表面缺陷检测需求,突破高倾斜光滑微结构、深 V 结构、混合材料层叠微结构、层叠结构亚表面等复杂微结构三维几何形状表征、三维几何参数精密测量、亚表面缺陷检测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的复杂微结构三维光学显微测量仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广, 实现在超光滑光学表面损伤、半导体集成电路、光电集成电路等领域的应用。考核指标:显微视场≥100μm×100μm;水平方向表面显微分辨率≤250nm;水平方向亚表面显微分辨率≤400nm;垂直方向 分辨率≤20nm;光滑微结构测倾斜角度≥50°;单一材料台阶高 度测量误差≤5%;多层材料台阶高度测量误差≤10%;亚表面缺陷检测深度≥110μm;缺陷检出灵敏度≤200nm;深度定位精度≤2μm;高能损伤缺陷判定准确率≥80%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000 小时,技术就绪度不低于 8 级;至少应用于 2 个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2 核心关键部件开发与应用原则上,每个项目下设课题数不超过 4 个,项目参与单位总数不超过 4 个,实施年限不超过 3 年。2.1快速可调谐激光器研究内容:开发波长调谐范围大、调谐速度快的可调谐激光器,突破大范围无跳模腔体设计、高速微腔调制制备、高速数字化激光模块驱动电路设计和模式补偿算法、波长非线性修正等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光学相干层析检测、高精密光谱分析和共焦测量等仪器中的应用。考核指标:中心波长 1060nm 和 1310nm;输出功率≥15mW;波长调谐范围≥110nm;重复频率≥100kHz;相干长度≥15mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.2热场发射电子源研究目标:开发热场发射电子源,突破单晶钨制备、尖端取向和形状控制、氧化锆处理、电子枪结构设计、灯丝对中控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在扫描电子显微镜、透射电子显微镜等仪器中的应用。考核指标:微尖曲率半径范围 1.2µm~0.4µm(可控),误差≤±0.05µm;阴极温度 1750K~1800K;栅极电压-200~-600V(可调);角电流密度 200µA/sr;引出电压 3~6kV(可调);最大电子束流≥150nA;电流稳定度≤1%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.3侧窗型光电倍增管研究内容:开发高性能多碱阴极侧窗型光电倍增管,突破宽光谱及高灵敏度反射式多碱光电阴极制备、高增益电子倍增极结构设计、高二次电子发射材料制备、低暗计数率等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光谱分析、电子显微分析和X 射线分析等仪器中的应用。考核指标:探测面积≥8mm×24mm;阴极光谱响应范围≥165nm~900nm;阴极积分灵敏度≥250μA/lm;增益≥1×107;暗计数率≤1000cps;暗电流≤10nA(1000V);上升时间2.4磁共振成像低温探头研究内容:开发磁共振成像低温探头,突破高密度射频阵列、超低温制冷系统、低噪声前置放大等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在高场磁共振成像仪、波谱分析仪等仪器的应用。考核指标:通道数≥2;扫描孔径≥2cm;射频探头匹配≤-15dB;探头温度≤30K;前置放大器噪声系数≤1dB;灵敏度提高(低温/常温)≥4 倍。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级; 至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用, 满足用户使用要求。2.5X 射线能谱探测器研究内容:开发 X 射线能谱探测器,突破大面积硅漂移探测、电荷前置放大、数字多道分析、漏电流噪声抑制、真空封装等关键技术;开展工程化开发、应用示范和产业化推广;形成具有自主知识产权、质量稳定可靠的部件产品,实现在X 射线能谱仪、电子显微能谱分析仪等仪器以及同步辐射大科学装置的应用。考核指标:探测器尺寸≥30mm2;能量分辨率≤127eV(MnK);探测元素范围Be~Am;最大输出计数率≥300kcps(最大输入计数率 1000kcps);窗口材料铍、氮化硅(≤100nm)或无窗。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.6高精度哈特曼—夏克波前传感器研究目标:开发高精度哈特曼—夏克波前传感器,突破高质量微透镜阵列制备、微透镜阵列与探测器高精度耦合、超高精度误差标定、快速高精度波前重构等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束质量分析、自适应光学系统和三维测量等仪器中的应用。考核指标:空间分辨率≥128×128;倾斜测量范围≥±3°;倾斜测量精度≤1μrad;相对波前测量精度(RMS)≤λ/150;绝对波前测量精度(RMS)≤λ/100;重复性精度(RMS)≤λ/200; 工作波长范围 400~1100nm;频率≥7Hz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.7高通量生物样品真空传递装置研究内容:开发高通量生物样品真空传递装置,突破小样品精细操作、真空低温精密运动、低温样品镀膜等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在透射电镜和扫描电镜等仪器中的应用。考核指标:最低存储温度≤-160℃;真空度≤5×10-4Pa;运动精度≤100μm;样品存储数量≥12grids;镀膜真空度≤4Pa;镀膜样品台温度≤-160℃。项目完成时通过可靠性测试和第三方异地 测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.8深地声学探测器研究内容:开发具有耐高温、耐高压、高性能和高稳定性的声学探测器,突破耐高温高压材料调控、小体积低频宽带结构以及界面粘接机理和工艺等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在三维远程声波探测仪、深地超声成像测井仪等仪器中的应用。考核指标:单极换能器(长度伸缩):工作频带 5~20kHz,最高耐温≥260℃,最高耐压≥200MPa;偶极换能器(弯曲振动):工作频带 1~4.5kHz,最高耐温≥230℃,最高耐压≥172MPa;多极接收器:工作频带 1~20kHz,最高耐温≥230℃,最高耐压≥ 172MPa;超声换能器:工作频带 250~700kHz,最高耐温≥205℃, 最高耐压≥172MPa。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.9太赫兹超导混频器研究内容:开发太赫兹超导混频器,突破超导混频器芯片设计与制备、超导混频器与低温低噪声放大器集成、一维相干探测接收机阵列集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在太赫兹频谱仪、太赫兹安检仪和射电天文接收机等仪器中的应用。考核指标:探测器中心频率 0.1~0.3THz;中频带宽≥5GHz;噪声温度≤7 倍量子噪声;动态范围≥30dB;像素≥1×10。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥ 5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权; 形成批量生产能力,经用户试用,满足用户使用要求。2.10分离打拿极电子倍增器研究内容:开发分离打拿极电子倍增器,突破检测器高纯打拿极合金及膜层制备、高精度封装、空气中安全存储、脉冲和模拟双模式检测等关键技术,开发具有自主知识产权、质量稳定可靠的部件产品,开展工程化开发、应用示范和产业化推广,实现在磁质谱仪、四极杆质谱仪上的应用。考核指标:增益≥105(模拟工作状态下),增益≥107(脉冲计数方式下);暗电流≤1pA;暗计数率≤50cps;单离子脉冲宽度/ 半高宽≤7ns。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.11宽频带同轴探针研究目标:开发宽频带同轴探针,突破弹性件热处理与表面处理工艺、精密微组装、微小零件加工等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微波集成电路在片测试仪、片上天线测试仪、三维封装天线测试仪等仪器中的应用。考核指标:2.92mm 连接器探针:工作频率DC~40GHz,插入损耗≤1.5dB;2.4mm 连接器探针:工作频率DC~50GHz,插入损耗≤1.5dB;1.85mm 连接器探针:工作频率DC~67GHz,插入损耗≤2.0dB。项目完成时通过可靠性测试和第三方异地测试, 平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量, 具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.12 精密大带宽锁相放大器研究目标:开发精密大带宽锁相放大器,突破大带宽数字调制、高分辨率数模转换和高精度相位解调等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在微弱信号探测、光谱测量及分析、电子束测量及能谱分析等仪器中的应用。考核指标:频率范围 0~50MHz;输入电压噪声≤5nV/√Hz;动态储备≥120dB;满量程输入灵敏度≤1nV;A/D≥14bit;相位分辨率≤1μdeg;频率分辨率≤0.7μHz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力, 经用户试用,满足用户使用要求。2.13相位型液晶空间光调制器研究目标:开发相位型液晶空间光调制器,突破大相位调制深度、高帧率驱动、高抗激光损伤等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光束整形仪、波分复用仪、单色仪、超快激光加工机、激光打标机等仪器设备中的应用。考核指标:像元数≥1920×1080;相位范围≥2π(1064nm);相位灰阶≥8bit;填充因子≥92%;衍射效率≥80%;刷新频率≥ 100Hz;最大输入光功率密度≥50W/cm2。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000 小时,技术就绪度达到 9 级;至少应用于 2 类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权;形成批量生产能力,经用户试用,满足用户使用要求。2.14 X 射线椭球聚焦镜研究目标:开发 X 射线椭球聚焦镜,突破 X 射线椭球聚焦镜制作、性能检测、高精度装校等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在 X 射线衍射仪、X 射线散射仪和X 射线成像仪等仪器中的应用。考核指标:工作能段 1~8keV;聚焦斑点≤100μm;口径≥15mm
  • 1298万!东北林业大学分析测试中心600兆核磁共振波谱仪等采购项目
    一、项目基本情况1、项目编号:ZJX2023-1002H 2、项目名称:东北林业大学分析测试中心物质结构分析平台项目(贴息贷款项目);3、预算金额:贴息贷款,1298万元;4、招标内容:600兆核磁共振波谱仪、X射线光电子能谱(详见招标文件); 5、交货期:本项目交货期按各设备参数内交货期为准,具体交货期按合同约定执行;6、交货地点:招标人指定地点;7、标段划分:本项目不划分标段;二、申请人的资格要求1、参加本项目的投标人需具备《中华人民共和国政府采购法》第二十二条投标人资格条件;2、参加本项目的投标申请人需具有合格、有效的三证合一的营业执照、基本账户证明(开户许可证或其他开户证明材料);3、参加本项目投标申请人应具有良好的社会信誉、商业信誉和健全的财务会计制度,具有履行合同所必需的设备和专业技术能力;4、参加本项目的投标人需具有依法缴纳税收和社会保障资金的良好记录;5、参加政府采购活动前三年内,在经营活动中没有重大违法记录,符合法律、行政法规规定的其他条件;6、本项目不接受联合体投标。 三、获取招标文件1、时间:凡有意参加投标者,请于2023年2月14日至2023年2月20日(法定公休日、法定节假日除外),每日上午09时至11时,下午14时至16时(北京时间,下同),标书款公对公汇入到指定账户(详见以下账户信息),逾期不予受理(以代理机构收到标书款时间为准);2、地点及方式:电话联系招标代理机构留下招标文件接收信息。账户信息名称:中精信工程技术有限公司黑龙江分公司开户行:中国银行股份有限公司哈尔滨开发区支行账户:166489458114注:(1)非公对公汇款不予受理,汇款时须备注标书款及项目编号,未备注视为未汇款;(2)汇款后未及时联系我公司造成招标文件延迟发放的,由投标人自行负责。3、售价:招标文件售价500元/套,售后不退。四、提交投标文件截止时间、开标时间和地点2023年3月6日9点30分(北京时间)地点:哈尔滨市南岗区长江路189号三楼开标大厅。注:逾期送达的或者未送达指定地点的投标文件,招标人不予受理。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、本项目公告在中国政府采购网(http://www.ccgp.gov.cn/)上发布;2、与招标人存在利害关系可能影响招标公正性的法人、其他组织,不得参加投标;单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段的招标或者未划分标段的同一招标项目的投标;3、投标人提供的资质文件应当真实有效,投标人应遵守《中华人民共和国政府采购法》及相关法律、法规和规章;4、参加本项目的投标人须自行通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询信用记录。对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的投标人,拒绝其参与政府采购活动。5、本项目为贴息贷款项目,如在招标后因国家相关政策调整等原因致使贷款不能批复下来,则该项目取消,招标人不对投标人承担任何责任。七、对本次招标提出询问,请按以下方式联系。1、招标人信息名 称:东北林业大学地址:哈尔滨市香坊区和兴路26号联系方式:0451-821918822、招标代理机构信息名 称:中精信工程技术有限公司地 址:哈尔滨市南岗区长江路189号联系方式:0451-870034793、项目联系方式项目联系人:徐玉洁 李志超电 话:0451-87003479
  • 赛默飞发布新一代台式核磁共振波谱仪picoSpin 80
    学术和工业实验室现在可以用赛默飞的台式、便携、具有价格竞争力的核磁共振波谱仪picoSpin 80,轻松地收集液体样品中分子结构的常规高分辨核磁共振(NMR)数据。该仪器2特斯拉的磁场强度能够提供优秀的分辨率,是以往较低磁场强度所达不到的。   根据公布的技术参数,与目前许多台式核磁共振仪器相比,赛默飞的picoSpin 80波谱仪具有最高分辨率。picoSpin 80成为已经广泛使用的picoSpin 45的一个补充。   &ldquo picoSpin 80和picoSpin 45是改变游戏规则的仪器,使核磁共振分析更多被科学家所使用,尤其是在学术、工业或研发实验室,&rdquo 赛默飞分子光谱部门全球营销总监Simon Nunn说,&ldquo 与picoSpin 45相比,picoSpin 80的分析能力提升了将近两倍,能够获得更详细的光谱,标志着我们继续致力于让更多的科学家使用高质量的核磁共振波谱仪的承诺前进了一大步。&rdquo   picoSpin 80波谱仪的特点和优点包括:   &bull 磁铁不需液体制冷剂制冷   &bull 轻便、便携的设计使该仪器可以在多个实验室分享   &bull 易操作的液毛细管系统不需要核磁共振管或其他消耗品。 编译:刘丰秋
  • 贴息贷款暖风吹向科研市场 来看化学类国重点仪器清单
    近期,科学仪器行业迎来了前所未有的利好消息,国家为支持经济社会发展薄弱领域设备的更新改造,发布了设备更新改造贴息再贷款等政策,要求年底前完成相关申报工作。采购规模之庞大、采购周期之紧张,引得业内人士心潮澎湃。  9月29日,财政部、国家发展改革委、人民银行、审计署、银保监会五部门联合下发《关于加快部分领域设备更新改造贷款财政贴息工作的通知》(财金〔2022〕99号),将贴息贷款进一步推进落实,提出时间表。对2022年12月31日前新增的部分领域设备更新改造贷款贴息2.5个百分点,期限2年【3.2%的优惠贷款,扣除贴息就是0.7%】。人民银行提配套再贷款,利率1.75%,展期后可以长达三年。  本次设备更新改造贴息再贷款政策支持10个领域:教育、卫生健康、文旅体育、实训基地、充电桩、城市地下综合管廊、新型基础设施、产业数字化转型、重点领域节能降碳改造升级、废旧家电回收处理体系。其中高校和医院两个领域,原来不能作为贷款主体,多年来沉淀了大量的设备更新改造的需求。这次政策创新,允许公立医院和高校通过贷款来实现设备更新改造,势必会引发空前的采购热潮。而作为仪器设备主要品类之一,科学仪器也必将是本次采购中非常重要的目标品类。  根据最新释出的政策,本次贷款,要在年底前发放,对用户申请、采购等环节的效率都提出了很高的要求,那么如何在有限的时间里,选择到合适的仪器设备呢?让我们来看看标杆示范的国家重点实验室都配置了哪些仪器设备吧!  国家重点实验室计划从1984年开始组织实施,是我国科学技术体制改革的重大举措,是我国改革开放以来基础研究发展历程中的一件大事。近年来国家重点实验室建设得到了快速发展,据统计,截至2021年底在运行的国家重点实验室达到533个,其中,化学领域目前共有25家国家重点实验室,归教育部、中国科学院、江苏省科技厅等3个部门。涉及的细分研究领域包括材料化学、结构化学、金属有机化学、多相复杂系统、分析反应动力学、固体表面物理化学、生物化学、精细化工、聚合物分子工程、配位化学等领域。  本文综合分析各大化学类国家重点实验室的仪器配置清单,可以看出,核磁共振波谱仪成为出镜率最高的仪器,共有15家化学类国家重点实验室配置了该类仪器。配置透射电镜和扫描电镜的实验室也在10家以上,分列2、3位。另外,扫描探针显微镜、元素分析仪、原子力显微镜、X射线衍射仪、液相色谱仪、差式扫描量热仪、红外光谱仪、气相色谱质谱联用仪、同步热分析仪、旋光仪、荧光光谱仪都是配置频率较高的仪器设备。化学领域国家重点实验室高频配置的仪器名单如下:  (注:信息统计来源于各国家重点实验室官网,部分实验室罗列仪器设备较全,部分实验室仅罗列了最主要或特色的仪器设备,因此结果仅供参考。另外其中有些仪器类型可能涉及包含关系,如扫描探针显微镜和原子力显微镜,受限于条件,并未进行详细区分。)  点击下方仪器名称进入相关仪器专场了解详情分类1分类2仪器专场化学分析仪器波谱核磁共振波谱仪光学仪器及设备电子显微镜透射电镜光学仪器及设备电子显微镜扫描电镜光学仪器及设备电子显微镜扫描探针显微镜化学分析仪器元素分析仪光学仪器及设备电子显微镜原子力显微镜化学分析仪器X射线仪器X射线衍射仪化学分析仪器色谱液相色谱仪物性测试仪器及设备热分析仪器差示扫描量热仪化学分析仪器光谱红外光谱仪化学分析仪器质谱气相色谱质谱联用仪物性测试仪器及设备热分析仪器同步热分析仪光学仪器及设备光学测量仪旋光仪  化学领域国家重点实验室名单序号实验室名称领域依托单位主管部门第一依托单位所在地代码1化学工程联合国家重点实验室化学清华大学教育部北京1987DA105031天津大学华东理工大学浙江大学2重质油国家重点实验室化学中国石油大学(北京)教育部北京1991DA105581中国石油大学(华东)3多相复杂系统国家重点实验室化学中国科学院过程工程研究所中国科学院北京2006DA1731014化工资源有效利用国家重点实验室化学北京化工大学教育部北京2006DA1051215元素有机化学国家重点实验室化学南开大学教育部天津1985DA1050116煤转化国家重点实验室化学中国科学院山西煤炭化学研究所中国科学院山西太原1991DA1736417催化基础国家重点实验室化学中国科学院大连化学物理研究所中国科学院辽宁大连1984DA1730818分子反应动力学国家重点实验室化学中国科学院大连化学物理研究所中国科学院辽宁大连1987DA1731319精细化工国家重点实验室化学大连理工大学教育部辽宁大连1991DA10521110高分子物理与化学国家重点实验室化学中国科学院长春应用化学研究所中国科学院吉林长春2000DA17303111无机合成与制备化学国家重点实验室化学吉林大学教育部吉林长春2001DA10501112电分析化学国家重点实验室化学中国科学院长春应用化学研究所中国科学院吉林长春2001DA17303113超分子结构与材料国家重点实验室化学吉林大学教育部吉林长春2007DA10501114稀土资源利用国家重点实验室化学中国科学院长春应用化学研究所中国科学院吉林长春2007DA17304115生命有机化学国家重点实验室化学中国科学院上海有机化学研究所中国科学院上海1989DA17305116金属有机化学国家重点实验室化学中国科学院上海有机化学研究所中国科学院上海2000DA17304117聚合物分子工程国家重点实验室化学复旦大学教育部上海2011DA10533118现代配位化学国家重点实验室化学南京大学教育部江苏南京1988DA10501119材料化学工程国家重点实验室化学南京工业大学江苏省科技厅江苏南京2007DA69007120生命分析化学国家重点实验室化学南京大学教育部江苏南京2011DA10543121结构化学国家重点实验室化学中国科学院福建物质结构研究所中国科学院福建福州1992DA17301122固体表面物理化学国家重点实验室化学厦门大学教育部福建厦门1987DA10505123化学生物传感与计量学国家重点实验室化学湖南大学教育部湖南长沙2001DA10504124功能有机分子化学国家重点实验室化学兰州大学教育部甘肃兰州1985DA10506125羰基合成与选择氧化国家重点实验室化学中国科学院兰州化学物理研究所中国科学院甘肃兰州1991DA173651
  • 打破进口垄断,磁共振仪器“国产替代”亟待进一步发展
    当前,“国产替代”成为我国科学仪器发展的关键词。近年来,国产磁共振技术的发展与应用也取得了一系列显著的进展,不仅是仪器厂商在磁共振仪器及相关方法开发方面深耕细作,越来越多的科研单位也开始重视相关仪器和技术的开发,逐渐缩小着与国际水平的差距。2023年11月2日-3日,仪器信息网、北京波谱学会、《波谱学杂志》联合举办的“第七届磁共振网络会议(iCMR 2023)”特别设置了磁共振仪器国产化讨论环节。各位嘉宾肯定了国产磁共振仪器的进步,同时也从技术研发、应用拓展、人才培育、资金投入等多个层面展开了讨论。为了更好的展示这些国产磁共振仪器的创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《国产磁共振技术及应用新进展》网络专题成果展,集中展示国产磁共振创新成果。武汉中科牛津波谱技术有限公司是国内从事超导核磁共振波谱仪研发、生产和服务的高新技术企业,将为大家介绍其在推进磁共振仪器的国产化进程中所做的工作等。1、您认为磁共振仪器的国产化进程走到了哪个阶段? 有哪些成功的案例?同时又面临什么样的困难?中科牛津:中科牛津公司从2013年成立至今,正好走过了十年的历程。从开始的工程化样机发展至今,公司已经推出了第一代商业化产品的改进型Quantum-IPlus,完成了从无到有的发展过程。在这期间,团队经历了许多困难和艰辛,但最终通过自主研发、技术引进和在国外投资建立子公司等举措,构建了超导核磁共振波谱仪生产线,拥有波谱仪的完整配套、生产和销售,实现了老一辈科学家的梦想,打破了进口仪器的垄断。最新的Quantum-IPlus 400 MHz谱仪也已经实现了百余台的销售和安装。国内顶尖的985和211大学,如北大、复旦、上海交大等,以及一些研究单位如医科院药物所等,都有我们的仪器。医药领域是核磁共振的一个重要应用行业,国内不少医药企业,特别是一些新药研发头部企业已经购买安装了中科牛津的仪器。公司还积极开拓海外市场,通过国外代理商,已经向美国、加拿大、巴西、俄罗斯、沙特、土耳其等国家销售了近二十台仪器,在通往国际市场的路上迈出了第一步。这些销售和安装在各地、各国的谱仪,表明公司的产品已经获得了用户的信任,在常规检测领域能够发挥重要的作用。在公司发展的过程中,我们同样也感受到了国产仪器在研发和生产中的一些困难。首先一个就是相关配套产业以及上下游行业的发展与我们息息相关。核磁共振谱仪是分析仪器中的高端仪器,与其它仪器相比,它的一个重要特点就是使用寿命长。因此,我们在设计和制造时,在考虑元器件的性能以及机械加工零部件等方面对长期可靠性和稳定性就有比较高的要求。这就需要我们去寻找合适的供应商和加工商。就目前的环境来讲,国内在这方面还是有欠缺的地方。另外一个方面就是人才,超导核磁共振谱仪是一个复杂的系统,其研发和制造就需要多行业的人才,而像我们这样的国产仪器小公司,在吸引人才方面就没有多少优势,因此我们求贤若渴,亟需多个行业的人才来加入我们的队伍,一起把国产的超导核磁共振谱仪做的更好,推向更广大市场。2、为了推进“国产替代”的进程,亟待攻关的技术难题或者亟待解决的关键问题有哪些? 中科牛津:核磁共振谱仪是一个复杂的系统,它的制造过程涉及到多个行业的技术和元器件,如电子技术、低温技术、超导材料技术、特种合金材料等等。而目前国内一些相关的上游企业配套还不是十分完善或者质量不高,给我们的生产带来一些困难。如一些关键电子元器件,目前国内的水平还有待提高。另外,作为新进入市场的核磁共振企业,我们的年销量有限,因而需要购买或加工的器件数量较小,这就给我们寻找合适的供应商造成困难。特别是一些加工企业,对于我们这么小的加工量根本看不上。好在国家这几年特别支持发展一些专精特新和小巨人企业,希望能给我们带来新的希望。去年由中科牛津牵头承担了国家“十四五”重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项项目“核磁共振波谱仪的研制及工程化开发(2022YFF0707000)”。该项目的参与单位中,除了相关的科研院所和大学之外,还有国内生产超导线材的公司。我们目前生产的磁体已经主要采用国产的超导线材。本项目里另一个攻关点在于要攻克用于探头的特殊合金线材,以实现国产化。3、基于什么样的市场热点或者需求,推出了哪些磁共振仪器新品?具有哪些创新点? 中科牛津:与其它类别的分析仪器比较,核磁共振谱仪本身显得比较单一。我们目前的主要产品是Quantum-IPlus双通道的宽带400 MHz谱仪,配备自动调谐的宽带探头。其中比较有特点的是,我们的探头可以把19F灵活地配置在高频通道或宽带通道,给用户更多的选择。另外,我们还可以为用户提供定制探头,如三通道,或者特殊用途的如观测氘、氚。4、以上新产品可以提供哪些典型的解决方案,有哪些应用案例,解决了哪些行业关键问题?中科牛津:目前我们的产品主要应用于各行业的常规测试工作。大学的化学院系及分析测试中心,如上海交大分析测试中心等,是常规核磁共振仪器的一个主要应用场景,用于化学、材料等专业的研究工作。我们产品的另一大用户群体是医药企业,特别是从事新药研发的一些头部企业等,核磁共振在其研发过程中是不可或缺的工具。5、贵单位看好哪些磁共振技术的发展?为什么?中科牛津:核磁共振是一个相对成熟的技术,因此在仪器本身没有太多可以挖掘的,一个是往更高场发展,已获得更高的灵敏度和分辨率,另一个是从探头的角度,如超低温,以降低电子噪声,提高信噪比。除此之外,目前在采样和后处理方面,如非均匀采样,基于人工智能的数据处理技术,还有继续发展的前途。超极化和DNP技术的方法,虽然能够将灵敏度提高很多倍,但目前仍然是很昂贵和不方便的,应用有限,有待进一步发展。6、未来贵单位在磁共振仪器方面的产品线如何布局?即将推出哪些新的产品?中科牛津:中科牛津将继续把常规产品做好做强,使用户更满意。经过几年技术积累,明年我们将会发布多款新品,实现更优秀的性能和更好的使用体验。
  • 年度巨献,林崇熙核磁共振波谱仪系列公益讲座
    2014年4月的喜讯: 林崇熙老师为仪器信息网网友贡献核磁共振波谱仪(NMR)系列讲座,已确定三期报告,公益讲座,会议名额有限,请尽快报名。 系 列 时 间 主 题 第一讲 2014-04-28 14:30 核磁共振谱仪的设备或零配件的功能解析 第二讲 2014-05-27 14:30 谱图处理软件Mestrec 与 MestreNova操作实例 第三讲 2014-06-24 14:30 NMR 谱图解析范例 专家介绍: 林崇熙 博士后 北京大学化学与分子工程学院副教授 研究领域和兴趣(部分): 核磁共振的应用利用核磁共振的 2D、变温、多种核素检测技术研究化学反应的机理 探讨简易核磁碳谱在各种溶液体系中定性与定量分析的应用 科技部十五科研攻关项目&mdash &mdash 以NMR检测手性化合物e.e.值与绝对构型的研究; 国家自然科学基金科研项目&mdash &mdash 氮叶立德化学三苯基吡啶叶立德的化学研究以及官能基团转换反应的应用探讨。 系列讲座详细介绍: 讲座名称:核磁共振谱仪的设备或零配件的功能解析 时间:2014-04-28 14:30 课程介绍: 核磁共振NMR设备的功能与小故事,磁体、探头,、液氦液氮添加管路, 气路_空压机,电脑软件硬件, 联网, 变温配件, 转子-样品管。 如:磁体方面, 介绍其作用与原理, 生产磁体的公司,永久磁铁/电磁铁/超导磁铁三种磁铁的比较 顺便叙述磁场对生物的影响情况。 探头方面: 介绍多种探头的不同功能, 有二核/四核探头, 宽带探头, 低频探头, 低温探头, 微量探头, 反相探头, 正相探头, 二合一探头等. 顺便叙述碎管情况的探头处理。 讲座名称:谱图处理软件Mestrec 与 MestreNova操作实例 时间:2014-05-27 14:30 课程介绍: 重点范例介绍: Mestrec470 与 MestreNova8.0; 以及打开此二种软件程序和实例操作演示谱图的处理步骤; 操作内容包括: 氢谱的完整处理, 放置结构图与标定归属, 安插放大图, 拷贝到 words 文档 用MestrecNova 处理多种二维谱的演示; 备注:参加本次讲座人员, 可以下载获得此二软件。 讲座名称:NMR 谱图解析范例 时间:2014-06-24 14:30 课程介绍: 1、本次报告首先花几分钟时间快速回顾 part 1 的 "正确的解谱步骤", 和一些代表性谱图. 2、提供了上百个不同化合物具有特色的谱图范例 3、叙述与讨论几套含有完整的 H/ C/ 多种二维谱的范例 4、实例进行几个复杂化合物的谱图解析步骤 会议报名方式:点击链接马上报名或搜索讲座名称进行报名。
  • 全球首款微型核磁共振仪 中科科尔获得代理权
    2010年11月10日,PicoSpin宣布推出全球首款微型核磁共振光谱仪PicoSpin-45 NMR, 此前该产品设计已获2011爱迪生最佳新产品奖提名,并于2011年2月7日获得自然科学和医学领域2011爱迪生最佳新产品奖,颁奖典礼将于2011年4月5日在纽约举行。 PicoSpin-45 质子核磁共振光谱仪是化学仪器领域一个新的突破。相对于传统核磁共振光谱仪,占用面积更小,价格更实惠,液体样品分析分辨率高达100ppb,可用于食品制造、医药、石油化工、生物燃料、化妆品及化学教育等行业。 PicoSpin-45 NMR系统包括:永磁体、发射器、接收器、数据采集、可编程脉冲序列发生器、以太网接口和直观的基于Web的控制软件。通过前面板装置,液体样品可方便地注入到内部毛细管里,仅需20微升液体就可获得一个光谱。高稳定性温度控制的永磁铁确保免维护运行,无需液体制冷剂,操作无需专业知识和培训。 PicoSpin 公司总裁兼首席执行官Price博士表示:&ldquo 核磁共振波谱仪是最强大的化学分析工具。我们设计的产品,真正改变了核磁共振波谱仪的前景。凭借低价格和紧凑的外形,PicoSpin -45 NMR可以应用在过去认为不可能应用的领域。现在,您可以在您的实验室台上就拥有一台核磁共振波谱仪,您可以在工厂内设置多个单元,通过一个鼠标就可以持续监测和控制过程流体,您的学生可以在化学实验室和研究项目中实际操作核磁共振波谱仪。&rdquo 北京中科科尔仪器有限公司提供流体处理系统,实验室设备,分析仪器,电化学仪器,安全防护,温度设备等优质产品,以及为您供最为专业的技术服务与支持。
  • “重大科学仪器设备开发专项”2022年度申报指南征求意见(全文)
    “基础科研条件与重大科学仪器设备研发”重点专项2022年度项目申报指南(征求意见稿)  为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“基础科研条件与重大科学仪器设备研发”重点专项。根据本重点专项实施方案的部署,现发布2022年度项目申报指南。  本重点专项的总体目标是加强我国基础科研条件保障能力建设,着力提升科研试剂、实验动物、科学数据等科研手段以及方法工具自主研发与创新能力 围绕国家基础研究与科技创新重大战略需求,以关键核心部件国产化为突破口,重点支持高端科学仪器工程化研制与应用开发,研制可靠、耐用、好用、用户愿意用的高端科学仪器,切实提升我国科学仪器自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略实施。  2022年度指南部署围绕科学仪器、科研试剂、实验动物和科学数据等四个方向进行布局,拟支持95个项目和9个青年科学家项目。  项目统一按指南二级标题(如1.1)的研究方向申报。同一指南方向下,原则上只支持1项,仅在申报项目评审结果相近、技术路线明显不同时,可同时支持2项,并建立动态调整机制,根据中期评估结果,再择优继续支持。  除特殊说明外,所有项目均应整体申报,须覆盖全部研究内容和考核指标。项目执行期原则上为3~5年。一般项目下设的课题数不超过5个,项目所含单位数不超过10家。项目设1名负责人,每个课题设1名负责人。科研试剂和科学仪器两部分指南方向(除5.1和5.2外)须由科研机构与从事相关领域生产并具有销售能力的企业联合申报,建立产、学、研、用相结合的创新团队。  青年科学家项目(项目名称后有标注)支持青年科研人员承担国家科研任务。青年科学家项目不再下设课题,项目参与单位总数不超过3家。项目设1名项目负责人,青年科学家项目负责人年龄要求,男性应为1984年1月1日以后出生,女性应为1982年1月1日以后出生,原则上团队其他参与人员年龄要求同上。  专项实施过程中,涉及实验动物和动物实验,应遵守国家实验动物管理的法律、法规、技术标准和有关规定,使用合格的实验动物,在合格设施内进行动物实验,保证实验过程合法,实验结果真实、有效,并通过实验动物福利和伦理审查。涉及高等级病原微生物实验活动的,必须符合国家病原微生物实验室有关要求,并具备从事相关研究的经验和保障条件。涉及人体被试和人类遗传资源的科学研究,须遵守我国《中华人民共和国人类遗传资源管理条例》《涉及人的生物医学研究伦理审查办法》《人胚胎干细胞研究伦理指导原则》等法律、法规、伦理准则和相关技术规范。本专项2022年度项目申报指南如下。  一、科学仪器  1.高端通用科学仪器工程化及应用开发  原则上,使用指南名称申报,每个项目下设课题数不超过5个,项目参与单位总数不超过10家,实施年限不超过4年。  1.1高分辨率二次离子质谱分析仪  研究内容:针对半导体材料、新能源材料、矿产样品等材料的结构和化学成分微区原位分析需求,突破高能复合离子源、二次离子提取、高分辨质谱、高精度多接收器、质谱成像数据快速检测处理和数据重建等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高分辨二次离子质谱分析仪,开展工程化开发、应用示范和产业化推广,实现在海洋勘测、地质矿产探测、生命科学研究和半导体器件制造等领域的应用。  考核指标:质量分析范围2-300amu 质量分辨率≥20000FWHM 一次离子能量≥最低10eV~20keV 检测限1ppb量级 动态范围≥10个数量级 207Pb/206Pb测试标准偏差  1.2单细胞质谱分析仪  研究内容:针对生物医学活体或离体单细胞、单细胞内化学成分、含量和代谢分析需求,突破单细胞样品制备、代谢组学色谱质谱进样、电离源、单细胞内极性、弱极性和非极性质谱分析、肿瘤微环境和代谢重编程定性定量分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的单细胞质谱分析仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生物化学、生命科学等研究领域的应用。  考核指标:质量分析范围50-2000Da,分辨率LR100/MR1000/HR2000 扫描速率≥15000Th/s 具备MS2和MS3功能 线性动态范围≥5个数量级 电离源正与负模式切换时间≤30ms 极性物质检出限达到amol 弱极性物质检出限达到fmol 化合物分析≥150种(极性、弱极性、非极性) 单细胞分析时间≤1分钟 细胞分析通量≥50细胞/小时。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.3高速高空间分辨生物组织成像质谱仪  研究内容:针对生命科学、环境科学、基础医学、材料科学等对生物大分子原位分析的检测需求,突破质谱成像技术所需的质谱仪高灵敏度、高速成像能力、高定量重现性能力以及高速成像处理软件等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高速高空间分辨生物组织成像质谱仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生命科学、环境科学、基础医学等领域的应用。  考核指标:成像质量范围,M/Z≥20000(线性模式) 成像速率300像素/秒 成像空间分辨率  1.4快速热化学反应过程分析仪  研究内容:针对快速热化学反应产物生成过程特性分析的检测需求,突破平推流微型反应器、反应物料在线脉冲伺样、高温高压热反应快速诱发、气相产物近平推流导出、全产物在线检测、产物生成反应动力学解析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的快速热化学反应过程分析仪,开发软件和数据库,开展工程化开发、应用示范和产业化推广,实现在能源、化工、冶金等领域的应用。  考核指标::流体平均停留时间偏差≤10% 反应样品在线脉冲进样时间≤10ms 最高工作温度1500℃ 最高工作压力5.0MPa 气相产物分析质量分辨率≤0.005amu,全质量数谱图≥10幅/s 热导检测池体积≤10μL,检测重复性≤3.0%,线性动态范围105。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.5高灵敏数字化生物气溶胶直接分析仪  研究内容:针对生物气溶胶样品化学组分检测需求,突破人源气溶胶、动物源气溶胶、植物源气溶胶、微生物源气溶胶等生物气溶胶直接分析技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏数字化生物气溶胶直接分析仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在呼吸系统疾病防治、生命科学研究和食品药品等领域的应用。  考核指标:气溶胶检出限≤1ppb(精氨酸、乙酰胆碱) 线性范围≥3个数量级 气溶胶自进样到信号响应时间≤3s 具有高速数字化5个维度协同智能数据处理识别能力,具有特征分子结构确证能力、防交叉感染的生物安全防护功能,单个样品数据处理识别时间≤10s 建立各类型气溶胶数据库≥4个。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.6多模态超高分辨率成像仪  研究内容:针对动物肿瘤学、基础神经科学、代谢类疾病、基因治疗、免疫治疗、药物研发的临床前实验检测需求,突破超高分辨率小动物结构成像、分子成像、功能成像及图像重建算法、多模态图像融合及识别算法等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的多模态超高分辨率成像仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在临床前基础病理研究、药理学研究、基因治疗等领域的应用。  考核指标:多模态成像仪构成子系统≥4个 成像视野≥90mm 分子成像中心效率≥10%,全视野三维空间分辨率≤0.6mm,最大等效噪声计数率≥100kcps 功能成像空间分辨率≤0.3mm,灵敏度≥15000cps/Mbq 结构成像空间分辨率≤20um。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.7高通量拉曼流式细胞分选仪  研究内容:针对细胞功能分析和分选领域中,细菌、真菌、动植物和人体细胞等在单细胞精度、活体、无标记、代谢功能识别与高通量功能分选方面的检测需求,突破流式单细胞拉曼光谱采集、基于人工智能的细胞代谢表型组识别、高通量微流控细胞分选等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高通量拉曼流式细胞分选仪,开发相关软件和数据库,研制相应试剂盒等耗材,开展工程化研究、应用开发和产业化推广,实现在医药、工业、农业、环境和海洋等领域的应用。  考核指标::全谱自发拉曼检测,光谱空间分辨率≤0.2μm 检测通量≥3000个/分钟 分选通量≥3000个/分钟 分选准确率≥95% 分选后细胞存活率≥95%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.8紫外-可见光高分辨率光谱仪  研究内容:针对紫外告警、光学跟踪、微光检测等测试需求,突破高精度光谱分光、宽光谱扫描、高精度谱图标定等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的紫外-可见光高分辨率光谱仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在光学装备、光刻机等领域的应用。  考核指标:光谱范围190nm~1100nm 光谱分辨率22×10-6nm(193nm) 光谱精度≤0.1×10-3nm 最大光谱窗口≥0.8nm 最低可探测脉冲能量≤10μJ。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.9扫描式光场辐射度计  研究内容:针对发光材料及器件、照明与显示设备、红外辐射源等对光辐射性能定量检测的需求,突破发光体光色同步测量与校准、辐射光场分布测量与校准等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的扫描式光场辐射度计,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在照明显示、交通运输和文物保护等领域的应用。  考核指标::波长范围380nm~1100nm 光谱分辨率≤1nm 亮度测量精度≤±3%,色坐标测量精度≤0.002(标准A光源) 发光强度测量误差≤±2% 成像测量分辨率≥8000万像素 成像发光面直径≤600mm 扫描角度定位精度≤0.05° 全空间测量与重建时间≤10分钟。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.10紫外光电子谱分析仪  研究内容:针对材料紫外光电子发射特性和半导体表面电子结构表征等检测需求,突破真空紫外光源、真空紫外单色仪、真空紫外光电探测器等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的紫外光电子谱分析仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在宇航级材料和半导体材料等领域的应用。  考核指标:波长范围115~400nm 光源功率≥100W 单色仪波长分辨率≤0.1nm 收集增益≥106 发射产额测试范围10-6~10-1el/ph 表面分析能量范围3.2~10eV 表面分析能量分辨率≤0.01eV。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.11多自由度非接触三维光学扫描仪  研究内容:针对狭小腔体、狭长管体和叶片状零件等检测需求,突破三维非接触光学旋转扫描仪整机误差补偿、基于场景定位的自动路径规划方法、适用于狭小腔体类零部件检测的复合高精度三维扫描成像探测等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的三维非接触光学旋转扫描仪,并实现在校准实验室、航空航天、国防工业和汽车工业等领域的应用验证。  考核指标:空间工作范围≥1800mm(直径),空间测量精度≤30μm 复合高精度三维扫描测头测量范围≥5mm,测头转速≥600RPM,测量重复性≤1μm,采样频率≥2kHz,轴向分辨率≤0.5μm,侧向分辨率≤35μm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.12微探头传感器式激光干涉仪  研究内容:针对材料热线胀和压电效应测试表征、结构体微应变微振动监测分析、微纳传感器标定测试、高端装备超精密运动特性测试检定等狭小空间下大量程、高精度位移测量需求,突破毫米级微光学测头设计与多自由度精准装配、大幅度高带宽调频激光的精密稳频、高速位移的深亚纳米级分辨、位移解调误差实时修正等等关键技术,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在精密传感器计量测试、新材料科学研究、高端装备集成校准等领域的应用。  考核指标:工作距离10mm~600mm 微探头尺寸≤φ6mm×14mm 激光光源的频率调制幅度≥1GHz,调制带宽≥5MHz,激光光源中心频率精度≤5×10-8 测量速度≥1.5m/s,位移分辨力≤0.05nm,位移解调误差补偿精度≤0.4nm 测量标准不确定度≤1.6nm(40mm)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.13光电集成电路及器件参数综合测试仪  研究内容:针对集成硅光芯片、激光器、探测器、光纤无源器件等光电器件测试需求,突破复杂网络多参数自动测量与提取、网络参数误差校准、自动多模式化集散控制、高精密自动位移测量台等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的集成硅光在片综合参数测试仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在集成光电子器件、高速光纤通信等领域的应用。  考核指标:光测量波长范围1260nm~1610nm 最小探测光功率≤-80dBm 光输出功率动态范围≥70dB 偏振损耗测量范围≥30dB 光电频率响应测量带宽≥110GHz 光电频率响应动态范围≥30dB 最小可测频率响应≤-40dB 最小分析中频带宽≤1kHz 测量模式:电电测量、光电测量、电光测量、光光测量。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.14全光纤非线性单光子显微光谱仪  研究内容:针对微弱荧光光谱、活体细胞与蛋白质等无标记显微成像光谱检测需求,突破光纤非线性光源、微纳尺度发光体成像、光源光谱测量、高精度光谱图像实时处理等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的全光纤非线性单光子显微光谱仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在纳米材料、生命科学、医药研究等领域的应用。  考核指标::单光子探测响应光谱测量范围0.9µm~1.5µm,单光子探测器量子效率≥70% 显微成像视场≥300µm×300µm,横向分辨率≤1µm 分子振动光谱范围600cm-1~3000cm-1,分子振动光谱分辨率≤15cm-1 脉冲时间延迟重叠控制≤0.1ps。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.15多功能扫描探针显微镜  研究内容:针对纳米尺度形貌和物理性能检测的需求,突破高信噪比扫描探针显微测头、高精度低噪声测量控制、宏微纳米精度运动平台和扫描探针制造等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的扫描探针显微镜产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在纳米材料、生物科学等领域的应用。  考核指标:平台扫描范围≥100µm×100µm×15µm,控制精度≤0.1nm(X/Y方向),三维方向均实现闭环控制 整机噪音≤30pm(Z方向),显微镜测头噪音≤20fm/Hz1/2,力测量灵敏度≥50pN 成像速度≥1帧/秒(256×256像素) 具备实时独立控制和数字PID系统,反馈回路带宽≥100kHz 成像模式包括轻敲、瞬时力控制模式,实现形貌、定量力学、电流与电势、磁场成像、侧壁等成像功能,探针弹性常数可原位校准,具备在溶液、电场,磁场等环境使用能力。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.16高分辨地球电磁特性综合测量仪  研究内容:针对岩矿石样本电性的实验室检测、地球内部电性结构与动力学研究等需求,突破人工电性源的超音频发射、高分辨接收,天然源电磁的低漂移、抗干扰等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高分辨率电磁探测仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在地球内部动力学研究、能源资源勘查、地壳上地幔结构探测等领域的应用。  考核指标:岩矿石样本电性测量:频带范围0.01Hz~10kHz,输入阻抗≥100MΩ,发射电流分辨率1nA,测量电压分辨率0.5μV,岩矿石样本电阻率、极化率和幅相频参数测量精度≤10% 超音频大气电磁测量:频带范围10Hz~500kHz,发射电流≥1A(100kHz),接收本底噪声≤0.5μV,通道动态范围≥120dB,近地表到地下150m电阻率测量精度≤3% 超低频大地电磁测量:工作频带10-5Hz~1Hz,本底噪声≤0.1μV,长期漂移≤100μV/1000h,温度漂移≤0.01μV/℃,地下150m~100km电阻率测量精度≤5%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度达到8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.17高精度超导重力仪  研究内容:针对地球潮汐、内部物质迁移等地质学前沿科学研究对极微弱重力信号测量需求,突破高精度超导球制造、超导磁力梯度场精密调控、极低温下超导磁悬浮微位移测控、系统信号噪声抑制与数据处理等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高精度超导重力仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在精密测绘、地球动力学研究、地震监测预警和资源勘探等领域的应用。  考核指标:超导球球度≤0.1μm,系统液氦挥发率≤0.1升/年 重力测量范围≥1mGal,重力测量分辨率≤1nGal,噪声≤0.3μGal/√Hz,漂移≤0.5μGal/月。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.18形貌动态显微成像仪  研究内容:针对微纳传感器、微机电系统、集成电路等三维形貌和振动特性测量需求,突破飞米量级面外振动测量、纳米量级面内测振和纳米量级形貌测量等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的形貌动态显微成像仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现微纳加工与先进制造、微电子等领域的应用。  考核指标:面外振动测量频率范围0~25MHz,速度范围0~10m/s,面外位移分辨率≤50fm/√Hz 面内振动测量频率范围0~2.5MHz,速度范围0~10m/s,面内位移分辨率≤5nm 形貌垂直测量范围0~250μm,形貌垂直测量分辨率≤45pm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.19三维复杂结构非接触精密测量与无损检测仪  研究内容:针对空间行波管、磁控管、速调管、封装集成电路、三维封装微系统等电子封装器件关键核心部件复杂内部和外部结构精密测量与无损检测需求,突破探测信号非接触激励与接收、高分辨率扫描成像、三维结构精密测量、图像处理、缺陷智能识别评估及材料力学性能测量等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的三维复杂结构精密测量与无损检测仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在电子封装器件缺陷检测、结构精密测量、材料力学性能测量等领域的应用。  考核指标:实现检测范围水平方向≥300mm×300mm,垂直方向≥50mm,金属和陶瓷等材料穿透深度≥10mm 三维结构测量精度≤10µm,空间分辨率≤10µm 裂纹检测灵敏度≤20µm,材料力学性能测量误差≤5%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.20高频阵列超声成像分析仪  研究内容:针对生物医学高分辨实时成像、材料微观缺陷无损检测需求,突破高性能阵列换能阵列、高频阵列超声成像、高精度数字采集等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高频阵列超声成像分析仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生物医学、材料科学研究等领域的应用。  考核指标:高密度声学换能器阵列数≥256,高频阵列探头中心频率≥50MHz,带宽≥50% 成像深度≥10mm,深度成像分辨率≤70um 纵向分辨率≤60um 实时成像速度≥200帧/秒 二维剪切波弹性成像帧频≥2帧/秒。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.21超宽带高性能噪声系数分析仪  研究内容:针对雷达、通信、电子侦察、精确制导等电子装备以及宽禁带半导体器件对噪声性能的测试需求,突破超宽带高灵敏度噪声信号接收、高精度噪声信号检测与处理、大动态通道增益自动调整和校准、超宽带噪声源定标等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的超宽带高性能噪声系数分析仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在电子装备、5G/6G通信和集成电路等领域的应用。  考核指标:频率范围10MHz~110GHz 噪声系数测量范围0~30dB 噪声系数测量不确定度≤0.1dB 增益测量范围-20dB~+40dB 增益测量不确定度≤0.15dB 测量带宽10MHz/5MHz/3MHz/2MHz/1MHz/500kHz/300kHz/200kHz/100kHz,噪声源超噪比15dB±8dB。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.22天线环境效应多参数综合测试仪  研究内容::针对卫星通信天线、5G/6G通信MIMO天线、相控阵雷达天线等电子装备天线方向性及无线空口特性测试需求,突破宽频带分布式模块化信号发生与多通道接收、变温环境构建与精确控制、宽温低损耗测试夹具、变温环境测试误差修正与校准、微波毫米波球面近场天线测试等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的天线环境效应多参数综合测试仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在无线通信、雷达、卫星通信和卫星导航等领域的应用。  考核指标::频率范围1GHz~110GHz 变温范围-50℃~+100℃ 温控精度≤±1℃ 温控步进≤1℃ 增益测量精度≤±0.5dB -20dB副瓣测量精度≤±0.5dB(1GHz~40GHz),≤±0.8dB(40GHz~75GHz),≤±1.2dB(75GHz~110GHz) 等效全向辐射功率测量精度≤±0.5dB 总辐射功率测量精度≤±0.7dB。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.23毫米波与太赫兹材料电磁特性测试仪  研究内容:针对5G/6G移动通信电路板材和天线材料、卫星天线材料、吸收屏蔽材料、集成电路材料、回旋行波管材料等毫米波与太赫兹材料电磁特性测试需求,突破高灵敏度太赫兹收发模块、太赫兹准光波束传输、超宽带测试夹具、材料电磁特性准确提取计算反演算法等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的太赫兹材料电磁特性测试仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在毫米波与太赫兹集成电路、通信、深空探测等领域的应用。  考核指标:频率范围18GHz~1100GHz 动态范围≥120dB(18GHz~50GHz),≥110dB(50GHz~325GHz),≥90dB(325GHz~750GHz),≥60dB(750GHz~1100GHz) 相对介电常数测试范围1~30,测试准确度≤±2% 相对磁导率测试范围1~10,测试准确度≤±1% 样品厚度50μm~5mm 材料形态包括固体、薄膜、粉末、液体等。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.24高性能物联网综合测试仪  研究内容:针对物联网商用终端、模组和芯片、CPE等研发检测需要,以及5G、WiFi、蓝牙等协议标准测试需求,突破DSS、MU-MIMO、1024-QAM和增强V2X等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高性能物联网综合测试仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在物联网终端、模组、芯片、无线局域网和工业互联网等领域的应用。  考核指标:频率范围70MHz~18GHz 输出功率-110dBm~0dBm 接收信号电平-80dBm~+30dBm 调制与分析带宽1200MHz 波形方式CP-OFDM、DFT-S-OFDM 调制方式SSB、BPSK、QPSK、16QAM、64QAM、256QAM、1024QAM、CCK、GFSK、OFDM、DSSS、FHSS 多址方式OFDMA、SC-FMDA EVM≤-40dB 支持AWGN模拟、多径信号模拟、接收机灵敏度测试、支持8天线单流和多流信号模拟与分析等功能。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.25多通道混合信号示波器  研究内容:针对5G通信、智能汽车、雷达、电子对抗等电子设备对宽带模拟信号和高速数字信号的测量需求,突破宽带信号调理、高速信号采集与存储、波形实时处理与荧光显示、模数混合智能触发等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的多通道混合信号示波器,开发相关应用软件,开展工程化开发、应用示范和产业化推广,实现在集成电路、5G通信、雷达等领域的应用。  考核指标:模拟通道数8个,模拟通道带宽≥6GHz,模拟通道采样率≥16GSa/s,模拟通道垂直分辨率10bit 数字通道数16个,数字通道带宽≥300MHz,数字通道采样率≥4GSa/s,数字通道垂直分辨率1bit 波形捕获率≥20万个波形/秒。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.26微观电磁物性自旋量子精密测量仪  研究内容:针对量子计算和量子通信领域对量子自旋、磁性、电流、电场、显微成像等测量和表征需求,突破金刚石自旋量子精密测量、高分辨光学显微和扫描探针融合、多种探头模块和标准样品等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的微观电磁物性自旋量子精密测量仪,开发相关应用软件,开展工程化开发、应用示范和产业化推广,是现在物理科学、材料科学、生物医学和信息科学等领域的应用。  考核指标:测量视野范围≥1000μm×1000μm 空间分辨率≤10nm 成像速度≥20ms/pixel 最高磁场灵敏度≥100nT/Hz1/2 磁偶极矩分辨率≤10-16Am2 电磁波测量频率范围0~18GHz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.27超导低温电流比较仪  研究内容:针对高准确度量子电阻测量、单电子隧穿电流测量、高压离子室微弱放电电流测量和加速器粒子束流密度测量等需求,突破超高灵敏度低噪声超导量子干涉、超低泄露磁通超导屏蔽结构设计、大变比电流比率自校准、超导比率线圈低频振荡抑制、液氦气压波动滤波等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的超导低温电流比较仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在量子电阻测量、量子电流测量、高压电离室微弱电流测量等领域的应用。  考核指标:电流比例范围可连续覆盖1:1~2048:1 电流比率不确定度≤1×10-10(k=1) 电流噪声≤100fA/√Hz 指零仪噪声≤1nV/√Hz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  1.28自主创新科学仪器  研究内容:面向国家自然基金委员会重大科研仪器研制项目和中国科学院科研仪器设备研制项目,优选通过项目综合绩效考评或项目验收的、取得原理样机的、量大面广通用的原始创新科研仪器。通过专项滚动持续支持,加强工程化研制和应用开发,开展应用示范和产业化推广,开发具有自主知识产权、质量稳定可靠、核心部件国产化的仪器产品,开发相关软件和数据库,实现在不少于两个领域或行业的推广应用。  考核指标:项目技术指标自定,指标体系完整,达到国际先进水平或国际领先水平。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级,至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权,形成批量生产能力,经指定用户试用,满足用户使用要求。  1.29核磁共振波谱仪  研究内容:针对化学分析、生物分子结构、代谢混合物组分等检测需求,突破超高场稳态磁体设计与制造、高精度磁共振谱仪控制、高效射频激发与接收等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的核磁共振波谱仪产品,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在化学化工、生命医学、食品制药和环境能源等领域的应用。  考核指标:磁场强度≥14T 室温孔径≥50mm 磁场稳定度≤9Hz/h 磁场均匀度≤0.05ppm 支持多核素频谱分析范围1H、13C、15N、31P、129Xe等 射频带宽50~650MHz以上 波谱频率分辨率≤0.003Hz 射频发射通道数≥2通道 液氦补充时间≥150天。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  1.30宽频带取样示波器  研究内容:针对5G移动通信、光纤通信设备和高速网络设备的宽带模拟电路和高速数字电路开发与检测需求,突破85GHz采样器、超低抖动时钟产生与触发、高速时钟恢复、高精度波形采集与恢复、信号完整性分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的宽频带取样示波器,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在光纤通信、5G移动通信、雷达、卫星通信与卫星导航等领域的应用。  考核指标::电采样模块:通道数量2 测试带宽≥85GHz 采样率≥150kSa/s 抖动≤80fs 采样分辨率16bit 光采样模块:波长范围800~1600nm 光接收灵敏度优于-7dBm 测试带宽≥65GHz 采样率≥150kSa/s 抖动≤250fs 采样分辨率16bit。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求,用户已实际采购。  1.31高灵敏手性物质离子迁移谱与质谱联用仪  研究内容:针对生物样品分析、临床诊断和药物开发等领域对手性分子同分异构体快速识别、高灵敏高准确定量分析的需求,突破离子迁移过程模型仿真与控制、手性物质高选择性试剂制备、手性气相离子高效选择性存储、高分辨手性气相离子构型差异分析与质量分析等关键技术,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高灵敏手性物质离子迁移谱与质谱联用仪,开发相关软件和数据库,开展工程化开发、应用示范和产业化推广,实现在生命科学、临床医学和药物学等领域的应用。  考核指标:手性分子纯度检测范围0.1%-99.9%,离子迁移谱分辨率≥300 手性物质分析检出限≤10-10摩尔/升 质谱质量分辨率≥100000 手性分子分析时间≤10分钟/样品 建立手性物质数据库1套。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 至少应用于2个领域或行业。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  1.32活细胞超分辨高速全景成像系统关键部件研发及应用  研究内容:开发具有国际竞争力的商业化国产活细胞超分辨高速全景三维成像系统,具备荧光及无标记相位三维超分辨率成像能力 拓展成像模态产品谱系和应用范围 实现高速高灵敏度sCMOS相机、高分辨率高速空间光调制器件、高速高精度扫描位移台等关键核心器件国产化。开展工程化开发、应用示范和产业化推广,实现在细胞生物学、神经科学、临床前重大疾病病理和药物筛选等领域的应用。  考核指标::高分辨率高速空间光调制器刷新速率高于4.5kHz,分辨率大于2048×2048,实现高速照明光调制 高速高灵敏度sCMOS相机读出速度大于100帧/s@2048×2048,读出噪声低于1.3e,量子效率大于90%,实现高速大视场超分辨荧光图像采集 高速高精度扫描位移台闭环运动控制,光栅尺最小读数100nm,二轴扫描行程60×100mm,最大位移速度100mm/s,实现大行程、高精度、高速扫描显微成像。活细胞超分辨高速全景三维成像系统实现荧光-无标记双模态超分辨率成像,三维活细胞超分辨率成像性能:横向分辨率优于80nm,轴向分辨率优于200nm,三维超分辨成像速度大于10Hz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥3000小时,技术就绪度不低于8级 在不少于3个领域开展示范应用。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  2.核心关键部件开发与应用  原则上,使用指南名称申报,每个项目下设课题数不超过4个,项目参与单位总数不超过4个,实施年限不超过3年。  2.1大功率端窗型X射线光管  研究内容:开发大功率(3kW和4kW)端窗型X射线光管,突破大功率散热、铍窗窗口高温焊接、X射线激发与防护、高真空焊接与保持等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在波散型X射线荧光光谱仪、大功率X射线荧光光谱仪等仪器中的应用。  考核指标::射线管耐压≥75kV 灯丝电压范围≥(6.0-13.0)V(AC/DC) 灯丝电流≥10A 额定输出功率≥4kW 窗口直径≥18mm 铍窗厚度≤76μm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.2450kVX射线源  研究内容:开发450kVX射线源,突破高真空、绝缘材料、灯丝制造、高频高压、油冷却等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在工业CT、X射线智能在线检测系统和X射线拍片机等仪器中的应用。  考核指标:高压范围30~450kV,调节精度1kV 电流范围0~15mA,调节精度0.5mA,连续功率≥800W 小焦点尺寸≤0.4mm,大焦点尺寸≤1.0mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.3120kV热场发射电子枪  研究内容:开发120kV热场发射电子枪,突破电子束长时间稳定发射、高压微放电抑制和超高真空保持等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在120kV透射电子显微镜和冷冻电子显微镜等仪器中的应用。  考核指标:加速电压60~120kV(可调) 发射能量宽度≥0.8eV 发射电流稳定性≤±0.5nA/Day 真空度≤9.0E-8Pa。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.4裂解源  研究内容::开发裂解源关键部件,突破多温区独立控温、超高真空下突破热解氮化硼耐温极限的加热部件设计、超高真空下能预防材料沉积堵塞的阀门设计等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在分子束外延系统、原子层沉积设备和真空表面处理设备等仪器设备中的应用。  考核指标:固体材料裂解源拥有≥2个可独立控温温区,最高裂解温度≥1200℃ 气体裂解源中氢分子解离≥80%,氧分子解离≥80%,最高工作温度≥1900℃ 可控束流裂解源包含≥3个独立控温温区,磷元素裂解后组分比值P2/P4≥150。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.5宽带半导体增益激光器  研究内容::开发宽带半导体增益激光器,突破半导体InP基增益芯片外延生长、半导体芯片微纳制备、多参数芯片自动测试、小尺寸管壳封装等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在光矢量网络分析仪,相干通信解调仪,FBG解调仪和谐振式光学陀螺仪等仪器设备中的应用。  考核指标:中心波长:1550nm±20nm 3dB带宽≥80nm 单通增益≥13dB(1550nm) 自由空间输出功率≥0.4mW 工作电流≤500mA 端面反射率≤0.01%(空间耦合输出端) 谐振输出光功率≥10mW 谐振范围≥120nm 线宽≤5KHz。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.61560nm激光直接激发太赫兹源  研究内容:开发1560nm飞秒激光太赫兹源,突破极短载流子寿命高暗电阻的1550nm激发光电导材料制备、高效率宽谱太赫兹辐射天线结构设计、宽谱高灵敏太赫兹探测结构设计、微米厚度超晶格结构刻蚀与封装工艺优化等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在太赫兹时域光谱仪、太赫兹三维层析仪和太赫兹二维图谱分析仪等仪器中的应用。  考核指标:波长范围1550nm~1570nm,工作频率范围0.1~6THz 动态范围≥80dB。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.7高分辨率电源测量模块  研究内容:开发高分辨率电源测量模块,突破高功率密度电源产生小型化、基于脉宽调制的高分辨率电源产生和测量、基于漏电流保护的pA级微弱电流测量等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在半导体集成电路测试仪、半导体器件伏安特性曲线测试仪等仪器中的应用。  考核指标:±60V高分辨率电源测量模块:输出功率20W,电压输出范围和测量范围±60V,最小分辨率1μV,精度≤±(0.02%+50μV),电流输出和测量0~1A,最小分辨率1pA,精度≤±(0.03%+100pA) ±200V高分辨率电源测量模块:输出功率20W,电压输出范围和测量范围±200V,最小分辨率1μV,精度≤±(0.02%+100μV),电流输出和测量最大值1A,最小分辨率1pA,精度≤±(0.03%+100pA)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.8宽带射频功率放大器  研究内容:开发宽带射频功率放大器,突破高实时性高保真度设计、射频高功率脉冲电路制造工艺、高功率密度电路、宽带增益补偿及精细幅相校准算法等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在超高场动物磁共振成像仪、超高场正电子发射断层成像与磁共振一体化动物成像仪等仪器中的应用。  考核指标:峰值功率能力≥1.5kW(脉冲式) 工作占空比≥10% 工作频率范围100MHz-402MHz 支持额定工作频率个数≥3 增益幅相波动≤1dB/15°(40dB动态范围内),输出功率波动≤0.3dB(连续5分钟输出)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用足用户使用要求。  2.9正电子断层成像探测器  研究内容:开发正电子断层成像探测器,突破超精细三维编码正电子断层成像探测器设计和制造工艺、高密度数据读出电路设计及模式补偿算法等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在超高分辨率小动物PET/CT活体成像仪器、小动物PET/MR活体成像仪等仪器中的应用。  考核指标:晶体衰减时间常数≤50ns 晶体长度≥10mm 探测器平面分辨率≤1mm 响应深度分辨率≤4mm 读出专用集成电路通道数量≥32ch。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.10抗辐照硅单光子探测器面阵  研究内容:开发高性能硅单光子探测面阵,突破抗辐照SPAD结构设计和制备、读出电路设计和制备、光学和电学封装等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在荧光光谱分析、遥感与测距仪、激光雷达等仪器中的应用。  考核指标:面阵规模≥64×64 像素尺寸50~100μm 波长响应范围350~1000nm 光子探测效率≥50% 暗计数≤100Hz 单光子时间分辨率≤50ps(532nm) 串扰率≤0.1% 抗辐照能力优于100kRad(Si) 死时间  2.11半导体伽马射线成像探测器  研究内容:开发半导体伽马射线成像探测器,突破半导体像素探测器设计与制备、高精度伽马射线能谱修正和反演算法、高灵敏伽马射线成像系统集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现射线天文望远镜和伽马相机等仪器中的应用。  考核指标:能量探测范围:10KeV~3000KeV 能量分辨率≤3%@122keV、能量分辨率≤1%@662keV 空间分辨率(水平方向)≤1mm,空间分辨率(深度方向)≤1mm,角度分辨率≤15° 本征探测效率≥90%(122KeV) 灵敏度≥25000cps/MBq(122keV)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.12微型非放射离子迁移传感器  研究内容:开发微型非放射离子迁移传感器,突破长寿命高电流密度介质阻挡辉光放电离子源制备、高分辨率微型离子栅门制备、10um级抗冲击高效渗透膜制备、低吸附金属陶瓷封接离子迁移管制备、低噪声pA级微弱脉冲电流检测器设计、低功耗高压驱动电路设计等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在化学毒剂及有毒有害气体检测仪、痕量爆炸物及毒品检测仪等仪器中的应用。  考核指标:检测灵敏度≤0.5mg/m3(GB),≤1ng(TNT) 响应时间≤7s(GB),≤5s(TNT) 电流密度≥10nA 检测器噪声≤20fA/Hz0.5@1kHz,增益≥1×1010 离子栅门金属丝直径≤20μm,金属丝间距≤300μm 渗透膜厚度≤15μm 一体化陶瓷迁移管气密性≤20Pa(20kPa,10min) 过载恢复时间≤2分钟(GB20mg/m3) 重量≤500g 尺寸≤120mm×80mm×50mm 功耗≤2W。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.13二维平面中子探测器  研究内容:开发二维平面中子探测器,突破大灵敏区域氦三中子管线状检测、二维平面中子探测与校准等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在核安全学、核物理学和核化学等中子监测仪器中的应用。  考核指标:热中子监测视场≥200mm×200mm,热中子监测效率≥95% 成像横向分辨率≤900μm,纵向分辨率≤900μm 具有中子和伽玛信号分辨能力,能量分辨率≥15%(662KeV),最高探测器计数率≥100kHz,探测器死时间≤10us 探测器增益温度率≤10%/℃ 响应时间≤100μs。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.14光谱色散式膜厚探测器  研究内容:开发光谱色散式膜厚探测器,突破毫米级大量程纳米级精度测量、千赫兹采样速率高速数字采集、恶劣环境抗震抗污性光学探头、长时大通量高速高精度厚度解算算法等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在晶圆检测系统、制程薄膜测量系统等仪器中的应用。  考核指标:厚度测量范围≥4μm~2000μm 轴向分辨率≤1nm 横向空间分辨率≤30μm 测量速率≥4000Hz 适应于水、油、酸等液态环境使用,适应于透明和非透明材质测厚,对热、潮湿、振动不敏感。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.15光学麦克风  研究内容:开发高精度光学麦克风,突破光学声敏感元件结构设计、纳米级偏移量干涉测量、光学声敏感元件微纳加工制造、本质安全型封装等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在局部放电超声监测仪、声成像仪、光纤水听器等仪器中的应用。  考核指标:频率响应范围10Hz-100kHz 声压灵敏度≥1V/Pa(1kHz) 等效噪声水平≤25dBA 最大可测声压≥115dBSPL,声压响应线性度≥4个数量级 探头直径≤8mm,长度≤20mm 工作温度范围-40℃~80℃。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.16高性能紫外成像探测器  研究内容:开发紫外高性能成像探测器,突破高增益面阵单光子计数器制备、像素级空间光调制器与单光子计数器耦合结构设计、图像高动态范围采集、低暗计数率实现等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在原子荧光光谱仪、电感耦合等离子体原子发射光谱仪等仪器中的应用。  考核指标:光谱响应范围≥180nm~320nm 探测面积≥14mm×10mm,像元数≥1024×768个 像元尺寸≤14μm×14μm 动态范围≥140dB 增益≥107 暗计数率≤1cps/cm2。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.17碲镉汞制冷红外探测器  研究内容:开发高性能碲镉汞制冷红外探测器,突破高量子效率宽响应碲镉汞三元化合物材料制备、低温真空杜瓦封装等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在FTIR红外遥测、傅里叶便携气体分析仪、台式FTIR等仪器中的应用。  考核指标:像元面积≥100μm2 探测响应率≥24000V/W,比探测器率≥4×1010cm/Hz1/2W1,后截至波长≥16μm,工作温度≥65K。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.18电磁力配衡重量检测器  研究内容:开发电磁力配衡重量检测器,突破电磁力补偿传感器制备、带孔微小力臂结构设计、机械力与电磁力耦合、环境误差快速综合补偿等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在称重系统、孔隙与密度测量仪等仪器中的应用。  考核指标:最大称量≥500g,重复性≤0.30mg 最大电子称量≥100g,重复性≤0.06mg 称重分辨率0.01mg 稳定时间≤9s。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.19可转运磁共振成像探测阵列  研究内容:开发可转运磁共振成像探测阵列,突破无磁化机械传动装置、磁共振兼容的转运对接接口、高密度超柔性磁共振成像探测阵列、低噪声前置放大器小型化等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在高场强磁共振成像仪、正电子发射成像与磁共振一体化成像仪等仪器中的应用。  考核指标:探测阵列中心频率≥128MHz 中心频率容差±1% 通道数≥24 前置放大器噪声系数≤1dB 图像信噪比≥80% 柔性程度需满足自然弯折角度≥180度 转运设备负载≥250kg 部件整体运动推力≤200N 部件面板运动推力≤100N。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.20程控升降温与称重多功能探测器  研究内容:开发程控升降温与称重多功能探测器,突破片上微区超高升降温速率温度调控、皮克级质量测量分辨率、实时质量变化追踪等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在热重分析仪、程序升温脱附分析仪、吸附热力学动力学参数分析仪等仪器中的应用。  考核指标:实现程序升温和质量称量功能,芯片尺寸≤2mm×2mm 质量测量分辨率≤0.5皮克 温度控制范围:室温~1000℃,温度分辨率≤0.1℃,温度波动≤0.3℃ 程控升降温最高速率≥500℃/秒。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.21高灵敏度大动态范围微电流计  研究内容:开发高灵敏度大动态范围微电流计,突破超低噪声前置放大、高分辨率数模转换、无量程切换大动态范围测量等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在气溶胶法拉第杯静电计、气相色谱仪、机动车排放超细颗粒物监测仪等仪器中的应用。  考核指标:无量程切换动态范围≥100dB 满量程下灵敏度≤0.5fA 零点噪声≤0.4fA(1δ) 响应时间≤120ms 分辨率≤1fA(-50pA~+50pA) 24h零点漂移≤1fA。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.22微型比例阀  研究内容:开发微型比例阀,突破小流量微型气体流量压力调节、在各种介质上热补偿等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在全自动气相色谱EPC、质谱仪、原子吸收光谱仪等仪器中的应用。  考核指标:响应时间≤5ms 全开闭生命周期≥3亿次 功耗≤0.5w 迟滞≤5% 压力范围0-500psi 内外部泄露≤1kPa/30min(300kPa-H2) 耐受酸、碱、氟化物、磷化物、硫化物、耐颗粒、油污和水等。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.23抗振动分子泵  研究内容:开发抗振动分子泵,突破分子泵小尺寸约束条件下抽气性能优化、弱刚性复杂零部件超精密加工与装配工艺、复杂苛刻工况下环境适应性、强扰动条件下超高速稳速控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在便携式质谱仪、桌面式质谱仪和车载质谱仪等仪器中的应用。  考核指标::抽速≥5L/s(针对N2) 压比≥105(针对N2) 可启动最大前级压力≥1500Pa 极限真空度≤5×10-3Pa 额定工作转速90000rpm 额定转速运行噪音≤65dB 分子泵抗瞬态冲击强度达≥20g,可任意方向放置工作,工作温度范围-20℃~56℃ 启动时间≤2min 重量≤1.85Kg 尺寸≤175mm×75mm×135mm。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.24微焦点X射线准直装置  研究内容:开发微焦点X射线源准直装置,突破微米级点光源配套多层膜反射镜以及多狭缝系统制造、协同组装及光路调整和检验、高精度超光滑X射线非球面反射镜制造等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在二维广角X射线衍射仪、小角X射线散射仪、微区X射线衍射仪等仪器中的应用。  考核指标:X射线非球面反射镜面形精度≤3nm,表面粗糙度光滑精度≤0.3nm,中频误差平滑精度≤1.5μrad 发散X射线聚焦后准直度≤0.5mrad,光斑尺寸≤0.5mm,X射线通量≥1.0×108光子/秒。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.25宽频带同轴开关  研究内容:开发宽频带同轴开关,突破宽带匹配传输、微小零件精密成型、电磁组件可靠切换等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在矢量网络分析仪、频谱分析仪和开关矩阵等仪器中的应用。  考核指标:单刀双掷开关:频率范围DC~110GHz,驻波比≤2.5,插入损耗≤2.5dB,隔离度≥50dB 双刀双掷开关:频率范围DC~67GHz,驻波比≤1.9,插入损耗≤1.5dB,隔离度≥60dB 单刀四掷开关:频率范围DC~67GHz,驻波比≤2.0,插入损耗≤2.0dB,隔离度≥60dB。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.26毫米波隔离器  研究内容::开发毫米波波导隔离器,突破宽带高隔离度、高精度成型、定位装配、间隙波导法兰设计制造等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在毫米波频谱仪分析仪、毫米波矢量网络分析仪等测试仪器中的应用。  考核指标:工作频率范围50GHz-75GHz,插入损耗≤3dB,隔离度≥18dB 工作频率范围60GHz-90GHz,插入损耗≤3dB,隔离度≥18dB 工作频率范围75GHz-110GHz,插入损耗≤3dB,隔离度≥18dB 工作频率范围90GHz-140GHz,插入损耗≤3dB,隔离度≥18dB 工作频率范围110GHz-170GHz,插入损耗≤3dB,隔离度≥18dB。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.27宽频带微型化双定向耦合器  研究内容:开发宽频带微型化双定向耦合器,突破定向耦合器综合集成设计、微细精密加工、精密封装与装配、阻抗匹配转换等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在宽频带矢量网络分析仪、信号发生器等测量仪器中的应用。  考核指标:宽频带双定向耦合器:工作频率10MHz-110GHz 方向性≥15dB 插入损耗≤5dB 回波损耗≤-15dB 外形尺寸≤20mm×20mm(不含同轴连接器) 毫米波双定向耦合器:工作频率110GHz-260GHz 方向性20dB 插入损耗≤4dB 回波损耗≤-15dB 外形尺寸≤20mm×20mm(不含同轴连接器)。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.28扩口微通道板  研究内容:开发扩口微通道板,突破扩口工艺造成一致性差、选择性腐蚀造成锥度尺寸难以达标等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在质谱分析仪、微光像增强器和真空荷电粒子探测仪等仪器中的应用。  考核指标:开口面积比≥90%,孔间距≤15μm,斜切角≤12°,扩孔同心度≤0.5μm 暗电流≤0.5pA/cm2 增益≥104(1kV) 电阻范围10~100MΩ。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经指定用户试用,满足用户使用要求。  2.29热场发射电子源  研究目标:开发热场发射电子源,突破单晶钨制备、尖端取向和形状控制、氧化锆处理、电子枪结构设计、灯丝对中控制等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在扫描电子显微镜、透射电子显微镜等仪器中的应用。  考核指标:微尖曲率半径范围1.2µm~0.4µm(可控),误差≤±0.05µm 阴极温度1750K-1800K 栅极电压-200~-600V(可调) 角电流密度200µA/sr 引出电压3-6kV(可调) 最大电子束流≥150nA 电流稳定度≤1%。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  2.30磁共振成像低温探头  研究内容:开发磁共振成像低温探头,突破高密度射频阵列、超低温制冷系统、低噪声前置放大等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在高场磁共振成像仪、波谱分析仪等仪器的应用。  考核指标:通道数≥2 扫描孔径≥2cm 射频探头匹配≤-15dB 探头温度≤30K 前置放大器噪声系数≤1dB 灵敏度提高(低温/常温)≥4倍。项目完成时通过可靠性测试和  第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  2.31X射线能谱探测器  研究内容:开发X射线能谱探测器,突破大面积硅漂移探测、电荷前置放大、数字多道分析、漏电流噪声抑制、真空封装等关键技术 开展工程化开发、应用示范和产业化推广 形成具有自主知识产权、质量稳定可靠的部件产品,实现在X射线能谱仪、电子显微能谱分析仪等仪器以及同步辐射大科学装置的应用。  考核指标:探测器尺寸≥30mm2 能量分辨率≤127eV(MnK) 探测元素范围Be-Am 最大输出计数率≥300kcps(最大输入计数率1000kcps) 窗口材料铍、氮化硅(≤100nm)或无窗。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  2.32高通量生物样品真空传递装置  研究内容:开发高通量生物样品真空传递装置,突破小样品精细操作、真空低温精密运动、低温样品镀膜等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在透射电镜和扫描电镜等仪器中的应用。  考核指标:考核指标:最低存储温度≤-160℃ 真空度≤5×10-4Pa 运动精度≤100μm 样品存储数量≥12grids 镀膜真空度≤4Pa 镀膜样品台温度≤-160℃。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  2.33深地声学探测器  研究内容:开发具有耐高温、耐高压、高性能和高稳定性的声学探测器,突破耐高温高压材料调控、小体积低频宽带结构以及界面粘接机理和工艺等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在三维远程声波探测仪、深地超声成像测井仪等仪器中的应用。  考核指标::单极换能器(长度伸缩):工作频带5-20kHz,最高耐温≥260℃,最高耐压≥200MPa 偶极换能器(弯曲振动):工作频带1-4.5kHz,最高耐温≥230℃,最高耐压≥172MPa 多极接收器:工作频带1-20kHz,最高耐温≥230℃,最高耐压≥172MPa 超声换能器:工作频带250-700kHz,最高耐温≥205℃,最高耐压≥172MPa。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  2.34太赫兹超导混频器  研究内容:开发太赫兹超导混频器,突破超导混频器芯片设计与制备、超导混频器与低温低噪声放大器集成、一维相干探测接收机阵列集成等关键技术,开展工程化开发、应用示范和产业化推广,形成具有自主知识产权、质量稳定可靠的部件产品,实现在太赫兹频谱仪、太赫兹安检仪和射电天文接收机等仪器中的应用。  考核指标:探测器中心频率0.1~0.3THz 中频带宽≥5GHz 噪声温度≤7倍量子噪声 动态范围≥30dB 像素≥1×10。项目完成时通过可靠性测试和第三方异地测试,平均故障间隔时间≥5000小时,技术就绪度达到9级 至少应用于2类仪器。明确发明专利、标准和软件著作权等知识产权数量,具有自主知识产权 形成批量生产能力,经用户试用,满足用户使用要求。  二、科研试剂  3.高端化学试剂研制  3.1高端战略性稀土试剂  研究内容:利用我国储量丰富的稀土资源,研制高纯度稀土氧化物,水合/无水稀土卤化物及类卤化物 水溶性稀土有机金属配合物,稀土烷基、胺基、氢化物及硼氢化物等试剂 手性稀土有机配合物试剂,开发具有我国自主知识产权的稀土金属有机试剂和手性稀土配合物试剂,满足科研领域对高端稀土试剂的需要,实现稀土战略资源在科研试剂领域的高值化、多功能化,发展经济可行性合成工艺,实现原创试剂的批量化制备。  考核指标:开发稀土氧化物、卤化物及类卤化物等基础稀土试剂的高纯度制备方法及工艺,形成不少于10种高纯度氧化物及卤化物的规模化制备能力,其中包含不少于5种超低放射性高纯稀土化合物(纯度不低于99.99%,比活度低于0.2Bq/g,敏感金属杂质含量  3.2高端/高值有机光电功能试剂  研究内容:针对有机光电功能材料研究对高端专用化学试剂的重大需求,发展针对有机光电器件制备专用溶剂的批量化提纯技术,针对由我国自主研发、性能优异的有机光电材料,发展关键试剂(如:共轭硼试剂、共轭锡试剂、关键中间体试剂及目标功能材料)的低成本、批量化制备与提纯技术,研究上述各类专用试剂中杂质的检测方法并形成相应的质量控制标准,利用原创试剂有力支撑有机光伏、场效应晶体管、热电等方面的基础与产业化研究,抢占这一重要领域的技术制高点。  考核指标:针对各类有机光电器件制备专用的超干、高纯溶剂,获得具有自主知识产权的提纯技术,明确杂质的来源并将其控制到检测限以下,水含量≤50ppm,溶剂类型≥10种,达到进口溶剂同等水平的高性能光电器件制备 针对我国自主研发、性能优异的有机光电功能分子、界面修饰试剂和光交联剂如PM6、ITIC、Y6、DPP等材料及其衍生物,获得相应的锡试剂、硼试剂、关键中间体及目标材料的宏量制备和提纯技术(试剂类型≥100种,纯度≥99%) 解决有机光电功能高分子试剂的批次差异问题(批次间的重均分子量差异≤10%、多分散指数差异≤20%、试剂的光电性能指标差异≤5%) 申请专利30项,建立行业/企业标准6项。  3.3高端元素有机试剂  研究内容:利用我国已经形成的基础有机硅、有机硼、有机磷等产业优势,开展广泛应用于有机与高分子合成等的硅、硼、磷类的高端元素有机试剂的高效合成方法和高纯度批量制备技术研究,研发具有自主知识产权的高端和新型原创元素有机试剂,特别是用于特种有机反应、药物合成、新型高性能有机无机杂化材料和高分子材料创制的系列高纯有机硅试剂、有机磷试剂和有机硼试剂等,促进高价值元素有机试剂实现自主可控,推动其在信息、微电子、特种制药和高性能新材料等领域的创新研究和应用示范。  考核指标:建立包括系列特定结构的有机硅、有机硼、有机磷等在内的重要元素有机试剂的绿色高效合成方法。硅、硼、磷每种元素各开发3种以上(共10种以上)氢化物及元素-元素键新试剂 建立高效、高选择性实用合成体系,发展合成工艺,突破8项以上高纯度(≥99%)批量制备(百克级)的关键技术,建立批量制备能力和质量控制标准。形成自主知识产权体系,申请发明专利15项以上。  4.应用于重大疾病诊断的生物医学试剂创制与应用  4.1体外快速诊断发光免疫自测试剂  研究内容:面向疾病自测应用,研发具有自主知识产权的低/无背景信号干扰的多重发光标记物,开发多重发光标记物的宏观可控制备技术 基于新型发光过程和化学传感原理,发展多重发光免疫定量联检与体外快速诊断结合新技术 形成具有先进性能指标的体外自测试剂盒,实现新型检测技术在免疫快速检测应用中的突破,满足肾病等慢性病和术后感染等对于居家自测和预后评估的重大需求。  考核指标:完成发光免疫自测试剂核心原材料——多重发光微球的研制:发光微球通过发光信号时空分辨进行多重编码,获得³12种不同信号 为了更好地消除多重信号之间干扰,发光寿命范围涵盖纳秒到秒,每个工作波长信号相差大于70nm 发光微球的尺寸范围为50-500nm可调,尺寸分布标准差小于5% 建立具有多重发光标记微球的宏量制备技术,实现1升体积发光微球水溶液的量产(10克量级 对于1000万人份试剂)及常温保存 实现发光免疫联检自测试剂应用示范:实现便捷(单次加样、一次性操作、不少于1cm´1cm大面积信号区域的单次采集)、快速(  4.2高稳定等温扩增核心酶及高灵敏配套试剂开发及应用  研究内容:针对等温扩增核心酶被国外垄断的现实困境,建立具有自主知识产权的等温扩增技术,研制高稳定等温扩增系统及高灵敏试剂。开发专用型等温扩增引物、探针设计软件,通过核心酶基因挖掘、分子改造创制性能优良的核心酶新基因,攻克核心酶制备及量产技术,建立反应体系优化平台,研制高灵敏核酸检测试剂盒、高值耗材及检测单元,实现试剂可常温运输与存储。促进临床分子诊断技术应用重心下移,在床旁诊断、战地医疗以及居家检测方面形成示范应用。  考核指标::研发包括逆转录酶、BstDNA聚合酶和RNA酶抑制剂等在内不少于5种等温扩增核心原料 开发具有自主知识产权专用引物设计软件1个,建立高通量筛选平台和试剂组分优化平台 完善核心酶的可控批量制备及量产工艺,批间差小于5%,无核酸酶等杂酶残留 研发高灵敏等温扩增法检测试剂盒不少于5种,检测限低于300copies/mL 建立试剂冻干技术及量产工艺1套,日产能不低于100万人份,冻干后试剂性能达到液体试剂90%以上,批内CV≤3% 开发基于微流控技术的高值耗材,手持式及台式检测单元,实现“样本进结果出”,并完成3家以上单位应用示范。获得不低于2个医疗器械产品注册证。  4.3质谱流式细胞仪配套试剂研制  研究内容:针对质谱流式细胞仪配套试剂在复杂疾病的细胞生物学机制解析、疾病的精准分型和诊断等方面应用面临的灵敏度和生物兼容性问题,攻克单个生物分子上标记多个原子的技术,提高元素标记探针试剂的响应信号强度,研制具有自主知识产权的、满足于单细胞质谱流式检测的元素标记试剂 优化负载标记元素的骨架分子的水溶性和生物兼容性,提高试剂用于细胞分析的性能,细胞检测的灵敏度和信噪比等性能优于国外同类试剂 进行元素标记配套试剂性能、稳定性、可靠性评价,研究和制定适合我国市场的元素标记配套试剂盒标准以及仪器-试剂一体化标准操作程序,建立标准化、规模化制备方法与使用流程 在生命医学领域开展元素标记配套试剂的应用示范。  考核指标:开发30种以上针对生物医学领域关注的单细胞表面蛋白质标志物的元素标记探针,灵敏度满足单细胞分析的需求 研制不少于10个实际生物环境领域场景的检测项目,用于配套质谱流式细胞仪分析工作 建立元素标记生物分子的标记和纯化工艺1-2种,产物纯度达到90%以上,完成试剂研发工艺文件1套(包括标记技术工艺及纯化工艺) 建立稳定可靠的性能评价体系,形成产业化制备能力。通过产学研用合作,完成元素标记配套试剂的应用示范3项。  4.4先进高场磁共振设备高分辨影像试剂研究开发  研究内容:拟针对现有磁共振诊断试剂在高场下灵敏度低的难题,研发具有原始创新性的先进高场磁共振影像试剂,发展在体、实时、无创成像的新技术 为国产高端磁共振设备提供具有完全自主知识产权的高分辨率影像试剂,实现高场磁共振影像在生物医学应用的新突破,满足重大疾病微小病灶早期成像以及疾病区域血管等精细组织成像的重大需求 建立评估高场磁共振诊断试剂的生物安全性评价机制,建立试剂量产质控体系和标准品,推进其向临床转化。  考核指标:研发3-5种高性能磁性纳米材料并实现公斤级量产,在7T以上的高场条件下,试剂的横向弛豫率与纵向弛豫率比值(r2/r1)≤1.5 试剂在水相中保持稳定分散时间不少于1年。作为高场磁共振影像试剂,其在磁共振成像应用中应达到接近组织病理学检测水平的诊断灵敏度,实现接近组织病理学检测水平的诊断灵敏度,对  5.标准物质  5.1恶性肿瘤及代谢疾病等诊断标志物急需标准物质研究  研究内容:针对临床检验中恶性肿瘤和糖尿病及相关并发症等代谢疾病等诊断标志物准确测量对高端标准物质的急迫需求,开展肝癌、前列腺癌等肿瘤标志物及代谢疾病标志物的结构表征、蛋白分型、准确定量等共性关键技术研究,研制临床诊断急需高端标准物质 针对血清基质干扰、低丰度蛋白富集效率低等问题、开展诊断标志物参考方法及标准物质互换性评价方法研究,研制肿瘤和糖尿病及相关并发症等代谢疾病、心肌功能障碍等重大疾病标志物血清基体国家标准物质 开展数字化校准系统研究,研制满足临床诊断准确测量需求、具有自主知识产权的肿瘤及代谢疾病等质控品、校准品 开展新生儿代谢功能缺陷诊断指标高准确定值技术和干血斑标准物质研究,实现新生儿筛查试剂标准化 开展蛋白质类诊断标志物参考实验室网络研究,建立参考测量系统,开展检验医学标准化、规范化研究,为诊断试剂质量的可靠提供保障。  考核指标::研制可溯源至SI单位的肿瘤及代谢疾病等国家标准物质20项,其中纯度标准物质不确定度≤8%,基体标准物质不确定度≤15% 研制可溯源至SI单位的用于新生儿筛查干血斑国家标准物质2项,特性量≥20个,不确定度≤18% 研制用于检测试剂质量控制的识别抗体国家标准物质2项,不确定度≤10% 开发具有溯源性并获得医疗器械注册证的肿瘤及代谢等疾病标志物的临床质控品或校准品50项 攻克检验医学标准物质制备、定值、糖蛋白分型、精准表征等共性关键技术5项 建立蛋白质类诊断标志物参考实验室网络系统1项 申报国家技术规范或标准2项 申请专利5项 标准物质相关技术参加或组织国际计量比对2项,并取得等效互认。  5.2新兴食品营养与质量安全标准物质研制  研究内容:针对全民健康与精准化营养相关食品科学研究、产品开发等急需标准物质,开展功能酯、活性糖等新兴营养物质的制备纯化、多谱结构表征技术研究 开展功能酯、活性糖等营养物质高准确纯度定值技术研究,开展全营养配方等食品中营养素的多目标、高通量精准定值技术研究,研发自主知识产权的营养素多特性量国家标准物质 开展可指示食品营养功效的功效评价因子的挖掘筛选与定量技术研究,研制功效评价急需的磷脂、低聚糖等标准物质 开展食品基质中有机磷等新污染物、药物残留等标准物质制备与定值技术研究,研制多特性食品基体国家标准物质+多谱学数据库 开展加工食品的生产过程危害物的广谱精准识别技术研究,研制乳粉、植物油生产工艺监控和质量评价质控标准物质。  考核指标:甘油酯、低聚糖等标准物质原料制备纯化技术与结构表征技术10项以上,制备高纯度原料≥10种,色谱纯度≥95% 甘油酯、低聚糖等标准标物定值技术10项,可溯源至SI单位的国家标准物质10项,不确定度≤4% 全营养配方等食品中多组分营养素精准定值技术10项,可溯源至SI单位的多特性营养成分国家标准物质10项,特性量≥40个,不确定度≤12% 磷脂、低聚糖等功效评价因子挖掘筛选模型5套,营养功效评价急需国家标准物质≥10项,不确定度≤10% 有机磷等污染物、药物残留等多谱高效定值技术2套,可溯源至SI单位的多特性国家标准物质≥10项,不确定度≤10%,标准物质多谱数据信息库1个 乳粉、植物油中的氯丙醇酯等危害物的广谱精准识别与准确测量技术10项,研制质控标准物质20项,不确定度≤15% 组织/参加国际比对或相关能力验证,实现等效互认3项 发明专利5项。  三、实验动物  6.实验动物资源创制与评价  6.1实验动物新品种、新品系开发与评价  研究内容:基于水生动物(红鲫、斑马鱼等)、农业动物(鸭、羊、羊驼等)和人工驯养野生动物(大林姬鼠、棕背䶄、布氏田鼠等)等动物资源,采用动物种群生物学和种群基因组学技术,开展实验动物化培育与应用研究。利用人工驯化、饲养繁育、品种鉴定、资源保存等技术,培育实验动物新品种、新品系。建立上述新型实验动物的生物学数据库和生物样本库,实现创建的实验动物资源与现有国家实验动物资源库的整合。  考核指标:开发出5-10种实验动物新品种、新品系,制定饲养繁育、资源保存和质量评价等相关标准30-60个,完成病原学、遗传学等检测技术20-40项。建立实验动物新品种、新品系的生理生化、免疫学等生物学特性指标数据库,建立包含分子、细胞和组织等的生物样本库,实现创建的实验动物资源与现有国家实验动物资源库的整合。  6.2小鼠、小型猪等工具型实验动物模型创制与关键技术研究  研究内容:围绕人源免疫系统重建、组织器官移植以及人体肠道菌群与疾病等研究领域,利用小鼠、小型猪等开展免疫缺陷实验动物和无菌实验动物模型创制的技术体系研究。建立工具型实验动物模型,用于重建人源免疫系统、解析组织器官移植机制、开展人体肠道菌群与疾病的相关性研究,以及相关药物研发和安全性评价。通过图像数据融合,全面、精准解析上述实验动物模型的影像结构与功能信息,开展病理学图谱与评价体系研究。开发上述实验动物模型的生物学数据库和生物样本库,实现创建的实验动物模型与现有国家实验动物资源库的整合。  考核指标:完成10-15种单一或多因子同步人源化的小鼠、小型猪等免疫缺陷实验动物模型,阐明其在人源免疫系统重建、组织器官移植的应用原理并建立技术指标,建立和完善免疫缺陷实验动物模型的生理生化、免疫学检测技术以及评价技术体系。完成不少于10种基于无菌实验动物的人体肠道菌群相关疾病实验动物模型,建立和完善无菌小鼠、小型猪等实验动物创制和评价技术体系,以及人体肠道菌群相关疾病实验动物模型的技术指标和评价体系。建立上述实验动物模型的生物学数据库和生物样本库,实现创建的工具型实验动物模型与现有国家实验动物资源库的整合。  6.3肿瘤、免疫性和神经退行性疾病基因编辑实验动物模型研发  研究内容:针对恶性肿瘤、免疫性疾病和神经退行性疾病等重大疾病,以小鼠、大鼠、小型猪和灵长类等实验动物为载体,利用基因编辑技术,研发能够准确模拟疾病发生的遗传模式和临床表现的实验动物模型。开展表型组学和功能基因组学分析。通过图像数据融合,全面、精准解析上述实验动物模型的影像结构与功能信息,建立相关疾病实验动物模型不同阶段典型的病理学图谱库。建立相关疾病实验动物模型生物学数据库和生物样本库,为阐明相关疾病发病机制、验证新的诊治方法和药物研发提供基础条件。  考核指标:创制10-15种精准模拟恶性肿瘤、免疫性和神经退行性疾病遗传特性和临床表现的基因编辑实验动物模型,并用于发病机制研究和相关新药的研发与评价。建立能够从分子、组织、器官、动物水平解析相关实验动物模型动态演变规律以及病理学机制的评价体系,解析不少于5种疾病的发病机制。建立相关疾病实验动物模型生物学数据库和生物样本库,实现创建的实验动物模型与现有国家实验动物资源库的整合。  6.4呼吸系统慢性疾病实验动物模型研发  研究内容:针对慢阻肺、肺纤维化等重大慢性疾病,利用基因编辑、物理干预或化学诱导等技术,研发上述疾病系列化实验动物模型,用于多维度解析相关疾病发生机制、评价新型诊疗技术产品等。建立相关疾病实验动物模型的不同阶段典型病理学图谱库,并通过图像数据融合,全面、精准解析实验动物模型的影像结构与功能信息,建立相关疾病实验动物模型生物学数据库和生物样本库,为阐明相关疾病发病机制、验证新的诊治方法和新药研发提供基础条件。  考核指标:创制10-15种不同理化因素诱发的重大慢性疾病实验动物模型和8-10种基因编辑的重大慢性疾病实验动物模型及其制备技术体系。建立和完善相关疾病实验动物模型的生理生化、免疫学、组织功能、整体表征和动物行为学指标体系以及病理学评价体系。建立相关疾病实验动物模型生物学数据库和生物样本库,实现创建重大慢性疾病实验动物模型与现有国家实验动物资源库的整合。  6.5灵长类实验动物资源利用关键技术研发  研究内容:围绕灵长类实验动物保种、育种及其生物样本资源建设和高效利用等方面,利用辅助生殖技术及优化繁育技术,开展灵长类实验动物规范化选育和繁育技术研究 开展灵长类实验动物分子水平遗传鉴定关键技术研究,建立灵长类实验动物亲权信息高准确度的快速检测方法 开展灵长类实验动物生物样本资源建设,聚焦资源采集、保存、共享等方面共性关键技术,研发细胞株构建与保存技术,组织、器官等生物样本采集与保存及信息追溯技术,建立灵长类实验动物生物样本库 开展高品质SPF级灵长类实验动物构建和质量控制共性关键技术研究。  考核指标:建立优化灵长类实验动物繁育技术1-2项,显著提升繁育效率,实现全人哺乳幼猴成活率85%以上,形成高质量重要技术标准5-10项。建立具有国际先进水平的灵长类实验动物个体识别遗传标记技术1-2项,实现对灵长类实验动物个体进行快速识别、亲权鉴定和终身跟踪鉴定。研发形成灵长类实验动物生物样本(组织、器官等)采集、保存、共享等方面共性关键技术及信息追溯技术,形成重要关键技术标准不少于30项,形成完整的技术规范体系 建立灵长类实验动物生物样本库(包括脑、心、肝等不同组织器官样本库、细胞库和DNA数据库),保存不少于8个品种的生物样本,组织样本不少于20000份、DNA样本不少于4000份、细胞系不少于20株。构建3个品种的高品质SPF级灵长类实验动物种群,建立SPF级灵长类实验动物种群及质量控制共性关键技术标准5-10项。  7.实验动物应用保障体系建设  7.1实验动物共性关键质量评价技术标准研究  研究内容:围绕实验动物饲养繁育、运输、福利伦理保障、无害化处置、生物安全、质量控制等方面,开展共性关键技术标准研究,建立并完善相关技术标准体系。聚焦基因编辑、无特定病原体级和无菌级实验动物,开展遗传、微生物、饲养和环境等因素对动物生物学特性影响的研究。分析质量控制要求,建立质量检测技术体系,形成技术标准规范。  考核指标:新建立实验动物饲养繁育、运输、福利伦理保障、无害化处置、实验室及环境生物安全、质量控制等标准30项。鉴定10种以上实验动物携带的微生物谱系,完成不少于30种病原微生物对实验动物生物学特性的影响研究,形成不少于30项基因编辑、无特定病原体级和无菌级实验动物质量检测和质量控制技术标准。完成10种以上高致病病原动物实验的生物安全控制技术风险性研究,形成10种以上实验动物自身携带病原微生物的生物安全风险评估技术标准。建立动物实验生物安全控制的标准1项,并获得国家标准立项,建立实验动物进出口检疫的标准1项,建立实验动物福利伦理相关标准1项。  7.2基于化妆品和生物制品等产品检验的动物实验替代技术研究  研究内容:以化妆品原料或成品、生物制品等为目标,参照我国《化妆品安全技术规范》和国际经济与发展合作组织(OECD)有关技术指导原则,开展相关产品成品或原料的动物实验替代方法研究与验证研究,并制定相关技术规程。在对验证后的动物实验替代方法的可重复性、可转移性和可操作性进行评价的基础上,为方法纳入相关技术规程并推广应用奠定基础。  考核指标::通过自主研发或依据OECD技术指导原则进行方法转移,完成5-8种适用于化妆品原料或成品、生物制品等产品安全性评价的动物实验替代方法,并制定5-8项相关技术规程。每种方法需按照国际替代方法验证指南有关要求经过国内4-5家具有毒理学检测资质的实验室验证,以证明动物实验替代方法的适用性。建立化妆品原料或成品的人体健康风险整合测试与评估技术方法不少于3种,建立动物实验替代方法相关标准不少于3项。  7.3实验动物专用设备创新研制  研究内容:围绕实验动物资源创制、生产和应用,支持研制实验动物智能化和自动化专用设备。研发满足高等级动物生物安全实验室要求的动物实验隔离装置、动物危废处置以及配套消毒设备等关键技术设备,并开展示范应用。  考核指标:研发3-5种具有自主知识产权、用于实验动物生产与使用全生命周期的自动化和智能化设备。研发2-3种具有自主知识产权、满足高等级动物生物安全实验室要求的隔离、危废处置、消毒等高附加值动物实验设备。完成相关设备在不少于10家机构的示范应用。形成相关设备质量评价技术标准10-20个。形成适用于实验动物生产和动物实验高端设备研发的技术解决方案。  四、科学数据  8.科学数据分析挖掘技术与集成平台  8.1面向先进光源的全生命周期科学软件系统研制及应用  研究内容:面向先进光源对全生命周期自主可控科学软件系统的迫切需求,研发先进光源全生命周期的实验控制、数据获取软件框架和系统 研究领域内实时计算、高通量计算、海量数据挖掘等多种计算模式,研制先进光源领域的科学数据分析软件框架,支持先进光源学科分析软件和算法集成 发展光源前沿实验方法的算法与分析软件,构建先进光源领域大科学装置多设施协作、完善的软件生态环境。  考核指标:构建面向先进同步辐射光源的自主可控的全生命周期科学软件体系,包含先进光源实验过程控制和数据采集软件框架、科学数据管理软件框架、科学数据分析软件框架各1套 发展包括CDI、Holography、XPCS、多维度衍/散射成像及XAFS、ARPES、RIXS等10种以上前沿实验方法的算法与分析软件,实现人工智能技术在科学数据分析、数据挖掘中的应用 形成相关专利与软件著作权 研发的分析软件和系统在我国不少于4个先进光源类大科学装置及相关科学数据中心部署应用。  有关说明:项目下设的课题数不超过5个,项目参与单位总数不超过10家。项目申报单位为项目实施所能提供数据支持的数据资源量不低于25PB。如申请单位自身没有指南要求的数据量和类型,应与国内相关科学数据中心签署软件部署的应用协议。  8.2空间科学大数据智能管理与分析挖掘关键技术及应用  研究内容:面向建设空间科学领域自主创新应用环境需求,突破空间科学大数据融合管理、协同分析与关联挖掘应用关键技术,研究空间数据智能标签/分类、基于智能特征的预取、归档等技术,研制空间科学领域数据智能管理与分析挖掘中台软件,实现数据一体化组织管理与高效计算分析支持 研发太阳活动特征识别、快速提取与建模分析、近地空间环境数据重构与关联分析、高能天文多波段数据联合检索与分析、行星数据数字制图与演化分析等面向热点科学问题的领域专用软件工具集,实现基于空间科学大数据的特征识别、事件关联、动态建模与智能检索 有关软件工具在科学数据中心进行落地部署并开展应用示范,推动领域科研范式转型。  考核指标:研发空间科学领域数据智能管理与分析挖掘中台软件1套,具备100亿条数据记录的秒级检索能力,支持数据可视化展示、目录级访问权限控制等 研发太阳活动特征识别与建模分析软件工具集1套,对TB级数据完成关键特征识别不超过6h,识别准确率高于80% 研发近地空间环境数据重构与关联分析软件工具集1套,重构计算模型经纬度分辨率优于5度,支持不少于3类空间环境事件的关联分析 高能天文多波段数据联合检索与分析软件工具集1套,具备自适应自动时域与能谱分析能力 研发行星数据数字制图与演化分析软件工具集1套,对行星地形地貌特征自动识别准确率高于90% 形成相关专利与软件著作权 研发的分析软件与系统在相关科学数据中心部署,并在相关科研团队推广应用,应用示范单位不少于20家。  有关说明:项目下设的课题数不超过5个,项目参与单位总数不超过10家。项目申报单位为项目实施所能提供数据支持的数据资源量不低于300TB。如申请单位自身没有指南要求的数据量和类型,应与国内相关科学数据中心签署软件部署的应用协议。  8.3海量多波段天文数据融合关键技术与科学应用  研究内容:研究海量天文数据高性能索引技术,优化存取性能,提升面向大视场的大数据检索效率 研究多波段天文数据实时交叉证认及置信度估计方法,提升多波段数据融合的准确性及时效性 研究异构多波段数据的组织、管理及可视化的标准框架,构建多波段参考数据库 面向时域天文海量多波段数据融合的科学需求,研发异构计算架构下存储、计算、软件环境统一调度应用框架。  考核指标:形成1套海量天文数据高性能索引及分布式计算关键技术和方法,实现天文数据文件的毫秒级划定与定位 形成1套多波段数据实时交叉证认及置信度估计的关键技术和方法,实现十亿级星表百平方度天区内数据秒级交叉证认 实现主流多波段存档数据至该框架的转换工具,数据转换效率不低于10GB/min 构建至少涵盖光学、红外、射电、紫外、X射线、γ射线等波段数据的多波段参考数据库,各波段数据的天区覆盖率不低于75%,1000并发下数据请求服务响应时间不超过1s 形成在线科研云系统软件1套,实现计算与数据的融合,支持异构计算架构下科研应用环境的自动化部署 形成相关专利与软件著作权 研发的分析软件与系统在相关科学数据中心部署,并在相关科研团队推广应用,应用示范单位不少于10家。  有关说明:项目下设的课题数不超过5个,项目参与单位总数不超过10家。项目申报单位为项目实施所能提供数据支持的数据资源量不低于500TB。如申请单位自身没有指南要求的数据量和类型,应与国内相关科学数据中心签署软件部署的应用协议。  8.4地球表层系统科学数据挖掘与知识发现关键技术与应用  研究内容::针对地球表层系统科学数据全球性、系统性、开放性和多维、多圈层、多尺度特点,研发支撑地球表层系统科学数据智能发现、内容挖掘、精准服务、可信共享的关键技术和软件工具 研发基于本体的科学数据发现方法,突破开放地球表层系统科学数据关联网络构建关键技术,构建全球开放地球表层系统科学数据目录 研究多圈层地球表层系统科学数据管理、挖掘与服务方法,突破多圈层关键过程参数生成和知识发现的智能化技术 研发数据与模型的适配方法,突破数据与模型资源的共享与复用关键技术,建设网络共享的地球表层系统科学分析模型库 研发地球表层系统科学协同分析和综合服务平台,针对地球表层系统科学研究、全球变化研究、区域经济社会发展等重大命题,开展应用示范。  考核指标:研发开放地球表层系统科学数据目录与关联网络构建工具集1套 研发地球表层系统科学数据管理、挖掘、服务等技术规范或工具集5套 研发数据与模型资源共享及复用的技术方法和规范1套 构建可广泛共享的地球表层系统科学分析模型库(不少于3000个分析模型),为国际相关权威模型协调机构认可 构建地球表层系统科学数据协同分析与综合服务系统1个 形成相关专利与软件著作权 研发的分析软件与系统在相关科学数据中心部署,并在相关科研团队推广应用,应用示范单位不少于5家。  有关说明:项目下设的课题数不超过5个,项目参与单位总数不超过10家。项目申报单位为项目实施所能提供数据支持的数据资源量不低于2PB。如申请单位自身没有指南要求的数据量和类型,应与国内相关科学数据中心签署软件部署的应用协议。  8.5冰冻圈大数据挖掘分析关键技术及应用  研究内容:针对冰冻圈冰川冻土沙漠积雪数据的多源多维异构特征,研究冰川冻土沙漠积雪多学科、多尺度时空大数据引擎智能管理关键技术,突破基于多源数据驱动的多尺度冰川冻土沙漠积雪数据智能化融合制备关键技术,研发冰川冻土沙漠积雪数据集自动化生产制备系统软件 研究冰川冻土沙漠积雪关键变量速变智能自动发现及态势演变感知数据工程关键技术 建设冰川冻土沙漠积雪大数据人工智能数据挖掘算法平台,研制冰川冻土沙漠积雪大数据挖掘分析与预测系统软件 构建“数据-模型-计算-决策支持”一体化冰川冻土沙漠积雪科研社区并提供共享服务,在“一带一路”沿线野外台站推广示范应用,并部署在相关科学数据中心开展典型变量速变早期感知预测预警服务。  考核指标:形成冰冻圈冰川冻土沙漠积雪大数据智能管理、冰川冻土沙漠数据积雪产品智能生产、冰川冻土沙漠大数据模型分析深度挖掘与智能预测预警3个关键技术体系及系统软件 研制“丝绸之路”沿线典型寒区旱区典型环境要素数据集1套,包含不少于8种要素,时间序列不少于20年,空间尺度优于5km 发展1套冰川冻土沙漠积雪态势感知数据工程技术体系和1套云环境下的模型集成框架,研发包括冰川变化、冻融过程、沙漠演变感知的数据工程技术体系软件3-5个 建成1套“数据-模型-计算-决策支持”一体化的冰川冻土沙漠积雪科研社区 形成相关专利与软件著作权 研发的分析软件与系统在相关科学数据中心和“一带一路”沿线10个野外台站部署,并在相关科研团队推广应用。  有关说明:项目下设的课题数不超过5个,项目参与单位总数不超过10家。项目申报单位为项目实施所能提供数据支持的数据资源量不低于20TB。如申请单位自身没有指南要求的数据量和类型,应与国内相关科学数据中心签署软件部署的应用协议。  8.6场景驱动的农业科学数据挖掘分析关键技术与应用  研究内容:面向农业科学数据多层次、多学科、多格式、多物种、多结构特征导致的融合难题,研究农业数据和元数据融合关键技术,构建农业科学数据本体网络,开发农业科学数据融合软件工具 开发场景自适应的农业科学数据自动化挖掘核心框架,研发育种、土评等重要应用场景下的农业科学数据个性分析组件工具,打通数据驱动下分子设计育种的全流程 研究耕地保护、耕地评价等关键自动化技术,实现适宜于中国基本国情的大数据耕地评价和保护分析流程 实现农业科学数据自动化分析挖掘软件在育种场景、土地评价场景和农业绿色发展场景的示范应用。  考核指标:研制1套场景驱动的农业科学数据挖掘分析软件系统,研发农业科学数据融合软件工具,形成覆盖农业科学主流数据80%以上的格式转换软件工具1套 形成适用于90%以上农业学科的元数据自动化转换软件工具1套,形成覆盖90%以上农业学科的本体网络自动化构建软件工具1套 研发场景自适应的农业科学数据自动化挖掘核心框架,形成支持对70%以上种类的农业科学实验方法学数据建模的数字孪生模型自动化构建软件工具1套 研发场景通用和个性化关键软件工具,形成支持70%以上完整农业科学实验方法进行数字化模拟和仿真的农业科学实验方案自动化分解和组织软件工具1套 形成相关专利与软件著作权 研发的软件工具在相关科学数据中心部署,并在相关科研团队推广应用,应用示范场景不少于10个。  有关说明:项目下设的课题数不超过5个,项目参与单位总数不超过10家。项目申报单位为项目实施所能提供数据支持的数据资源量不低于600TB。如申请单位自身没有指南要求的数据量和类型,应与国内相关科学数据中心签署软件部署的应用协议。  8.7科技文献内容深度挖掘及智能分析关键技术和软件  研究内容:突破科技文献内容深度挖掘和智能分析的关键技术,开发支撑国家科技文献知识服务和情报分析所需的自主软件系统 构建嵌入已有知识组织体系的领域科技文献预训练模型,支持领域科技文献内容的深度挖掘利用 突破科技文献内容中通用细粒度知识对象和专业领域知识的自动标注和提取技术,研发科技文献中短语级、句子级、篇章级知识对象及关系自动标注软件,以及领域知识自动提取软件 研发支撑科技文献智能化知识服务软件,支持科技文献自动分类、智能聚类、可视分析、自动综述和辅助阅读 研发智能情报分析软件工具,支持科研动态监测、关键技术识别、研究评估评价、领域演化分析、合作机会发现等情报分析需求。  考核指标::构建不少于8个领域的科技文献预训练模型 支持不少于10种短语级对象和7种句子级对象的自动标注,不少于30种重要领域知识内容的自动提取 开发8个智能化知识服务软件,8个智能情报分析软件工具,达到实用化水平。软件系统在国家科技图书文献中心部署应用,有效满足知识发现服务和情报分析需求,显著提升智能化水平 形成科技文献内容挖掘和情报分析方面系列软件著作权和申请专利。  有关说明:项目下设的课题数不超过5个,项目参与单位总数不超过10家。项目申报单位为项目实施所能提供支持的科技文献资源不低于50万条。如申请单位自身没有指南要求的科技文献数据量和类型,应与国内相关文献情报中心或知识服务平台签署软件部署的应用协议。  9.科学数据自主应用软件  9.1科学数据自主应用软件研发*  研究内容:针对多学科、多尺度、多模态的大规模科学数据(包括但不限于科技文献、语音、图像、文本、数值等),研究智能分析挖掘、软硬件协同挖掘加速方法,突破海量多源数据智能关联分析、识别、追踪、表达技术,发展面向应用场景的自适应科学数据分析算法、模型,研发领域知识智能挖掘引擎及关键组件和科技文献深度聚类模型及软件工具,突破海量数据与文献在内容、知识等多层面的智能化自关联技术,形成具有自主知识产权的分析工具、软件或软件系统,并在相关科学数据中心、文献情报中心或知识服务平台开展示范应用。  有关说明:该方向为青年科学家项目,拟支持不超过6项,经费总额不超过1800万元 青年科学家项目不再下设课题,项目实施年限3年,项目参与单位总数不超过3家。项目申报单位应该具有为软件研发提供支持的数据资源。如申请单位自身没有研发所要求的数据资源,应与国内相关科学数据中心、文献情报中心或知识服务平台签署软件部署的应用协议。
  • 团体标准《氘代氯仿氘代率的测定 核磁共振波谱法》征求意见稿发布
    目前核磁共振技术已广泛地应用于医药、化学、食品、物理等多个领域,核磁共振的应用离不开氘代试剂,氘代试剂的氘代率在某种意义上决定核磁共振的谱图效果,从而影响实验效果。但是目前,最常用的氘代试剂——氘代氯仿氘代率的测定方法都没有相关标准可依,因此,亟需制定相关标准规范市场环境。核磁共振氢谱定量技术,前处理简单或不需要前处理,定量准确性高、稳定性好,检测限和定量限低,检测用时短,而且不但可以检测氘代氯仿的氘代率,还可以检测氘代氯仿中其他杂质的含量,方法简单适用,是氘代氯仿氘代率测定的不二选择。本标准的制定对促进氘代氯仿产业持续健康良性发展具有非常重要的意义。据悉,经北京理化分析测试技术学会标准化委员会批准,中轻技术创新中心有限公司等机构组织开展了《气代氯仿气代率的测定 核磁共振波谱法》团体标准制定工作。近日,工作组根据标准制修订程序,组织完成了《气代氯仿气代率的测定 核磁共振波谱法》团体标准征求意见稿。此标准描述了采用定量核磁共振氢谱法测定氘代氯仿氘代率的测定依据、详细操作步骤及结果计算方法。此标准的实施将填补氘代氯仿中氘代率测定领域的空白,解决氘代氯仿中氘代率测定没有统一的标准方法可以依据的问题。对帮助氘代氯仿行业整体提升产品质量,促进氘代氯仿行业持续健康良性发展具有非常重要的意义。附件:1.《氘代氯仿氘代率的测定 核磁共振波谱法》标准文本(征求意见稿).docx2.《氘代氯仿氘代率的测定 核磁共振波谱法》编制说明.docx立项通知可见:https://www.instrument.com.cn/news/20230411/659860.shtml
  • 核磁共振波谱仪常见问题解答
    p   1.元素周期表中所有元素都可以测出核磁共振谱吗? /p p   不是。首先,被测的原子核的自旋量子数要不为零 其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂) 第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。 /p p   2.关于样品管,要注意什么? /p p   对于 5mm 探头来说,其中探头内部隔离样品和线圈的石英管内径只有5.4mm,如果样品管过粗或者弯曲,很容易卡在探头里甚至挤碎石英管 如果样品管过细或者有裂纹,很容易造成样品管在探头内破碎,污染探头。因此在使用样品管前,首先要在平面上滚动,确定平直 然后对灯光仔细检查有无裂纹 插入转子时要注意是否过紧过松。探头故障是我们遇到最多的问题,损坏探头可能造成数百到数万欧元的维修费用,建议谱仪管理员确保所有的送样人员了解这些细节,并检查样品管质量。 /p p   3.溶剂的用量多少为合适? /p p   在我们的定深量筒上都绘有相应线圈的位置及长度,一般只要保证样品的长度比线圈上下各多出3mm 即可,过少会影响自动匀场效果,过多浪费溶剂而且由于稀释了样品,减少了处在线圈中的有效样品量。这种情况下要注意将样品液柱的中心与定深量筒上的线圈中心对齐。 /p p   4.高场的核磁共振仪和低场的核磁共振仪测出的谱有什么区别? /p p   首先,高场的核磁共振仪比低场的核磁共振仪灵敏度高,如果样品浓度低,低场的核磁共振仪测出的谱图信噪比低,改用高场的核磁共振仪信噪比会改善。其次,高场的核磁共振仪比低场的核磁共振仪测出的峰分得更开,谱图的解析更容易些。但是,需要准确的偶合常数时,用低场的谱仪测更好些。 /p p   5.核磁共振仪有几种探头? /p p   从所测原子核的种类分,有:碳氢探头、碳氢磷氟四核探头、多核探头。还可以分为正向探头(测碳谱的灵敏度高)、反向探头(测氢谱的灵敏度高)、普通探头(每测四次完成一个循环得一个结果)和梯度场探头(不需要相循环,测一次得一个结果)。 /p p   6.如果样品吹不出来,应该怎么处理? /p p   首先查看各个气压表示数,检查压缩空气是否正常。如果压缩气没问题,很可能是样品卡在探头里了。可以将探头的固定螺丝拧开,下沉约5厘米,然后装回,(或者说把探头拆下再装回去)再吹一次。一般可以吹出。 /p p   7.lockdisp窗口中锁线的意义是什么? /p p   时间轴折叠的氘信号强度谱 /p p   8.测试核磁共振需要多少样品量? /p p   不同场强需要的样品量不同,如300兆核磁、分子量是几百的样品,测氢谱大约需要2mg以上的样品,测碳谱大约需要10mg以上。600兆核磁测氢谱大约需要几百微克。 /p p   9.配制样品为什么要用氘代试剂?怎样选择氘代试剂? /p p   因为测试时溶剂中的氢也会出峰,溶剂的量远远大于样品的量,溶剂峰会掩盖样品峰,所以用氘取代溶剂中的氢,氘的共振峰频率和氢差别很大,氢谱中不会出现氘的峰,减少了溶剂的干扰。在谱图中出现的溶剂峰是氘的取代不完全的残留氢的峰。另外,在测试时需要用氘峰进行锁场。 /p p   由于氘代溶剂的品种不是很多,要根据样品的极性选择极性相似的溶剂,氘代溶剂的极性从小到大是这样排列的:苯、氯仿、乙腈、丙酮、二甲亚砜、吡啶、甲醇、水。还要注意溶剂峰的化学位移,最好不要遮挡样品峰。 /p p   10.测试样品是否必须家TMS? /p p   测试样品加TMS(四甲基硅烷)是作为定化学位移的标尺,也可以不加TMS而用溶剂峰作标尺。 /p p   11.怎样做重水交换? /p p   为了确定活泼氢,要做重水交换。方法是:测完样品的氢谱后,向样品管中滴几滴重水,振摇一下,再测氢谱,谱中的活泼氢就消失了。酰胺类的氨基氢交换得很慢,需要长时间放置再测谱。 /p p   12.用哪些氘代溶剂测出的氢谱上看不到活泼氢的峰? /p p   甲醇、水、三氟醋酸都有重水交换作用,看不到活泼氢的峰。 /p p   13.可以使用混合氘代试剂吗? /p p   可以。但是化合物在混合溶剂中由于溶剂效应,峰的化学位移和一种氘代溶剂的不同。 /p p   14.为什么氘代丙酮、氘代DMSO(二甲亚砜)的溶剂峰为五重峰? /p p   溶剂峰的裂分是由于氘对氢的耦合,根据2n+1规律,两个氘对一个氢耦合裂分成五重峰。 /p p   15.位移试剂有什么用途? /p p   当样品峰相互重叠时,可以用位移试剂把这些峰拉开,便于谱解析。 /p p   16.不锁场可以测样品吗? /p p   为了使磁场稳定,测试样品时要进行锁场 如果不锁场也可以测试样品,但因为磁场稳定性差,测出的谱图分辨率较低。 /p p   17.设置参数时,观察偏置表示什么意思? /p p   在测图谱时,我们不能同时观察0到几百兆赫的范围,所以我们先设置一个谱宽,以这个谱宽为窗口去观察共振的某一范围。设置观察偏置就是定了观察位置。所以改变观察偏置,谱中各峰的位置就会改变,实质也是观察范围改变了。 /p p   18.为什么同一碳上的两个质子会有不同的化学位移? /p p   因为同碳上的这两个质子表现出了磁不等价。如有些难翻转的环上的碳位置固定,不能旋转,它上面的两个质子处于环的不同位置,受到的磁屏蔽不同,所以化学位移不同。还有的碳虽然不在环上,但是连接了两个大的集团,旋转受阻,两个质子收到的磁屏蔽不同,化学位移也不同。 /p p   19.化学位移可以给出哪些结构信息? /p p   氢谱中各种基团的化学位移变化很大,不容易记忆,但只要牢记住几个典型基团的化学位移就可以解决很多问题。如:甲基0.8~1.2ppm,连苯环的甲基2ppm附近,乙酰基上的甲基2ppm附近,甲氧基和氮甲基3~4ppm,双键5~7ppm,苯环7~8ppm,醛基8~10ppm,不接氧的亚甲基1~2ppm,接氧的亚甲基3~4ppm。 /p p   20.偶合常数可以给出哪些结构信息? /p p   可以从偶合常数看出基团间的关系,邻位偶合常数较大,远程偶合常数较小。还可以利用Kapulus公式计算邻位氢的二面角。对于有双键的化合物,顺式的氢之间偶合常数为6~10Hz,反式的氢之间偶合常数为12~16Hz。 /p p   21.NOE效应与去偶作用有什么不同? /p p   偶合是解决氢基团之间相邻的关系,它们之间的能量是通过键传递的。NOE效应是解决氢之间的空间相近,它们之间的能量是通过空间磁场传递的。 /p p   22.质子偏共振去偶可以用来确定碳的类型,为什么现在常用DEPT谱,而不同质子偏共振去偶谱? /p p   质子偏共振去偶区分伯、仲、叔、季碳的方法是根据裂分成四重、三重、二重和单峰,如果峰离得近会产生重叠,不容易解析,而DEPT区分伯、仲、叔、季碳的方法是根据峰向上或向下,峰不会重叠,并且质子偏共振去偶的灵敏度比DEPT法的灵敏度低得多,所以现在常用DEPT谱区分碳的类型。 /p p   23.门控去偶和反门控去偶法有什么不同? . /p p   门控去偶和反门控去偶之间的区别是工作时去偶门和接收门打开的时间不同。门控去偶谱可以从峰的裂分计算碳-氢偶合常数,反门控去偶是使分子各碳峰的强度相同以便定量。 /p p   24.DEPT谱有几种表示方法? /p p   DEPT谱有两种表示方法:一种是DEPT135° 谱,伯碳向上,仲碳向下,叔碳向上,季碳消失,DEPT90° 谱只有叔碳峰,DEPT45° 谱季碳消失 另一种是把上面的谱编辑后,一个谱只有伯碳峰,另一个谱只有仲碳峰,还有只出叔碳峰或只出季碳峰。 /p p   25.都有哪些二维核磁共振谱? /p p   有:1H-1H相关COSY谱、1H-1H相关NOESY谱、13C-1H相关COSY谱、远程13C-1H相关谱、同核J分解谱、相敏COSY、与NOESY谱类似的ROESY谱(NOESY谱解决大分子效果好,ROESY谱解决中等分子效果较好)、TOCSY谱(自旋系统里所有的氢之间都出相关峰)以及HSQC谱(异核单量子相干)等。 /p p   26.什么是三维谱? /p p   三维谱是一个立体图,它的相关峰是立体中间的点,用平面切开这个立体所得的平面图就是二维图。 /p p   27.解析合成化合物的谱、植物中提取化合物的谱和未知化合物的谱,思路有什么不同? /p p   合成化合物的结果是已知的,只要用谱和结构对照就可以知道化合物和预定的结构是否一致。对于植物中提取化合物的谱,首先应看是哪一类化合物,然后用已知的文献数据对照,看是否为已知物,如果文献中没有这个数据则继续测DEPT谱和二维谱,推出结构。对于一个全未知的化合物,除测核磁共振外,还要结合质谱、红外、紫外和元素分析,一步步推测结构。 /p p   28.用X射线晶体衍射确定蛋白质的结构与核磁共振法有什么不同? /p p   用X射线晶体衍射确定蛋白质的结构需要先把蛋白质制成晶体,在固体条件下测。核磁共振法要把蛋白质溶解在溶液中,在液体条件下测试。这两种条件测得的结果是不一样的。因为蛋白质在生物体中多以溶液状存在,所以核磁共振法测得的结果更接近实际状态。 /p p /p
  • 《乳制品中乳糖的测定-核磁共振波谱法》标准征求意见中
    近日,全国特殊食品标准化技术委员会发布了关于征求《乳制品中乳糖的测定-核磁共振波谱法》行业标准(征求意见稿)意见的通知,如下图所示:附件1 行业标准(征求意见稿)乳制品中乳糖的测定 核磁共振波谱法Determination of stachyose in food by nuclear magnetic resonance spectroscopy前  言本文件按照 GB/T 1.1-2020《标准化工作导则 第1 部分标准化文件的结构和起草规则》的规定起草。本文件由全国特殊食品标准化技术委员会提出并归口。本文件起草单位:。本文件主要起草人: 。乳制品中乳糖的测定 核磁共振波谱法1  范围本文件描述了乳制品中乳糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定乳制品中的乳糖,包括牛奶、发酵乳、奶片、奶酪、奶粉中乳糖的测定。2  规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682—2008 分析实验室用水规格和试验方法JY/T 0578—2020 超导脉冲傅里叶变换核磁共振波谱测试方法通则JJF 1448—2014 超导脉冲傅里叶变换核磁共振谱仪校准规范3  术语和定义本文件没有需要界定的术语和定义。4  原理在充分弛豫条件下,一维核磁共振波谱谱峰的积分面积与样品中所对应的自旋核的数目成正比。同时基于核磁共振信号强度(峰面积)互易原理,即给定线圈中核磁共振信号强度与90°脉冲宽度成反比,分别测定外标参考物质和待测样品的一维核磁共振氢谱(1H NMR)及90°脉冲宽度,采用外标法测定样品中乳糖的含量。5  试剂和材料5.1  一般要求除非另有说明,本方法所用试剂均为分析纯,水为GB/T 6682—2008规定的二级或二级以上水。5.2  试剂5.2.1  重水(D2O):纯度≥99.8%。5.2.2  3-(三甲基硅烷基)氘代丙酸钠[(CH3)3SiCD2CD2CO2Na,TSP-d4]。2 mol/L盐酸(HCl)。2 mol/L氢氧化钠(NaOH)。叠氮化钠(NaN3)。5.3  试剂配制5.3.1  TSP-d4溶液(10 g/L):称取0.5 g(精确至10 mg)TSP-d4(5.2.4)至50 mL容量瓶,加入5 mg叠氮化钠(5.2.5),用重水(5.2.1)定容,混匀。5.4  标准品5.4.1  柠檬酸标准品(C₆H₈O₇,CAS号:77-92-9):纯度≥99%。或国家有证标准物质。5.4.2  乳糖标准品(C12H22O11,CAS号:63-42-3):纯度≥98%。或经国家认证并授予标准物质证书的标准物质。5.5  标准溶液配制乳糖标准贮备液(51.2 g/L):称取512 mg(精确至1 mg)乳糖标准品(5.4.2)至10 mL容量瓶,用蒸馏水定容,混匀。现配现用。外标参考物柠檬酸溶液配制(2 g/L):称取200 mg(精确至1 mg)柠檬酸(5.4.1)至100 mL容量瓶,用蒸馏水定容,混匀。0℃~4℃密封保存,保值期1个月。乳糖系列标准工作液:准确量取上述乳糖标准储备液(5.5.1)5 mL于10 mL容量瓶中,用蒸馏水定容,摇匀后得到25.6 g/L的乳糖标准溶液。使用以上相同方法,分别得到12.8 g/L、6.4 g/L、3.2 g/L、1.6 g/L、0.8 g/L、0.4 g/L、0.2 g/L、0.1 g/L、0.05 g/L乳糖标准溶液。根据样品中乳糖含量适当调整乳糖标准工作液浓度范围及乳糖标准贮备液浓度。6  仪器设备 6.1  核磁共振波谱仪:氢(1H)共振频率不低于400 MHz;可控温,温度精度不低于±0.1 K。6.2  核磁共振样品管:外径5 mm,同心且均匀。6.3  分析天平:感量为0.1 mg和1 mg。6.4  旋涡震荡仪。6.5  pH计:精度为± 0.01。6.6  移液器:量程为10 μL~100 μL和100 μL~1 000 μL。6.7  水系微孔过滤膜:孔径0.45 μm。6.8  离心机:离心速度≥ 8 000 r/min。7  试验步骤8.%2.%3  上机样品制备牛奶和发酵乳准确称取10 g(精确至1mg)样品于50 mL的容量瓶中,再加入35 mL蒸馏水后涡旋震荡30分钟溶解,用稀盐酸调pH值为4.4至4.5后,再加蒸馏水至刻度。摇匀后取5mL,转速为8 000 r/min离心10 分钟,弃去上层脂肪和蛋白相,取出中间澄清的部分,用滤膜过滤,准确量取900 μL滤液,再加入100 μL浓度为10 g/L的TSP重水溶液(5.3.1),取600 µL于核磁管中待测。奶粉准确称取1 g样品(精确至1 mg)于50 mL容量瓶中,以下部分同纯奶和发酵乳(7.1.2)。奶片取适量样品,压碎研磨成粉末。以下部分同奶粉样品的配制(7.1.2)。奶酪取适量样品,压碎或用粉碎机粉碎。以下部分同奶粉样品的配制(7.1.3)标准样取900 µL样品溶液(5.5.2,5.5.3),100 μL浓度为10 g/L的TSP重水溶液(5.3.1),旋涡震荡至少1min.充分混匀,取600 µL于核磁管中待测。7.1  上机测定参考条件7.1.1  核磁共振样品管不旋转。7.1.2  检测温度:(300.0± 0.1)K。7.1.3  空扫次数:4次。7.1.4  扫描次数:64次。7.1.5  谱宽:8 000 Hz。7.1.6  采样点数:65 536。7.1.7  接收增益:16。7.1.8  弛豫延迟时间:≥4 s。7.1.9  水峰压制脉冲序列:预饱和加相位循环。7.2  上机测定7.2.1  按照JY/T 0578—2020的规定对探头温度进行校正;按照JJF 1448—2014的规定对1H谱灵敏度、分辨力、线性、1H谱定量重复性进行校准。7.2.2  将装有上机样品(7.1.3)的核磁共振样品管置于核磁共振仪检测腔内,设置样品管不旋转。7.2.3  设置待测样品温度为300.0 K,测样前需要等待样品温度稳定。7.2.4  新建氢谱标准实验文件。7.2.5  锁场与调谐。7.2.6  匀场。7.2.7  测定样品的90°脉冲宽度,并记录结果。7.2.8  调用有相位循环的预饱和水峰压制脉冲序列。7.2.9  在7.2条件下设定参数,根据记录结果(7.3.7)设定90°脉冲宽度,根据水峰压制效果优化水峰压制位置、压制功率等,保持各样品接收器增益值一致。7.2.10  采集并保存数据。9  数据处理9.1  数据预处理对原始数据进行傅立叶变换、相位校正和基线校正,并以TSP-d4中硅烷甲基的化学位移作为零点进行定标。9.2  定性分析对乳糖标准品和外标参考物柠檬酸的1H NMR谱(参见附录A)信号峰进行归属,得到乳糖和柠檬酸的定量相关参数(参见附录A),包括定量峰化学位移、耦合常数、氢原子数量及积分区域。应注意定量峰积分区域未受到干扰。9.3  定量峰积分根据定性分析(8.2)得到的积分区域进行积分,分别得到外标柠檬酸和乳糖定量峰积分面积。 10  结果计算10.1  校正因子(CF)的计算10.1.1  乳糖系列标准工作溶液上机样品质量浓度计算乳糖系列标准工作溶液(5.5.3)上机样品质量浓度按照公式(1)计算:… … … … … … (1)式中:CQ——外标柠檬酸溶液(5.5.2)上机样品质量浓度,单位为毫克每升(mg/L);MWQ——柠檬酸摩尔质量,单位为克每摩尔(g/mol);AS——上机样品中乳糖定量峰积分面积;AQ——外标柠檬酸溶液上机样品中柠檬酸定量峰积分面积;nHQ——外标柠檬酸溶液上机样品中柠檬酸积分区域对应的氢原子数量;nHS——上机样品中乳糖积分区域对应的氢原子数量;NSQ——外标柠檬酸溶液上机样品扫描次数;NSS——上机样品扫描次数;PS——上机样品1H 90°脉冲宽度;PQ——外标柠檬酸溶液上机样品1H 90°脉冲宽度;TS——上机样品检测温度,单位为开尔文(K);TQ——外标柠檬酸溶液上机样品检测温度,单位为开尔文(K);MWS——乳糖摩尔质量,单位为克每摩尔(g/mol)。10.1.2  回归方程绘制由公式(1)计算得到的乳糖系列标准工作溶液上机样品质量浓度(9.1.1)为横坐标,乳糖系列标准工作溶液(5.5.3)上机样品质量浓度为纵坐标,建立线性回归方程y=ɑx+β,校正因子(CF)为线性回归方程的斜率ɑ。10.2  结果计算样品中乳糖的含量按照公式(2)计算:… … … … … … … … … … … … … … … (2)式中:CS-S——样品中乳糖的含量,单位为克每千克(g/kg);CS——由公式(1)计算所得溶解并定容后的样品中乳糖含量,单位为毫克每升(mg/L);V——样品定容后的体积,单位为毫升(mL);ms——称取的样品质量,单位为克(g);CF——校正因子,线性回归方程的斜率ɑ。计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,小数点后保留一位有效数字。11  精密度在重复条件下获得的两次独立测定结果的绝对差值不超过算术平均值的10%。12  检出限及定量限12.1  固体样品奶片、奶酪及奶粉中的乳糖检出限为0.3 g/kg,定量限为1.1 g/kg。12.2  液体样品纯奶、发酵乳中乳糖检出限为0.03 mg/kg,定量限为0.1 mg/kg。附录A乳糖和柠檬酸1H NMR谱图及定量相关参数图A.1 标准品乳糖1H NMR谱图A.2 外标物柠檬酸1H NMR谱表A.1 定量相关参数化合物摩尔质量/(g/mol)δH(峰形,耦合常数)氢原子数量积分区域/Δδ检测温度/K乳糖342.34.45(d, J=7.8 Hz)14.359~4.503300.0柠檬酸192.143.01(d,J = 15.7 Hz)22.921~3.1432.84(d,J = 15.7 Hz)22.693~2.916编制说明.docx
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制