当前位置: 仪器信息网 > 行业主题 > >

横向塞曼轴向塞曼激光器

仪器信息网横向塞曼轴向塞曼激光器专题为您提供2024年最新横向塞曼轴向塞曼激光器价格报价、厂家品牌的相关信息, 包括横向塞曼轴向塞曼激光器参数、型号等,不管是国产,还是进口品牌的横向塞曼轴向塞曼激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合横向塞曼轴向塞曼激光器相关的耗材配件、试剂标物,还有横向塞曼轴向塞曼激光器相关的最新资讯、资料,以及横向塞曼轴向塞曼激光器相关的解决方案。

横向塞曼轴向塞曼激光器相关的论坛

  • 【资料】横向塞曼与纵向塞曼孰优孰劣

    在采购[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的时候 ,发现了塞曼扣背景上分为横向和纵向各家仪器厂商各说各的 主要采用横向: 耶拿 热电纵向塞曼: PE GBC有人说纵向塞曼是横向塞曼的下一代技术 主要就是可以不用偏正镜 所以可以提高效率 但是磁场强度下降横向塞曼使用偏正镜 所以磁场强度可以提高 大家讨论一下 到底哪个技术有优势

  • 【资料】横向塞曼与纵向塞曼孰优孰劣

    在采购[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的时候 ,发现了塞曼扣背景上分为横向和纵向各家仪器厂商各说各的 主要采用横向: 耶拿 热电纵向塞曼: PE GBC有人说纵向塞曼是横向塞曼的下一代技术 主要就是可以不用偏正镜 所以可以提高效率 但是磁场强度下降横向塞曼使用偏正镜 所以磁场强度可以提高 大家讨论一下 到底哪个技术有优势

  • 求助纵向塞曼扣背景

    ¨正常塞曼效应或称之为简单塞曼效应发生时,谱线被分裂成两个σ分量和一个π分量, π分量留在原谱线位置,σ分量则对称地出现在原谱线两侧数皮克纳米处。该分量偏离 的程度取决于磁场强度的大小。 π分量与磁场方向平行, σ分量与磁场方向垂直。 有点不理解的是当采用交变纵向磁场的时候,,既然π的分量是与磁场是平行的为什么可以不用偏振镜滤除呢。当横向磁场的时候π分量不是刚好和磁场平行不是正好进不去光路 为什么还要偏振镜滤除呢。

  • 请教大侠们关于拉曼激光器

    用于做拉曼激发光的激光器有什么特殊要求不?哪些参数对获得较好的拉曼光谱有重要的影响?国内哪个厂家做拉曼激光器比较靠谱?

  • 便携式拉曼光谱仪激光器使用寿命是多少

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  便携式拉曼光谱仪激光器使用寿命是多少,便携式拉曼光谱仪的激光器使用寿命并不是一个固定的数值,因为它受到多种因素的影响。以下是一些影响激光器使用寿命的关键因素以及相应的解释:  控制发射功率:合理地控制激光器的发射功率是延长激光器寿命的有效方法之一。控制发射功率可以缓解晶体加热的程度,从而减缓晶体老化的速度。  维护工作环境:保持工作环境的良好通风和恒温状态,控制温度在激光器所允许的范围内,能够有效地延长激光器的使用寿命。  日常维护工作:多关注激光器的运行状态,及时更换性能不佳的部件,定期清洗光学元件和泵浦激光器,做好日常维护工作,也可以有效延长激光器的使用寿命。  具体到数值上,由于不同品牌和型号的便携式拉曼光谱仪激光器存在差异,以及使用环境、操作方式等因素的不同,因此无法给出确切的使用寿命数字。  然而,一般而言,如果正确操作和维护,激光器的使用寿命可以达到数千小时甚至更长。但是,这只是一个大致的估计,实际使用寿命可能因具体情况而异。  为了延长便携式拉曼光谱仪激光器的使用寿命,建议用户遵循以下几点:  仔细阅读并遵守产品说明书中的操作和维护指南。  定期对激光器进行清洁和检查,确保其处于良好的工作状态。  避免将激光器暴露在极端温度、湿度或灰尘环境中。  遵循正确的开关机顺序和操作流程,避免对激光器造成不必要的损害。  总之,虽然无法给出便携式拉曼光谱仪激光器确切的使用寿命数字,但通过正确的操作和维护,可以有效地延长其使用寿命。[/size][/color][/font]

  • 塞曼效应研究

    大家好,最近再摸索塞曼扣背景的原理,有几个问题想请教一下大家问题一:因为我们的仪器是PE AA 800的,应该是横向加热,交变磁场塞曼扣背景的(据说磁场强度是1.9T),由于磁场下的正常塞曼效应是列分为π和O正负(那个叫“诗歌吗”的符号不会打),根据塞曼原理,应该是元素原子在磁场中高能级态的谱线分裂成三条??还是空心阴极灯发出的光在磁场中发生分裂???

  • 【原创】小吃:塞曼背景校正的分类简要介绍

    应用塞曼效应进行背景校正时,仪器结构并不是固定或一致的,校正方式也可进一步细分为若干种,它们与磁场位置、磁场方向、以及磁场性质等方面的不同选择都是息息相关的:1.塞曼背景校正装置的安装位置不同分为光源调制与吸收线调制两种,前者是指光源在磁场中发射线的塞曼分裂,后者是指原子化器在磁场中吸收线的塞曼分裂。2.而由于磁场与光束间的方向不同又分为垂直(横向塞曼效应)与平行(纵向塞曼效应)两种。3.而根据磁场自身的工作方式又可分为两种:采用恒定磁场的偏振调制方式、采用交变磁场的磁场调制方式。上述这三条依次组合会有2*2*2=8种形式的塞曼背景校正方式:光源调制横向恒磁场塞曼背景校正光源调制纵向恒磁场塞曼背景校正光源调制横向交变磁场塞曼背景校正光源调制纵向交变磁场塞曼背景校正吸收线调制横向恒磁场塞曼背景校正吸收线调制纵向恒磁场塞曼背景校正吸收线调制横向交变磁场塞曼背景校正吸收线调制纵向交变磁场塞曼背景校正但是:1.光源调制方式对于仪器光源结构有较大要求,使得元素灯不具有通用性,逐渐被市场所淘汰吧就算...因此,目前市场上的塞曼背景校正的仪器都是采用原子化器调制方式,没有使用光源调制的类型了。2.关于横向与纵向磁场的问题。横向磁场效应产生的是波长不变的π成分和波长变化的σ±成分,前者用于测量原子吸收信号,后者不产生原子吸收信号,是用于对背景校正。而纵向磁场仅能产生σ±成分,也就是说仅能产生背景信号。3.因此,横向磁场可以使用恒定磁场和交变磁场来实现原子吸收与背景吸收的测量。而纵向磁场只能采用交变磁场,通过磁场的有无来分别实现对原子吸收信号和背景信号的测量,纵向磁场若采用恒定磁场则只有背景信号,不能用于原子吸收仪器分析。纵上所述,所以目前市场上只有3种塞曼背景校正的仪器:吸收线调制恒定磁场横向塞曼型:WFX-810型(北京瑞利分析仪器公司)Z8000/Z5000/Z2000系列(日本Hitachi公司)吸收线调制交变磁场横向塞曼型:ZEEnit系列(德国analytik-jena公司)Z3030型(美国Perkin-Elmer公司)吸收线调制交变磁场纵向塞曼型:ZL4100/Z600/Z800 AnalytTM600/800型(美国Perkin-Elmer公司)继续,这就引起了一个问题,就是您所提到的问题了,采用交变磁场背景校正的,它必须要求有复杂、庞大的电路系统,而且磁间隙有限,现有的机械、电学、物理学等水平决定了它不能够生产出有火焰燃烧缝那么长(一般15cm左右)的磁场,仅仅应用于石墨炉分析的纵向交变磁场的正常消耗功率就已经达到了4kW!这已经对用于分析的实验室的电路造成了很大的负荷,而且还不包括石墨炉电源,仅仅是它的交变磁场就是4kW了。因此目前采用交变磁场背景校正的仪器,仅仅是石墨炉分析而已,仪器在火焰一侧的背景校正方式采用的必然是D2灯。而横向恒定磁场就没有这个问题了,可以实现火焰与石墨炉的塞曼背景校正,但是并不是说这就比交变磁场要好或是技术更先进,应该说是各有所长也各有所短,真正的评判依据在于用户,用户分析自己的样品适用的方式,就是对他来说好的方式。对本文中出现的错误或各位读者有什么意见建议,欢迎大家批评指正...加一句:原创帖是个人知识、智慧与汗水,应用或转载请注明出处...不关是我的帖子,所有原创帖大家都应支持与保护!谢谢!

  • 【原创】浅析交直流两用塞曼效应背景校正器

    一直以来认为国内并没有成功商品化交变磁场调制反塞曼效应背景校正(简称交流塞曼)技术,近日上网一搜,才发现自己严重Out了。早在2009年,上海光谱的SP-3880AA就已经把交流塞曼和直流塞曼(直流磁场激励反塞曼效应背景校正)共冶一炉,居然在一台机子上实现了!一个感觉——震撼。如果再看这型仪器的其他配置,更觉震撼:开关型直流化石墨炉电源、横向加热石墨炉、固体进样技术、etc。呵呵,我不相信横向加热石墨炉,因为这一项和仪器的其他部分不匹配。但其他几项,就算拿到国际上,也算先进了。不说其他,单论这交直流塞曼合体。我们知道,恒定磁场反塞曼效应背景校正(恒磁塞曼,以区别于直流塞曼)要使用塞曼分裂的p成分(即偏振方向平行于磁场的成分)作为总吸收信号的测量光束,而对于部分反常塞曼效应的原子吸收谱线,其p成分内部因为磁致分裂较大,导致分析谱线峰值下降,从而损失相对灵敏度。Cu、Au、Ag、Cr、As等元素的灵敏线不幸都落在这个部分中。因此,从相对灵敏度来说,恒磁塞曼不如交流塞曼,后者虽然也存在同样的问题,但一来相对灵敏度损失不太大(因为不使用p成分),二来还可以通过调节磁场强度来解决。恒磁塞曼使用永久磁铁,自然也就无法调节磁场。所以,用直流电磁铁来激励一个强度可调的直流磁场,就成为一种顺理成章的思路,这就是直流塞曼技术。直流塞曼的光路结构完全和恒磁塞曼相同,但磁场却与交流塞曼匹配。如果用交变信号激励磁场,在磁场最大时让s成分(偏振方向垂直于)输出,而在零磁场时让p成分输出,那么就实现另一种形式的交流塞曼,磁场调制和信号测量的同步方法实际上很简单,此处不叙。和经典的交流塞曼系统相比,只是在零磁场时用p成分代替s成分而已,而这二者是完全等价的。换句话说,交直流塞曼本来就可以合体的!为何过去没有人意识到这一点呢?我想应该是没有人认为有交流塞曼还需要直流塞曼吧。如果用两个光电检测器同时测定p成分和s成分,直流塞曼在处理高速背景方面无疑占有优势,这也就是二者合体的意义。不过,这需要有双检测器为前提。SP-3880AA并没有说明这一点,表明这型仪器没有使用双检测器,所以其交直流塞曼合体的意义并不太大。不过,这是一型真正的商品化交流塞曼原子吸收系统,仅就此而言,填补国内空白是可以自称的。顺便指出,双检测器并非增加一个PMT那么简单,要求两个PMT性能上严格匹配,并且对光路要求很严格,所以会增加成本。SP3880AA有如此的技术,但除了频频获奖外,并没有吸引多少眼球。我曾在本坛中从2008年搜到2011年,竟然没有一篇帖子谈论上海光谱的这型仪器。个中原因恐怕只有上海光谱自己知道了。其实据我所知,交流塞曼,甚至纵向交流塞曼在国内早有人研制出来了,但一到产品阶段就卡壳,无法进行下去。我国的仪器产业,固然在理论水平方面落后于国外,但更主要的原因是先进制造能力,当然还有市场能力的缺乏。但愿这种看法是错误的。

  • 【求购】Raman仪的激光器,CCD,和样品台.

    有没有对Raman仪了解的.想做较低波数的,对仪器有什么要求?(不懂啊,别笑我啊)我们现在想配个激光器,CCD,和样品台.不知道现在激光光斑多少?(越小越好)样品台能否实现数字控制的?(精确定位.)欢迎厂家,代理商和我联系.funfunyang@xmu.edu.cn

  • 【原创】小吃:原子吸收仪器WFX-810塞曼扣背景

    WFX-810是采用塞曼背景校正技术,具体采用的是反向塞曼、横向、恒磁场的技术,而且据我所知是国产仪器中唯一实现火焰、石墨炉均塞曼扣背景的商品化仪器...凝结了好多辛勤的汗水在里面还是希望大家支持国产仪器的发展!另外,大家有想了解塞曼相关知识或原理的我会认真回复的,但可能会有问题,欢迎大家批评指正喽...毕竟相比D2灯、自吸收扣背景来说,塞曼的优势还是很强的...

  • 【原创大赛】横向赛曼石墨炉原子吸收光谱法在紫外正型光刻胶中的应用

    横向赛曼石墨炉原子吸收光谱法在紫外正型光刻胶中的应用摘 要:随着电子技术的飞速发展,对紫外正型光刻胶的质量提出了极高的要求。因为紫外正型光刻胶中钙、铬、铜、铁、钾、镁、钠、镍、铅、锌的存在将严重影响器件的成品率、可靠性和电化学性。因此建立准确、快速的分析方法有一定的意义。对于光刻胶中金属的检测方法,有电感耦合等离子体-质谱法(ICP-MS)、电感耦合等离子体发射光谱法(ICP-AES),但是这两种方法光刻胶都需要经过湿法消解或者干法灰化后才可以进样。湿法消解或者干法灰化容易引起易挥发元素的损失,同时存在容器污染,酸基体或者其他试剂的污染,本底较高等问题。本文提出了用石墨炉原子吸收法(GFAA)直接测定紫外正型光刻胶中十种金属元素的方法,本方法不经任何化学处理和富集,减少了中间过程,避免了样品被污染。详细描述了仪器最佳条件选择、控制空白,建立标准曲线、加标回收、测定检出限的方法。钙、铬、铜、铁、钾、镁、钠、镍、铅、锌的检出限分别为0.07ng/ml、0.03ng/ml、0.15ng/ml、0.15ng/ml、0.01ng/ml、0.03ng/ml、0.05ng/ml、0.36ng/ml、0.14ng/ml、0.02ng/ml。石墨炉原子吸收法(GFAA)需要选择合适的溶剂稀释光刻胶,考虑到试剂对光刻胶的溶解性,试剂本身空白值的大小等因素,我们最终选择丙二醇甲醚醋酸脂(PGMEA)做稀释剂,稀释样品后直接进样。关键字:紫外正型光刻胶、金属、石墨炉原子吸收绪 论:光刻胶(又称光致抗蚀剂)是指通过紫外光、准分子激光、电子束、离子束、X射线等光源的照射或辐射,其溶解度发生变化的耐蚀刻薄膜材料。主要用于集成电路和半导体分立器件的微细加工,同时在平板显示、LED、倒扣封装、磁头及精密传感器等制作过程中也有着广泛的应用。由于光刻胶具有光化学敏感性,可利用其进行光化学反应,将光刻胶涂覆在半导体、导体和绝缘体上,经曝光、显影后留下的部分对底层起保护作用,然后采用蚀刻剂进行蚀刻就可将所需要的微细图形从掩模版转移到待加工的衬底上。因此光刻胶是微细加工技术中的关键性化工材料。随着集成电路(IC)存储容量的逐渐增大,存储器电池的蓄电量需要尽能的增大,因此氧化膜变得更薄,而紫外正型光刻胶中的碱金属杂质(Na、[/size

  • 氘灯和横向加热石墨炉的搭配是先天的畸形

    最近出现的“毒胶囊”事件,对原子吸收石墨炉的关注超出了以往的任何时候,有的企业在检测铬元素的时候经常遇到背景干扰严重导致检测结果不正常的效果,用了扣背景也没起到任何效果,我在这里只想做一个简单的原理性说明:横向加热的石墨管是在塞曼扣背景的基础上才出现的产物,如果不用塞曼扣背景,横向加热的石墨管就相当于是张冠李戴,没有任何优势可言。国产的横向加热石墨管加工工艺和材料都远没达到进口标准,加热温度基本到2200度就到达极限了,检测100个样品就要更换(这还算是好的),且更换步骤及其麻烦,大概要半天时间。单个石墨管的成本是纵向石墨管价格的五倍左右。氘灯搭配横向石墨管的配置全世界只有中国能干出来,这种搭配我想在几年之内必将被淘汰出局。已经购买的用户我只能表示同情了。采购大型分析仪器最重要的还要看实际应用效果。

  • 【讨论】激光粒度仪谁家的激光器最好?

    我觉得是法国Cilas的,他们用的是半导体激光器。这个公司主要的业务还是激光器这块嘛,在全世界范围来说生产的激光器都是数一数二的。马尔文,贝克曼这些公司都是买了人家的。

  • 激光自拉曼

    大佬们,刚接触拉曼光谱,在激光器实验中,发现了晶体的自拉曼,在光谱仪看到了疑是拉曼光谱,晶体的拉曼光谱有标准的表可以查?还是采用哪种理论计算材料的拉曼频移,谢谢

  • 【分享】三维显微激光拉曼光谱仪

    【分享】三维显微激光拉曼光谱仪

    三维显微激光拉曼光谱仪三维显微激光拉曼光谱仪装置Nanofinder30  Nanofinder30 三维显微激光拉曼光谱仪装置是日本首创,世界最初的分析装置。它能在亚微米到纳米范围内,测定物质化学状态的三维图像。它由共焦激光显微镜,压电陶瓷平台(或电动扫描器)和光谱仪组成。并能自选追加原子力显微镜和近场表面增强拉曼测定的功能。 最新测量数据[ 变形Si的应力测定]PDF刊登 用二维的平面分析来评价变形Si。空间分辨率130nm, 变形率0.01%(0.1cm偏移)。 半导体/电子材料(异状物,应力,化学组成,物理结构)薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造结晶体(单壁碳纳米管,纳米晶体)光波导回路,玻璃,光学结晶等的折射率变化生物学(DNA, 蛋白质, 细胞 组织等) 以亚微米级分辨率和三维图像,能分析物质的化学结合状态空间分辨率200nm(三维共焦点模式),50nm(二维TERS模式)能同时测定光谱图像(拉曼/萤光/光致荧光PL),共焦显微镜图像,扫描探针显微镜图像(AFM/STM)和近场表面增强拉曼图像(SERS)能高速度,高灵敏度地测定样品(灵敏度:与原来之比10倍以上)不需要测定前样品处理,在空气中能进行非破坏测定全自动马达传动系统的作用,测定简单 共焦显微镜模式不能识别结晶缺陷,然而光致荧光(PL)模式却能清楚地测到结晶缺陷 共焦激光显微镜模式的形状测定 光谱窗 560 nm 用光致荧光(PL)模式测到的结晶缺陷的光谱图像(560nm的三维映像) 用AFM和共焦显微拉曼法同时测定CNT,能判定它的特性 (金属,半导体)和纯度。 同时测定单壁碳纳米管(CNT)的原子力显微镜(AFM) 形貌图像和拉曼光谱图像的例子 :拉曼光谱: 激光488nm,功率1.5mW,曝光时间2 sec,物镜100×Oil, NA=1.35, 积分时间100 sec (AFM和拉曼图像测定时) AFM形貌图像(右上)表示了单壁碳纳米管混合物的各种形状结构。图像中用数字1到8来表示其不同形状。数字1-6测得了拉曼光谱(上图所示),判定为半导体CNT。但7-8测不到拉曼光谱,所以不是半导体CNT,而可能是金属CNT(可用He-Ne激光633nm验证)。最上面表示了RBM(173cm-1), G-band(1593cm-1)及D-band(1351cm-1)的拉曼光谱图像 综合激光器和光谱分析系统的长处,坚固耐用的复合设计,卓越的仪器安定性,是纳米技术测定装置中的杰出产品。 ※日本纳米技术2004大奖“评价和测量部门”得奖. ※日本第16届中小企业优秀技术和新产品奖 “优良奖”得奖. 光学器件配置图Nanofinder30 [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122565_1634361_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122566_1634361_3.jpg[/img][~122567~][~122568~]

  • 【转帖】He-Ne激光器与半导体激光器

    半导体激光器又称激光二极管(LD),是二十世纪八十年代半导体物理发展的最新成果之一。导体激光器的优点是体积小、重量轻、可靠性高、使用寿命长、功耗低,此外半导体激光器是采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代。它的应用领域包括光存储、激光打印、激光照排、激光测距、条码扫描、工业探测、测试测量仪器、激光显示、医疗仪器、军事、安防、野外探测、建筑类扫平及标线类仪器、激光水平尺及各种标线定位等。以前半导体激光器的缺点是激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展,发挥更大的作用。 在气体激光器中,最常见的是氦氖激光器。1960年在美国贝尔实验室里由伊朗物理学家贾万制成的。由于氦氖激光器发出的光束方向性和单色性好,光束发散角小,可以连续工作,所以这种激光器的应用领域也很广泛,是应用领域最多的激光器之一,主要用在全息照相的精密测量、准直定位上。He-Ne激光器的缺点是体积大,启动和运行电压高,电源复杂,维修成本高。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制