当前位置: 仪器信息网 > 行业主题 > >

双光子显微钛宝石激光器

仪器信息网双光子显微钛宝石激光器专题为您提供2024年最新双光子显微钛宝石激光器价格报价、厂家品牌的相关信息, 包括双光子显微钛宝石激光器参数、型号等,不管是国产,还是进口品牌的双光子显微钛宝石激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合双光子显微钛宝石激光器相关的耗材配件、试剂标物,还有双光子显微钛宝石激光器相关的最新资讯、资料,以及双光子显微钛宝石激光器相关的解决方案。

双光子显微钛宝石激光器相关的资讯

  • 首台芯片级掺钛蓝宝石激光器研制成功
    激光线宽测量。图片来源:《自然光子学》美国耶鲁大学一组研究人员开发出首台芯片级掺钛蓝宝石激光器,这项突破的应用范围涵盖从原子钟到量子计算和光谱传感器。研究结果近日发表在《自然光子学》杂志上。掺钛蓝宝石激光器在20世纪80年代问世,可谓激光领域的一大进步。它成功的关键是用作放大激光能量的材料。掺钛蓝宝石被证明十分强大,因为它提供了比传统半导体激光器更宽的激光发射带宽。这一创新引领了物理学、生物学和化学领域的基础性发现和无数应用。台式掺钛蓝宝石激光器是许多学术和工业实验室的必备设备。然而,这种激光器的大带宽是以相对较高的阈值为代价的,也就是它所需的功率较高。因此,这些激光器价格昂贵,占用大量空间,在很大程度上限制了它们在实验室研究中的使用。研究人员表示,如果不克服这一限制,掺钛蓝宝石激光器仍将仅限于小众客户。将掺钛蓝宝石激光器的性能与芯片的小尺寸相结合,可驱动受功耗或空间大小限制的应用,如原子钟、便携式传感器、可见光通信设备,甚至量子计算芯片。耶鲁大学展示了世界上第一台集成了芯片级光子电路的掺钛蓝宝石激光器,它提供了芯片上迄今看到的最宽增益谱,为许多新的应用铺平了道路。新研究的关键在于激光器的低阈值。传统掺钛蓝宝石激光器的阈值超过100毫瓦,而新系统的阈值约为6.5毫瓦,通过进一步调整,研究人员相信可将阈值降低到1毫瓦。此外,新系统还与广泛用于蓝色LED和激光的氮化镓光电子器件兼容。
  • 160万!清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目
    项目编号:BIECC-22ZB1133/清设招第20221251号项目名称:清华大学超宽调谐飞秒激光器(高速双光子共聚焦显微镜)购置项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:该设备用于为生物样本研究的多光子显微镜系统提供激光光源,针对多光子显微成像, 提供(680 nm - 1300 nm)宽的波长调谐范围,全波长全自动调谐,适宜于各种生物活体成像,广泛应用于神经科学/光遗传学,胚胎学,免疫学等多个生物领域研究。具体要求详见第四章。包号名称数量01超宽调谐飞秒激光器1套合同履行期限:合同签订后120日内交货。本项目( 不接受 )联合体投标。
  • ALCOR 920性能再次提升!脑科学双光子显微成像系统理想飞秒激光光源——Spark Lasers
    自Spark Lasers公司推出ALCOR 920系列920nm飞秒光纤激光器以来,该系列产品就成为脑科学双光子显微成像系统主要使用的光纤飞秒激光器。凭借其高功率、窄脉宽、高稳定性、免维护等特性,ALCOR 920不仅成为传统钛蓝宝石飞秒激光器的高性价比替代产品,也成为同类产品的市场引领者。 ALCOR 920采用了Spark Lasers最新的HPC® 技术(High Pulse Contrast),功率有了进一步提高,同时脉冲形状也得到了优化。与前一代产品相比,ALCOR 920-1的平均功率从之前的1W提高到了1.5W;ALCOR 920-2的平均功率从之前的2W提高到了2.5W。ALCOR 920-4仍提供高达4W的平均功率,是目前市面上920nm飞秒光纤激光器中输出光功率最高的产品。图1 ALCOR系列产品主要参数列表 飞秒激光器作为双光子显微成像系统的核心部件之一,对系统成像效果是至关重要的。那么,如果想要得到好的成像效果,应该怎么办呢?我们有方法:1. 选择高峰值功率的激光器由于双光子效应是与光子密度正相关的非线性效应,越高的峰值功率就意味着越多的荧光分子能够同时吸收两个光子到达激发态,并在跃迁至基态的过程中发出荧光,也就是说最终被探测器采集到的荧光信号也就越强,最终生成的图像亮度和对比度也就越高。峰值功率的计算方式可以由下面的公式计算得出:例如,标准款ALCOR 920-2的平均功率为2.5W,重复频率为80MHz,脉冲宽度为100fs,那么ALCOR 920-2的峰值功率就高达312.5kW。 假如有一款飞秒激光器脉冲宽度只能做到150fs,平均功率和重复频率却能和ALCOR 920-2一样,那么会有什么影响呢?我们通过计算可以得到,这款激光器的峰值功率仅有208kW,仅有ALCOR 920-2的66.6%,这也就意味着相应的荧光强度也会有很大幅度的降低。同样地,假如有另一款产品,脉冲宽度也能达到100fs,但是平均功率却比较低,那么其峰值功率也是比较低的。 图2 使用低脉冲质量的激光器和Spark Lasers的高质量脉冲激光器的最终图像对比 2. 使用色散预补偿得到最优化的脉冲宽度然而,拥有一台激光器只是搭建双光子显微成像系统的第一步。由于成像系统内部有很多光学元器件,如反射镜、滤光片、光强调制器、空间光调制器、分光棱镜、物镜等等,而这些光学元器件中的大部分都会引入正色散,导致飞秒脉冲激光到达测量点处的过程中发生展宽,即脉冲宽度变宽。在上面的计算中我们可以看出,脉冲宽度变宽会导致激光峰值功率的下降,会在很大程度上降低荧光光强,以至于最终的图像亮度和对比度会变差。 ALCOR 920系列在激光头内部集成了色散预补偿模块,可以在激光发射时就带有负色散,这些负色散可以在激光脉冲传播过程中和光学器件引入的正色散相互抵消,从而使得在测量点处,脉冲宽度能保持比较窄。 标准款ALCOR带有0~-60000fs2的大色散补偿范围,同时提供0~-90000fs2的超大色散补偿范围选配,可以满足大部分双光子显微成像系统对色散补偿要求,甚至是最复杂的系统。根据我们的经验,一般复杂程度的双光子显微成像系统对色散补偿的要求在-30000fs2~-50000fs2。3. 对功率进行调制和精确控制ALCOR 920可提供XSight选配模块,即集成化内置AOM模块,以满足双光子显微成像系统对激光实现光强的开/关调制或模拟调制来实现复杂的功能的需要。内置模块可以在很大程度上节省光学平台的空间以及在光路中调试外置调制器的时间精力,同时,该模块能够提供:超高精度光强调节(分辨率高达0.1%)高带宽模拟调制(0~1MHz)高速光开关(上升/下降沿关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 首款可探测紫外自体荧光团的新型双光子显微镜
    中国科学院深圳先进技术研究院生物医学与健康工程研究所研发团队研发了首款短波长激发时间与光谱分辨新型双光子显微镜,该显微镜创新性地采用中心波长为520 纳米的锁模飞秒光纤激光器作为双光子激发光源,可以有效地激发短波长波段荧光团,利用连接光谱仪的时间相关单光子计数模块,可实现荧光光谱和荧光寿命的同时检测。该技术可以实现紫外波段自体荧光的有效激发与探测,极大地拓展了双光子成像技术的应用范围,为无创观测生物样品及生命过程提供了一种新的研究工具。该成果于近日发表于生物医学光学领域知名期刊《生物医学光学快报》上。生物体中,普遍存在着具有内源性荧光团的生物分子,内源性荧光团的三维成像可以在不干扰生物环境的情况下对重要生物过程进行无创体内检查,如代谢变化、形态改变和疾病进展,是组织成像和跟踪细胞代谢过程的有力工具。双光子显微镜具有天然的光学切片能力,无需物理切割就可以实现生物组织的三维高分辨成像。双光子显微镜跟内源性荧光团的结合可以实现活体生物组织无标记成像,对很多生命活动的研究具有非常重要的意义。然而,传统的双光子显微镜是以钛宝石激光器作为光源,只能对可见光波段的内源性荧光团进行探测,很难探测到信息更丰富的短波长荧光团。 深圳先进院郑炜团队首次研制出采用520纳米超快激发源搭建光谱分辨的双光子荧光寿命成像系统,可以有效激发和探测传统双光子显微系统无法成像的一系列短波长荧光团。为了验证该系统的实用性,研究团队首先系统地评估了生物组织中典型的短波内源性荧光团纯化学样品在520纳米激发下的荧光寿命和光谱特性,包括荧光分子酪氨酸、色氨酸、血清素、烟酸、吡哆醇和NADH,以及角蛋白、弹性蛋白和血红蛋白。 随后,研究团队对不同的生物组织进行了成像,包括离体大鼠食管组织和离体大鼠口腔面颊组织。结果表明,该系统可以在不需要任何外加造影剂的情况下,为生物系统提供高分辨率的三维形态信息和物理化学信息。此外,研究人员探索了短波长的内源性荧光团在食管壁中的分布,结果表明,该系统可以很清晰展示食管的不同分层结构。结合寿命和光谱信息,系统可以明确识别食管内部多层结构的不同信号来源,定量区分不同组织成分在食管壁的位置和数量,区分食管分层结构。 最后,研究团队进一步对小鼠皮肤进行了活体三维扫描成像,并基于短波内源荧光团在体内捕获了小鼠耳廓内白细胞的迁移,实现了典型免疫反应微环境中白细胞募集和变形运动的动力学过程的可视化,以及随时间的荧光寿命测量。“紫外荧光强度图像可以显示生物组织的精细结构,紫外荧光寿命信息可以区分红细胞和白细胞,两者结合可以无标记追踪免疫细胞在伤口和正常组织的运动情况,这些结果验证了我们开发的系统在天然组织环境中监测免疫反应的能力。”郑炜介绍。深圳先进院医工所助理研究员吴婷为文章第一作者,深圳先进院医工所郑炜研究员、李慧副研究员,北京大学物理学院施可彬研究员为共同通讯作者
  • 深圳先进院等研发出新型无标记血管成像双光子显微系统
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院深圳先进技术研究院研究员郑炜团队、北京大学教授施可彬团队合作,研制出首台短波长(520纳米)激发的双光子显微系统。该系统可用于毛细血管的高分辨率、无标记、无创活体成像,相关成果论文In vivo label-free two-photon excitation autofluorescence microscopy of microvasculature using a 520 nm femtosecond fiber laser发表在Optics Letters上。 /p p style=" text-align: justify text-indent: 2em " 对微血管网络在其自然环境中进行形态评估,为理解感染、高血压、糖尿病、缺血、癌症等各种疾病的发生和发展提供了独特视角。目前,无需标记物的高分辨率三维成像技术的缺乏,限制了对微血管的体内研究。以往采用蓝宝石激光器(波长范围:700-1000纳米)作为光源的普通双光子显微系统给血管成像时,由于血管自身几乎不发荧光,需要提前在血管中注射荧光染料。近年来,科研人员发现红细胞在可见光飞秒激光激发下可发出微弱的自发荧光信号。但以往研究只能依赖蓝宝石激光器和光参量振荡及放大技术或光子晶体光纤(PCF)产生超连续谱这两种方法来获得可见光波段(400-700纳米)的飞秒光。这些方法存在激光器体积大,价格昂贵,结构复杂,易受环境影响等问题。 /p p style=" text-align: justify text-indent: 2em " 该研究借助施可彬团队自行研制的520纳米高功率飞秒光纤激光器,采用短波长激发和荧光寿命成像相结合的技术,实现了毛细血管的无标记、活体、高分辨成像。整个双光子显微系统横向分辨率达到260纳米,纵向分辨率为1.3微米,在体成像深度可达200微米。该设备的研发将为后续血管相关的疾病机理研究与治疗策略探索提供重要工具。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 该研究得到国家自然科学基金、广东省自然科学基金等项目支持。 /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.osapublishing.org/ol/abstract.cfm?uri=ol-45-10-2704" target=" _self" span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 2em " 论文链接& nbsp /span /strong /span /a /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/aa10e0df-e883-46ef-ad83-b8c46ccd44d1.jpg" title=" 1.PNG" alt=" 1.PNG" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" text-indent: 2em " (a)血红细胞和(b)毛细血管的无标记、高分辨成像结果 /span /strong /p
  • 单套664.5万!蔡司中标南科大双光子激光共聚焦显微镜采购项目
    近日,南方科技大学公布其双光子激光共聚焦显微镜中标公告,德国蔡司LSM 980以单价664.5万的价格中标,从发布公告到招标结束仅半月左右。此前在发布招标公告时,已有网友猜测中标者或将为蔡司。一、项目编号:0868-2144ZD090H(招标文件编号:0868-2144ZD090H)二、项目名称:双光子激光共聚焦显微镜三、中标(成交)信息供应商名称:广州千江生物科技有限公司供应商地址:广州市越秀区广州大道中301号201房自编09室中标(成交)金额:664.5000000(万元)四、主要标的信息序号供应商名称货物名称货物品牌货物型号货物数量货物单价(元)1广州千江生物科技有限公司双光子激光共聚焦显微镜德国ZeissLSM 9801台¥6,645,000.00五、评审专家(单一来源采购人员)名单:卓菲、赵卓、易娟、李大圣、万峻六、代理服务收费标准及金额:本项目代理费收费标准:按招标文件要求执行本项目代理费总金额:4.3296000 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜一、投标供应商名称及报价:序号投标人名称投标报价资格审查1深圳市博诚生化试剂仪器有限公司¥5,800,000.00合格2莱华尔科技(深圳)有限公司¥6,649,700.00合格3深圳市森维凯科技有限公司¥6,649,800.00合格4广州千江生物科技有限公司¥6,645,000.00合格二、候选中标供应商名单:1.广州千江生物科技有限公司九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:南方科技大学     地址:深圳市南山区西丽学苑大道1088号        联系方式:万老师 0755-88018674      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号            联系方式:李先生、黄先生 0755-82786018/82786038-821/822            3.项目联系方式项目联系人:李先生、黄先生电 话:  0755-82786018/82786038-821/822
  • 南方科技大学665万预采购1套双光子激光共聚焦显微镜
    1月28日,南方科技大学发布一则招标公告,预算665万,采购一套双光子激光共聚焦显微镜,要求招标项目的潜在投标人于2021年02月08日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:0868-2144ZD090H项目名称:双光子激光共聚焦显微镜预算金额:665.0000000 万元(人民币)最高限价(如有):665.0000000 万元(人民币)采购需求:序号设备名称数量单位是否接受进口设备1双光子激光共聚焦显微镜1台是合同履行期限:签订合同后【180】日内交货本项目( 不接受 )联合体投标。二、获取招标文件时间:2021年01月28日 至 2021年02月05日,每天上午9:00至12:00,下午14:00至18:00。(北京时间,法定节假日除外)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号方式:现金售价:¥300.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2021年02月08日 09点30分(北京时间)开标时间:2021年02月08日 09点30分(北京时间)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号四、公告期限自本公告发布之日起5个工作日。五、其他补充事宜1.获取招标文件相关事项:(1)凡有意参加投标者,请在“三、获取招标文件”所述时间内进行登记。如确认参加本项目投标,请于报名截止日前携带供应商获取招标文件时应提供材料(见下方要求)到深圳市振东招标代理有限公司进行现场报名,并缴纳标书费(仅接受现金或对公转账,招标文件售后不退不换),逾期不接受报名;若邮购,所产生费用由投标人自行承担)。采购代理机构将不对邮寄过程中可能发生的延误或丢失负责。(2)联系人:杨小姐。联系电话/传真:0755-82786028(仅提供招标文件获取相关咨询服务,其它投标事宜请联系下方采购代理机构联系人)。电子邮箱:339288519@qq.com(3)《投标登记表》下载地址:http://www.szzdzb.cn/ “下载中心”。2.获取招标文件需提供的资料:(1)投标登记表;(2)法定代表人授权书;(3)投标人须提供营业执照(法人证书或执业许可证等)副本扫描件;以上资料均需加盖投标人公章。注:需邮寄报名应将以上资料扫描后发至邮箱:339288519@qq.com邮件中标明项目名称、项目编号、联系人及联系方式,并与我公司杨小姐联系确认同时3个工作日内快递至采购代理机构留存备案,否则报名无效。3.采购代理机构开户银行及相关信息:开户银行:招商银行深圳分行安联支行开户名称:深圳市振东招标代理有限公司银行账号:755914788210601公示网址:①中国政府采购网(http://www.ccgp.gov.cn)②深圳公共资源交易中心市区政府采购统一平台(http://www.szzfcg.cn)③深圳市政府采购监管网(http://www.zfcg.sz.gov.cn)④深圳市振东招标代理有限公司网站(http://www.szzdzb.cn)投标人有义务在招标活动期间浏览以上网站,在以上网站公布的与本次招标项目有关的信息视为已送达各投标人。5.其他事项①为避免病毒传染的风险,各供应商法定代表人或其授权代表可通过“中国邮政”、“EMS”、“顺丰速运”的邮寄方式,按照规定的递交投标文件截至时间前”向我公司邮寄投标文件,快递单上写明供应商名称、招标编号,通过邮寄方式递交的投标文件递交时间以我公司代表签收时间为准。逾期或不符合规定的投标文件不予接受。②为确保项目顺利开展,通过邮寄方式递交投标文件的各供应商需盖章签署《供应商邮寄标书承诺书》(下载地址:http://www.szzdzb.cn/ “下载中心”),扫描件优先发送至项目负责人邮箱2778757549@qq.com,原件(无需密封)同投标文件一并邮寄至我公司。六、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南方科技大学     地址:深圳市南山区西丽学苑大道1088号        联系方式:万老师 0755-88018674      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号联系方式:李先生、黄先生 0755-82786018/82786038-821/822            3.项目联系方式项目联系人:李先生、黄先生电 话:  0755-82786018/82786038-821/822
  • 1130万!山东大学双光子激光共聚焦显微镜等采购项目
    一、项目基本情况项目编号:SDJDHF20230033-Z026项目名称:山东大学双光子激光共聚焦显微镜采购项目预算金额:680.0000000 万元(人民币)最高限价(如有):680.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1双光子激光共聚焦显微镜 1台详见公告附件 项目编号:SDJDHF20230027-Z021项目名称:山东大学分选流式细胞仪采购项目预算金额:240.0000000 万元(人民币)最高限价(如有):240.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1分选流式细胞仪 1台详见公告附件 项目编号:SDJDHF20230024-Z018项目名称:山东大学长时间动态细胞监测分析系统采购项目预算金额:210.0000000 万元(人民币)最高限价(如有):210.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1长时间动态细胞监测分析系统 1台详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年04月20日 至 2023年04月26日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:山东省济南市历下区华润置地广场A5-6号楼27层方式:第一步:投标人在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息;链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=34131pE9Y。第二步:将招标文件工本费网银汇款截图或银行电汇凭证扫描件(备注投标人名称),发送至liyuying@sdhyha.com邮箱。 售价:¥300.0元,缴纳形式:电汇或网银,开户单位名称:海逸恒安项目管理有限公司,开户银行: 中信银行济南龙奥支行。账 号:8112501013101275518。注:本项目实行资格后审,获取招标文件成功不代表资格后审的通过。售价:¥900.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:山东大学中心校区明德楼        联系方式:王老师0531-88369797      2.采购代理机构信息名 称:海逸恒安项目管理有限公司            地 址:山东省济南市历下区华润置地广场A5-6号楼27层            联系方式:陈晓楠、李雨莹0531-82661997、13964159515            3.项目联系方式项目联系人:陈晓楠、李雨莹电 话:  0531-82661997、13964159515
  • 410万!中国农业大学双光子激光共聚焦扫描显微镜采购项目
    一、项目基本情况项目编号:XHTC-HW-2023-0002项目名称:中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目预算金额:410.0000000 万元(人民币)采购需求:本项目为中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目,简要技术参数:激光光源系统等,详见附件采购需求。本项目允许采购进口产品。合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年03月22日 至 2023年03月29日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:北京市海淀区莲花池东路39号西金大厦11层方式:需携带法人授权书原件及被授权人身份证复印件加盖公章。文件售后不退。未从采购代理机构获取招标文件并登记在案的潜在供应商均无资格参加投标。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中国农业大学地址:北京市海淀区圆明园西路2号联系方式:吴老师 010-62731314-8052.采购代理机构信息名称:新华招标有限公司地址:北京市海淀区莲花池东路39号西金大厦11层联系方式:张云驰010-63905857、刘佳 010-639059263.项目联系方式项目联系人:刘佳电话:010-63905926采购需求.docx
  • 科学家造出全谱段白光激光器,或催生新型光谱学检测手段
    近日,华南理工大学教授李志远团队成功造出一台全谱段白光激光器,其具备光斑明亮、光谱光滑且平坦、大脉冲能量的特点,能覆盖 300-5000nm 的紫外-可见-红外全光谱,单脉冲能量达到 0.54mJ。这样一台全谱段白光激光器的面世,可用于构建全谱段的超快光谱学探测技术,有望将激光技术推至世界领先水平,从而更好地服务于前沿研究。图 | 李志远(来源:李志远)基于本次成果,课题组将进一步构建全谱段的超快光谱学探测设备,届时有望对物质内部多个波段中的物理、化学和生命过程开展超快的精密探测,从而实现高速摄谱的技术能力,进而用于开展二维材料、锂离子电池、化学催化等领域的研究。本次研究中所涉及的光谱学技术,可以覆盖深紫外-可见波段的原子以及分子的电子跃迁吸收谱,也能覆盖近红外波段的半导体带间电子跃迁吸收谱、以及中红外波段的分子振动等。借此可以打造一种崭新的光谱学检测手段,对于那些使用传统手段所无法揭示的新现象和新规律,本次新手段很有希望填补相关空白。(来源:Light: Science & Applications)鉴于光学波段的光子和物质的电磁相互作用强度以及灵敏度,远远超过 X 射线光子与物质原子核、以及内壳层电子的电磁相互作用。而且,即便是 1mJ 量级的全谱段白光飞秒脉冲激光的光子亮度,也远远超过目前同步辐射 X 射线光源的亮度。“因此,全谱段白光激光器在物质科学和生命科学中所发挥的作用,也有望超过传统的同步辐射 X 射线光源。”李志远表示。日前,相关论文以《强紫外-可见-红外全谱段激光器》 (Intense ultraviolet–visible–infrared full-spectrum laser)为题发在 Light: Science & Applications,华南理工大学博士生洪丽红是第一作者,华南理工大学李志远教授、中国科学院上海光学精密机械研究所(上海光机所)李儒新院士担任共同通讯 [7]。图 | 相关论文(来源:Light: Science & Applications)助力解决 Science 125 个待解难题之一据介绍,作为一种崭新的激光光源,超宽带白光激光具有极宽带宽、高光谱平坦度、大脉冲能量、高峰值功率、高时空相干性等五大优点,能极大拓展激光技术的发展和应用范围。而如何构建一台覆盖紫外-可见-红外波段的全谱段白光激光器,同时拥有高峰值功率和高脉冲能量,是一个极具挑战的宏大目标。2020 年,Science 杂志将其列为 125 个前沿重大科学问题之一。主要原因在于,基于目前纯粹单一的激光器技术、二阶非线性变频技术、以及三阶非线性频率展宽技术,远不足以解决这一问题。过去十年,李志远团队基于自主开发的啁啾结构非线性铌酸锂晶体,结合大脉冲能量、高峰值功率的飞秒脉冲激光泵浦,利用二阶和三阶非线性协同作用的原创性物理机制,提升了白光飞秒激光的转换效率、频谱带宽、脉冲能量、光谱平坦度等指标。要想产生全谱段白光飞秒激光,需要达到两个先决条件:带宽超过一个光学倍频程的强泵浦飞秒激光光源,以及具有极大非线性频率上转换带宽的非线性晶体。不过,要想同时满足上述两个条件并非易事。为此,课题组使用光学参量啁啾脉冲放大技术,以及使用由充气空心光纤、纯铌酸锂晶体材料和啁啾极化铌酸锂晶体组成的极宽带非线性变频模块,将飞秒激光技术、二阶非线性变频技术、三阶非线性频率展宽技术加以综合,研制了这款全谱段白光激光器。其中,二阶和三阶非线性效应协同作用的原创性物理机制,是打造本次全谱段白光激光器的秘密。上述机制的好处在于,能够清除二阶非线性或三阶非线性方案中所存在的输出光谱性能不佳的限制。李志远表示:“全谱段白光激光有望成为激光技术发展历史上的一个里程碑,并能很好地回答 Science 杂志 2020 年的 125 个最前沿的科学问题,即人类能否造出与太阳光相似的非相干强激光。”(来源:Light: Science & Applications)让中国学界真正拥有属于自己的实验设备多年来,学界一直渴望产生像太阳光一样的白光激光。紫外-可见-红外全谱段白光激光的产生,则一直是激光技术等待攻克的堡垒,也是李志远团队努力追求的目标。十年来,该课题组历经 8 次阶段性成果的积累,才造出了上述全谱段白光激光器。2014 年,该团队将啁啾调制的概念引入一维铌酸锂晶体的周期设计中。在可调谐近红外光源的帮助之下,设计出多个不同啁啾度的准相位匹配晶体,让二次、三次谐波产生的非线性过程的相位失配,能够在单个晶体中得到补偿,借此实现宽带可调谐三基色光源的同时输出,也拉开了课题组“白光激光”之梦的序幕。2015 年,李志远让学生陈宝琴开展啁啾结构铌酸锂晶体中六次谐波产生的研究。在实验的关键阶段,李志远去现场看学生做实验,结果发现了又圆又白的激光束产生,这完全出乎意料之外。李志远觉察到这是一个“好东西”。仔细分析之后,确定啁啾结构铌酸锂晶体产生了二到八次谐波。在一个固体材料中产生高次谐波,这是一个前所未有的科学发现,也让课题组开始树立“白光激光”的梦想。随后,他们设计了啁啾结构非线性光子晶体,以中红外飞秒脉冲激光为泵浦源,在单块晶体中同时产生了超宽带二到八次谐波。其中,四到八次谐波形成 400-900nm 超宽带可见白光激光,其转换效率达到 18%。2014 年和 2015 年的这两项工作表明:该团队自主研发的铌酸锂晶体二阶非线性方案,可以支持宽带二次谐波产生。同时,也能支持宽带二次谐波和三次谐波产生,甚至支持基于级联三波混频的高次谐波产生,最终可以实现超宽带可见白光激光的产生。而要想产生全谱段白光飞秒激光,就需要继续深挖上述方案的潜能,以便满足产生全谱段激光所需要的苛刻条件:即泵浦激光脉冲带宽要足够宽,非线性晶体材料的准相位匹配带宽要足够大。2018 年,课题组选用更高能量的近红外飞秒脉冲激光作为泵浦源,针对相关泵浦条件设计出一款啁啾结构铌酸锂晶体,这块晶体在不同偏振状态之下,均能同时产生二次谐波和三次谐波。通过此他们首次发现了二阶和三阶非线性协同作用的新物理机制,并证明这一机制能够显著提升相关性能的指标。利用级联二次谐波和三次谐波方案,他们生成了 400-900nm 可见-近红外波段的可调谐白光激光,转换效率达到 30%。这一发现,也促使他们去发现产生白光激光的更优路线,即基于二阶和三阶非线性协同作用产生超连续白光激光的方案。在新路线的指导之下,他们设计出一块能同时产生二到十次谐波的宽带白光非线性晶体材料。针对这款白光非线性晶体材料,他们又采取 45μJ 脉冲能量的 3.6μm 中红外飞秒脉冲激光泵浦的设计方案,借此产生 25dB 带宽、覆盖 350-2500nm 的紫外-可见-红外超连续白光飞秒激光,单脉冲能量为 17μJ,转换效率为 37%。在此基础之上,他们继续优化二阶非线性和三阶非线性协同效应。期间,该团队发现石英玻璃的三阶非线性效应远远优于铌酸锂晶体,而特殊设计的铌酸锂啁啾非线性光子晶体可以同时使用高达十二阶次的准相位匹配。后来,他们利用 0.5mJ 的钛宝石飞秒脉冲激光器泵浦,来对熔融石英-啁啾极化铌酸锂晶体进行泵浦,最终实现 10dB 带宽覆盖 375-1200nm、20dB 带宽覆盖 350-1500nm 的超连续激光,单脉冲能量为 0.17mJ,转换效率为 34%。前面提到,课题组期望实现的白光飞秒激光具有五个高指标。因此,在追求极宽带宽范围的同时,他们还得实现更大的脉冲能量、更高的光谱平坦度。于是,该团队以高能量钛宝石主激光作为泵浦源,针对由熔融石英和啁啾极化铌酸锂晶体组成的级联光模块,对其整体非线性响应进行进一步的操纵,从而显著提高了白光飞秒激光的综合性能。期间,他们利用 3mJ 脉冲能量的钛宝石飞秒激光泵浦,对石英-超宽带白光非线性晶体级联模块进行熔融,基于二阶和三阶非线性协同作用的高效超宽带二次谐波产生方案,实现了 mJ 量级、3dB 带宽覆盖 385-1080nm 的超宽带白光飞秒激光。此外,自 2018 年起课题组联合一家外部公司研制了 3mJ/50 fs/1 kHz 钛宝石飞秒激光器,实现了相关仪器的国产替代。并以此作为泵浦源,和白光非线性变频模块加以结合,从而形成了成熟高效的白光飞秒激光生成方案,借此造出一款白光飞秒激光整机设备。以上成果也促使他们进一步思考:如何产生覆盖一到十次谐波的全谱段白光激光?为此,他们与上海光机所李儒新院士团队合作,提出一款非线性级联装置。这种装置可以满足以下两个条件:一个较强的带宽达到光学倍频的中红外泵浦激光光源;以及一个具有极大非线性频率上转换带宽的非线性晶体。随后,他们基于光学参量啁啾脉冲放大技术,研制出一种中红外飞秒脉冲激光器,它具有 3.5mJ、3.9μm 中心波长,可以起到泵浦激光光源的作用。接着,基于宽带二阶和三阶非线性变频模块,他们获得了光谱范围 25dB 带宽、覆盖 300-5000nm 的全谱段超连续白光飞秒激光。“至此,我们欣喜地发现借助强中红外飞秒激光作为泵浦源已经成功走通了全谱段白光激光产生的道路。”李志远表示。(来源:Light: Science & Applications)总的来说,课题组已经实现了“三高”型白光飞秒激光:大单脉冲能量(第一高)、300-5000nm 的频谱宽度(第二高)、高光谱的平坦度(第三高),基本涵盖了铌酸锂晶体的全部透光范围。接下来,他们将继续与李儒新院士团队合作,朝向更高目标前进,力争实现深紫外-紫外-可见-近红外-中红外-远红外的“三高”全谱段白光飞秒激光。假如可以实现,就能建造比拟同步辐射光源、以及自由电子激光光学波段的全谱段超连续激光光源。“届时,相信我们中国科学界将拥有属于真正自己的研究物质科学和生命科学的实验设备。”李志远最后表示。
  • 微型化双光子显微镜研制十年路
    今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。 在南京脑观象台投入使用的微型化双光子显微镜成像系统。  “第三次双光子显微镜测试顺利结束!”  “无比完美!”  “这一次的曲线如此丝滑!”  ……  4月1日上午,中国科学院院士、北京大学未来技术学院教授程和平的微信对话框,被同事们发来的这些评论不断刷新。而在中国航天员科研训练中心内,掌声此起彼伏。让大家欢欣鼓舞的,是中国空间站再次传来的好消息。  当日,神舟十五号航天员乘组,使用空间站双光子显微镜进行成像测试。他们用探头轻轻掠过脸部和前臂,一旁的电子屏幕上立即显示出皮肤结构及细胞的三维分布影像。  这不是显微镜第一次在轨成像测试。今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。  “如果能从这些图像中发现空间环境中人体变化规律,就更好了!”程和平捧着手机与记者分享这些科学图像时说。  只有了解程和平团队十年来经历的艰难曲折,才能体会这些图像的来之不易。2013年,程和平带领团队开启微型化双光子显微镜研究时,“全世界都不看好”。  历经10年,该团队完成了从科研仪器技术创新,到技术产品化,再到技术服务平台化的跃迁。他们将中国带到全球大脑成像研究的前沿,让微型化双光子显微镜在中国的高校院所、企业得到推广应用,为脑科学研究搭建起重要实验平台、提供了海量数据支持。  程和平希望,用微型化双光子显微镜拓展人类对脑宇宙的认知疆域,为探索脑机接口原理、深化对大脑疾病机制的了解、推进药物研发开辟一片新天地。神舟十五号航天员乘组在轨使用空间站双光子显微镜(视频截图)  一束光的启迪  意识的生物学基础是什么,记忆是如何存储和恢复的……在世界各国的脑科学计划中,这些问题吸引着全球科学家们不断上下求索。  在2021年国际权威学术期刊《科学》发布的125个最前沿的科学问题中,有22个问题与脑科学相关。  双光子显微镜的出现,仿佛是照在生命科学研究领域的一束光。  1992年,程和平用世界上第二台双光子显微镜,首次实现了心肌线粒体成像。  “双光子显微镜,是用两个光子同时激发同一个荧光分子的光学成像技术。它具有天然的光学断层扫描效果,能看到的组织深度更深,成像的清晰度更高,像一个高性能的X光机。”程和平说,与单光子显微镜相比,双光子显微镜看得准、看得深、光损伤小。但传统的台式双光子显微镜非常笨重,足有房间那么大,所以只能观察头部固定的动物或者动物的脑切片。  研究一款微型化双光子显微镜,观察自由行走的小动物脑袋中的一颗颗神经元的动态变化,成为程和平藏在心底的一个梦想。  一个梦想的点燃,有时只需一个使命的召唤。  2013年,国家自然科学基金委员会启动了国家重大科研仪器研制项目。程和平带队申请了“超高时空分辨微型化双光子在体显微成像系统”项目。  那一年,美国启动“创新性神经技术推动的脑计划”,欧盟启动了旨在建立大型脑科学研究数据库和脑功能计算机模拟平台的“人脑计划”。  而此前,我国在《国家中长期科学和技术发展规划纲要(2006—2020年)》中,已把“脑科学与认知”列入基础研究8个科学前沿问题之一。  “中国科学家只有用自己研发的观测仪器,做出原创性的脑科学成果,国际科学界才会认可。我们希望研制一款成像仪,率先让中国科学家用起来。用国外的仪器做研究,都是在别人建设的四梁八柱上做文章。”程和平用使命必达的决心来筹备项目的启动。  一场跨越山海的探索  想实现双光子显微镜在自由活动的动物体上的高清成像,必须为它“瘦身”。  然而,极大的技术难度,让团队一度面临质疑。程和平向科技日报记者坦言,7200万元的投入“相当于一吨百元大钞”,究竟能不能收获一个看得见的未来,大家当时心里很忐忑。“那时世界多国尝试微型化双光子显微镜的研制,但都没有实质性突破,尝试十几次都无疾而终。”他说。  程和平所言非虚。2008年,瑞士有课题组公布了他们的微型双光子系统,仅重0.9克,并实现了大鼠在体钙成像信号。但其空间分辨率极低,也未实现真正的自由运动下的成像。  2009年,德国有课题组展示了它们的微型双光子系统,其理论分辨率接近大型的双光子显微镜。但其探头较重,扫描速度很慢。  程和平身后,有一支不同寻常的团队,团队中有人研究超快激光器,有人专攻高速电路,有人擅长图像处理,有人能做大数据分析……然而,研究起步阶段,团队中无人具备研制系统性科研设备的经验,技术路线也不确定。  “怎么办?只有一点点地认真做。”程和平给团队立下军令状。  在项目开始的前两年,大家争分夺秒地汲取多学科的营养。在北京大学分子医学研究所300平方米的大仪器联合实验室里,来自机械、光学、生物、电路等研究领域的师生汇聚在一起,交流切磋。每周六上午的集体学习,大家分享一周行业动态,介绍各自研究进展。同时,大量的国内外顶尖专家被邀请来作报告。  引进来的同时,团队也频频走出去。仅2014年,他们就涉足美国、俄罗斯、澳大利亚、西班牙。每去一个地方,大家都会在当天晚上写好总结,发给团队共同学习。空间站双光子显微镜对航天员皮肤表层成像。  一场持续十年的攻关  2017年,团队终于迎来了振奋人心的进展。  在如今北京大学膜生物学国家重点实验室设备研发平台内,一个只有拇指大小、重约2.2克的显微镜探头,被珍藏在实验室深处——这是团队于2017年成功研制的第一台微型化双光子显微镜的核心部件。  这台显微镜可以实现高时空分辨微型化成像,能实时记录数十个神经元、上千个神经突触动态信号。这些突破性的进展,使其入选2017年中国科学十大进展。  4年后,该团队推出微型化双光子显微镜的2.0版本,其成像视野扩大到初代显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像。  今年2月,团队又发布了他们研制的微型化三光子显微镜。该显微镜能直接透过大脑皮层和胼胝体,首次实现对自由行为中小鼠的大脑全皮层和海马神经元功能成像,神经元钙信号最大成像深度可达1.2毫米,血管成像深度可达1.4毫米。  致广大而尽精微。10年,微型化双光子显微镜完成了从高清成像,向更广、更深成像的科研布局。然而,这在研制一款“大国重器”的探索之旅中,也许仅仅是开始。  2016年,当第一代微型化双光子显微镜的研究即将“破土”时,一个声音再次在程和平脑海里回响,“如果投入‘一吨百元大钞’,只是交付3台显微镜,性价比太低了。应该先让中国科研院所、企业的实验室用起来,做出领先国际的研究,再向国际市场推广。”  让程和平下定决心办公司的,还有3年来培养起来的一支团队。“国家投入这么大,让我们长了一身本事,项目结题后如果团队散了就太可惜了。”程和平说。  办公司让研究成果产品化,成为程和平团队的共识。2016年,程和平团队创立了北京超维景生物科技有限公司(以下简称超维景)。  一个新时代开启了。  一场自立自强的产业突围  当科学技术的光芒照进产业,不仅砥砺技术创新的成色,也可以点亮一片“暗夜”。要将高端精密科研仪器产品化,元器件的可靠性、稳定性必须过硬。  微型物镜,是微型化双光子显微镜的关键核心零部件。团队核心成员、北京大学未来技术学院特聘副研究员吴润龙记得,最初做原理样机时,团队从国外一家公司进口微型物镜。  但当团队进入显微镜产品化阶段后,对方的发展战略也发生变化。“对方要求我们购买他们合作伙伴的单光子显微镜系统,物镜不再单独售卖,而这个系统的价格要100多万元。代价太大,我们不能被‘卡脖子’。”吴润龙说,自此,团队开始自行设计高数值孔径的微型物镜,并联合国内企业加工,在超维景进行装配和测试。  自胜者强。2018年,赵春竹到北京大学未来技术学院做博士后研究,为助力物镜的自主研发按下了快进键。  “经过三代技术攻关,我们已经掌握了高端物镜的设计技术。但在自主设计、加工的基础上,还要形成高精度自主装配的流程和方法。微型物镜由多个镜片叠加而成,每片直径约3毫米,最初我们将所有的镜片一起装配完后,统一调试,但发现精度相差太大。后来,我们优化了装调工艺,每安装一片镜片,都用仪器检测光轴偏移量、焦距等参数。由于物镜直径太小,一开始,调整几微米的误差,都要耗时一两天。”赵春竹回忆,最艰难的时候,大家几乎绝望。但抱着不破楼兰终不还的信念,大家几微米几微米地死磕,想办法迭代技术,最终攻克了高端微型物镜装配技术。  光纤是显微镜微型化的另一个瓶颈。团队成员、北大电子学院副教授王爱民设计了一款蜂窝状的空芯光子带隙光纤,让激光通过光纤传输到微型化探头的过程中,脉冲不发生畸变、能量几乎不损耗,以有效激发小动物体内的荧光分子。  但让王爱民措手不及的是,设计方案有了,国内却没有厂家能生产这种光纤。“我们最初找了一家外国公司订制。但一年后,这家公司提出翻番的价格,每米光纤的价格接近万元,仅光纤的成本就增加了几百万元。”他回忆说,团队被“逼上梁山”,转而联袂上海光机所的一位青年学者一起摸索加工工艺,进行国产化。  在北京大学未来技术学院教授陈良怡看来,科研仪器国产化过程中的突围,也将带动应用基础研究与产业发展“双向奔赴”。  “我们的论文发表后,很多技术被公开了,但很多人做重复实验时无法再现,是因为加工中有很多细节问题难以解决,这些细节在学术论文中也难以呈现。”陈良怡说,如果想将这款显微镜尽快用起来,就要将科研成果产品化,带动产业的发展。而产品化的过程,也促使他们思考,如何用成像技术推动神经科学、脑科学乃至整个生命科学基础研究的发展。  目前,超维景研制的微型化双光子显微镜已服务了150余家国内实验室,年平均销售额达5000万元。今年,公司还将拓展国际市场。  一项世界首创的应用  10年前项目启动时,程和平抱着“从幼儿园开始读一个博士学位”的心态,研制微型化双光子显微镜。  时光浩荡向前,多年的厉兵秣马是否能支撑国家重大战略需求?团队将答卷写进宇宙苍穹。  2019年,在中国载人航天工程办公室大力支持下,程和平团队、中国航天员科研训练中心李英贤团队、北京航空航天大学冯丽爽团队联合相关企业及院所,组建了空间站双光子显微镜项目团队,由程和平担任总负责人。  “中国要发展载人航天、要研究生命科学,太空是一个难得的实验室。在失重环境下,人体细胞是如何完成新陈代谢的,大脑的神经元又将发生什么变化,都是很好的研究课题。双光子显微镜成像深度深,可以帮助我们逐层扫描、分析航天员的细胞结构和代谢成分信息。”程和平说。  2022年9月,空间站双光子显微镜研制成功。当年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。  今年2月上旬的一天,空间站双光子显微镜终于开机。坐在中国航天员科研训练中心看到航天员操作画面传回,程和平松了一口气:“终于成功了。”  消息传来,整个团队沸腾了。“这辈子能做这么一件事情,值了!”王爱民至今回忆起来仍激动不已。  鲜为人知的是,为了达到航天应用的标准,显微镜经历了一次次蜕变。  精密的显微镜,要能承受飞船发射时的剧烈振动,这要求它足够抗振。“最初,激光器的核心部件被振得粉碎。”北京大学未来技术学院助理研究员王俊杰记得,为了让显微镜“强健筋骨”,他们将激光器的核心部件设计为固态结构,以增强激光器的机械强度,同时在激光器外部增加了减震装置,相当于给其上了一层保险。  超维景的团队也参与进来。超维景超快激光事业部经理陈燕川介绍,他们将激光器核心部件置于-40℃至80℃的温度下循环试验,使部件在短期内反复承受极端高低温变化应力以及极端温度交替突变的影响,以排查隐患。为了确保万无一失,团队还制作多组关键部件样品,进行加量级、破坏性的振动冲击试验,保证显微镜能满足航天发射环境各种极端条件的挑战。  最终,团队实现了多项突破:首次在轨验证实验实现了世界上首次双光子显微镜在轨正常运行,国内首次实现飞秒激光器在轨正常运行,国际上首次在轨、在体观测航天员细胞结构和代谢成分信息。  一个梦想的启航  从突破理论研究瓶颈,到试水产业蓝海,再到支撑国家重大战略需求,程和平团队将科技创新的底色写在从技术创新到产业应用的跃迁中。如今,一个更宏大的构想正在渐次舒展。  在南京江北新区,成立近4年的北大分子医学南京转化研究院(以下简称转化院),已搭建起高端脑成像的公共技术服务平台“南京脑观象台”。后者可以提供微型化双光子显微镜、超灵敏结构光超分辨显微镜及高速三维扫描荧光成像系统等设备,帮助科研团队获得从大脑突触、神经元集群、神经环路,再到全脑水平的全景式脑功能成像。  科研团队的身后,还有一群人与他们并肩作战。  几乎每天,实验员陈雪莉都要为小鼠注入观测所需的荧光蛋白,对小鼠进行行为训练。  当她为小鼠戴上显微镜探头后,一旁的屏幕上会立即呈现出小鼠大脑的钙活动影像。  “脑观象台有一支技术团队。对于遴选通过的研究项目,技术团队会与科研团队一起制订实验计划,为学者们制备、训练小鼠,采集小鼠的脑活动成像数据,再将小鼠的行为学数据和脑活动数据匹配,供科研人员分析小鼠在表现出某种行为时,大脑发生了什么变化。”转化院副院长赵婷解释,脑观象台希望将学者们从繁琐高难的实验技术细节中解放出来,加速从理论设想到实验发现的进程。  凭借南京脑观象台成像技术的支持,科学家们已经开始收获惊喜、成果迭出:小鼠有喜新厌旧的行为,而孤独症小鼠却存在这一行为缺陷;清醒状态下小鼠癫痫发作时,神经元异常放电……  赵婷介绍,如今,脑观象台已经服务了100多家单位的180余个课题组,开机时间累计超过2万小时。脑观象台与江北新区联合发起的两期“探索计划”,也已累计支持48项课题研究。  十年春华秋实。一颗在未名湖畔种下的种子,如今正在千里之外的扬子江畔落地生根、开枝散叶,荫泽全国的脑科学、神经科学等领域的研究。  40多年前,少年程和平曾在他的笔记本上写下带有科幻色彩的理想——“做一款思维记录器”。  跨越万水千山,如今,理想照进现实,中国脑科学研究风华正茂。
  • 1958万!北京师范大学珠海校区双光子激光共聚焦显微镜等采购项目
    项目编号:XHTC-HW-2022-1657项目名称:北京师范大学珠海校区理工实验平台双光子激光共聚焦显微镜等设备采购预算金额:1958.0000000 万元(人民币)采购需求:简要规格描述或项目基本概况介绍数量预算金额(万元)是否接受进口产品本次采购包括:双光子激光共聚焦显微镜、三维成像X射线显微镜、多通道激光共聚焦显微镜,具体详见采购需求。1批1958是合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止。本项目( 不接受 )联合体投标。采购需求1657.pdf
  • 北京大学李文哲博士:双光子显微成像技术应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇为北京大学天然药物及仿生药物全国重点实验室李文哲博士供稿。双光子吸收的理论概念是1931年由德裔美国物理学家Maria Göppert-Mayer在她的博士论文中提出。到1960年,激光器被发明出来后双光子吸收在实验上被验证,但是直到1990年第一台双光子荧光显微镜才被美国康奈尔大学的Denk、Strickler和Webb开发出来,Denk很快就将双光子显微镜用于神经元成像。1997年,美国科学家Svoboda利用双光子显微镜测量完整老鼠大脑的锥体神经元,并记录其感官刺激诱导树突钙离子动态,自此双光子显微镜的潜能开始完全凸显。时至今日,双光子显微系统在神经科学、肿瘤学、心脑血管及药物研究等领域有了极大的发展,近年来,光遗传光刺激也更多地和双光子技术结合,广泛地应用于清醒小动物领域。双光子成像的原理和优势特点双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有 100 飞秒,而其周期可以达到 80至100兆赫兹。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是最高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。图1.双光子激发原理(左)及双光子吸收现象(右)从双光子现象的原理,我们可以总结出双光子成像的特点及其相对于共聚焦成像的优势:1.光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对活体细胞和组织的光损伤小,适用于长时间的活体研究;2.穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力(图2),因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题,常规情况下,共聚焦的成像深度一般为100微米,双光子则能达到250到500微米,甚至超过1毫米;3.高分辨率:同时吸收两个光子意味只有高强度聚焦点处能被激发,由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收仅局限于焦点处的体积约为波长3次方的范围内;4.荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦针孔),这样就提高了对荧光的收集率;5.图像对比度高:由于双光子激光波长较长,瑞利散射产生的背景噪声只有单光子激发时的1/16,大大降低了散射的干扰(图2);6.避免组织自发荧光的干扰,获得较强的样品荧光:生物组织中的自发荧光物质的吸收波长一般在350-560nm范围内,采用近红外或红外波段的激光作为光源,能大大降低生物组织对激发光吸收(图2)。图2. 不同波长下的光穿透深度、光散射以及内源性物质对光的吸收情况基于以上优势,双光子显微镜自发明30年来,已成为较厚组织及活体动物显微成像中不可或缺的工具。我们平台双光子显微镜常用的应用研究如,在神经科学领域用于脑神经和脑血管成像,通过开颅对麻醉小鼠完整V层锥体神经元和更深层的海马神经元的三维结构进行深层成像,对脑血管进行高速动态实时成像;在肿瘤研究中,对于肿瘤细胞及肿瘤微环境中免疫细胞的行为进行成像;在药物研究中,对于药物在肿瘤或脏器中的靶向、释放及代谢等动力学行为进行实时可视化成像;得益于平台双光子显微镜双脉冲激光(一根700-1300nm可调激光,一根1040nm固定谱线激光)的配置,可进行双通道同时成像,特别是适用于比率型荧光生物传感器的研究,如果利用一根激光作为刺激光源,可进行边刺激边成像实验。双光子显微成像的“搭档”双光子显微镜用于活体动物的原位显微成像,为保证实验动物在成像时保持稳定且维持正常的生理状态,往往需要搭配一些辅助成像的设备或者配件。以下为我们常用的几种双光子成像辅助配件:1、可移动麻醉机进行双光子活体动物成像实验时,为保持动物处于稳定状态,需对其进行持续麻醉。吸入式麻醉起效快,麻醉效果稳定,麻醉的深度和维持时间易控制,麻醉撤离后动物复苏快,最重要的是其不会影响动物的生理指标,被认为是啮齿类动物最可靠的麻醉方式。异氟烷气体吸入式麻醉是目前国际惯用的麻醉方式,研究表明,异氟烷麻醉能维持动物的心率、血氧分压、血液pH等生理功能处于稳定状态,适合情况复杂且持续时间较长的动物实验,包括对小动物进行连续成像。因此小动物可移动麻醉机是双光子显微成像实验中必不可少的辅助设备。本平台配备的小动物可移动麻醉机适用于大鼠、小鼠、豚鼠,可保证动物在成像的同时进行可控的持续麻醉。2、小动物成像视窗由于光吸收和光散射,目前双光子成像深度≤1 mm。因此对于活体动物器官的成像一般需手术暴露成像部位。众所周知,大多数的生理和病理过程发生在较长时间内,需连续几天或更长时间内对同一只动物多次成像。因此对于双光子活体成像,待观察组织的暴露及固定技术非常重要。此外,正置双光子显微镜常用水镜,小鼠活体成像过程中会因稳定性不足发生抖动,造成样品与物镜间的水缺失,而活体动物自身的呼吸和心跳等影响因素也会造成成像焦面的丢失,一旦失焦,重新进行对焦十分耗时,大大影响成像的效率。基于以上问题,对于动物成像部位的维持与固定有非常高的要求,固定装置不能对动物有太大的损伤,既要保证能够得到清晰的图像,还要保证动物生命体征正常。目前已有多项研究通过构建和使用双光子活体成像窗口,实现对不同脏器进行固定和长期成像,其中脑部颅骨薄窗成像技术较为成熟,因其远离心脏的位置优势,前处理和固定相对较容易,结合荧光标记物已广泛应用于脑神经科学相关研究。腹部器官如肝脏、淋巴组织、肠、脾脏和肾等都很软且血管密布,由于解剖位置不同,缺乏可以固定成像窗的骨骼结构,给窗口适配器的固定增加了难度;而且腹部脏器普遍离心脏较近,拉伸距离有限,更需要较好的固定和麻醉来抵抗心跳造成的图像抖动。因此腹部器官的活体成像更具挑战性,固定适配器往往需根据具体实验自制或定制。3、气管插管工具及呼吸机对于小动物肺部成像或心脏成像,需对其进行开胸手术,为维持动物正常的生理活性,满足呼吸代谢的需求,一般借助呼吸机对其进行有节律的肺部供气。呼吸机的本质就是一种气体开关,控制系统通过对气体流路的控制而完成给实验动物肺部供气,保持实验动物生理活性的设备。而气管插管是呼吸机辅助呼吸的重要步骤,顺利的气管插管是实验成败的关键之一。气管插管(以下简称插管)是指将一特制的气管内导管经声门置入气管,进而打开小动物呼吸道,为气道通畅、通气供氧等提供最佳条件。气管插管推荐使用静脉留置针的套管,大鼠一般使用16-18G套管,小鼠一般使用22-24G套管。我们平台一般使用光纤辅助法经口插管,操作过程中先将动物固定到一个倾斜的平板上,光纤插入到气管插管中,然后利用这种带光源的气管插管在明视野条件下经口腔插入动物的气管,然后拔掉光纤,用专用的气泡接到气管插管中,吹泡检测是否气管插管到达需要的位置,如果确认插管到位,再将气管插管与呼吸机的Y型接口相连。光纤辅助法也是目前插管最快,成功率最高的方法,同时对动物的损伤小,对操作人员的技能要求低。国产双光子显微镜的现状和未来双光子显微镜目前已广泛应用于神经科学、肿瘤研究、免疫学、病毒学、化学生物学等研究领域,在基础科研和临床前研究中都有着不可替代的重要地位。一流的科研离不开一流的技术,但由于我国在显微镜行业起步较晚,当前我国高端双光子显微镜市场仍大多依赖进口,深度精密制造、光学核心部件设计及工艺严重制约产业升级,国内具备生产高端显微镜的企业屈指可数,必须承认的是国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。我们平台的高端显微镜目前全部为进口品牌,在使用过程中一旦出现核心部件的严重的故障,涉及到需要连线国外厂家维修和维权非常不顺畅,耗费大量的人力和时间成本,严重影响了科研进度,面对此困境,国产高端显微镜的自立自强迫在眉睫。令人欣喜的是,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作。目前产品已销售到以色列耶路撒冷希伯来大学、北京大学分子生物研究所、中国科学院上海生命科学研究院神经科学研究所等国内外多家高校及研究所。2017 年,北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。该成果获得了中国科技部评选的2017年度“中国科学十大进展”,同时与其他自由运动成像技术被Nature Methods杂志评为2018年度方法——“无限制行为动物成像”。2021年,该团队在Nature Methods上报道了第二代微型化双光子荧光显微镜FHIRM-TPM 2.0,其成像视野是该团队于2017年发布的第一代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。目前该技术已产品化并销往海内外,销售额过亿。值得一提的是,2023年2月27日,该团队研制的空间站双光子显微镜随神舟十五号进入太空,航天员乘组使用空间站双光子显微镜开展在轨验证实验任务,成功获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。近五年来,国产高端显微镜科技成果产业化的飞速进步给了我们很多惊喜,也在逐渐努力打破当前被进口仪器垄断的市场格局。但由于我国显微镜行业起步较晚,发展缺乏技术沉淀,因此在核心部件设计、工艺及精密制造上仍与国外拥有百年历史的显微镜厂商有较大差距。未来,随着国内显微镜仪器行业新产品层出不穷,对光学元件组件加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术要求越来越高,只有解决了这些问题,才能将高端显微镜的知识产权和核心技术牢牢掌握在自己手里,以期真正实现高端显微镜的自主创新和国产替代。关于北京大学天然药物及仿生药物全国重点实验室生物影像平台在科技部国家重点实验室仪器专项和双一流学科建设经费的支持下,实验室建立了配套齐全、设备先进的大型仪器研究技术平台,设备总值约3.6亿元,按功能分为10个子平台,可为生物医学研究和新药研发提供全链条技术支持。其中,生物影像平台技术精专、设备一流、开放性强、是一个为科研人员提供合作研究和技术交流的多功能研究技术平台。生物影像平台拥有成熟的高内涵成像分析技术、STED/STORM/Airyscan超高分辨成像技术、共聚焦成像技术、双光子成像技术、多光谱全景组织切片成像及表型分析技术、小动物光学成像技术、多模式小动物光/超声成像技术等,同时平台集成了Imaris、Aivia、inForm、Nis-element、AutoQuant X3等多种智能图像处理分析软件,建立完备的图像分析工作站,获取大量基于图像的生物信息分析数据。平台成功建成从分子到细胞、组织、动物完整的生物成像及分析体系,已广泛应用于校内外的分子及细胞生物学研究、免疫学研究、疾病研究、原创药物研发及高通量药物筛选、新型纳米功能材料研究等领域。主持多项国家级课题和校级技术类开放课题,不断开发或拓展成像技术的应用领域,积累了丰富的生物成像研究经验。本成像平台目前的研究方向及技术服务内容有:1. 核酸、蛋白、糖类等生物分子的成像及相互作用分析;2. 细胞生物学成像及细胞器的动态相互作用超高分辨成像与分析;3. STED、STORM、Airyscan超分辨成像技术;4. FRET、FRAP、TIRF等成像技术及分析;5. FLIM、FLIM-FRET、FCS成像及定量分析;6. 信号传导通路分析及分子定位分析;7. 细胞内药效学及药物动力学可视化评价;8. 组织病理切片制备、染色、免疫组化、多色免疫荧光;9. 组织切片全景扫描、多色免疫组化荧光成像与空间组学分析;10.双光子小动物活体原位细胞动态成像;11. 小动物活体光学/超声/光声成像及活体中的药效、药物动力学评价等。
  • 370万!清华大学高速双光子显微镜采购项目
    项目编号:清设招第2022214号项目名称:清华大学高速双光子显微镜采购项目预算金额:370.0000000 万元(人民币)最高限价(如有):370.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高速双光子显微镜1套是设备用途介绍:1)可以进行小型动物如小鼠、大鼠等的活体成像及结合行为学的相关成像;2)实现更深的、低热损伤、高信噪比的活体成像,以保证斑马鱼、果蝇、小鼠等小型动物的长时程、反复成像;3)支持在清醒小动物中进行光遗传实验和成像同步、行为和在体成像实验同步;4)能够实现活体或活细胞超高速、超敏感成像,如血流、离子浓度、钙火花检测等快速变化的应用。简要技术指标 :龙门型正置荧光显微镜系统 :① 电动激发块转盘≥7孔,无需拆卸可更换激发块,内置电动光闸;配置蓝紫、绿、GFP激发块;② 具有压电陶瓷快速电动Z模块。2) 双光子光路及光路自动调节系统:① 光轴自动校正模块,≥3轴可调,激光光斑位置X、Y位移和X、Y倾斜角度θX,θY中≥3个参量均能独立自动调节;② 具有深焦观察模式,激光光束自动调整模块,可以在高分辨率和高成像深度模式之间自主选择,不少于五档可调。3)清醒小动物电生理同步设备:① ANALOG模拟信号输入≥4通道,TTL数字信号输入≥6通道,TTL数字信号输出≥5通道。与双光子显微镜为同一品牌的数模转换控制系统,触发控制能通过双光子软件界面统一控制,不需调用第三方控制软件;4)同步光刺激及光遗传系统:① 固体可见光激光器通过激光整合器整合,由光纤导入,通过AOTF进行0.1-100%强度控制和快速开关。合同履行期限:合同签订后5个月内交货。本项目( 不接受 )联合体投标。
  • 我国成唯一制造实用深紫外全固态激光器的国家
    由中科院承担的深紫外固态激光源系列前沿装备日前通过验收,我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。   &ldquo 这是我国自主研发高精尖仪器的一个成功范例。&rdquo 9月6日,由中科院承担的国家重大科研装备研制项目&mdash &mdash &ldquo 深紫外固态激光源前沿装备研制项目&rdquo 通过验收,验收委员会给出了如是评价。   该系列前沿装备中的深紫外非线性光学晶体与器件平台、深紫外全固态激光源平台,以及基于这两个平台研制的8台新型深紫外激光科研装备各项既定目标全面完成,使我国成为世界上唯一能够制造实用化深紫外全固态激光器的国家。   中科院院长白春礼表示,该项目是中科院相关研究所和科学家在长期科研工作积累的基础上,协同攻关、自主创新取得的重要成果,也是中科院近年来&ldquo 致力重大创新突破、服务创新驱动发展&rdquo 的具体体现。   开启深紫外时代   项目从一个晶体开始。   这是一种名为氟硼铍酸钾(KBBF)的晶体。上世纪90年代初,在发现硼酸盐系列非线性光学晶体后,中科院院士陈创天的研究团队经过10余年努力,在国际上首先生长出大尺寸KBBF晶体。   KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个&ldquo 中国产&rdquo 非线性光学晶体。   深紫外非线性光学晶体问世后,如何将其研制成实用化、精密化激光源,则成为一个棘手的问题。   KBBF晶体是层状结构,难以切割,而要做到深紫外倍频又必须切割。为此,陈创天携手激光技术专家、中国工程院院士许祖彦,开始摸索解决办法。   &ldquo 当时中国大陆还没有这方面的实验装置,我们不得不跑到香港科技大学,借用他们的实验室。&rdquo 许祖彦回忆说,两个人窝在实验室里,每天工作到深夜一两点,终于搞出了KBBF棱镜耦合器件。   该器件在国际上首次实现了1064nm激光的6倍频输出,将全固态激光波长缩短至177.3nm,首次将深紫外激光技术实用化、精密化,并已获中、日、美专利。   之后两人密切配合,在国际上首次实现KBBF晶体倍频输出深紫外激光,并最终发展出实用化的深紫外固态激光源(DUV-DPL)。   从此,中国开启了深紫外的时代。   从激光源到8台装备   DUV-DPL的研制成功,不仅使得我国激光科技研究突破了200nm以内的&ldquo 深紫外壁垒&rdquo ,实现了实用化、精密化,还极大推进了我国科研人员在激光科技研究领域的继续深入。   许祖彦形容自己的工作是&ldquo 二传手&rdquo ,&ldquo 跟上游讨论晶体该长成什么样,向下游询问要什么样的激光&rdquo 。   他花了一年多时间,跑了二三十个实验室,&ldquo 推销&rdquo DUV-DPL。   深紫外波段(指波长短于200nm的光波)科研装备目前主要使用同步辐射和气体放电等非相干光源。相对于同步辐射而言,在体积方面,配有KBBF晶体棱镜耦合器件的全固态激光器体积变得很小 在能量分辨率方面,比同步辐射提高5~10倍以上 在光子流密度方面,提高了3~5个量级。   2007年年底,财政部专门设立&ldquo 深紫外固态激光源前沿装备研制&rdquo 项目,对搭建深紫外非线性晶体和器件研制平台、深紫外固态激光器研发平台,以及研制8台新型DUV-DPL科学仪器,予以专项支持。陈创天、许祖彦担任项目首席科学家。   &ldquo 为使仪器保持领先,科研人员必须不断调整技术方案。为此,总体部还设立了一个工程监理部,这在国内的科研项目中很少见。&rdquo 项目总体部总经理、中科院理化所研究员詹文山说。   这样一来,经常要&ldquo 推倒重来&rdquo 。身为&ldquo 二传手&rdquo 的许祖彦深有体会:在5年多的时间里,满足了仪器研制人员变更技术方案的多项技术要求,解决了光源与8台仪器对接的工程问题。   打造自主创新链   如今,这8台科学仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得了重要结果。   以深紫外激光光发射电子显微镜(PEEM)为例,目前国际上最先进的光发射电子显微镜空间分辨率最高为20nm,而采用全固态激光器后能提高到3.9nm。中科院大连化物所利用这台仪器开展了石墨烯/Ru(0001)表面插层反应原位观测,为石墨烯等光电子材料发展和应用提供了强有力的研究手段。   詹文山透露,目前2mm以下的KBBF晶体已可小批量生产,满足国内市场需求。8台科学仪器中,PEEM正在逐步进行产业化尝试。   &ldquo 晶体&mdash 光源&mdash 装备&mdash 科研&mdash 产业化,深紫外固态激光源前沿装备研制项目打造了一条自主创新链,涵盖了从提出原创科学思想到实现应用成果这一完整的科学价值链,为学科交叉面广、跨度大、探索性和工程性很强的原创性重大科研装备创新积累了经验,也为中科院各业务管理单元合理分工、深度融合、协力创新提供了典型样本。&rdquo 白春礼评价道。   &ldquo 这仅仅是深紫外波段仪器应用的开始。&rdquo 许祖彦透露,项目二期将从物理、化学、材料拓展到信息、资环、生命等领域,开展6台国际领先水平的仪器设备研制工作,继续推动深紫外技术的深度开发。   同时,在一期任务顺利完成基础上,去年中科院理化所联合北京中科科仪等单位,在科技部支持下启动了深紫外仪器设备产业化开发工作,逐步将研制成功的深紫外仪器设备推向市场。
  • 鑫图参与国家重点项目—“双光子-受激发射损耗(STED)复合显微镜”的研发
    2017年10月20日,科技部重点研发计划-数字诊疗专项"双光子-受激发射损耗(STED)复合显微镜"项目(2017YFC0110200)实施交流研讨会在南京举行,鑫图总经理陈兵在会上作了关于"下一代sCMOS相机"的技术汇报。 该项目以研发及产业化双光子-受激发射损耗(STED)复合显微镜为主要目标,力图在"适用于双光子成像的自适应光学技术"、"基于中空贝塞尔淬灭光场调控的STED 成像技术" 等关键技术上有所突破。在长工作距离显微物镜、飞秒激光器和CMOS 相机等核心部件能自主研发,实现高端光学显微镜的技术创新与装备国产化。项目研发团队是由多名在光学显微成像领域有着丰富研究与产业化经验的资深人员组成,在双光子显微成像、STED超分辨成像及仪器化开发方面都有着深厚的基础。在双光子显微成像方面,项目负责人郑炜博士从2006 年起就开始双光子显微成像的相关研究,自主研发了世界首台双光子\谐波\光声三模态显微镜。在STED成像方面,项目核心成员席鹏教授是国内公认的STED技术领航人,是他首次在国内实现了STED超分辨显微成像,并将STED分辨极限推进到19nm的理论极限,刷新了STED在生物成像上的记录。在产业化方面,申报企业南京东利来公司是中国光学与光子学标准技术委员会的委员单位,是中国显微物镜、目镜标准的第一起草单位。福州鑫图光电有限公司依托其在科学相机产业化方面的优势有幸参与其中,承担该项目核心部件sCMOS相机的研制,助力核心部件国产化目标。
  • 这款我国自主研制双光子显微镜销售额已过亿!
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’”专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为北京超维景生物科技有限公司(以下简称“超维景”)供稿。 超维景研发和生产的微型化双光子显微镜基于自主研发的核心技术,在世界上第一次获取了自由行为小鼠大脑细胞和亚细胞结构的清晰、稳定的动态图像。这项发明曾被Nature Methods 评为“2018年度方法”,被国家科技部评为“2017度中国十大科学进展”。仪器信息网: 请回顾一下贵公司光学显微镜技术的发展历程。当前,最流行的对小动物行为过程中大脑神经元活动和结构变化进行长期观测和追踪的成像方法,是将虚拟现实与现有商品化台式双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用。然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家亟待解决的诉求。美国和欧洲脑计划及连接组计划在不断快速推进,我国的脑计划也将在年内启动,最新神经科学需要针对清醒动物的典型实验会越来越多。现有传统厂家的双光子设备上都只能做麻醉或固定头部的动物成像,实验的结果无法描述在正常行为模式下的神经功能变化。一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”。2017 年由北京大学程和平院士和陈良怡教授牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。研究成果已表于自然杂志子刊 Nature Methods,2014 诺贝尔生物学或医学奖得主 Edvard I. Moser 称之为研究大脑空间定位神经系统革命性的新工具。只有通过原型机转化为产品的方式,才能让更多科学家、实验室使用到高端技术,但这是在实验室无法完成的。在校方、政府政策、资本等要素多方助力下,团队成立了北京超维景生物科技有限公司推动这一成像装备商业化,形成微型化双光子荧光显微镜,微型化双光子荧光显微成像系统主要包含:微型化双光子显微成像模块、激光耦合模块、飞秒激光器、荧光采集模块、主控制器、宽视场观测模块、ScienceDesk 工作台,共 7 大模块。目前,超维景在面向脑科学的产品成型并已小批量出货。国内产品销售额过亿,国内用户有复旦大学、中科院深圳先进技术研究院、南京脑观象台、西湖大学、西京医院、空军军医大学、中科院脑科学与智能技术卓越创新中心、北京大学、中山大学中山眼科中心、广东粤港澳大湾区协同创新研究院、浙江大学城市学院和中山大学孙逸仙纪念医院等。国际产品销售额超千万,已经达成的国际合作有德国马普神经所、德国波恩大学、德国马普鸟类研究所、美国纽约大学、美国马普神经所等。未来超维景会充分调动所拥有多项核心技术,即累计拥有发明专利、实用新型、软件著作权等60余项知识产权以及双光子显微成像系统发力于千亿级的临床医疗检测和诊断市场,例如手持式双光子或穿刺式双光子设备直接作用于皮肤、口腔、浅表淋巴;结合小型化技术稍作改进可以实现宫腔成像的宫腔镜;在开腹/微创手术过程中,硬性腔镜可以实现术中指导,实现肺、胸、肾、肝、脑等组织病变的辅助诊断的手持/腔镜;结合传统内窥技术打开胃肠癌症筛查市场的内腔软镜。仪器信息网: 请介绍当前贵公司主推的产品和技术。贵公司的高端光学显微镜技术有哪些独特优势?超维景自主研制的快速微型化双光子显微成像系统FIRM-TPM,在世界上第一次实现了自由运动小鼠单个树突棘水平神经元功能活动的高速高分辨实时成像,解决了“脑计划”的核心痛点。而且超维景生产的微型化显微镜分辨率、扫描速度、重量、GFP/GCaMP 成像等方面均优于其他文献报道的微型化显微镜。这款头戴式双光子显微镜可实时记录自由行为动物的大脑神经元和树突棘活动,支持钙成像,并可在同一视野长时程反复成像。系统能够配置移动的轴向扫描模块,实现三维成像和多平面快速切换实时成像,用于脑神经回路观察;还可配置光遗传模块,对神经元和大脑神经回路活动进行精确控制。今年1月,继第一代微型化双光子显微镜在全球首次获取了小鼠在自由行为过程中大脑神经元和神经突触活动的动态图像后,超维景通过对微型光学系统的重新设计,成功研制了第二代产品。其成像视野更大,工作距离更远,操作简便,并具备实时三维成像能力,可在自由运动的小鼠上对大脑三维区域内上千个神经元进行清晰稳定的动态成像,并且实现了针对同一批神经元长达一个月的追踪记录。该成果于2021年1月6日在线发表于Nature Methods上。新一代微型化双光子荧光显微镜体积小,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 850 nm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。除此之外,超维景生物基于生物医学显微镜研发生产的背景以及拥有的多项技术专利,结合市场需求和实验需要,开发了包括脉冲激光器在内的一系列光电产品,其性能稳定、操作简单,适用于高端光学显微镜的研制和工业生产。仪器信息网: 请举例介绍贵公司的产品和技术是如何助力生命科学研究的?生命科学是一门极其复杂、极富挑战的科学,是一个可以做出重大科学发现的领域。在中国“脑计划”即将启动的今天,为满足脑计划对于脑认知原理解析的重大需求,助力中国脑科学家、脑医学家、脑药学家的探索与发现,超维景创始人程和平院士团队与南京江北新区合作建立了“南京脑观象台”。“南京脑观象台”有三方面的特色:一是改变手工作坊式的科研方式,有标准化、流程化分解技术流程;二是降低功能成像的“准入门槛”,集成最先进的成像装备,节约“设想”到“验证”的时间;三是改变功能成像的研究方式,有高通量、工程化的实验设计,可以回答“大科学”问题。南京脑观象台作为超维景双光子产品的集中应用基地和演示中心于2021年8月2日推出了免费服务计划——“探索计划”,计划启动期间收到了广大科学家的积极响应,共收到符合条件的申请67份。 综合申请者前期实验基础,以及项目的创新性、可行性因素,在专家评审委员会的推荐下,我们首批支持项目共计24个,资助总金额300万元。此外,超维景微型化双光子显微成像技术帮助许多科研团队取得了一些重要的研究成果,比如,11月18日,浙江大学医学院脑科学与脑医学学院/教育部脑与脑机融合前沿科学中心的胡海岚教授团队,在国际知名期刊Neuron在线发表了论文《 Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition》,这篇文章通过在显性管测试中应用光遗传学和化学遗传学操作,发现由VIP-PV-PYR 组成的微环路通过抑制与去抑制的功能性连接,在社交情境下精细地协作调控dmPFC锥体神经元的活动,从而影响小鼠在面对社会竞争时的行为表现。研究团队在探索这两种神经元如何影响mPFC的活动时,正是使用我们的2.2克可佩戴式微型双光子荧光显微镜(FHIRM-TPM)在清醒活动的动物中观察脑内单个神经元水平的发放。仪器信息网: 请您介绍一下目前高端光学显微镜的市场现状。根据中国仪器仪表行业协会统计,2015 年至 2017 年我国显微镜出口量在 220 万台-300万台之间,年均进口5万台左右,出口数量远高于进口数量,但出口金额远低于进口金额,反映了中国进口的光学显微镜单台平均价格远高于出口显微镜,国内高端显微镜市场依赖于进口产品。自上世纪七、八十年代以来,中国显微镜制造逐渐承接了来自欧洲和日本的产业转移,已能生产95%的教育类和普及类显微镜。世界高端显微镜产业主要布局在德国和日本,德国是以徕卡显微系统和蔡司为代表,而日本以尼康和奥林巴斯公司为代表,上述企业占据着世界显微镜市场50%以上的市场份额,其发展战略左右着显微镜市场的走向。目前世界市场对高端显微镜的需求在增长,中国市场这方面的需求增长更快,超分辨显微镜在中国市场的增长更是超过20%。未来五年显微镜市场的发展在亚太地区将围绕中国、印度、澳大利亚和中东国家。近年来,全球科研经费持续增加,医疗卫生的投入也将进一步加大。基于分辨率、对比技术、荧光技术和数字影像等技术的更新,显微镜在生物医学等领域得到越来越广泛的应用。高分辨率光学显微镜是近年来增长较为快速的产品,主要应用于科研开发与医疗卫生领域。医院场景国产高端显微镜替代空间大。目前中国三甲医院所使用的高端光学显微镜几乎被徕卡、蔡司、尼康和奥林巴斯垄断。国内有能力开始生产高端显微镜的企业较少,目前有永新光学、麦克奥迪、舜宇光学等。国内制造的高性能、高可靠性的高端光学显微镜,充满了极大的市场机遇。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?您认为目前高端光学显微镜的国产化进程如何?我国显微镜行业发展缺乏技术沉淀,20 年以上经营积累的企业十分稀缺,深度精密制造及光学核心部件设计及工艺严重制约产业升级,具备生产高端显微镜的企业屈指可数。光电产业新产品层出不穷,应用范围逐步扩大,对光学元件组件加工技术要求越来越高。目前,国内少数厂商能实现精密光学元件组件量产,但特殊光学元件组件的加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术基本上由国外厂商掌握,国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。在生命科学和医学研究中,成像技术至关重要,它是推动生命科学进步的核心动力,生物医学发展的历史大半部是成像技术的发展史。进入新千年,脑科学研究成为热点,根据《“十四五”规划纲要和2035年远景目标纲要》,我国脑科学与类脑研究将以脑认知原理解析、脑介观神经联接图谱绘制、脑重大疾病机理与干预研究等方向作为重点。中国要做原创科学,必须要有自己的仪器。超维景作为科技成果产业化的典型公司,将以自主创新的核心技术,将继续为我国的脑科学研究做出重要贡献,利用神经科学的基础研究成果来造福社会。
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 太赫兹光子马约拉纳零模量子级联激光芯片
    近日,新加坡南洋理工大学电气与电子工程学院的Qi Jie Wang教授团队及其合作者们通过构建光子类马约拉纳零模(Majorana-like zero mode),在量子级联激光芯片中实现单模、柱状矢量光场输出的太赫兹量子级联激光器。相关成果以“Photonic Majorana quantum cascade laser with polarization-winding emission”为题发表于期刊《Nature Communications》上。新加坡南洋理工大学电气与电子工程学院博士后韩松(现为浙江大学杭州国际科创中心和浙江大学信电学院研究员)为论文第一作者,博士研究生Yunda Chua为共同第一作者;南洋理工大学电气与电子工程学院Qi Jie Wang教授为论文第一通讯作者,武汉大学信息电子学院曾永全教授为共同通讯作者。拓扑学研究的是几何物体或空间在连续形变下保持的全局性质,它只关注物体之间的空间关系而不考虑其大小和形状。对具有特殊拓扑性质的光子结构而言,空间上的缺陷和无序只会引起局部参数变化,不影响该空间的全局性质。拓扑光子结构的典型特征在于结构内部是绝缘体,而表面则能支持无带隙的界面(表面)态。受结构全局性质的规范,界面态可沿着有限光子绝缘系统的边缘或畴壁单向传输,并且能够有效地绕过结构拐角及制备误差引起的缺陷和无序而无后向散射(即拓扑保护)。因此,拓扑光子结构可用于实现高鲁棒性半导体激光器,即“拓扑激光器”。然而,拓扑激光器研究面临两大共性难题:1)需要光泵;2)需要外加磁场或者构建等效磁场来产生受拓扑保护的界面态激光模式。二者均显著增加了激光器系统的复杂程度、成本和功耗,降低了激光器的可靠性,阻碍了其实用化进程。针对上述难题,课题组前期利用量子能谷霍尔效应的原理,以太赫兹有源超晶格材料为增益介质,集成能谷光子晶体,通过简单的设计打破结构反对称性来产生“能谷-动量锁定”的边界传输模式,实现了拓扑界面态的片上单向传输和放大,从而首次研发出电泵浦拓扑激光器。然而该工作是多模激光器且其信噪比低,难以实现激光器出射光的光束控制。随后,来自南加州大学的科学家利用量子自旋霍尔效应,在室温条件下,实现近红外电泵浦单模激光。然而,该工作设计复杂的超大尺寸耦合环形谐振腔阵列实现拓扑边界态,其样品整体尺寸在200个波长以上,且需要耦合光栅增强激光输出和信噪比,难以实现光束调控、赋形、极化控制等高性能激光器。此外,两个工作均需要选择性地泵浦边界态,牺牲光子晶体体态增益材料,难以实现大面积集成的高功率激光器。因此,对电泵浦拓扑激光器性能的提升,如光束调控、赋形、极化控制、高功率输出等,亟待新的物理机制。团队创造性地将凝聚态中p波超导的马约拉纳零能模式引入到光子晶体体系,并利用光子类马约拉纳零能模式的辐射特性,实现了全动态范围单模输出(边模抑制比大于15dB,输出光率约1毫瓦)、柱状矢量光场调控、固态电泵浦、单片集成的太赫兹拓扑激光器。该成果的独特优势还有:(1)在不需要选择性泵浦的情况下,其发光腔体整体直径可以低至大约4个波长,是目前报道能保证毫瓦量级功率条件下最紧凑的太赫兹拓扑激光器(相对激光波长),这极大提升了该类半导体激光器在实际应用中的集成度。(2)光子马约拉纳微腔的自由光谱程(free spectral range)与腔体尺寸呈现二次方反比律[3],这一特性使得光子马约拉纳微腔更容易在大面积条件下保持单模激光输出。团队也在电泵浦拓扑激光器体系中证实了该二次方反比律,并实现了大面积泵浦下高功率(大于9毫瓦)和单模激光输出,其功率是同等尺寸下脊形激光器的5.4倍。图1.光子马约拉纳激光器的示意图a和加工样品图b。图2.a.超胞(supercell)能带随Kekule调制相位的变化。b.类马约拉纳光子腔的相位分布及六方晶格位置与相位之间的关系。中心虚线圆包围的部分为非Kekule调制区域(non-Kekule modulated region),其半径标记为ζ,这里ζ=2a。图中显示马约拉纳光子腔的相位绕数为+1。c.相位绕数为+1的类马约拉纳光子腔的空气孔的大小分布。d,e.三维模拟的类马约拉纳光子腔的近场(Ez)与远场(Intensity)分布。图3. a,b实验测到的激光模式随泵浦电流密度变化,a.相位绕数+1,b.相位绕数-1。c.理论计算的净增益。d.实验测得的L-I-V曲线和在对应位置激光光谱。图4.远场测试。a.测试装置示意图。b,c.数值仿真和实验测试的远场光斑。d,e.加偏振片后的激光光谱和光斑。图5.大面积激光的L-I-V曲线,激光光谱,和单模性分析。
  • 我国自主研制空间站双光子显微镜首获航天员皮肤三维图像
    神舟十五号航天员乘组近日使用由我国自主研制的空间站双光子显微镜开展在轨验证实验任务并取得成功。记者27日从空间站双光子显微镜项目团队获悉,这是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。  双光子显微成像技术是基于双光子吸收及荧光激发的一种非线性光学成像技术,具有高分辨率、强三维层析能力、大成像深度等特点。由于传统的双光子显微镜整机系统庞大,不能满足在轨实验仪器设备对可靠性、体积、重量、抗冲击和振动性能等的苛刻要求,此前国际上还未能实现双光子显微成像技术在空间站在轨运行与应用。  2017年,北京大学国家生物医学成像科学中心主任程和平院士带领团队成功研制探头仅重2.2克的微型化双光子显微镜,为空间站双光子显微镜的开发奠定基础。2019年,在中国载人航天工程办公室大力支持下,由北大程和平、王爱民团队,中国航天员科研训练中心李英贤团队,北京航空航天大学冯丽爽团队联合相关企业及院所组建空间站双光子显微镜项目团队,由程和平担任总负责人。项目组攻克多项显微镜小型化技术难题,于去年9月研制成功空间站双光子显微镜。  项目团队成员、北京大学未来技术学院助理研究员王俊杰博士介绍,去年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。近日,神舟十五号航天员乘组完成了双光子显微镜的安装、调试和首次成像测试,成功获取了在轨状态下航天员脸部和前臂皮肤的在体双光子显微图像。  据悉,空间站双光子显微镜能以亚微米级分辨率清晰呈现出航天员皮肤结构及细胞的三维分布,具备对皮肤表层进行结构、组分等无创显微成像的能力。成像结果显示,皮肤的角质层、颗粒层、棘层、基底细胞层、真皮浅层等三维结构清晰可辨。  “空间站双光子显微镜是体现我国高端精密光学仪器制造水平的重要成果。”程和平介绍,此次在轨验证实验实现了多项第一,例如世界上首次实现双光子显微镜在轨正常运行;国内首次实现飞秒激光器在轨正常运行;国际上首次在轨观测航天员细胞结构和代谢成分信息。“这些不仅为从细胞分子水平开展航天员在轨健康监测研究提供了全新工具和方法,也为未来利用中国空间站平台开展脑科学研究提供了重要的技术手段。”
  • 北大程和平院士团队自研空间站双光子显微镜登上中国空间站
    神舟十五号航天员乘组日前使用由我国自主研制的空间站双光子显微镜开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。  人脑包含百亿级神经元和百万亿级的神经突触,其结构和功能上极其复杂精密的连接和相互作用,是意识和思想涌现的物质基础。为了能清晰看到活体大脑里面的神经元、神经突触的结构和信号,科学家们需要借助双光子显微镜。当代前沿的脑科学研究希望在大脑正常工作时、在自由活动的动物上观察大脑神经元变化,然而,体积重量庞大的传统双光子显微镜难以满足这种在体实时观察神经元信号的需求。  “如何才能创造出一种显微镜,能够在小动物自由行走的条件下,看到一颗一颗神经元,一闪一闪的动态变化,这是藏在我心底的一个梦想。”中国科学院院士、北京大学国家生物医学成像科学中心主任、北京大学未来科技学院教授程和平如是说。  2019年,在中国载人航天工程办公室大力支持下,由北大程和平、王爱民团队,中国航天员科研训练中心李英贤团队,北京航空航天大学冯丽爽团队联合相关企业及院所组建空间站双光子显微镜项目团队,程和平担任总负责人。项目组攻克多项显微镜小型化技术难题,于去年9月成功研制空间站双光子显微镜。  去年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。近日,神舟十五号航天员乘组完成了双光子显微镜的安装、调试和首次成像测试,成功获取了在轨状态下航天员脸部和前臂皮肤的在体双光子显微图像。  项目团队成员、北京大学未来技术学院助理研究员王俊杰介绍,空间站双光子显微镜能以亚微米级分辨率清晰呈现出航天员皮肤结构及细胞的三维分布,具备对皮肤表层进行结构、组分等无创显微成像的能力。成像结果显示,皮肤的角质层、颗粒层、棘层、基底细胞层、真皮浅层等三维结构清晰可辨。双光子显微成像的信号来源于细胞及胞外基质中具有自发荧光的物质,这些信号有助于实现对航天员细胞线粒体代谢应激反应功能探测。通过对具有自发荧光的细胞代谢产物的量化观测可以反映出航天员机体代谢功能。  程和平表示,空间站双光子显微镜是体现我国高端精密光学仪器制造水平的重要成果。“此次在轨验证实验实现了多项第一,例如世界上首次实现双光子显微镜在轨正常运行;国内首次实现飞秒激光器在轨正常运行;国际上首次在轨观测航天员细胞结构和代谢成分信息。这些不仅为从细胞分子水平开展航天员在轨健康监测研究提供了全新工具和方法,也为未来利用中国空间站平台开展脑科学研究提供了重要的技术手段。”
  • 为什么Microlight3D双光子聚合激光直写技术能实现67nm超高分辨率3D打印?
    为什么Microlight3D双光子聚合激光直写技术能实现67nm超高分辨率3D打印?Microlight3D是一家生产用于工业和科学应用的高分辨率微尺度2D和3D打印系统的专业制造商。MicroFAB-3D光刻机是该公司于2019年推出的第一台紧凑台式双光子聚合系统,一经推出便得到客户的广泛好评。 MicroFAB-3D基于双光子聚合激光直写技术,可在各种光敏材料上制造出蕞小尺寸可达67nm的二维和三维特征结构,兼容各种聚合物,包括生物兼容性材料、医用树脂和生物材料,为微流控、微光学、细胞培养、微机器人或人造材料领域开辟了新的前景。双光子聚合激光直写,也称双光子3D打印,基于“双光子吸收效应”, 可以将反应区域限制在焦点附近极小的位置(称之为“体元”),通过纳米级精密移动台,使得该焦点在物质内移动,焦点经过的位置,光敏物质发生变性、固化,因此可以打印任意形状的3D物体。双光子聚合激光直写技术摒弃了传统增材制造(Additive Manufacturing)层层叠加的方法,使得层与层之间的精度大大提高,消除了“台阶效应”,使得我们可以制造低粗糙度、高精度的器件,如各种光学元件、维纳尺度的结构器件等。基于双光子聚合激光直写技术的microFAB-3D完全适用于超高分辨率3D打印,结合合适的光敏材料,“体元”直径可小至67nm,有时甚至可以更小。结合我们专有的软件,microFAB-3D激光可以在材料内部自由移动,创造出一个坚固的结构。 激光甚至可以穿过聚合的部件,因此“体元”可以在单体内部的三维空间中自由移动,可以高精度地创建任何3D形状,例如没有支撑的悬垂物、内部的体块、中空通道结构等等。 由于光敏材料、激光波长和所用的物镜直接影响打印的分辨率,所以我们的532 nm波长确保了低于67nm的超高3D打印分辨率,我们的用户已经实现了在3D结构中小于100nm的横向分辨率!Microlight3D双光子聚合3D纳米光刻机∣主要特征:1、高分辨率3D打印得益于双光子聚合激光直写技术,无论是基础版本还是先进版本,都可以实现至少67nm的刻写分辨率,最高记录67nm 。 2、打印最复杂的结构与传统的3D打印技术不同,双光子聚合激光直写技术摆脱了传统的“一层一层”的光刻方法。可以打印非常复杂的结构而不需要特殊材料支持或后续处理,增强了材料的机械性能。 3、分辨率自动调节我们的软件可以让您在制造过程中可以随时调节打印分辨率。用大“体元”得到更快的打印速度,用小“体元”实现更复杂、更精密的结构。 4、高精度自动定位microFAB-3D先进版本配备了反馈相机和专用软件功能,使您能够在已经有图案的基板甚至光纤的尖端上直接对齐和打印。您可以轻松和精细地调整聚焦点的位置,精度小于1µm。 5、独特的技术、更高的性能创新的纳米3D打印系统依赖于具有独特特点的工业激光器,带来最高的打印分辨率、紧凑性、成本效率和使用灵活性。除此之外,这些工业激光器完全支持长时间运行而无需定期的维护,提供了更好的可靠性与稳定性。 6、从基础版本升级到先进版本MicroFAB-3D可以根据您的需求和预算轻松地升级。您可以使用MicroFAB-3D标准版本探索高分辨率的3D打印,之后升级为MicroFAB-3D高级版本以实现大范围的复制、Voronoi结构光刻等附加功能。Microlight3D双光子聚合3D纳米光刻机∣兼容材料:我们为我们的双光子聚合激光直写3D纳米光刻机提供了10种专利光刻胶,这些树脂的各种性能允许您探索多种应用领域。我们的系统也与各种商业上可用的光刻胶兼容,如Ormocomp, SU8, FormLabs树脂,NOA-line树脂,甚至水凝胶或蛋白质等。这些光刻胶可能是生物兼容的,有的已被认证实现微型医疗设备。如果您想使用定制的、自制的聚合物,我们也可以帮助您调整系统以适应您的工艺。Microlight3D双光子聚合3D纳米光刻机∣应用领域: 微光学和光子学 微流控 2D材料 微型医疗设备 细胞培养与组织工程 微电子学 微机械 光电子 金属材料 传感器 天线 微型机器人Microlight3D双光子聚合3D纳米光刻机∣规格指标:关于生产厂商Microlight3D:Microlight3D是高分辨率微尺度2D和3D打印系统的专业制造商。Microlight3D致力于满足科学家和工业研究人员新的设计加工需求,以及高精度生产任何几何或非几何形状的微型零件。通过结合2D和3D微纳打印技术,Microlight3D为客户提供了制造更大尺寸复杂部件的灵活性。它的目标是为未来的新兴领域提供更快、更复杂的微型制造系统。Microlight3D的设备现用于微光学、微流体、微机器人、超材料、细胞生物学和微电子学等。 Microlight3D在2016年成立于法国格勒诺布尔,在Grenoble Alpes大学(UGA)进行了超过15年的3D微纳打印技术研发。 上海昊量光电作为Microlight3D在中国大陆地区代理商,为您提供专业的选型以及技术服务。对于Microlight3D有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。关于昊量光电昊量光电 您的光电超市! 上海昊量光电设备有限公司致 力于引进国 外先 进性与创 新性的光电技术与可 靠产品!与来自美国、欧洲、日本等众多知 名光电产品制造商建立了紧 密的合作关系。代理品牌均处于相关领域的发展前 沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国 防及前沿的细分市场比如为量 子光学、生物显微、物联传感、精密加工、先进激光制造等。 我们的技术支持团队可以为国内前沿科研与工业领域提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等优 质服务,助力中国智 造与中国创 造! 为客户提 供适合的产品和提 供完 善的服务是我们始终秉承的理念!
  • 半导体所成功研制太赫兹量子级联激光器产品
    中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器系列产品。   太赫兹(THz)量子级联激光器是一种通过在半导体异质结构材料的导带中形成电子的受激光学跃迁而产生相干极化THz辐射的新型太赫兹光源。半导体材料科学重点实验室经过多年的基础研究和技术开发,目前推出系列太赫兹量子级联激光器产品。频率覆盖2.9~3.3 THz,工作温度10~90 K,功率5~120mW。   太赫兹波介于中红外和微波之间,是一种安全的具有非离化特征的电磁波。它能够穿透大多数非导电材料同时又是许多分子光学吸收的特征指纹光谱范围。它的光子能量低(1 THz对应的能量大约4meV),穿透生物组织时不会产生有害的光电离和破坏,在应用到对生物组织的活体检验时,比X光更具优势。它的波长比微波短,能够被用于更高分辨率成像。THz波在分子指纹探测、诊断成像、安全反恐、宽带通讯、天文研究等方面具有重大的科学价值和广阔的应用前景。 半导体研究所制备成功太赫兹量子级联激光器系列产品
  • 全球首台商用石墨烯飞秒光纤激光器问世
    记者从近日在江苏泰州举行的中国石墨烯标准化论坛上获悉,泰州巨纳新能源有限公司研制的世界首台商用石墨烯飞秒光纤激光器Fiphene问世,同时创造了脉冲宽度最短(105fs)和峰值功率最高(70kW)两项石墨烯飞秒光纤激光器世界纪录。   飞秒光纤激光器的应用领域非常广阔,包括激光成像、全息光谱及超快光子学等科研应用,以及激光材料精细加工、激光医疗(如眼科手术)、激光雷达等领域。传统的飞秒光纤激光器核心器件&mdash &mdash 半导体饱和吸收镜(SESAM)采用半导体生长工艺制备,成本很高,且技术由国外垄断。   在飞秒光纤激光器领域,石墨烯被认为是取代SESAM的最佳材料。2010年诺贝尔物理学奖获得者撰文预测石墨烯飞秒光纤激光器有望在2018年左右产业化。要实现真正的产业化,需要解决高质量石墨烯制备、大规模低成本石墨烯转移、石墨烯与光场强相互作用、石墨烯饱和吸收体封装以及激光功率稳定控制等一系列关键技术。泰州巨纳新能源有限公司经过多年持续研究,成功攻克了这些关键技术,率先实现了石墨烯飞秒光纤激光器的产品化,主要性能指标均高于同类产品,具有很高的性价比和很强的市场竞争能力。   该产品被命名为Fiphene,取Fiber(光纤)和Graphene(石墨烯)两个词的组合。泰州巨纳新能源有限公司计划以Fiphene为平台,推出更多石墨烯光纤激光器产品,将石墨烯的应用发展向前推进。
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p   在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。 /p p   受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。 /p p   目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。 /p p   根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title=" 首台复合显微镜.png" alt=" 首台复合显微镜.png" / /p p style=" text-align: center " strong 国内外首台双光子-STED复合显微镜样机 /strong /p p   在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。 /p
  • 我国光纤激光器实现新突破 优于国际同行
    中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室李建郎研究员课题组“径向偏振光纤激光器”研究工作近日取得突破性进展。该研究组从掺镱光纤激光器中获得2.42瓦高效率、高偏振纯度和高轴对称性的径向偏振激光输出,创造了目前径向偏振光纤激光器研究的最高纪录。   径向偏振光束在离子捕获、生物光镊、高分辨率显微镜技术、电子加速以及高效率高精度金属材料加工等领域有着非常重要的应用,通过固体、气体激光器的输出来直接产生该种光束已经成为国际研究热点领域之一。2006年李建郎等人首次提出利用稀土掺杂的多模光纤作为增益介质来直接输出径向偏振激光的概念,并在掺镱光纤激光器实验中获得了近40毫瓦的径向偏振激光输出(Opt. Lett., 31, 2969, 2006 Opt. Lett., 32, 1360, 2007 Laser Phys. Lett., 4, 814 2007)。继该研究领域被开拓后,以色列魏兹曼研究所(Weizmann Institute of Science, Israel)、美国代顿大学(Dayton University, USA)等研究机构的科学家相继通过努力在掺铒光纤激光器中实现了140毫瓦(斜坡效率约为3%) 的径向偏振激光输出(Appl. Phys. Lett., 93, 191104, 2008 Appl. Phys. Lett., 95, 191111, 2009)。在这些前期研究中,由于寄生振荡等因素的干扰,激光器效率和功率很低,并且存在偏振纯度低以及光束轴对称性差等关键性缺陷,限制了径向偏振光纤激光器技术的进一步实用化。   该课题组李建郎、林迪等经过约一年时间的奋斗摸索,在实验中采用光纤耦合的976nm二极管激光器从端面泵浦1.8米长的多模掺镱双包层光纤。该增益光纤具有低V参量,仅支持光纤基模以及其邻阶模(其中包括TM01模,即径向偏振模)传输。同时增益光纤的一个端面被切成8o斜角以抑制光纤端面之间的寄生振荡。实验采用具有径向偏振选择性的光子晶体光栅镜做为激光器的输出耦合器。实验测得激光器阈值泵浦功率为0.9W,在最大泵浦功率7W 时输出功率达到2.42W,光—光效率为35%(对应的斜坡效率43.8%),激光器波长为1050nm。激光器输出圆环形光斑,且为径向偏振,偏振纯度为96%。   此结果目前已远优于其他国际同行的工作。该研究首次实验证明了径向偏振光纤激光器完全可以达到与同类的固体激光器相比拟的性能指标,从而基本消除了困扰径向偏振光纤激光器发展及应用的技术障碍。
  • 量子级联激光器促进生命科学研究
    中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:Photonics.com编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线2020研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线2020研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in asemiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, www.quest-mi.com/promising-applications.5. S. Pahlow et al. (2020). Application of vibrational spectroscopy and imaging to point-of-care medicine: a review. Appl Spectrosc, Vol. 72, pp. 52-84.6. S. Mittal and R. Bhargava (2019). A comparison of mid-infrared spectral regions on accuracy of tissue classification. Analyst, Vol. 144, Issue 8, pp. 2635-2642, www.doi.org/10.1039/c8an01782d.7. A. Schwaighofer et al. (2017). Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, Vol. 46, Issue 7, pp. 5903-5924.8. A. Nabers et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, www.doi.org/10.15252/emmm.201708763.昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
  • 美造出最小和最高效的无阈值激光器
    美国加州大学圣地亚哥分校的研究人员制造出迄今最小的室温纳米激光器以及一台效率很高的无阈值激光器,能让所有光子都以激光形式进行发射,不浪费任何光子。   所有激光器都需要源于外部特定数量的抽运功率来发射相干光束或激光。产生激光还必须满足阈值条件,也就是相干输出要大于产生的自发辐射。然而,激光器越小,达到发射激光的阈值所需的抽运功率越大。为了解决这一问题,科学家们为新激光器设计了一种新方法,使用共轴纳米腔内的量子电动力效应来减轻阈值限制。该激光腔包含有一个被一圈金属镀层所包裹的金属棒,通过修改该激光腔的几何形状,科学家们制造出了这种无阈值激光器。   新设计也使他们制造出了迄今最小的室温激光器。新的室温纳米尺度的共轴激光器比两年前《自然—光子学》杂志介绍的最小激光器小一个数量级,整个设备的直径仅为半微米。   这两台激光器需要的操作功率都非常低,这是一个重要的突破,这些小尺寸且超低功率的纳米激光器可成为未来微型计算机芯片上的光学电路的重要元件。这些高效的激光器可被用于增强未来光子通讯使用的计算芯片的能力,光子通讯领域需要使用激光器在芯片上遥远的点之间建立通讯链接。这种激光器需要的抽运功率更少,也意味着传送信息需要的光子数量也更少。   参与该研究的雅可布工程学院的Mercedeh Khajavikhan认为,这种无阈值激光器还能被缩小,这使其能从更小的纳米设备捕获激光,因此能被用于制造和分析比目前激光器发出的光波波长更小的超材料。超材料的应用范围从能看见单个病毒或DNA分子的超级镜头到能让物体周围的光弯曲使它“隐身”的隐形设备。(黄健)
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。   一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。   强强联合   项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。   但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。   为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。   但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。   而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。   上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。   1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。   “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。   从“敢想”到“敢做”   据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。   位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。   针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。   据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。   在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。   据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 2012激光共聚焦扫描显微学研讨会举行
    北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会顺利举行   仪器信息网讯 2012年3月27日,为推动北京市及周边省市激光共焦扫描显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进激光共焦扫描显微学在生命科学等领域中的应用和发展,北京理化分析测试技术学会和北京市电镜学会在北科大厦成功举办了“北京市2012年度激光共聚焦扫描显微学最新进展学术研讨会”。来自高校、科研院所、企业的100余名专家学者参加了本次会议。 会议现场 军事医学科学研究院张德添教授 北京大学医学部生物医学分析中心何其华高工   会议由军事医学科学研究院张德添教授,北京大学医学部生物医学分析中心何其华高工主持。 Cdc42在小鼠卵母细胞减数分裂成熟中的作用 中国科学院动物研究所孙青原研究员   孙青原研究员现任中国科学院动物研究所计划生育生殖生物学国家重点实验室主任,他在报告中介绍了利用Zeiss LSM710激光共聚焦显微镜、珀金埃尔默Ultra VIEW VOX活细胞实时成像系统等仪器研究Cdc42在小鼠卵母细胞减数分裂成熟中的作用,Cdc42作为一种细胞骨架和细胞极化的重要调节物,在减数分裂和卵母细胞成熟过程中有重要的作用。 毫米级多光子显微镜荧光成像 奥林巴斯(中国)有限公司位鹏先生   采集更明亮和更清晰地标本深层图像,对于更好的开展生命科学研究工作来说十分重要。位鹏先生介绍了奥林巴斯在这方面所能提供的解决方案:利用日本理学院Miyawaki博士研发的组织、器官透明液处理小鼠大脑样本,结合奥林巴斯的XLPLN25×SVMP镜头可以观察到深度达4mm处的深层图像。目前奥林巴斯还推出了一款新型的镜头,观察深度可达8mm,不过还未正式推向市场,可接受定制。 超高分辨率显微镜技术 中国显微图像网秦静女士   在生命科学研究中科学家总希望看到更加细微的结构,从细胞到细胞器、再到蛋白质等生物大分子,这些结构的尺度都在纳米量级远远超出了常规的光学显微镜的分辨极限,电子显微镜虽然能提供纳米级的分辨率,但不适合观察活细胞,为了解决这一难题,超高分辨显微镜技术应时而生。在报告中秦静女士详细介绍了四种基于不同原理的超高分辨显微镜:4Pi显微镜、STED(受激发射损耗显微镜)、PALM(光激活定位显微镜)、STORM(随机光学重建显微束),并分析了各类显微镜的性能及优缺点。 多光子技术的新进展 徕卡仪器有限公司王怡净博士   王怡净博士从单分子探测(SMD)、相干反斯托克斯拉曼散射(CARS)、光参量振荡器(OPO)等三个方面介绍了多光子技术的最新进展。王怡净博士介绍说如果想观察分子的运动或分子的识别,采用普通的共聚焦技术就比较困难,所以单分子探测技术就应用而生。相干反斯托克斯拉曼散射技术是一种基于分子固有的振动特性的观察方法,样品无需进行荧光标记,避免了荧光漂白等问题,该技术是由华裔科学家谢晓亮发明,徕卡公司购买了该技术并将其产品化。光参量振荡器是一种新型红外激光器,它的激发波长可以达到1300nm,由于激发波长变长,因而散射更小,观测深度更深、对样品损伤更小。 现代荧光显微镜学在生命科学中的应用 蔡司光学仪器(上海)国际贸易有限公司张宁博士   张宁博士介绍了在生命科学研究中,不同的样品分析对于仪器的灵活性、观察深度、扫描速度,以及分辨率等都有不同的需求,蔡司根据不同的需求能够提供相应的仪器:如果对深度要求比较高,可以选择多光子显微镜 如果要进行瞬态分析,可以选择转盘式共聚焦显微镜、纯内反射荧光显微镜等 如果对分辨率要求非常高,可以选择光活化定位系统、结构光学照明系统等。此外,张宁博士还介绍了蔡司最新的780点扫描激光共聚焦系统,以及在2011年7月蔡司将光学显微镜部门和电镜部门进行了整合。 激光共聚焦扫描技术在神经发育中的作用研究 北京大学医学部王韵博士   神经系统是机体最重要、最复杂的系统。王韵博士在报告中介绍了激光共聚焦扫描显微技术在神经细胞增殖和分化中的应用;胚胎电转结合Confocal技术观察神经细胞的迁移;利用Confocal技术研究神经元极性、观察轴突导向;利用双光子Confocal技术观察培养的海马脑片中单个树突棘长时程结构可塑性改变时分子激活的时空变化、观察活体动物皮层神经元树突棘随外界刺激而出现的数目消长等。 Volocity——3D活细胞时代的成像分析软件 珀金埃尔默仪器(上海)有限公司公司焦磊博士   焦磊博士介绍了珀金埃尔默推出的Volocity细胞三维结构分析软件,该软件包括多个功能模块,用户可以在同一软件环境下完成图像获取、分析和数据发表的全过程。Volocity软件的Acquisition模块可以实现多通道、多位点3D图像的精确定位和自动实时采集 Visualization模块可为用户提供多种图像展现方式,用户可以在高分辨率、完全交互的3D模式下实时解决样品构造 Quantitation模块提供了丰富的工具可以在3D模式下对物体进行测量、分析和跟踪描绘 Restoration模块设计用于三维或四维图像的反卷积计算,以提高图像的分辨率。 超高分辨率显微镜的引进与发展态势分析 中科院生物物理所纪伟博士   纪伟博士介绍了目前不同的提高分辨率的成像方法的原理及其分辨能力,以及各种方法对样品制备的要求和在实际应用当中的优劣势。采用光敏定位技术的超分辨率显微镜采用大功率激光器和快速采样EMCCD,可以很好的观察活细胞 利用片层光扫描结合光敏定位成像技术可以观察厚样品 具有更高的分辨率,可以研究百nm尺度的细胞器细节结构。最后纪伟博士总结说,更高的分辨率、更快的分析速度以便观察活细胞、以及与其他技术的融合:如TIRF-STED、PALM-EM、STED-AFM、FCS-STED、STORM-AFM等。   会议中,与会人员同专家及企业人员进行了充分的互动和交流,通过会议大家对于激光共聚焦扫描显微技术的最新进展有了更多的认识和了解。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制