当前位置: 仪器信息网 > 行业主题 > >

碳酸盐碳氧同位素分析仪

仪器信息网碳酸盐碳氧同位素分析仪专题为您提供2024年最新碳酸盐碳氧同位素分析仪价格报价、厂家品牌的相关信息, 包括碳酸盐碳氧同位素分析仪参数、型号等,不管是国产,还是进口品牌的碳酸盐碳氧同位素分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳酸盐碳氧同位素分析仪相关的耗材配件、试剂标物,还有碳酸盐碳氧同位素分析仪相关的最新资讯、资料,以及碳酸盐碳氧同位素分析仪相关的解决方案。

碳酸盐碳氧同位素分析仪相关的方案

  • 7500ce ORS-ICP-MS分析碳酸盐基体中的硫 应用
    本文采用7500ce八极杆反应池系统(ORS),以氙气为反应池气体,简要介绍了四种样品的碳酸盐基体中硫所有的三个同位素的初步研究方法和测定结果。氙气与氧气反应以降低氧气对质量数32,33和34造成的多原子干扰。从而可以实现对每个硫同位素质量数的测定,进而获得良好的重现性结果。
  • 利用东西分析完美解决方案,测定水中碳酸盐
    测定水中碳酸盐对于水质分析、水处理及研究热力设备的结垢、积盐和腐蚀的产生具有重要意义。东西分析提供完美的解决方案,利用IC-2800离子色谱仪测定水中的碳酸盐,可以使操作过程简单,同时消除人为误差,获得准确的测量结果。
  • 北京东西分析仪器:利用东西分析完美解决方案,测定油田水中碳酸盐
    测定水中碳酸盐对于水质分析、水处理及研究热力设备的结垢、积盐和腐蚀的产生具有重要意义。东西分析提供完美的解决方案,利用IC-2800离子色谱仪测定水中的碳酸盐,可以使操作过程简单,同时消除人为误差,获得准确的测量结果。
  • 北京东西分析仪器:利用东西分析完美解决方案,测定饮用矿泉水中重碳酸盐
    测定水中碳酸盐对于水质分析、水处理及研究热力设备的结垢、积盐和腐蚀的产生具有重要意义。东西分析提供完美的解决方案,利用IC-2800离子色谱仪测定水中的碳酸盐,可以使操作过程简单,同时消除人为误差,获得准确的测量结果。
  • 北京东西分析仪器:利用东西分析完美解决方案,测定饮用矿泉水中碳酸盐
    测定水中碳酸盐对于水质分析、水处理及研究热力设备的结垢、积盐和腐蚀的产生具有重要意义。东西分析提供完美的解决方案,利用IC-2800离子色谱仪测定水中的碳酸盐,可以使操作过程简单,同时消除人为误差,获得准确的测量结果。
  • 北京东西分析仪器:利用东西分析完美解决方案,测定油田水中重碳酸盐
    测定水中碳酸盐对于水质分析、水处理及研究热力设备的结垢、积盐和腐蚀的产生具有重要意义。东西分析提供完美的解决方案,利用IC-2800离子色谱仪测定水中的碳酸盐,可以使操作过程简单,同时消除人为误差,获得准确的测量结果。
  • 骨生物磷灰石中结构碳酸盐稳定同位素结果的方法相应变化
    Z Metcalfe 等人认为使用几种常用的分析方法,从危地马拉和苏丹的考古骨骼的生物磷灰石中获得稳定的碳和氧同位素值(δ 13 C,δ 18 O)。对于苏丹样品,不同的方法平均产生的δ 13 C值在± 0.1‰之内,δ 18 O值在± 0.7‰之内,样品的热重分析(TGA)采用Linseis的L81。
  • 碳酸盐储层浸润性变化
    据统计,世界上50%-60%的石油储存于碳酸盐储层。所有储层类型的平均采收率即可采储量占原始储量的35%。然而,已知砂岩储层的采收率要高于碳酸盐储层。为提高碳酸盐储层的采收率,目前正在研究提高碳酸盐储层平均采收率的方法。目前认为浸润性的变化是影响采收率的关键因素。
  • 碳酸盐矿物定量测试的新思路—应用岛津电子探针直接测试碳氧法及与传统方法的对比
    应用岛津EPMA测试超轻元素灵敏度高的特点,直接对包括碳和氧在内的全元素分析,测试碳酸盐矿物试样。电子探针对氧化物矿物的定量测试过程中,对于超轻元素元素氧一般不直接测试,而是按照价态配比补足,同时由于超轻元素元素碳的特殊性,以往测试碳酸岩矿物试样时也通常不测试碳,而是通过余量法给出。这种处理方式是基于测试仪器对于超轻元素测试的灵敏度和精度不够所不得已采取的折中方法。本文结合岛津电子探针对于超轻元素测试的高灵敏度特征,尝试了一种新的测试方案。通过对包括碳和氧在内的全元素分析,在典型的碳酸盐矿物白云石和方解石上获得了满意的测试结果。
  • 解决方案|离子排斥色谱法分析饮用矿泉水中总的碳酸盐
    本实验利用阳离子交换分离柱对弱酸阴离子具有离子排斥作用这一特性,以稀盐酸为淋洗液,抑制型电导检测,直接进样快速测定饮用矿泉水中的碳酸盐,并获得满意的结果。
  • 解决方案|离子色谱法测定油田水中的碳酸盐含量
    本文采用EW-CS01阳离子分离柱,抑制型电导检测器,对mg/L级的碳酸盐进行分离和检测的方法具有选择性好、操作简单、适用性广、节省时间等优点。通过对油田水样品分析及回收率实验,结果表明,此方法可以用于油田水中碳酸盐的检测。
  • ICPE-9820测定碳酸盐岩中氧化物的含量
    ICP-OES抗基体能力强,精密度高,分析速度快;ICPE-9820垂直炬管设计,可有效减少样品残留和防止炬管积碳积盐,适用于碳酸盐岩中元素成分分析测定;轴向和径向双向观测可以实现外加剂中高低含量元素的同步测定。ICPEsolution软件具有软件后添加功能,可以实现最有波长推荐,并进行数据诊断。
  • 伴生有两种片麻岩类型的大别区双河榴辉岩定年方法:碳同位素、锆石U-Pb测年和氧同位素(英文原文)
    大别地质体双河地区与超高压榴辉岩关系密切的大别地质体双河地区与超高压榴辉岩关系密切的片麻岩类型有黑云母副麻岩和花岗正长麻岩两种。磷灰石和寄主片麻岩中大块碳的浓度和同位素组成可以采用EA-MS在线技术测定。采用XRD和FTIR技术对磷灰石内部碳酸盐结构进行了检测,尽管这些片麻岩中的δ 18O值从-4.3‰到+10.6‰不等,但是在磷灰石中观察到的CO2中碳浓度为0,70-4.98wt.%,δ 13C的值在-28.6‰到-22.3‰之间。片麻岩内部数十米尺度范围内的δ 13C和δ 18O均存在明显的非均质性,说明超高压变质后存在二次变质。部分的片麻岩以δ 13C贫化为主,但在超高压变质作用下,富集δ 13C的CO2流体流动导致碳酸盐中碳含量升高。片麻岩中δ 13C贫碳被解释为其前身在板块俯冲前遭受了大气热液蚀变,磷灰石中δ 13C值低以及结构碳酸盐含量低,说明超高压变质流体中存在贫δ 13C 的CO2。贫δ 13C 的CO2无疑是超高压变质过程中地下流体有机物氧化的产物。花岗岩正长岩的两个样品锆石的δ 18O值较低,在-4.1‰ 到-1.1‰之间,说明其原岩在岩浆结晶前的18O中已明显耗竭。18O贫锆石U-Pb不整合年代为花岗正长岩原岩724-768 Ma的新元古代,与大别苏鲁造山带大部分榴辉岩和正长岩的原岩年龄一致。因此,大气热液蚀变直接发生在新元古代中期,可能与罗丁岛超大陆断裂和雪球事件有关。因此推断火成岩的花岗质正片麻岩原岩和榴辉岩会沿着新元古代扬子板块的北部边缘,侵入到年长序列作曲沉积黑云副片麻岩和一些榴辉岩的原岩中,推动当地大气热液循环系统使得13C和18O与这些暴露在大别山岩层的超高压岩石相作用。
  • 同位素技术在环境和生态上的应用
    由robert Michener 和 Kate Lajtha编辑 自从第一版之后,同位素的领域又已经非常扩大了。从开始的应用,地理学家和海洋学家已经更深入的发展了同位素在的理论和实际应用,过去的水土状况,热系统,追踪岩石来源等。相似的,植物生物学家,地理学家,和环境化学家也已经发展了新的理论框架,经验数据库,为了研究植物和动物的同位素应用。自然丰度的同位素记号可以被用来发现单个有机体的类型和机理就像追踪食物的网络一样, 理解营养,和追踪整个生态的营养循环不论是陆地生物还是海洋系统。因此,同位素分析已经越来越作为生物学家,生态学家和所有研究元素和物质一个标准化的手段。 从历史视角的方法 每一个不同的元素,制备样品的方法都不一样。稳定同位素分析的目标是使得样品定量的转变成合适的纯气体(比如CO2,N2或者H2等)使得质谱能够分析。硫可以以SO2或者SF6的方法分析。通常,有机样品首先被干燥(或者在60℃的烘箱中或者冷冻干燥),并且被碾压成粉末。样品可以被保存在一个密闭容器中,使得他们保持干燥。如果对样品的碳元素感兴趣,但是样品中含有无机碳的话,样品需要首先被酸化(通常使用1NHCL,即便有很多用户使用稀释的磷酸) 有机样品中的C和N 早起的同位素测定中,大多数研究者使用氧化反应要不就是“离线”或者“在线”,将有机样品燃烧成气体。 现在均转变成在线的方式,通过元素分析仪连接同位素质谱的装置。1-20mg(或者更多)的样品被称量后,用锡纸包好,放在样品盘上。样品会在氧气流中,在高温下燃烧,然后燃烧的气体被氦气流带到吸附阱上进行分离成H2O,N2,CO2等。感兴趣的气体然后被导入到质谱中进行分析。这就是目前所知的连续流分析模式。 碳酸盐和溶解无机碳 无机碳样品与100%磷酸反应在真空下反应,使其完全转化为纯CO2。这使得可以同时分析C13和O18,条件是磷酸是纯的,并且不能有水。 水样中的溶解无机碳,通过酸化水样并且搅拌水样,在部分真空下产生CO2样品,然后分离纯化该气体。该样品制备原则可以被用来制备血液中的生物碳酸盐。 关于上诉样品的最新方法使用了自动的连续流系统。不需要估计瓶子中的碳酸盐,氦气在酸化之前已经代替了瓶子中的所有气体。在一个反应时间之后,CO2气体被转移到样品环中,然后使用氦气做载气导入到质谱中。一个相似的方法使用在水中DIC的测定中。 氨和水中的硝酸盐δ 15N 早期的溶解无机氮分析中,水样中的氨被分离,使用各种蒸汽蒸馏技术或者使用扩散技术等。所有的步骤使得水中的pH变化,然后将氨气被一个酸trap捕获。蒸馏技术比较适合于大量水中含有痕量氨气的情况,可以使用盐水溶液,大概每个样品需要30分钟。一旦氨气被收集在酸阱中,沸石将会用来从溶液中转移出氨气。在所有的方法中,需要小心NH3在每个阶段的收集也纺织分馏。硝态-N可以使用同样的技术蒸馏在使用还原剂将水中的硝酸根还原为氨气。 水中氧 水中氧的分析主要有两种:水平衡法和元素分析仪-同位素质谱法。 水平衡法: 氘: 水平衡法和EA-IRMS方法。 硫: 测定硫的办法,取决于样品的初始状态,核心是将硫转变成SO2还是SF6。 SF6的优势是F只有一个同位素原子,但是技术上转化有点复杂,所以大部分的实验室使用SO2气体。 大部分的方法都是将硫分离出来然后采用氧化硫成溶液中的硫酸盐。硫酸盐可以使用10%的氯化钡转变成BaSO4沉淀。在这里,样品可以氧化为SO2气体并且导入到质谱中进行检测。 连续流的方法:在元素分析仪中,高温下燃烧S,然后进入柱子分离。之后SO2被导入到质谱中进行分析。
  • 海能仪器:电位滴定法检测蓄电池电解液中碳酸盐的测定(电位滴定仪)
    为了限制碳酸盐快速增长和监测其电解液中的含量,我们需要及时检测蓄电池中碳酸盐的含量。采用电位滴定法检测样品中碳酸根的含量操作简单,重复性好,节省了时间和人力,滴定结果更加准确。
  • 海能仪器:蓄电池电解液中碳酸盐测定的产品配置单(电位滴定仪)
    碳酸钾,也就是通常我们所说的碳酸盐,在电解液中它不能产生过快,也不能含量太多,否则使蓄电池容量下降,寿命缩短。为了限制碳酸盐快速增长和监测其电解液中的含量,我们需要及时检测蓄电池中碳酸盐的含量。采用电位滴定法检测样品中碳酸根的含量操作简单,重复性好,节省了时间和人力,滴定结果更加准确。
  • 瑞士万通:离子排斥-电导检测色谱法测定电镀液中碳酸盐
    本文建立离子排斥-电导检测色谱法测定电镀液中碳酸盐的方法。选用Cetac Coregel 64H 离子排斥柱,0.5 mmol/L H2SO4淋洗液,电导检测。工作曲线线性范围1~1000 mg/L,相关系数0.99965,相对标准偏差5.291%。用于实际碱铜槽液和银槽液样品分析,结果良好。
  • 采用三价钛还原法分析硝酸盐氮氧同位素-德国元素elementar
    溶解态硝酸盐的同位素分析是环境科学的一个重要应用,与目前的细菌反硝化法和叠氮化镉法相比,新型的三价钛还原法用于硝酸盐同位素分析大大降低了样品预处理的技术门槛。
  • 激光剥蚀-稳定同位素比质谱在树轮碳同位素分析中的应用
    树轮常用于研究气候变化与环境演变,通过对其稳定同位素的分析,可揭示生态系统碳—水—氮变化特征及相互作用。树木在生长发育中响应环境变化,将环境信息通过水/空气/土壤中的碳、氢、氧转化为树木年轮的同位素比值变化,从而为重建环境变化提供了一份可靠的“档案”。古气候变化研究载体有树轮、石笋、海洋/湖泊沉积物和冰芯等。其中树轮样本具有两大优势:1)定年精确,分辨率可以到年;2)树轮年表的每一部分都可以和其它树木(年表)重叠搭接,能够获取平均值。稳定碳同位素:气孔导度、光合速率氧氢同位素:温度、叶片蒸腾作用
  • 碳水同位素分析仪测量北极地区的水文循环和碳循环
    美国海岸警卫队希利 (Healy) 号破冰船实施北极水循环和碳同位素循环研究,博士杰夫· 威尔克 (Jeff Welker) 博士和埃里克• 克莱因 (Eric Klein) 博士 生物科学系 阿拉斯加大学安克雷奇分校 北极地区的水文循环和碳循环目前正随着气候变迁而不断变化,包括海冰覆盖范围及其厚度、北冰洋酸碱度 (pH 值) 以及初级生产力格局和食物网动力学模式方面发生的变化。此外,与海冰有关的蒸发过程变化正在影响着冬夏两季的降水特征以及更广泛的气候模式。举例来说,北极涡旋转移使更多北极气团抵达低纬度地区,这可能会导致美国东北部出现更频繁的极端天气事件。
  • 高盐水的稳定同位素分析
    该系列文章由三部分组成,本文为第二篇,探讨了 Picarro 分析仪、系统和配件如何确保对具有挑战性的海水和高盐水样品实现准确测量。第一篇文章海水的水稳定同位素测量介绍了多实验室间的研究结果,该研究旨在评估与同位素比质谱 (IRMS) 测量相比,在结果一致性和测量值上,光腔衰荡光谱 (CRDS) 所得测量结果的质量。本篇文章报道了对 CRDS 用于高盐水分析的评估。
  • 北大西洋稳定碳同位素季节性的详细观察
    北大西洋在气候变化中发挥着重要作用,尤其是因为它对二氧化碳的吸收和自然碳的封存非常重要。其地表水中的二氧化碳浓度,随季节和年际时间尺度变化,主要受海气交换、温度变化和生物生产/呼吸的驱动,最终决定了海洋的二氧化碳汇/源功能。稳定碳同位素特征的变异性可以提供进一步的洞察,并有助于提高对表层海洋碳系统控制的理解。在这项工作中,一个光腔衰荡光谱仪(G2131-i)被耦合到一个经典的,基于平衡仪的pCO2系统上,这个系统安装在在北美和欧洲之间的亚极地北大西洋的一个定期航班上。2012年至2014年,在连续测量温度、盐度和fCO2的同时,获得了3年的航面δ 13C(CO2)数据时间序列。我们对二氧化碳和 δ 13C(CO2)进行热驱动和非热驱动分解。对表层海洋δ 13C(CO2)的直接测量使我们能够估计质量流量,以及在海气交换过程中的稳定碳同位素分馏。当大陆架浅层上的二氧化碳质量流量在1–2 mol CO2⋅ m− 2⋅ year− 1和在开阔海域为2.5-3.5 mol CO2⋅ m-2⋅ year-1的范围内,CO2通量同位素特征为:海面的范围为-2.6± 1.4‰,在西部为-6.6± 0.9‰,在开阔海域东部为-4.5± 0.9‰。
  • LI-7825应用案例 | 基于CO2同位素研究植物和土壤碳动态
    了解科罗拉多州立大学的Michelle Haddix和Aaron Prairie如何使用LI-7825 CO2同位素/NH3痕量气体分析仪研究植物和土壤碳动态。他们借助LI-7825进行多种实验研究,其中包括植物生长室内的同位素标记实验和培养的土壤微生物实验。
  • 助力碳达峰——莱伯泰科大气甲烷碳氢同位素分析解决方案已准备好
    今年3月23日,我国与欧盟、加拿大共同举办第五届气候行动部长级会议。生态环境部部长黄润秋强调:“十四五是中国实现碳达峰、碳中和的关键时期。中方将采取更加有力的政策措施,制定并实施碳排放达峰行动方案,落实控制二氧化碳排放目标,加大对甲烷等其他温室气体的控制力度,推进全国碳市场建设运行,大力推动低碳技术创新应用,持续推进经济社会发展全面绿色转型。(生态环境部)CH4是大气中仅次于CO2的第二大温室气体。进入工业化时代以来,大气中CH4的浓度相比18世纪增加了近一倍之多(2018年1858 ppb)。因此,了解CH4的形成途径和排放源对于提供有效的CH4控制措施至关重要。 CH4的自然排放源包括湿地土壤、反刍动物消化系统以及自然地质源。而约60%的CH4 排放则归因于人类活动,主要包括能源开采、生物质燃烧、农业(包括水稻种植)、天然气管道输送泄露等。由于各因素贡献率评估相对较为困难,因此需要一种高效的检测手段来准确识别CH4的源和汇。 这其中稳定同位素比质谱仪作为一种强大的示踪工具,有其独特的优势。早期富集大气中CH4 用于测量时,需进行多次“离线”手动气体净化,过程非常耗时。而近年广泛应用“定制化”GC-连续流IRMS自动净化分析技术,使得这一情况得以改善。Sercon开发了与稳定同位素比质谱仪 (CG-2022) 适配的CryoGas多功能气体净化富集装置,这是一款结合GC、低温捕集、热解/燃烧和连续流 IRMS 的商用自动化同位素分析系统,用于对低至大气浓度的CH4-δ 13C、CH4-δ 2H进行高精度、高通量检测。莱伯泰科作为Sercon公司在中国区的代理,在中国长期设立服务网点,为用户提供全面的售后支持及服务,同时还可提供多种稳定同位素比质谱相关配件、耗材。
  • 二氧化碳气容量分析仪测量乳酸风味碳酸饮料中的气体体积和气体含量 应用资料
    二氧化碳气容量分析仪测量乳酸风味碳酸饮料中的气体体积和气体含量 应用资料用二氧化碳气容量分析仪测量乳酸风味碳酸饮料中的气体体积和气体含量。碳酸饮料的气体体积、空气含量的测量是决定口感、味道和风味以及最佳日期的重要因素。本应用说明了使用二氧化碳气容量分析仪测量两种不同产品的市售乳酸风味碳酸饮料的示例。通过连续旋转样品容器并测量气体的平衡压力和样品温度来计算气体体积。然后,样品中的气体被转移到吸收筒中,二氧化碳气体被填充在吸收筒中的吸收溶液(氢氧化钠溶液)吸收,以测量空气含量。
  • 离子色谱碳酸体系测定饮用水中高氯酸盐和碘离子含量
    高氯酸盐作为添加剂、推进剂等被广泛的应用于各个领域,如航空航天、烟火制造、军火工业、橡胶制品、染料涂料等[1]。由于高氯酸盐与碘离子具有相似的电荷和离子半径,能够与碘离子竞争而进入人体甲状腺,引起甲状腺荷尔蒙生成量的减少,从而影响大脑组织的发育,危害人类的健康,尤其是孕妇、胚胎、婴儿最容易受到危害[2,3]。高氯酸盐具有高水溶性,低吸附性,高流动扩散和稳定性,在环境中能够持久存在,是一种新的持久性污染物。目前是环境科学领域研究高氯酸盐的热点。我国最新的饮用水规范《GB 5749-2022 生活饮用水卫生标准》[4]中规定生活饮用水中高氯酸盐的最高允许含量为70 μg/L,碘离子最高允许含量为0.1mg/L。离子色谱作为液相色谱的分支,适用于分析水溶性强极性的离子型化合物。本文采用高容量的IonPac AS22阴离子交换色谱柱,在30°C的柱温下,可同时分析饮用水中碘离子及高氯酸盐,目标物及与常规离子之间分离度良好,无相互干扰。本方法分析碘离子及高氯酸盐无需衍生化等复杂的前处理操作,直接进样即可,方便、快捷、高效;同时本方法采用碳酸盐体系,符合国标的测试方法及要求。
  • 土壤有机元素分析碳氮比
    了解作物生长土壤的健康状况,是保证高产量的基础。对此,碳和氮两种元素非常重要,尤其是其比例。这种比例表示为碳—氮,或碳氮比。此外,碳和氮均可进一步细分为有机及无机两大部分。碳经常表示为总有机碳(TOC)及总无机碳(TIC)。总有机碳包括腐烂的植物或细菌生长等来源中的所有碳含量。总无机碳则包括如碳酸盐和碳酸氢盐等形式中的碳含量。元素百分含量可以通过两种方法来确定:凯氏定氮法和杜马斯燃烧定氮法。凯氏定氮法耗时较长,且包括湿化学技术,而杜马斯法则是简单的燃烧过程。杜马斯有机元素分析仪在氧气条件下将土壤物质燃烧成简单的分子或气体,如CO2、H2O 和N,然后运用色谱技术分离这些气体。珀金埃尔默® EA2400 CHNS/O 和EA2410 蛋白质分析仪是利用燃烧试剂和热导检测(TCD)进行高准确度和精密度检测的典型仪器。本文表明EA2400 CHNS/O 分析仪是对不同有机质含量的土壤样品进行分析的有力工具,除了碳氮比,对总有机碳和总无机碳的测量也能达到高精准度。同时,在氮含量测试方面,EEA2410氮分析仪也表现出高精准度。
  • 硅酸盐矿物氧同位素组成的激光分析
    对于红外激光系统和紫外激光系统, 由于它们加热样品的反应机理完全不同, 决定了它们在稳定同位素地球化学分析中的不同使用范围。根据对CO2 激光系统分析地球化学样品的实践, 发现对结果产生干扰的因素有:(1)石英的粒径效应 (2)微量样品接收电压过低 (3)分子筛的吸附能力 (4)系统中的吸附水 (5)14N19F+对δ 17O 值的影响。由于石英的粒径效应而导致细粒石英(粒径250 μ m)的δ 18O 值偏低, 可以采用不聚焦激光的快速加热法来解决。由于样品量太少而决定了样品气体接收电压过低, 导致δ 18O 值出现系统偏高或偏低, 可以利用校正曲线对结果进行校正。分子筛吸附性能的下降会产生氧同位素的分馏, 因此确定分子筛的使用寿命非常重要。系统中的吸附水利用氟化物试剂预氟化来去除, 重要的是应避免在预氟化的过程中产生大量的HF 腐蚀激光系统的BaF2 窗口玻璃并与部分矿物样品发生反应。
  • 三价钛(III)还原法硝酸盐18O与水中18O之间零同位素交换
    对于溶解的硝酸盐的同位素分析,NO3--一旦转化为N2O,从样品气体中分离CO2和N2O气体也很重要,因为它们具有相同的质量,无法用IRMS进行区分。EnvirovisION利用低温预浓缩、化学捕集和气相色谱技术完全分离气体,进行CO2、CH4和N2O的高精度同位素分析。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制