推荐厂家
暂无
暂无
[align=center][color=#990000][img=液氢用隔热材料热导率测试,690,489]https://ng1.17img.cn/bbsfiles/images/2022/03/202203220921348958_6121_3384_3.png!w690x489.jpg[/img][/color][/align][color=#990000]摘要:对于运载火箭低温绝热贮箱,特别是针对温度极低和危险性极大的液氢推进剂,如何准确测量贮箱绝热材料热导率面临着诸多严峻挑战,如液氢安全性、大温差多种传热方式共存、地面及空间使用条件和测试设备造价等。本文详细介绍这些技术难题,并提出了解决这些难题且具有高可靠性和低成本性的技术方案。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、概述[/color][/size]对于运载火箭发动机用的液氢燃料,需要专门设计的低温绝热贮箱以最大限度的避免液氢介质的漏热损失。同时,由于重量和空间环境的限制,贮箱的设计要求并不允许使用传统的低温绝热类型和材料,如真空绝热层、珍珠岩等材料。目前低温推进剂在轨贮存较为常用的组合绝热材料为泡沫与多层隔热材料( MLI)[1]。运载火箭在整个发射过程主要存在三种热量来源:一是起飞前地面的外部热环境;二是发射过程中箭体表面与空气摩擦产生的热量 三是太阳光照、宇宙射线等外界辐射的直射和反射。 前两种热环境中低温绝热贮箱的漏热途径主要是对流和固体传热,而第三种条件下,由于周围环境真空度很高,辐射成为主要的漏热方式。因此组合绝热材料设计需同时考虑上述几种传热方式,以阻断低温贮箱的漏热路径,同时还需在模拟以上外部热环境的条件下对贮箱用绝热材料的热导率进行准确测量和评价。对于运载火箭低温绝热贮箱,特别是针对温度极低和危险性极大的液氢推进剂,如何准确测试贮箱绝热材料的热导率将面临严峻挑战。本文将详细介绍液氢温度下绝热材料热导率测试中存在的技术难题,并提出了相应的解决方案。[size=18px][color=#990000]二、技术难题[/color][/size]从上述低温绝热贮箱的热环境可知,需要在地面模拟出相同的环境条件下才能对贮箱用绝热材料的热导率进行准确合理的测试评价。由此会带来以往低温热导率测试从未遇到过的一系列技术难题。(1)首先是测试温度问题:考虑到氢气的熔点为13.99K,沸点为20.271K,由此就必须要在液氢(14~20K)温度范围内测试绝热材料的热导率。而直接以液氢作为低温介质,并采用现有热导率测试方法,会存在巨大的安全问题和高昂的测试设备造价。(2)测试方法问题:为避免采用危险的液氢介质,且还要实现液氢温度下的低温热导率测试,按照ASTM C1774“低温绝热系统热性能测试的标准指南”的推荐[2],可供选择的测试方法一是采用液氦做介质的蒸发量热法,二是采用低温制冷机的电功率法。因为采用液氦作为低温介质的成本更是巨大,所以较优的方案是采用低温制冷机。但在20K低温下进行热导率测试,测试设备中的低温漏热非常严重,必须采用大功率的低温制冷机,而大功率低温制冷机的售价非常昂贵,因此如何采用低功率制冷机实现液氢温度环境是首先需要解决的关键问题。(3)低温大温差问题:在液氢贮箱中使用的低温绝热材料将处于内部温度为20K左右,外部温度为室温的大温差条件。在此270K的大温差下,绝热材料内部必然会存在热导、对流和辐射三种传热机理。如何在此大温差下准确测量绝热材料的等效热导率也是需要解决的关键问题。(4)环境气压模拟问题:在液氢储箱绝热材料使用过程中,所经历的气压环境是从发射前的地面一个大气压到发射后的空间高真空,因此在热导率测试过程中需要实现从常压到高真空的整个负压范围内的模拟。(5)绝热稳定性测试问题:如果运载火箭液氢加注后在室外大气压下的停放时间增加,绝热材料的热导率会产生显著增加现象,甚至会出现热导率数量级上的增大。这是因为当空气渗入隔热材料时,隔热材料会从空气中低温吸附水蒸气、二氧化碳、氧气和氮气,并随后在颗粒之间的间隙中形成具有高导热性的固体颗粒和液滴。因此,对于绝热材料的低温热导率测试,必须要具备长时间常压下大温差的连续测试能力。(6)饱和气体模拟问题:在液氢推进剂加注过程中[3],需要加载高纯度氮气和氦气进行置换,而加压氮气和氦气会渗入绝热材料中,因此在绝热材料热导率测试中需要具备模拟相应气体饱和条件的能力。[size=18px][color=#990000]三、解决方案[/color][/size]针对液氢贮箱用绝热材料热导率测试中所面临的上述技术问题,提出了以下解决方案:(1)针对液氢温度的实现,将采用低温制冷机和液氮的组合形式。通过廉价的液氮低温介质(77K)提供基础低温环境和低温漏热防护,然后通过小功率制冷机再将测试温度降低到20K左右,由此可大幅降低测试设备的造价。(2)针对各种气氛和气压的模拟实现,整个测试系统为双真空腔套筒结构。热导率测量装置放置在内部真空腔内,此内部真空腔侧壁内通液氮介质形成基础低温。采用穿过外部和内部真空腔壁的低温制冷机对样品进行冷却以实现最低液氢温度下的热导率测试。内外两个真空腔室可以独立进行气氛和气压的调节和控制,以模拟不同的气氛环境条件。(3)针对低温绝热材料热导率测试,具体的测试方法借鉴了ASTM C1774指南,绝热材料样品上的温度形成采用了ASTM C1774中的电功率法结构,但热导率测试则采用了热流计法。通过此方案,被测样品采用为单片矩形平板,可以轻易实现大温差下的热导率测试。综上所述,通过上述测试方案,可比较顺利和较低造价的解决液氢贮箱实际操作条件下绝热材料的热导率测试问题,并具有长时间连续测量的可靠性和低成本性。[size=18px][color=#990000]四、参考文献[/color][/size][1] 闫指江, 吴胜宝, 赵一博,等. 应用于低温推进剂在轨贮存的组合绝热材料综述[J]. 载人航天, 2016, 22(3):5.[2] ASTM C1774 Standard Guide for Thermal Performance Testing of Cryogenic Insulation Systems, ASTM International, West Conshohocken, PA (2013).[3] 王红雨. 液氢加注系统的气体置换方法探讨[J]. 低温与特气, 2007, 25(3):3.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]
[color=#990000]摘要:对于运载火箭低温绝热贮箱,特别是针对温度极低和危险性极大的液氢推进剂,如何准确测量贮箱绝热材料热导率面临着诸多严峻挑战,如液氢安全性、大温差多种传热方式共存、地面及空间使用条件和测试设备造价等。本文详细介绍这些技术难题,并提出了解决这些难题且具有高可靠性和低成本性的技术方案。[/color][size=18px][color=#990000]一、概述[/color][/size]对于运载火箭发动机用的液氢燃料,需要专门设计的低温绝热贮箱以最大限度的避免液氢介质的漏热损失。同时,由于重量和空间环境的限制,贮箱的设计要求并不允许使用传统的低温绝热类型和材料,如真空绝热层、珍珠岩等材料。目前低温推进剂在轨贮存较为常用的组合绝热材料为泡沫与多层隔热材料( MLI)[1]。运载火箭在整个发射过程主要存在三种热量来源:一是起飞前地面的外部热环境;二是发射过程中箭体表面与空气摩擦产生的热量 三是太阳光照、宇宙射线等外界辐射的直射和反射。 前两种热环境中低温绝热贮箱的漏热途径主要是对流和固体传热,而第三种条件下,由于周围环境真空度很高,辐射成为主要的漏热方式。因此组合绝热材料设计需同时考虑上述几种传热方式,以阻断低温贮箱的漏热路径,同时还需在模拟以上外部热环境的条件下对贮箱用绝热材料的热导率进行准确测量和评价。对于运载火箭低温绝热贮箱,特别是针对温度极低和危险性极大的液氢推进剂,如何准确测试贮箱绝热材料的热导率将面临严峻挑战。本文将详细介绍液氢温度下绝热材料热导率测试中存在的技术难题,并提出了相应的解决方案。[size=18px][color=#990000]二、技术难题[/color][/size]从上述低温绝热贮箱的热环境可知,需要在地面模拟出相同的环境条件下才能对贮箱用绝热材料的热导率进行准确合理的测试评价。由此会带来以往低温热导率测试从未遇到过的一系列技术难题。(1)首先是测试温度问题:考虑到氢气的熔点为13.99K,沸点为20.271K,由此就必须要在液氢(14~20K)温度范围内测试绝热材料的热导率。而直接以液氢作为低温介质,并采用现有热导率测试方法,会存在巨大的安全问题和高昂的测试设备造价。(2)测试方法问题:为避免采用危险的液氢介质,且还要实现液氢温度下的低温热导率测试,按照ASTM C1774“低温绝热系统热性能测试的标准指南”的推荐[2],可供选择的测试方法一是采用液氦做介质的蒸发量热法,二是采用低温制冷机的电功率法。因为采用液氦作为低温介质的成本更是巨大,所以较优的方案是采用低温制冷机。但在20K低温下进行热导率测试,测试设备中的低温漏热非常严重,必须采用大功率的低温制冷机,而大功率低温制冷机的售价非常昂贵,因此如何采用低功率制冷机实现液氢温度环境是首先需要解决的关键问题。(3)低温大温差问题:在液氢贮箱中使用的低温绝热材料将处于内部温度为20K左右,外部温度为室温的大温差条件。在此270K的大温差下,绝热材料内部必然会存在热导、对流和辐射三种传热机理。如何在此大温差下准确测量绝热材料的等效热导率也是需要解决的关键问题。(4)环境气压模拟问题:在液氢储箱绝热材料使用过程中,所经历的气压环境是从发射前的地面一个大气压到发射后的空间高真空,因此在热导率测试过程中需要实现从常压到高真空的整个负压范围内的模拟。(5)绝热稳定性测试问题:如果运载火箭液氢加注后在室外大气压下的停放时间增加,绝热材料的热导率会产生显著增加现象,甚至会出现热导率数量级上的增大。这是因为当空气渗入隔热材料时,隔热材料会从空气中低温吸附水蒸气、二氧化碳、氧气和氮气,并随后在颗粒之间的间隙中形成具有高导热性的固体颗粒和液滴。因此,对于绝热材料的低温热导率测试,必须要具备长时间常压下大温差的连续测试能力。(6)饱和气体模拟问题:在液氢推进剂加注过程中[3],需要加载高纯度氮气和氦气进行置换,而加压氮气和氦气会渗入绝热材料中,因此在绝热材料热导率测试中需要具备模拟相应气体饱和条件的能力。[size=18px][color=#990000]三、解决方案[/color][/size]针对液氢贮箱用绝热材料热导率测试中所面临的上述技术问题,提出了以下解决方案:(1)针对液氢温度的实现,将采用低温制冷机和液氮的组合形式。通过廉价的液氮低温介质(77K)提供基础低温环境和低温漏热防护,然后通过小功率制冷机再将测试温度降低到20K左右,由此可大幅降低测试设备的造价。(2)针对各种气氛和气压的模拟实现,整个测试系统为双真空腔套筒结构。热导率测量装置放置在内部真空腔内,此内部真空腔侧壁内通液氮介质形成基础低温。采用穿过外部和内部真空腔壁的低温制冷机对样品进行冷却以实现最低液氢温度下的热导率测试。内外两个真空腔室可以独立进行气氛和气压的调节和控制,以模拟不同的气氛环境条件。(3)针对低温绝热材料热导率测试,具体的测试方法借鉴了ASTM C1774指南,绝热材料样品上的温度形成采用了ASTM C1774中的电功率法结构,但热导率测试则采用了热流计法。通过此方案,被测样品采用为单片矩形平板,可以轻易实现大温差下的热导率测试。综上所述,通过上述测试方案,可比较顺利和较低造价的解决液氢贮箱实际操作条件下绝热材料的热导率测试问题,并具有长时间连续测量的可靠性和低成本性。[size=18px][color=#990000]四、参考文献[/color][/size][1] 闫指江, 吴胜宝, 赵一博,等. 应用于低温推进剂在轨贮存的组合绝热材料综述[J]. 载人航天, 2016, 22(3):5.[2] ASTM C1774 Standard Guide for Thermal Performance Testing of Cryogenic Insulation Systems, ASTM International, West Conshohocken, PA (2013).[3] 王红雨. 液氢加注系统的气体置换方法探讨[J]. 低温与特气, 2007, 25(3):3.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]
近红外分析技术在液体推进剂中的应用[~76842~]