当前位置: 仪器信息网 > 行业主题 > >

微纳静态颗粒图像分析仪

仪器信息网微纳静态颗粒图像分析仪专题为您提供2024年最新微纳静态颗粒图像分析仪价格报价、厂家品牌的相关信息, 包括微纳静态颗粒图像分析仪参数、型号等,不管是国产,还是进口品牌的微纳静态颗粒图像分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微纳静态颗粒图像分析仪相关的耗材配件、试剂标物,还有微纳静态颗粒图像分析仪相关的最新资讯、资料,以及微纳静态颗粒图像分析仪相关的解决方案。

微纳静态颗粒图像分析仪相关的资讯

  • 微纳颗粒上市喜讯
    济南微纳颗粒仪器股份有限公司是集研发、生产、销售颗粒测试相关仪器设备于一体的高新技术企业。公司的前身为山东建材学院颗粒测试研究所,研究激光粒度测试技术自1982年承担国家七五科技攻关项目伊始,至今已有30余年的历史。微纳颗粒公司以“发展与普及当代最先进的颗粒测试技术”为己任,研制的激光粒度仪、纳米粒度仪、颗粒图像分析仪、喷雾粒度仪等系列的颗粒分析仪器均代表了国内同行业最高水平。多年来济南微纳以先进的科技实力及过硬的产品质量,为中国科学学院、山东省科学院、北京大学、清华大学、上海交通大学等高校科研院所、及中国石化胜利油田有限公司、鞍钢集团、立邦涂料有限公司、中国民用航空总局等各行业的龙头企业提供技术支持与服务,获得了广大用户的好评。为追求公司的长远战略,实现更大空间的跨越式发展。在山东省济南市和高新区政府的大力支持下,我公司于2010年完成了股份制公司改制,2013年通过新三板上市评估流程。2014年作为中国颗粒测试行业的第一支股票,证监会核定我公司证券名称为:“微纳颗粒”,证券代码为:430410,并定于元月24日在北京《全国中小企业股份转让系统》进行上市挂牌。值此新年万象更新,“微纳颗粒”挂牌上市之际,我们诚挚的将这一喜讯发送给您。在此感谢领导、专家、企业、朋友多年来对“微纳颗粒”的长期支持与厚爱。微纳颗粒公司将秉承自身作为中国颗粒测试技术的领航者的职责,再接再厉以引领国内颗粒测试行业的新技术开发为己任。继续为中国粒度测试技术赶超世界一流水平做出不懈努力。
  • 济南微纳作为中国颗粒测试第一股,登陆新三板
    济南微纳颗粒仪器股份有限公司作为中国颗粒测试行业的第一支股票,于2014年1月24日在北京“全国中小企业股份转让系统”(俗称“新三板”)挂牌上市。证券名称为:“微纳颗粒”,证券代码为:430410。济南微纳颗粒仪器股份有限公司,是集研发、生产、销售颗粒测试相关仪器设备于一体的高新技术企业,其研制的激光粒度仪、纳米粒度仪、颗粒图像分析仪、喷雾粒度仪等系列颗粒分析仪器,均代表了国内同行业的最高水平。在公司董事长任中京看来,现今中国的激光粒度仪发展存在巨大潜力。但国内企业要赶超世界一流水平,必须提升至新的高度和平台。“新三板的政策支持和IPO预期,是推动企业发展的动力。为此我们公司于2010年进行了股份制改造,并顺利于2013年通过新三板上市流程。”任中京说,“作为中国颗粒测试行业的第一家挂牌企业,这标志着微纳颗粒在企业发展道路上迈上了一个新台阶,成功从一家公众公司转型进入资本市场,以全新的面貌开始新的征程。”微纳一直以“普及当代最先进的颗粒测试技术”为己任,研制的便携式、台式、干粉等系列的激光粒度仪均代表了国内同行业的最高水平,并于2006年推出代表世界先进水平的在线测试激光粒度仪,2007年推出动态颗粒图像分析仪,2008年推出国内第一台动态光散射原理的光相关纳米粒度仪,将中国颗粒测试技术推向一个全新的高度。发展历史:1985年 任中京教授主持“水泥颗粒级配在线分析仪的研制”项目列为国家七五科技攻关项目。1990年 国家七五科技攻关项目“水泥颗粒级配在线分析仪”通过鉴定验收,专家评价为国内首创,达到90年代国际先进水平。1993年 “水泥颗粒级配在线分析仪”获得中国首届科技博览会金奖。1994年 承担山东省八五科技攻关项目,研制成功“JL9200便携式高分辨率激光粒度分析仪”,同年获得国家专利。1995年 “JL9200便携式激光粒度仪”列为国家级重点新产品。1996年 承担山东省九五科技攻关项目,研制成功“JL9300干法激光粒度分析仪”该产品获得山东省科技进步三等奖。2000年 济南微纳仪器有限公司正式成立。2002年 微纳激光粒度分析仪产品Winner2000型通过国家标准物质研究中心定型鉴定。2003年 微纳激光粒度分析仪Winner2000型获得山东省质量技术监督局计量器具新产品证书。2004年 微纳公司通过中华人民共和国制造计量器具许可证CMC证。2006年 获得济南高新技术企业称号。2007年 微纳公司通过ISO9001:2000国际质量体系认证。2007年 研制成功我国第一台动态颗粒图像分析仪,通过济南市科技局的鉴定,专家评价为国内首创,达到国际先进水平。2008年 微纳研制的数字相关器CR128取得重大突破。2009年 微纳推出中国第一台使用数字相关器的“光相关纳米粒度分析仪”。2010年 微纳获得全国高新技术企业称号。2010年 微纳完成股份有限公司改制。2013年 微纳实验室获得中国合格评定国家认可委员会“CNAS1 TO168细微颗粒的粒度分析”能力验证评定。2013年 微纳通过新三板上市内审。2014年 微纳成功登陆新三板。
  • 杨正红:静态图像法粒度和形貌分析技术在药品质量控制中的应用
    p style=" text-align: justify text-indent: 2em " 药物生产中的关键工艺参数是影响药物和剂型理化性质和生物药剂学性质的重要因素。原料药粉末的大小和晶体形状影响其流动性和压实性能:粒径大且球形度好的颗粒通常比颗粒小但长宽比大的颗粒更容易流动;小颗粒溶解更迅速,并且比大颗粒的悬浮液粘度更高 span style=" text-indent: 2em " 。因此,各国药典中都对相关药物所涉及的粒度问题及测量方法做出了规定。 /span /p p style=" text-align: justify text-indent: 2em " 有关粒度测定的测定方法是随着科学的发展和计算机技术的飞速进步逐渐发展起来的,包括:筛分法、显微镜法、电阻法和光阻法、以及目前非常流行的激光衍射法(光散射法)等(1,2)。然而,随着计算机功能日益强大,数字化图像分辨和提取技术不断提高,可以同时具备上述各种方法能力,可以测量粒度分布、粒形分布,可以准确计数的图像法粒度粒形分析仪正在走向舞台中央(2)。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 80) " strong 一、& nbsp 中国药典中所涉及的药物粒度及测定方法 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 中国药典2020年版四部在通则0982 《粒度和粒度分布测定法》中规定了以下测定方法: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 第一法(显微镜法),用于测定药物制剂的粒子大小或限度。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 第二法(筛分法):用于测定药物制剂的粒子大小或限度,粒度下限在75μm左右的样品。 /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 第三法(光散射法):即激光衍射法。根据ISO13320-2009,该方法用于测定原料药或药物制剂的粒度分布,适用的粒度范围大约为0.1 μm~3 mm。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: center text-indent: 2em " strong 在中国药典中涉及粒度的药物包括中药、丸药、颗粒剂、外敷软膏、滴眼液、抗生素等, /strong /p p style=" text-indent: 2em text-align: center " strong 如下表 /strong /p table border=" 1" cellspacing=" 0" style=" margin-left: 28px border: none" tbody tr class=" firstRow" td width=" 198" valign=" top" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 中国药典一部 /span /p /td td width=" 198" valign=" top" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 中国药典二部 /span /p /td td width=" 198" valign=" top" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 中国药典三部 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:14px" 药品名 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 所 /span span style=" font-family:等线 font-size:12px" 载 /span span style=" font-family:等线 font-size:12px" 页数 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 粒度 /span span style=" font-family:等线 font-size:12px" 测定方法 /span span style=" font-family:等线 font-size:12px" 要求 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 药品名 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 所 /span span style=" font-family:等线 font-size:12px" 载 /span span style=" font-family:等线 font-size:12px" 页数 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 粒度 /span span style=" font-family:等线 font-size:12px" 测定方法 /span span style=" font-family:等线 font-size:12px" 要求 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 通则 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 所 /span span style=" font-family:等线 font-size:12px" 载 /span span style=" font-family:等线 font-size:12px" 页数 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 粒度 /span span style=" font-family:等线 font-size:12px" 测定方法 /span span style=" font-family:等线 font-size:12px" 要求 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 人参茎叶总皂苷 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 389 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 灰黄霉素 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 351 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0104颗粒剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 人参总皂苷 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 391 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 曲安奈德注射液 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 362 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0105眼用制剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 心脑欣丸 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 722 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 阿莫西林克拉维酸钾颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 437 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0109软膏剂 /span span style=" font-family:等线 font-size:10px" 、 /span span style=" font-family:等线 font-size:10px" 乳膏剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 冰黄 /span span style=" font-family:等线 font-size:10px" K /span span style=" font-family:等线 font-size:10px" 乐软膏 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 865 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 蒙脱石 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1452 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第三法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0114凝胶剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 妇乐颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 896 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 蒙脱石分散片 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1454 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0115散剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 京万红软膏 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1106 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 蒙脱石散 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1455 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 逍遥颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1 /span span style=" font-family:等线 font-size:10px" 358 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 醋酸甲羟孕酮混悬注射液 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1529 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 通心络胶囊 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1447 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 磷霉素钙颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1585 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 障翳散 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1672 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 注射用亚锡聚合白蛋白 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1599 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:10px" - /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:10px" - /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:10px" - /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 锝[ /span sup span style=" font-family:等线 font-size:10px vertical-align:super" 99m /span /sup span style=" font-family:等线 font-size:10px" Tc]聚合白蛋白注射液 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1607 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr /tbody /table h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun " strong 二、& nbsp 美国药典中所涉及的药物粒度及测定方法 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 美国药典中涉及粒度分析内容是用于注射液和滴眼液的USP788/789通则,推荐的方法是光阻法和膜显微镜法,主要关注药液中粒度范围在10~24μm& nbsp 和25~50μm(可视范围)的颗粒计数和评价。这些颗粒存在的形式如下: /p p style=" text-align: justify text-indent: 2em " i.& nbsp 不溶的可移动的固体/半固体; /p p style=" text-align: justify text-indent: 2em " ii.& nbsp 单个实体或聚集体; /p p style=" text-align: justify text-indent: 2em " iii.& nbsp 一种或几个物种; /p p style=" text-align: justify text-indent: 2em " iv.& nbsp 化学反应产生的固体 /p p style=" text-align: justify text-indent: 2em " v.& nbsp 制剂变化产生的固体 /p p style=" text-align: justify text-indent: 2em " 这些颗粒物产生的原因包括: /p p style=" text-align: justify text-indent: 2em " i.& nbsp 外源性物质存在; /p p style=" text-align: justify text-indent: 2em " ii.& nbsp 内源性物质存在:包括生产工艺的功能故障和包装来源; /p p style=" text-align: justify text-indent: 2em " iii.& nbsp 制剂固有的颗粒,如生物制品中存在的颗粒。 /p p style=" text-align: justify text-indent: 2em " USP789基本等同于788,但主要针对滴眼液。USP788& nbsp 等同于欧洲药典& nbsp EP5.5& nbsp 和日本药典& nbsp JPXIV,XV。 /p p style=" text-align: justify text-indent: 2em " 关注医疗风险的USP& nbsp 729& nbsp 是以USP788为模板的,适用于所有脂质(10%,20%,30%)。其限定的粒度范围是在0.5~5μm,因为这些颗粒可以机械阻塞微血管。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e7b7b8bd-8869-4621-8e7b-7e23280b37f8.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: justify text-indent: 2em " 但是,USP788所主张的粒度测定方法存在以下问题: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 光阻法的问题:只适用于球形颗粒;气泡和油滴不能分辨,也被计数。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 显微镜的问题:对粒子的判断和解释存在主观意识。 /p p style=" text-align: justify text-indent: 2em " 另外,对于生物制剂中不可见粒子分析,特别是可以通过不同的机制聚集的蛋白质的应用,USP788面临着挑战。因为对于透明、非球形和高浓度的蛋白质聚集体,光阻法和显微镜法无能为力。 /p p style=" text-align: justify text-indent: 2em " 对于口服制剂和原料药(API),USP429规定了激光衍射方法测定粒度的通则。该方法根据ISO标准13320-1(1999) 和9276-1(1998)建立的,整个章节也已经和EP和JP的相应章节进行了协调。USP429指出,此技术并不能区分单个粒子的散射和一团基本粒子的散射,也就是不能区分结块和凝聚。绝大多数的样品都包含结块和凝聚,并且我们主要关注的是基本粒子的尺寸分布,所以在检测前这些结块通常需要分散成基本粒子。虽然ISO13320-2009修改了激光衍射法的应用限制,指出激光衍射法测量粒度只适用于球形颗粒,其测量的误差来源包括非球形、表面粗糙度和不正确的光学参数,USP429也已经指出,被测物质的光学性质和它的结构(如形状、表面粗糙度和多孔性)对于最终结果有影响。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 80) font-family: 宋体, SimSun " strong 三、& nbsp 图像法粒度和形貌分析技术 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 阿扎胞苷为无菌冻干粉针剂,是一种新型表观遗传学抗肿瘤药,是目前唯一被临床证明可延长高风险骨髓增生异常综合征患者总生存期的抗肿瘤药。根据美国药典USP 章节& lt 788& gt 和& lt 729& gt ,必须关注注射类产品中颗粒物对生物学性质的影响。美国药典附录中规定了注射剂分析的主要方法: !--729-- !--788-- !--729-- !--788-- !--729-- !--788-- !--729-- !--788-- /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 可测量尺寸和颗粒计数 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 数据统计非常重要,特别是尺寸小于1 微米的颗粒和数目 /p p style=" text-align: justify text-indent: 2em " 但是,药典中给出的消光法粒子计数器(光阻法)粒度和计数功能只能覆盖2~400 微米,其消光效率无法解决低于2微米的问题。 /p p style=" text-align: justify text-indent: 2em " 自USP 788以来,药物产品已经发生了深刻变化:疫苗、 新癌症治疗药物、纳米颗粒(克服不溶性)、控释微球、聚合物、结晶纳米颗粒、脂质体制剂等新的剂型不断涌现,同时对粒度检测也提出了新的要求。 /p p style=" text-align: justify text-indent: 2em " 2010年12月 8日至10日, 美国药典委员会在马里兰州洛克维尔USP 总部召开了USP有关粒度的专题研讨会,对USP788通则面临的挑战开始寻找和调查替代方法。来自美国Stable Solutions LLC公司的& nbsp David F. Driscoll博士在研讨会上明确指出:要解决小于 1 微米颗粒的技术挑战,包括: /p p style=" text-align: justify text-indent: 2em " ■ 颗粒物理性质 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒筛分 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒计数 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒统计 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒轮廓 /p p style=" text-align: justify text-indent: 2em " 在研讨会上,讨论和考察了一系列新的粒度分析仪器和技术,欧奇奥(Occhio)图像法粒度粒形分析仪也位列其中。而这些挑战对于先进的适用于医药行业的静态图像法粒度粒形分析仪已经迎刃而解。作为下一代粒度分析仪,Occhio& nbsp 粒度粒形分析仪可以进行: /p p style=" text-align: justify text-indent: 2em " ● 颗粒大小及其分布 img src=" https://img1.17img.cn/17img/images/202008/uepic/2a01f9bd-ef39-4e66-860f-aa9e8c443867.jpg" title=" 图片2.jpg" alt=" 图片2.jpg" style=" text-align: justify text-indent: 32px max-width: 100% max-height: 100% float: right " / l& nbsp 颗粒计数 /p p style=" text-align: justify text-indent: 2em " ● 颗粒形状及其分布 /p p style=" text-align: justify text-indent: 2em " ● 干法或湿法,动态或静态 /p p style=" text-align: justify text-indent: 2em " ● 适用于悬浮液、乳浊液、泡沫、颗粒、粉末、纤维 /p p style=" text-align: justify text-indent: 2em " ● 同时具有激光粒度仪、库尔特法或光阻法计数器和显微镜的功能 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 1.& nbsp 粒度粒形分析仪的组成 /strong /p p style=" text-align: justify text-indent: 2em " 粒度粒形分析仪有硬件和软件两个部分。硬件部分由分散系统、进样系统和成像系统组成。其中成像系统是核心部件(见表2)。成像系统检测的是颗粒群中每个颗粒的尺寸,因此必须使用分散系统以保证颗粒之间没有团聚。 /p p style=" text-align: justify text-indent: 2em " 根据被测物料的介质是气态还是液态,可分为干法分散系统和湿法分散系统:湿法分散系统是将颗粒分散在液体介质中, 干法分散系统是将颗粒在空气中直接分散。与激光粒度分析仪的干法系统不同,图像法的干法分散样品是可以回收并重复测定的,因此具有极大的优越性。所以,应该提倡“干样干测,湿样湿测”,最大程度地保持样品的初始状态。干法测定可以极大简化样品准备过程,避免粉体样品在液体介质中团聚的可能。 /p p style=" text-align: center text-indent: 0em " strong 表2& nbsp & nbsp 粒度粒形分析仪的成像系统组成及功能 /strong /p table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent:0 text-align:center line-height:24px" strong span style=" font-family: 宋体 font-size: 14px" 成像系统部件 /span /strong strong /strong /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent:0 text-align:center line-height:24px" strong span style=" font-family: 宋体 font-size: 14px" 功能 /span /strong strong /strong /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 光源 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family: 宋体, SimSun " span style=" font-family: 宋体 font-size: 14px " 单色 /span span style=" font-family: Arial font-size: 14px " ( span style=" font-family: 宋体 " 脉冲 /span span style=" font-family: Arial " ) /span /span span style=" font-family: 宋体 font-size: 14px " 光 /span span style=" font-family: Arial font-size: 14px " 可避免 /span span style=" font-family: 宋体 font-size: 14px " 颗粒对光的衍射 /span span style=" font-size: 14px font-family: 宋体, SimSun " 产生虚影 /span span style=" font-family: Arial font-size: 14px " span style=" font-family: Arial " , /span span style=" font-family: 宋体 " 得到边界清晰的颗粒图形,优于白光 /span /span /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 扩束单元 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 根据不同缩放倍率的镜头调节输出光束的直径 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 测试区 /span span style=" font-family:Arial font-size:14px" ( span style=" font-family:宋体" 样品池 /span span style=" font-family:Arial" ) /span /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-size: 14px font-family: 宋体, SimSun " 颗粒与脉冲光的作用区 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 光学系统 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 不同的放大倍率和相应的测试范围相适应;好的光学系统不存在像差 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 工业相机 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 是远高于普通摄像机成像和存储速率的图像拍摄装置 /span /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " 进样装置:物料在进入成像系统或分散系统前,需要调节到一定的浓度,以得到最佳的分散/检测效果: /p p style=" text-align: justify text-indent: 2em " ● 湿法:通过加入不同体积的颗粒量进行调节,由注射泵(可相对计数)、蠕动泵(可相对计数)或离心泵(动态湿法,只能绝对计数)将样品带入位于光路中的样品池(见图1左)。 /p p style=" text-align: justify text-indent: 2em " ● 干法(动态):由振动进样单元控制, 调节单位时间的进样量,然后进行自由下落式分散或气流分散。气流分散包括喷射式分散和横向分散,其中横向分散对样品扰动最小,并能使样品处于势能最低的位置,准确采样(见图1右)。 /p p style=" text-align: justify text-indent: 2em " ● 干法(静态):将分散在载玻片上的颗粒样品通过机械传动装置,直接置于成像系统的测试区。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8bb76125-ecf2-4849-b334-73e54d8ef431.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center text-indent: 0em " strong 图 1& nbsp & nbsp & nbsp & nbsp & nbsp 湿法和动态干法粒度粒形分析仪示例 /strong /p p style=" text-align: justify text-indent: 2em " 左图:Occhio& nbsp FC200& nbsp 湿法粒度粒形分析仪原理图,包括光源、变倍率远心镜头、高分辨相机、样品池和内置注射泵,检测下限低于200nm。可外置湿法分散模块; /p p style=" text-align: justify text-indent: 2em " 右图:Occhio& nbsp Zephyr& nbsp LDA& nbsp 动态干法粒度粒形分析仪原理图,包括振动进样单元、横向气流分散装置、样品池自动吹扫系统、成像系统和真空样品回收系统。 /p p style=" text-align: justify text-indent: 2em " 静态法图像分析仪器对样品扰动少,安全性高,还可以对颗粒进行计数,统计量达上万个,既可以替代扫描电镜,也可以替代激光粒度仪,测量、描述和验证方法的执行标准包括GB/T 21649.1-2008和ISO 13322-1。应用3D软件和反射光分析技术,还可以对混合物样品进行颜色分析,估算各种单质的比例。一次实验可以得到多个结果,数据量极为丰富,是药品研发和质控表征技术升级改造必备的分析手段。 /p p style=" text-align: justify text-indent: 2em " 专用的图像法粒度和形貌分析仪还可用于蛋白质聚集体或结晶反应过程的跟踪分析。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/50270e2a-5150-451f-bc87-57bc4caf3935.jpg" title=" 图片4.jpg" alt=" 图片4.jpg" / /p p style=" text-align: center " strong span style=" font-size: 14px font-family: 宋体, SimSun " span style=" font-size: 14px " 图 /span 2 a href=" https://www.instrument.com.cn/netshow/SH103908/C261986.htm" target=" _self" 下限低于200nm的Occhio 500nano XY& nbsp /a /span /strong /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103908/C261986.htm" target=" _self" strong span style=" font-size: 14px font-family: 宋体, SimSun " 静态干湿法粒度粒形分析仪及其各部分功能说明 /span /strong /a /p p style=" text-align: center " strong (点击了解仪器更多详情) /strong br/ /p p style=" text-align: justify text-indent: 2em " strong 2.& nbsp 原料药(API)或晶型药物的分散 /strong /p p style=" text-align: justify text-indent: 2em " 分散器是粒度分析仪器的主要组成部分。良好分散的要求是: /p p style=" text-align: justify text-indent: 2em " ● 颗粒必须被分开; /p p style=" text-align: justify text-indent: 2em " ● 在分散过程中,样品的尺寸和形状不应该被改变。 /p p style=" text-align: justify text-indent: 2em " ● 较小的颗粒和较大颗粒必须以相同方式分离。 /p p style=" text-align: justify text-indent: 2em " ● 分散过程可以重复几次,并在同一样品上再现相同的结果。 /p p style=" text-align: justify text-indent: 2em " 通常,药物制剂中最重要的产品是API,一般通过粉末的晶体形态对其进行表征,其尺寸分布从亚微米到几百微米不等。部分API可能由精细,脆弱的针状晶体组成,这些颗粒通常与小纤维相似。图3比较了三种分散样品的方法,数据表明:只有方法C提供了正确的粒度粒形值。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0f3c1e27-a105-434c-9be2-605f52876da2.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图3. & nbsp 不同分散方法的比较 /strong /p p style=" text-align: justify text-indent: 2em " A 手动分散:有颗粒团聚体存在且分布不均匀; /p p style=" text-align: justify text-indent: 2em " B 脉冲空气分散:可以看到,由于进气压力的存在,导致晶体颗粒被破坏; /p p style=" text-align: justify text-indent: 2em " C & nbsp Occhio可控的真空分散:这种分散是均匀的,且脆弱的晶体颗粒没有被破坏; /p p style=" text-align: justify text-indent: 2em " 可控的真空分散方法(2)分散API颗粒(图2),不仅样品用量少,而且保证分散过程中样品的完整性,并可进行重复分析。与空气喷射式干法相比,不仅可以保证晶型不被气流破坏,而且可以减少与环境大气相关的污染,继而用统计软件来详细描述颗粒结构,并提供可对比的尺寸形貌研究。 /p p style=" text-align: justify text-indent: 2em " 图4对比了两种不同分散方式得到的样品粒度结果。由图4可见,曲线之间存在着非常重要的差异。在小于10μm(点2)的区域,可以看到存在大量的细粉。这些颗粒是因为分散期间的晶体断裂产生的(空气分散,图3B)。蓝色曲线中粗颗粒更多(点1),这些不是真正的晶体,而是由于颗粒的非均匀分布而引起的团聚。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2b0b6f57-5aa9-4668-b878-355e38048903.jpg" title=" 图片6.jpg" alt=" 图片6.jpg" / /p table border=" 1" cellspacing=" 0" style=" margin-left: 9px margin-right: 9px border: none" align=" center" tbody tr class=" firstRow" td width=" 140" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" 粒径 span style=" font-family:Times New Roman" (μm) /span /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P10 /span /strong strong /strong /p /td td width=" 95" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P25 /span /strong strong /strong /p /td td width=" 94" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P50 /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P75 /span /strong strong /strong /p /td td width=" 88" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P90 /span /strong strong /strong /p /td /tr tr td width=" 140" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 color: rgb(0, 0, 255) font-size: 12px" 空气分散 /span /strong strong span style=" font-family: 等线 color: rgb(0, 0, 255) font-size: 12px" & nbsp (蓝线) /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 11.6525 /span /p /td td width=" 95" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 20.7521 /span /p /td td width=" 94" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 32.8848 /span /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 56.1393 /span /p /td td width=" 88" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 78.3827 /span /p /td /tr tr td width=" 140" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 color: rgb(255, 0, 0) font-size: 12px" Occhio span style=" font-family:等线" 真空分散 /span /span /strong strong span style=" font-family: 等线 color: rgb(255, 0, 0) font-size: 12px" (红线) /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 11.0459 /span /p /td td width=" 95" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 17.4914 /span /p /td td width=" 94" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 26.0854 /span /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 34.6795 /span /p /td td width=" 88" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 44.3478 /span /p /td /tr /tbody /table p style=" text-align: center text-indent: 0em " strong 图4& nbsp & nbsp 同一样品不同分散方法得到的累计粒度分布图(横坐标为筛分直径) /strong /p p style=" text-align: justify text-indent: 2em " 事实上,图像法粒度及粒形分析已经进入USP1787。由于ISO13322-1把显微镜归于静态图像法,美国药典将图像法粒度分析仪看作“流动的显微镜”。目前,欧奇奥图像分析技术为技术不仅能提供ISO9276-6定义的粒度和粒形参数,还另外发展了五十多个粒度分布和形貌分布参数以及色彩分布参数。这些先进的图像分析技术已经应用到世界各大著名药厂,包括Sanofi (France, Germany)、Unilever (UK)、GSK、Novartis、Janssens、Fresenius、Boehringer Ingelheim、Lilly、Therapeomic、Nycomed、Pfizer、Biomé rieux、Cytheris、Stryker、Ethypharm、Even Sante、Glatt等,并且在中国药企中也开始发挥作用。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 80) " strong 四、& nbsp 图像法粒度和形貌分析技术在药品质量控制中的应用 /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong 1. & nbsp 药物一致性研究: /strong /p p style=" text-align: justify text-indent: 2em " 一般认为造成仿制药物与原研药物、不同企业生产的同种药物、同一企业的不同生产批号药物临床疗效差异的原因大多数是来自于固体化学药物的晶习在状态的变化。同一种药物由于晶型不同,其不仅物理性质会有所不同,而且其生物活性也会有明显差异。有些药物的不同晶习,生物活性不仅差异显著,而且干扰了药物的临床应用。 /p p style=" text-align: center text-indent: 0em " strong 表3 仿制药晶型表征推荐参数 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8d43f5dd-489d-4724-a613-1d78202594bb.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 2.& nbsp & nbsp API颗粒的球形度研究和修饰: /strong /p p style=" text-align: justify text-indent: 2em " 原料药粉末(API)的大小和形状影响其流动性和制剂时的压实性能。球形度好的大颗粒通常比较小的颗粒或长宽比大的颗粒更容易流动;更小的颗粒溶解更迅速,并导致比颗粒较大的悬浮液粘度更高。 /p p style=" text-align: center text-indent: 0em " strong 表4 & nbsp & nbsp API颗粒球形度推荐参数 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/11afd57d-6b1b-4746-9d92-d2ab60e13cc0.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 3.& nbsp 不溶性微粒检测和蛋白质聚集体监控: /strong /p p style=" text-align: justify text-indent: 2em " 药品包装材料对药物本身的污染和生物制品因不稳定产生的蛋白质聚集体是药品生产和安全贮存研究的重大课题。药物中的外源性颗粒包括纤维、昆虫部分、花粉和营养物质、纤维素、绒、矿物质、玻璃、塑料、橡胶、金属和油漆、上皮细胞、衣物碎片和毛发;内源性颗粒包括硅油。虽然硅油是大部分产品的必需添加剂,但它会产生人造颗粒或不想要的颗粒,或由于未控制或过量使用而影响治疗成分的稳定性。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/f05b506a-f14c-4098-acc2-5d8940c4e175.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: center text-indent: 0em " strong 图5& nbsp & nbsp Occhio图像粒度分析仪检测不溶性大颗粒(左侧二维图可区分不同的颗粒形状分布) /strong /p p style=" text-align: justify text-indent: 2em " 生物制剂中的蛋白质聚集是我们不想看到的,但又无法避免,因此需要监控其聚集的程度;检测范围增加2-5μm和5-10μm的量,也是为了很好的监控其聚集程度。乳液也存在类似情况,因此,要对2μm以上的大乳粒进行分析和监控。 /p p style=" text-align: justify text-indent: 2em " 上述颗粒的种类无法通过传统的计数方法加以区分,而通过粒度粒形分析均可以分别计数和统计,还可以排除气泡的影响,这在传统方法的检测结果中是无法避免的。图5是不溶性大颗粒的应用举例。光阻法测试大颗粒只能给出粒径和数量,但很多纤维状或片状颗粒误认为小颗粒或者超大颗粒,造成假性结果,而对透明颗粒(如微塑料),只有高端的图像法粒度仪可以区分识别(图6)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0ca594e7-b0c5-4e72-b774-42badea3d214.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: center text-indent: 0em " strong 图6& nbsp & nbsp Occhio IPAC2图像粒度分析仪检测透明大颗粒(图左)和发现纤维及团聚体(图右) /strong /p p style=" text-align: justify text-indent: 2em " 4. 破壁中药粉体的破壁效能及破壁成分 /p p style=" text-align: justify text-indent: 2em " 固体药物制剂中,药物的颗粒大小影响药物从剂型中溶出及释放的速率,进而影响药物的疗效与生物及利用度。对难溶性固体药物而言,其粉末愈细,粒径愈小,比表面积愈大,溶解速度愈快,药物吸收速度也愈快,吸收量愈多,药效就愈好。因此减少制剂中固体颗粒的大小,有利于药物的溶出,也有利于难溶药被人体吸收,进而提高药物的疗效及生物利用度。但过细的粉末易因粉体团聚而导致流动性较差,影响药物制作过程。超细药物粉体在应用过程中因其溶解速度快,人体吸收快,易使人体中毒,因此需要更加精准的配方设计及临床测试。 /p p style=" text-align: justify text-indent: 2em " 采用不同的粉碎技术对天然药物或者合成药物进行粉碎所获得的药物粉体,具有不一样颗粒大小,形状,表面能,比表面积等,对医药粉体后续的制剂的工艺性能及产品质量影响甚大。 /p p style=" text-align: justify text-indent: 2em " 中药破壁饮片是将符合《中国药典》要求并具有细胞结构的中药饮片,经现代破壁粉碎技术加工至D90<45μm粉体,加水或不同浓度的乙醇粘合成型,制成30~100目的原饮片全成分的均匀干燥颗粒状饮片。 /p p style=" text-align: justify text-indent: 2em " 我们对丹参破壁饮片用500nano XY 静态粒度粒形分析仪(图2)进行了分析研究,发现小于1微米的颗粒数量占30%,最小粒径可接近0.2微米,说明破碎后有大量细胞器释放出来。通过3D粒形分析,利用Occhio颗粒形貌3D复合标度分析——“腋瓣(Calypter)”技术,并与相应的电镜照片比对,提示我们破壁中药微粉中释放出的各种细胞器(见图7),从而为进一步提高药效和生物利用度指明方向。 /p p style=" text-align: justify text-indent: 2em " 另外,表面处理技术对药物的生物利用度及疗效也存在极大影响。医学研究表明,人体接受药物之后,因药物存在的表面状态不同而产生不完全一致的效应,进而对生物利用度及疗效有着显著的影响。利用粉体表面改性技术修饰医药粉体表面,可以获得具有合适生物利用度及疗效的医药产品。如:利用表面包覆或为胶囊化控制药物的释放速率,进而改变或者控制药物的生物利用度及疗效。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/dd96ce20-fb88-4cd2-b6e0-6e8c01358639.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图7& nbsp & nbsp 用Occhio颗粒形貌3D复合标度分析技术鉴定 /strong /p p style=" text-indent: 0em text-align: center " strong 丹参破壁粉体中的氩细胞器(下)并与电镜照片对比(上) /strong /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 80) " strong 五、总结 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 创新性的粒度粒形分析仪器,适用于药物发现、化学和制剂开发以及药物生产领域的质量控制。静态图像法粒度分析技术也符合ISO13022和2020版中国药典0982规则,可针对一系列针剂、胶囊剂和口服制剂进行了药品质量分析表征的研究,并帮助使用者开发稳健的配方,由此获得具有生物利用度的稳定药品。 /span /p p style=" text-align: justify text-indent: 2em " 适当的分散方式是确保API稳定性以及正确的粒度粒形结果的基础。采取可控的真空分散程序,才能保证符合大多数药物法规中要求的测量稳定性和可重复性。 /p p style=" text-align: justify text-indent: 2em " 随着生物药物市场关注度和资金投入的迅猛增长以及人们对具有特殊用途的新颖生物药物的需求不断增加,这一行业在确保提供起效快且安全可靠的治疗药物方面正面临越来越大的压力。着眼于单克隆抗体、重组蛋白、疫苗、寡核苷酸等生物分子的生物制药开发和生产过程漫长、十分复杂,同时面临非常特殊的分析挑战。不依靠显微镜的可变倍率显微成像扫描尖端技术可直接测量透明粒子大小和形态, 并对蛋白质聚集体进行跟踪分析,保证粒度和粒形的最终结果统计可信度。为降低生物大分子制剂的风险,将计数器、显微镜和激光粒度分析表征方法融于一身,不仅可以及时提供准确的数据,而且精简了流程,消除了瓶颈,提高了效率。最新一代的颗粒分析技术必将推动新药的开发和药品质量控制的提升。 /p p style=" text-align: justify text-indent: 2em " strong 参考文献: /strong /p p style=" text-align: justify text-indent: 2em " 1.& nbsp Vincent Chapeau, Christian Godino. & nbsp Method and device for dispersing dry powders. US 20110120368 A1, 2011 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 杨正红& nbsp , 欧阳亚非 . 静态图像粒度分析中真空分散器原理和分散效果解析 . 现代科学仪器 .2019,1:65-68. /p p style=" text-align: justify text-indent: 2em " 3.& nbsp Wadel, H. (1932), Volume, shape, and roundness of rock particles, Journal of Geology, vol.& nbsp 40, pp. 443-451. /p p style=" text-align: justify text-indent: 2em " 4.& nbsp Krumbein, W.C. (1941), Measurement and geological significance of shape and roundness of& nbsp sedimentary particles, Journal of Sedimentary Petrology, vol. 11, No. 2, pp. 64-72. /p p style=" text-align: justify text-indent: 2em " 5.& nbsp Krumbein, W.C. and Sloss, L.L. (1963), Stratigraphy and Sedimentation, Second Edition,& nbsp W.H. Freeman and Company, San Francisco, p. 660. /p p style=" text-align: justify text-indent: 2em " 6.& nbsp Powers, M.C. (1953), A new roundness scale for sedimentary particles, Journal of& nbsp & nbsp Sedimentary Petrology, vol. 23, No. 2, pp. 117-119. /p p style=" text-align: justify text-indent: 2em " 7.& nbsp Barrett, P.J. (1980), The shape of rock particles, a critical review, Sedimentology, vol. 27, pp.& nbsp 291-303. /p p style=" text-align: justify text-indent: 2em " 8.& nbsp ISO9276-6:2008 粒度分析结果的表述 第6部分:颗粒形状和形态的描述和定量表征 /p p style=" text-align: justify text-indent: 2em " 9.& nbsp Tudor& nbsp Arvinte ,& nbsp Emilie& nbsp Poirier, Caroline& nbsp Palais. Prediction of Aggregation In Vivo by Studies of Therapeutic Proteins in Human Plasma. Biobetters pp 91-104. Springer, New York, NY, 2015 /p p style=" text-align: right text-indent: 2em " strong 作者: /strong /p p style=" text-align: right text-indent: 2em " strong 杨正红 /strong /p p style=" text-align: right text-indent: 2em " strong 仪思奇(北京)科技发展有限公司总经理 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由杨正红老师供稿,不代表仪器信息网本网观点) /p
  • 济南微纳参加能源颗粒材料学术研讨会
    12月13日,由清华大学承办的“2013年能源颗粒前沿暨第三届全国能源颗粒材料学术研讨会(EnerParticle2013)”在清华大学召开。本次会议有来自中国、新加坡、澳大利亚等国家和地区的专家学者近130人参加。会议共涉及论文及摘要72篇,设置了8个大会特邀报告。能源颗粒材料由于其所具备的高比表面积、多级结构在传递、化学转化的多样性,是能源储存与转化在产业化过程中的核心媒介。会议探讨了近年来能源颗粒的结构基础、表征以及在各领域的研究进展。此次会议不仅是高水平前沿研究成果交流的平台,也是先进能源颗粒技术推广应用的平台。济南微纳颗粒仪器股份有限公司作为国内颗粒粒度测试行业的领航者和亚洲粉体企业50强应邀参加此次研讨会。与会期间,微纳颗粒与从事能源颗粒学研究和工程应用的科研、教学工作者以及技术工程师展开了能源颗粒科学和技术内涵的深入讨论。进一步拓展了我们在技术研究领域的视野及方向,同时更准确的把握了科研实际需求和市场脉搏。基于此微纳人将继续以“发展和普及当代最先进的颗粒测试技术”为己任,努力研发生产高质量的粒度分析产品,争取为客户创造更大的利润,实现微纳颗粒的社会价值。济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪,在线粒度检测系统等。
  • 专访微纳颗粒创始人、中国颗粒测试行业突出贡献老专家——任中京教授
    p style=" margin-left:4px text-indent:28px" span style=" font-family: 宋体 " 开展一项事业从来都不是一件易事,将科研转化为产业更是如此。济南微纳作为一个科技产业转型的公司,其成长的道路也充满了艰辛。 /span 1982 span style=" font-family: 宋体 " 年毕业于 /span span style=" font-family: 宋体 " 中国海洋大学物理系光学专业的任中京,当时已过而立之年,作为恢复高考后的第一批大学生,任中京教授也是被那个时代耽误的人。时光荏苒,所以在短短几年的大学时光中,任中京每天都在争分夺秒,除了精通所学的专业知识,任教授的业余时间都是泡在海洋大学的图书馆,像一只饥饿的狼一样,源源不断汲取着知识的养分。 /span /p p style=" text-indent:28px" span style=" font-family:宋体" 这一年,任中京以同专业最优异成绩完成学业。同年, /span span style=" font-family:宋体 color:#333333 background:white" 国家立项 /span span style=" font-family:& #39 Arial& #39 ,& #39 sans-serif& #39 color:#333333 background:white" “ /span span style=" font-family:宋体 color:#333333 background:white" 国家七五科技攻关项目 /span span style=" font-size: 13px font-family:宋体 color:#333333 background:white" “ /span span style=" font-family:宋体" 水泥颗粒级配在线分析仪 /span span style=" font-size:13px font-family:宋体 color:#333333 background:white" ” /span span style=" font-family:宋体 color:#333333 background:white" 开始运行,任教授被委以重任作为此项目的主要负责人之一。 /span /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/4a62da6e-bd5d-44b7-a271-c3a51a629117.jpg" title=" 1.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" font-family:宋体 color:#333333 background:white" 第三排左三是任中京教授 /span /p p style=" text-indent: 0em text-align: center " span style=" font-family:宋体 color:#333333 background:white" img src=" http://img1.17img.cn/17img/images/201808/insimg/0170931f-4bbc-4add-9776-1e6a4b8ea02c.jpg" title=" 2.jpg" / /span /p p style=" text-indent:28px" span style=" font-family:宋体" 自 /span 1986 span style=" font-family:宋体" 年起,任中京教授 /span span style=" font-family:宋体" 任山东建材学院颗粒测试研究所所长,1995年被评为济南大学教授、研究生导师,2000年山东建材学院与济南联合大学合并组建成济南大学,同年济南微纳正式成立。期间任中京教授先后负责山东八五科技攻关项目“JL9200便携式高分辨激光粒度分析仪”的研发和山东九五科技攻关项目“JL9300干粉激光粒度仪”的研发。其中JL9200被列为国家级重点新产品。 /span /p p style=" text-indent: 0em text-align: center " span style=" font-family:宋体" img src=" http://img1.17img.cn/17img/images/201808/insimg/219cc29c-eb69-4a9a-9cdb-14addca0d62d.jpg" title=" 3.jpg" / /span /p p style=" text-indent: 0em text-align: center " span style=" font-family:宋体" JL9200 /span span style=" font-family:宋体" 便携式高分辨激光粒度分析仪 /span /p p style=" text-indent: 0em text-align: center " span style=" font-family:宋体" img src=" http://img1.17img.cn/17img/images/201808/insimg/9a824090-0c06-4f32-9c6a-5be4adb2acb2.jpg" title=" 4.jpg" / /span /p p style=" text-indent:28px" span style=" font-family:宋体" 从此之后,济南微纳的脚步就越走越快,2002年Winner2000型激光粒度仪问世,并通过国家标准物质研究中心定型鉴定。2006年微纳获得济南高新技术企业称号。2009年微纳推出中国第一台使用数字相关器的“光相关纳米粒度分析仪”。2010年微纳获得国家级高新技术企业称号。 /span 2011 span style=" font-family:宋体" 年,济南微纳的研发团队成功研制出 /span Winner span style=" font-family:宋体" 大颗粒计数器, /span span style=" font-family:宋体" 该产品采用遮光原理对气体活透明液体中的大颗粒(粒径 /span 400um-5cm span style=" font-family:宋体" )进行测量,填补了国内该项目研究的空白。 /span span style=" font-family:宋体" 2012 /span span style=" font-family:宋体" 年微纳负责的国家科技型中小企业创新基金项目“基于动态光散射的纳米粒度仪”成功通过国家鉴定。同年, /span span style=" font-family:宋体" 中国颗粒学会 /span 30 span style=" font-family:宋体" 周年特殊贡献奖,颁奖给济南微纳任中京教授。 /span span style=" font-family:宋体" 2014 /span span style=" font-family:宋体" 年济南微纳作为“中国颗粒测试第一股”成功登陆新三板。 /span /p p style=" text-indent: 0em text-align: center " span style=" font-family:宋体" img src=" http://img1.17img.cn/17img/images/201808/insimg/acd5f4a6-f8ca-457a-9129-f44341bd0c8b.jpg" title=" 5.jpg" / /span /p p style=" text-indent: 0em text-align: center " span style=" font-family:宋体" img src=" http://img1.17img.cn/17img/images/201808/insimg/2d08bccb-202f-4638-a823-ba957b5338dd.jpg" title=" 7.jpg" / /span /p p style=" margin-left:63px text-indent:56px" span style=" font-family:宋体" 任中京教授在微纳新三板上市挂牌敲钟仪式现场 /span /p p style=" text-indent:175px" span style=" font-family:宋体" (如今的任教授已是白发苍苍) /span /p p style=" text-indent:28px" span style=" font-family:宋体" 拥有学者气质的济南微纳一向注重研发,2017年,济南微纳Winner802纳米激光粒度分析仪、winner2000系列激光粒度仪皆取得良好的销售成绩,今年以来公司研发投入仍在不断加大,现如今公司的研发团队约占公司总人数四分之一左右,研发人员全部为研究生及以上学历,目前,济南微纳在winner系列和在线粒度仪方面皆有新品在研,上市可期。在服务方面,微纳的粒度仪向用户许诺1个月内的无条件退换和2年的免费质保,并有专业的服务工程师会对新用户进行免费培训。如遇任何疑问,公司支持新老用户24小时远程指导,并提供省内24小时,省外48小时的上门服务。不仅在国内市场砥砺前行,微纳也十分注重海外市场的开拓,亚洲市场为微纳海外布局的主战场,产品远销韩国、印尼、泰国,越南、沙特阿拉伯等国家,并向南美和欧洲市场辐射。 /span /p p style=" text-indent:28px" span style=" font-family:宋体" 随着生产型企业对材料性能的要求越来越高,企业对材料测试仪器的要求也越来越高,离线式的检测方式存在着很大弊端,如检测数据滞后,人工操作误差大等,并且无法将粒度控制纳入到整套自动化控制系统中。微纳最新研发的粒度在线监测系统完美解决了以上弊端,不但解决了离线设备实时性差和误差大等问题,还采用非接触式测试方法,并首创了云数据系统,将测试数据同步到云端,以方便企业与我方工程师及时处理异常情况。 /span /p p style=" text-indent:28px" span style=" font-family:宋体" 济南微纳作为一个有责任感的企业,不仅在粒度仪行业做出了突出贡献,也带领广大员工积极回馈社会。设立“中京微纳奖学金”,此奖学金是任中京教授为培养更多振兴光学事业的特殊人才,针对理学院光学专业在校生设立的。 /span 2010 span style=" font-family:宋体" 年,微纳全体员工为玉树地震受灾群众捐款,献出自己微薄的力量。这些年微纳在成长的同时,也在不断地为社会做着企业应尽的社会责任。在粒度测试领域,微纳培育了一批又一批业内高级工程师,现在这些行业内的高精尖人才在国家物性测试领域做出了平凡且伟大的付出。 /span /p p style=" text-indent:28px" span style=" font-family:宋体" 微纳颗粒始终以 /span “ span style=" font-family:宋体" 发展与普及当代最先进的颗粒测试技术为己任,以 /span “ span style=" font-family:宋体" 度万物之微,纳四海之阔 /span ” span style=" font-family:宋体" 为追求目标,微纳研发的激光粒度仪、纳米粒度仪、颗粒图像分析仪、喷雾粒度仪、在线粒度仪等系列颗粒分析仪器均代表了国内同行业先进水平。 /span span style=" font-family:宋体" 从1982到2018,35年来任中京教授从一个胸怀大志的青年到白发苍苍的老者,谁又知道这35年来他经历了多少,付出了多少。从中国第一台激光粒度仪的研发到如今多家国产品牌激光粒度仪企业的创立,三十五年,见证了我国国产物性测试仪器行业的成长与发展,不仅仅是激光粒度仪行业,还有我们国家的各行各业都在飞速发展,三十五年,见证的更是我们国家的强大。 /span /p p style=" text-indent: 28px " span style=" font-family:宋体" 祝愿祖国繁荣昌盛,也愿微纳百年长存。 /span /p p style=" text-indent: 28px text-align: right " span style=" font-family:宋体" (本文由济南微纳市场部王绍萌供稿) /span /p
  • “微纳颗粒”受邀参加《济南市新三板上市动员大会暨首批企业挂牌仪式》
    1月26日上午,济南市新三板上市动员大会暨首批企业挂牌仪式举行。市委副书记、市长杨鲁豫出席会议并讲话。省金融办和山东证监局相关负责人应邀出席,市委常委、副市长苏树伟,市政府特邀咨询张宗祥,市政府秘书长李华贤也参加了活动。作为中国颗粒测试行业的第一支股票,“微纳颗粒”受邀参加仪式。此次济南首批9家企业登陆新三板,数量居全省首位,也走在了全国前列。杨鲁豫市长在讲话中代表市委、市政府,对集中挂牌交易的9家企业表示热烈祝贺。他指出,当前我市资本市场发展和企业挂牌上市工作迎来全新的发展时期,政府出台了一系列推进金融改革的措施意见,促进企业利用资本市场做大做强,中小微企业要加快建立健全现代企业制度,加强与企业上市主管部门的协调对接,积极引入券商、律师、会计师事务所等中介机构进行上市辅导,推动企业步入规范发展的快车道。济南微纳颗粒仪器股份有限公司是集研发、生产、销售颗粒测试相关仪器设备于一体的高新技术企业。研制的激光粒度仪、纳米粒度仪、颗粒图像分析仪、喷雾粒度仪等系列的颗粒分析仪器均代表了国内同行业最高水平。作为济南首批登陆新三板9家企业的代表,微纳公司董事长任中京接受采访:“微纳颗粒公司作为中国颗粒测试技术的领航者,始终将引领国内颗粒测试行业的新技术开发为己任。但国内企业要赶超世界一流水平,必须提升至新的高度和平台,整合资源,壮大企业实力。而新三板的政策支持和IPO预期是推动企业发展的动力。为此我们于2010年进行了公司股份制改制,并顺利于2013年通过新三板上市流程,2014年挂盘上市。作为中国颗粒测试行业的第一支股票。这标志“微纳颗粒”在企业发展道路上迈上了一个新台阶,成功从一家公众公司转型进入中国资本市场,以全新的面貌开始新的征程。”
  • 动态颗粒图像分析仪中标啦
    日前,我司的“动态颗粒图像分析仪”参加中北大学的招标活动,凭强劲的实力和极高的技术优势,赢得胜利。 中标仪器型号:QICPIC/LIXELL 特点:首次结合了特殊开发的高品质的照明系统、高效的分散系统、成像系统和信息处理技术,实现将团聚颗粒分散后再进行检测,每秒处理500万像素的数据(这一速度以前几乎不可想象)。一般来说,每次测量的颗粒数都超过一百万个,某些情况下甚至可能超过1千万个。检测保持很高的精确度,使取样误差小于1%成为了现实。
  • 济南微纳颗粒仪器 闪耀慕尼黑上海分析生化展
    2020年11月15-18日在上海新国际博览中心举行的第十届慕尼黑上海分析生化展,为全球性的实验室行业盛会,汇集千余款仪器设备新品、创新技术及前沿解决方案的1121家参展企业,本次展会分为生命科学、诊断与生物技术展区、分析与质量控制展区、实验室通用设备展区、实验室建设与安全展区、食品安全装备与技术展区以及环境保护装备与技术展区等吸引了国内大批专业观众参观交流。济南微纳颗粒仪器股份有限公司作为国产激光粒度仪企业的代表受邀参展,济南微纳颗粒仪器股份有限公司是颗粒测试行业上市公司,始于1982年专业从事颗粒测试相关仪器的研发、生产、销售和测试服务等,主要应用于医药、食品、化工、电子、矿产等行业。本次展会展出了光子相关纳米激光粒度仪802,为国家科技型中小企业技术创新项目成功产品,采用动态光散射原来和光子相关光谱技术,可靠性强,灵敏度高。 销售工程师现场精彩的专业讲解和实操演练,吸引了现场众多观众的瞩目和兴趣,纷纷索要详细资料进一步沟通相关合作事宜。
  • 用静态图像照亮3D打印等三大热门领域——访莱驰科技粒度仪销售经理杨侃
    p style=" text-align: justify text-indent: 2em " IPB2019于2019年10月16日-10月18日在上海成功召开,期间弗尔德集团旗下的知名颗粒检测与表征品牌莱驰科技,携2019年刚刚发布的图像法粒度粒形分析仪CAMSIZER M1成功参展,莱驰科技粒度仪销售经理杨侃在接受仪器信息网的视频采访时,介绍了该新品的创新特色和应用场景。 /p p style=" text-align: justify text-indent: 0em " script src=" https://p.bokecc.com/player?vid=1DA5FA2500F406DE9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p style=" text-align: justify text-indent: 2em " 莱驰科技在图像颗粒分析领域,有超过20年的研发生产经验。现如今,随着颗粒的粒形形态对现代材料研究及性能的影响日益深入,粒度仪的用户群体在渴望得粒度信息之外,也渴望得到更多的粒形形态信息。CAMSIZER M1正是这样一款结合了莱驰科技最先进技术,能够提供丰富粒形参数的静态图像法分析仪。 /p p style=" text-align: justify text-indent: 2em " 该仪器特别在三大领域有广泛应用:一是在近来热门的3D增材制造金属粉末等领域,该领域的用户对球形度等粒形参数的要求非常高;二是在你啥等海洋沉积物领域,不同地域,不同形成环境下,同一类沉积物颗粒的形貌也是不同的,因此需要对粒形参数进行分析;三是公安刑侦领域,CAMSIZER M1的下限可以做到纳米级的分析,而纳米级的形貌表征对于刑侦研究能够提供很大的助益。 /p p style=" text-align: justify text-indent: 2em " 采访中,杨侃还谈到了参展IPB2019的收获,分享粉体行业用户对传统分析方法的态度,以及对新手段、新产品的期许与建议。 /p p style=" text-align: justify text-indent: 2em " 更多精彩IPB2019视频报道请关注“ a href=" https://www.instrument.com.cn/zt/IPB2019" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " IPB2019精粹回眸 /span /strong /a ”专题。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/IPB2019" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 300px " src=" https://img1.17img.cn/17img/images/201910/uepic/93c09d66-c939-4113-b51c-18975b21501a.jpg" title=" IPB2019精粹回眸.jpg" alt=" IPB2019精粹回眸.jpg" width=" 600" height=" 300" border=" 0" vspace=" 0" / /a /p
  • 济南微纳颗粒仪器受邀参加中国颗粒学会第十届学术年会
    2018年8月9日,中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会在历史悠久的沈阳市举行,本届会议由中国颗粒学会、中国科学院金属所、 清华大学、大同大学(台北)共同主办,作为颗粒测试领域及国内激光粒度仪研发的先驱品牌,济南微纳颗粒仪器受邀参会。8月10日下午,在颗粒的测试与表征分会场,微纳颗粒创始人任中京教授现场讲解《激光粒度分析仪多次散射补偿技术研究》的研究报告。激光粒度分析仪多次散射补偿技术的研究的意义就是提高激光粒度仪测试的精度,消除激光多次散射对颗粒测试结果带来的影响,阐述了微纳颗粒研发的补偿技术可有效改善大颗粒宽分布颗粒群的粒度分布的测试精度,并且该技术已经成熟运用到微纳研发的Winner系列激光粒度仪中。作为国内激光粒度仪行业研发的先驱者,微纳颗粒一直在颗粒测试技术领域潜心钻研,把创新技术运用到仪器,并成熟落地到项目。
  • 安东帕中国携全新纳米颗粒及Zeta电位分析仪亮相上海CPhI
    第十六届世界制药原料中国展(CPhI China 2016)于2016年6月21至23日在上海新国际博览中心拉开帷幕。展会期间,安东帕中国不仅展出了旋光仪、折光仪、密度计、微量粘度计、流变仪、微波样品制备系统等传统的拳头产品,也将LitesizerTM500纳米颗粒及Zeta电位分析仪这个全新产品带到广大制药领域用户面前。  LitesizerTM500纳米颗粒及Zeta电位分析仪  2016年,安东帕LitesizerTM500纳米颗粒及Zeta电位分析仪全新上市。这是一款用于表征溶液中分散的纳米颗粒以及亚微米颗粒的仪器。它可通过测量动态光散射(DLS)、电泳光散射(ELS)和静态光散射(SLS)来测定颗粒尺寸、zeta 电位和分子量。它采用了先进算法及尖端zeta电位测量专利技术:可连续测量透光率以选择最佳样品测试参数 静态光散射(SLS)测量分子量,快速无损 采用DLS颗粒分析法,可轻松解决在单一悬浮液中不同颗粒尺寸的测量问题 采用新型专利(欧洲专利 2735 870)cmPALS技术,zeta电位测量的准确性达到最高,所需时间降到最少 而且其一页式的工作流程,大大减轻了实验室负担。另外,LitesizerTM500的一大亮点是其简单而巧妙的软件。安东帕已创建了可将输入参数、结果和分析集中到单个页面上的一页式工作流程:用户可以在数秒内完成试验设置,只需简单按键即可得出所需的分析结果和报告。  这款全新产品可广泛应用于制药、化工、材料及食品各行业内实验室质量控制、质量控制部门以及其他粒度分析领域。  展会同期,安东帕还在Innolab的主题活动上举办了LitesizerTM500纳米颗粒及Zeta电位分析仪的产品宣讲会,为大家呈现了激光粒度仪的用途、优势、参数以及应用。  宣讲会现场  自2006年起的十年来,安东帕中国致力于为中国制药行业的用户量身定制高质量的产品及服务,以确保药品的质量和可追溯性。上海CPhI展会期间,安东帕提供了全面的药物分析解决方案及组合方案,吸引众多用户参观。  安东帕展位  安东帕参展团队
  • 静态容量法比表面及孔径分析仪技术参数及专利一览
    静态容量法比表面及孔径分析仪技术参数: 测试精度: 测试精度高、重现性好。重复性误差小于± 1.5%; 测试范围: 比表面0.01m2/g以上,微孔:0.35-2nm、介孔:2nm-50nm、大孔:50nm-500nm;样品类型:粉末,颗粒,纤维及片状材料等可装入样品管的材料。 P0 测 试: 具有独立的饱和蒸汽压(P0)测试站,保证分压测试的高准确性,【国内唯一】 样品测试: 具有1个独立测试站 样品处理: 具有2个样品预处理脱气站,2路脱气站具有独立温控,并具有独立定时功能,可支持与测试同步进行的不同温度与不同时间的样品脱气处理; 处理模式: 具有国内唯一的&ldquo 普通加热抽真空分子扩散模式&rdquo 和&ldquo 分子置换模式&rdquo 两种可选功能;分子置换模式相对分子扩散模式效率提高1倍以上,可节省一半以上的预处理时间,解决以往静态法样品制备时间长的问题. 【国内唯一】 测试效率: 智能投气量控制,中小吸附量样品2-3min/1个分压点,中大吸附量样品3-5min/1个分压点;BET多点法15-30min/4个样品;BET单点法6-10min/4个样品;标准孔径测试240-300min/4个样品;精细孔径测试300-600min/4个样品;以上测试时间不包含样品预处理时间; 静态容量法比表面及孔径分析仪专利如下: 1专利名称:静态法比表面及孔径分析仪的净化预处理装置 专利号:ZL201120136943.9 具有国内唯一的&ldquo 普通加热抽真空分子扩散模式&rdquo 和&ldquo 分子置换模式&rdquo 两种可选功能;分子置换模式相对分子扩散模式效率提高1倍以上,可节省一半以上的预处理时间,解决以往静态法样品制备时间长的问题. 作用:提高样品预处理效率 2专利名称:静态法比表面及孔径分析仪的饱和蒸汽压测试装置 专利号:ZL201120136959.X 本实用新型公开了一种静态法比表面及孔径分析仪的饱和蒸气压测试装置。所述测试装置包括一支浸在液氮中的管子;且该测试装置直接设置安装在静态法比表面及孔径分析仪上,与样品管处在同一个液氮杯中。通过该测试装置能够直接测得饱和蒸汽压P0值,减少了测试中间环节,提高了测试结果的准确性。 作用:保证分压测试的高准确性, 3专利名称:静态法比表面及孔径分析仪外观专利 专利号:ZL201030177578.7 静态法比表面及孔径分析仪生产企业介绍:  贝士德仪器科技(北京)有限公司是国内最早从事氮吸附比表面积仪器研发、生产、销售的专业公司,是北京中关村科技园认定的高新技术企业。  拥有十项用于提高仪器准确度和稳定性的专利技术,是国内同行业中拥有最多专利技术的企业,顶尖的技术团队为企业提供强大的研发创新能力。  2012年在数十万企业中脱颖而出,被科技部评选为科技型中小企业技术创新基金支持企业,投入专项资金专门用于仪器的研发和更新,使企业的发展进入新的阶段。  拥有近千家用户的成功案例,其中包括众多高等院校、科研机构和著名企业,多年来仪器销量遥遥领先。  2009年通过ISO9001认证的生产型企业,具有完整的销售,培训,服务体系,具有高效和专业的团队保证给客户提供优质的设备和一流的服务。  集装阀门和管路设计,模块化组装,保证仪器高真空度和高密封性,是高性能和高稳定性的典型产品。  专业且完善的售后服务系统,可提供24小时电话咨询,48小时内上门服务,北京,上海,广州均设有服务机构,方便快捷的为用户提供最优质的服务。 静态容量法比表面及孔径分析仪应用领域: 吸附剂:活性碳,硅胶,活性氧化铝,分子筛,活性,硅酸钙,海泡石,沸石等; 橡塑材料补强剂:活性炭、炭黑,碳黑,白碳黑,纳米碳酸钙,白炭黑,乙炔黑; 磁性粉末材料:四氧化三铁,铁氧体,氧化亚铁 无机粉体材料:二氧化钛等 纳米材料:纳米粉体材料,纳米陶瓷材料、纳米碳酸钙 稀土,石墨烯,硅微粉,煤炭,储能材料,催化剂,硅藻土,粉体材料,粉末材料,超细纤维,碳纤维,碳纳米管;
  • 燃情盛夏|“微纳颗粒”闪耀慕尼黑生化分析展 助力仪器国潮崛起
    2023年第十一届慕尼黑上海分析生化展于7月11日在上海国家会展中心盛大开幕。“微纳颗粒”携旗下winner2018湿法激光粒度仪亮相,不惧盛夏,见证精彩,微纳粒度仪展台现场氛围火热,参观者络绎不绝,winner2018湿法激光粒度仪在本次展会上备受关注,向观众展示了国产仪器在粒度分析领域的优势和创新。Winner2018是一款智能型湿法粒度仪,它采用米氏散射理论和无约束自由拟合技术,测试速度快,测试数据准确稳定,广泛应用于生物制剂、凝胶等粒度控制。 我们深知,国产仪器的崛起需要持续的创新、优秀的品质和卓越的性能。作为国内物性测试仪器行业的一员,济南微纳颗粒仪器一直致力于技术创新和产品质量的提升。我们积极推动自主研发,并与国内外的科研机构合作,不断推出具有更高水平的粒度仪产品。通过参加这次展会,我们希望能够进一步加强与国际市场的对接,提高国内仪器品牌的知名度和影响力,为国产仪器的崛起做出贡献。 微纳粒度仪将继续努力,持续提升自身实力,推动国产粒度检测仪器行业的发展,为客户提供更优质的激光粒度仪和颗粒测试解决方案。让我们携手助力国产仪器崛起,共同开创颗粒测试行业的辉煌未来。
  • 微纳颗粒应邀参加2013年中国国际精细化工及定制化学品展览会
    2013年中国国际精细化工及定制化学品展览会(Spechem China 2013)于2013年11月18日至20日在上海光大会展中心成功举办。此展会是全球精细化工行业三大会展之一,也是在中国举办的唯一国际性精细化工展会。此届展会由中国国际贸易促进委员会化工行业分会主办。 济南微纳颗粒仪器股份有限公司作为国内颗粒粒度测试行业的领航者和亚洲粉体企业50强应邀,与赢创德固赛、巨化集团、中国中化、中国石化、霍尼韦尔、雪佛龙菲利普斯、梯希爱等国内外知名企业同时参展。济南微纳颗粒仪器股份有限公司在展会期间与来自化工行业的各参展代表进行了深入的交流,在进一步扩大企业知名度的同时更准确的把握了市场脉搏和客户需求,使微纳颗粒公司更好的协助业内新老客户实现共赢。我们也将继续以&ldquo 发展和普及当代最先进的颗粒测试技术&rdquo 为己任,努力研发生产高质量的粒度分析产品,争取为客户创造更大的利润,实现微纳颗粒的社会价值。 --------------- 中国颗粒测试技术的领航者--------------- 济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪等。 销售热线:0531-88873312 联系地址:济南市高新区大学科技园北区F座东二单元
  • 精彩回顾 | 莱比信《动态颗粒图像分析仪CPA 2-1专项培训会》顺利举办
    2019年7月8日,莱比信举行了动态颗粒图像分析仪CPA 2-1的专项培训会,邀请了德国Haver&Boecker公司的 Bastian Driefer 先生指导培训,旨在增进销售人员对筛分仪和动态图像颗粒分析仪的理解及要点掌握。  本次培训会主要内容为动态颗粒图像分析仪CPA 2-1的解读及仪器原理操作,会上不仅详细介绍了仪器的原理,还演示了检测样品的标准要求及检测方法,通过现场检测方法实操,让人更容易掌握系统知识。培训会上,每位销售都认真倾听工程师讲解,开展面对面互动交流,踊跃发言提问。  CPA 2-1 特别适于实验室分析34μm到25mm的颗粒形态、粒径及分布。  HAVER CPA 2-1上安装有HAVER CpaServ软件,可以在Windows操作系统下运行。CpasServ强大的软件功能使仪器安装更简单,操作更直观,与笔记本电脑相连进行操作使用,具有良好的移动性。  HAVER REAL TIME技术,可以即时对样品进行分析和处理。  德国Haver&Boecker公司创建于1887年,在全球拥有众多的分支机构和工厂。莱比信与其携手在颗粒分析测量领域展开合作,提供无论是过滤、筛选、颗粒分析、结构和设计问题,还是用于产品和工艺的制备、储存、包装和自动化的整体系统解决方案,日后双方将会锐意进取,不断创新,以高品质的产品满足客户的需求。
  • 纳米流式颗粒成像分析仪在脂质体中的应用优势
    纳米流式颗粒成像分析仪是一种先进的单颗粒、多参数、高通量的纳米颗粒定量表征技术。这种分析仪特别适用于脂质体的研究,脂质体是由磷脂双层组成的封闭囊泡,被广泛应用于药物递送、基因治疗、生物成像等领域。下面我们将探讨纳米流式颗粒成像分析仪在脂质体研究中的应用优势。  1. 高分辨率的成像  纳米流式颗粒成像分析仪能够提供单个脂质体的高分辨率图像,这对于研究脂质体的形态、大小、分布等特征至关重要。通过获取清晰的图像,研究人员可以获得关于脂质体结构的直观信息,进而优化脂质体制备条件,提高其在药物递送中的效率。  2. 高通量分析  相比于传统的脂质体分析方法,如电子显微镜或激光动态光散射法,纳米流式颗粒成像分析仪能够以更快的速度处理大量样品,实现高通量分析。这对于筛选最优的脂质体配方或评估不同制备条件下的脂质体性能非常有用。  3. 多参数定量分析  纳米流式颗粒成像分析仪能够同时检测多个参数,如颗粒大小、荧光强度、表面标记等,这对于评估脂质体的功能性非常重要。例如,通过标记特定的表面蛋白或抗体,可以研究脂质体的靶向能力 通过检测荧光信号,可以评估脂质体的载药效率。  4. 实时监测  这种分析仪能够实时监测脂质体在不同条件下的变化情况,比如在不同温度或pH值下脂质体的稳定性,这对于理解脂质体的行为及其在体内环境中的适应性至关重要。  5. 操作简便  与复杂的电子显微镜相比,纳米流式颗粒成像分析仪的操作更为简便,不需要特殊的训练即可进行操作。这使得更多的实验室能够利用这项技术进行脂质体的研究。  6. 应用范围广泛  纳米流式颗粒成像分析仪不仅适用于脂质体的研究,还可以应用于病毒颗粒、外泌体等多种纳米级颗粒的分析。这为跨学科的研究提供了强大的工具。  纳米流式颗粒成像分析仪因其独特的高分辨率成像、高通量分析、多参数定量分析能力以及简便的操作方式,在脂质体研究领域展现出了显著的优势。这些优势有助于推动脂质体技术的发展,使其在药物递送、生物成像等方面发挥更大的作用。随着技术的不断进步,我们可以期待这种分析仪在未来脂质体研究中发挥更重要的作用。
  • 2023中国颗粒学会微纳气泡专业委员会第五届年会在成都大邑圆满落下帷幕
    期待已久的2023中国颗粒学会微纳气泡专业委员会第五届年会,汇聚了一批来自全国各地对微纳米气泡兴趣浓厚、勇于专研、乐于分享的科学家、工程师和企业家们,经过三天的如火如荼的交流探讨,在成都大邑圆满落下帷幕。会议现场各位专家领导做了关于微纳米气泡研究和应用等方面的相关口头报告,并与参会人员现场进行交流互动,茶歇期间参会代表还认真观看了现场的墙报展示,学术氛围浓厚,为共同推进微纳米气泡事业的向前发展而努力!北京海菲尔格科技有限公司携带芬兰Pixact多台样机现场进行了演示,吸引了大批对微纳气泡监测感兴趣的专家学者前来驻足观看,与工程师进行沟通交流。北京海菲尔格科技有限公司Pixact 气泡监测 (PBM) 系统专为在线分析工业过程中的气泡悬浮液和泡沫而设计。测量基于悬浮液的直接光学成像和先进的图像分析。PBM气泡监测系统是为在线测试气泡变化过程和颗粒分布情况而设计,其结合了在线原位显微镜技术和高级图像分析技术。PBM气泡监测系统实时提供过程的显微镜图像数据,可以对气泡生成变化过程进行表征,例如尺寸分布、形态和数量等。同时测试系统专利的图像分析算法在图像数据中检测晶体和其它颗粒,产生实时的特征数字化信息。PBM气泡监测系统获得的实验结果可以有效地帮助优化气泡工艺、控制过程参数以及排查过程故障。PBM气泡监测系统可以被安装到各种应用场合,包括实验室小型浮选柱、工厂级别大型浮选机、各类浮选柱等。每秒钟获得的图片包含成百上千个气泡,提供的是有代表性的测试结果。用实时相机可视化观察晶体及颗粒悬浮液(可放大、暂停等)。图像实时分析,帮助下一步过程提供决策信息。在线监测(直接在样品溶液体系中测试),并实时提供气泡及颗粒的粒度、粒径、形状等。节约时间,降低劳动力成本,提高生产效率。PIXCELL测试流通管多安装在生产过程管线或专门的采样管线上。当悬浮体系流过流通池,流通池上的成像装置实时获取悬浮体系的颗粒图像。用户可以根据实际需求选择不同尺寸、不同长度、不同安装法兰的PIXCELL流通池,我们也可以根据客户的需求提供定制服务。PIXSCOPE测试探头PIXSCOPE探头大多安装在反应釜和反应罐中。探头的所有光学组件,包括:相机、光学镜片和照明系统都经过选择和优化,以确保最优的图像质量,甚至是在暗黑和超浓悬浮体系中也可以得到理想的测试结果。PIXSCOPE探头采用模块化设计,具有灵活的安装机制,我们提供不同的探头直径、长度、安装法兰等供用户选择,适用于烧杯、小型反应釜、中试反应釜、车间反应釜等多种不同场合。探头顶端浸入溶液体系中,液体流过探头顶端的测试狭缝时,通过透射照明的方式拍摄体系图像。PBS气泡尺寸监测系统近年来,随着计算机技术的发展,国内外选矿厂的自动化程度越来越高,选矿厂的检测与控制系统也要求实现稳定控制、监督控制、最优控制。浮选过程控制的主要目标是保持合格的最终精矿品位、尽量提升有用成分的回收率、减少药剂消耗和提高浮选效率。浮选过程控制的主要因素包括:药剂的加药量、基于泡沫信息的综合检测分析技术、浮选矿浆pH值、浮选槽液位、充气量等。浮选过程中要添加的药剂主要有:捕收剂、起泡剂和调整剂。目前,浮选系统的加药还是以人工为主,人工加药难免会造成较大误差和药剂浪费,达不到精准加药,国内外的选矿厂都在研究自动加药系统,以期实现高精度的药剂自动添加。浮选泡沫体是由大量的大小不一、形状各异、灰度值不同的矿化气泡组成的,包含大量与浮选过程变量及浮选结果有关的信息,浮选泡沫图像采集和处理技术在浮选过程控制上的应用,显著地提高了工艺指标和自动化程度。PBS气泡尺寸监测系统是基于以上两个技术难点和检测要求应运而生的,在PBM气泡监测系统的基础上增加了自动进样系统和自控系统,测试结果可用于表征浮选机的刮泡量、判断所给药剂量是否合适、评定精矿的品味和回收率,该系统已在矿物浮选领域有成熟应用。PBS气泡尺寸监测系统的测试结果包括:气泡/泡沫图像和亮度气泡/泡沫数量气泡/泡沫浓度气泡/泡沫流动速度气泡/泡沫粒度分布(平均粒径、累计分布(D10、D50、D90等))气泡/泡沫粒度变化趋势气泡/泡沫稳定性
  • BT-1800型动态图像颗粒分析系统研制成功
    经过近一年的研究和实验,丹东百特仪器有限公司成功解决了流动样品窗、循环与分散系统、快速图像拍摄、快速图像分析等方面的技术难题,研制成功了 BT-1800型动态图像颗粒分析系统。该系统包括光学显微镜、高速摄象机、流动样品窗、循环分散系统以及软件系统等。经过测试,系统分辨率和分析精度完全达到静态图像颗粒分析系统的水平,并具有分析速度快,操作简便,准确性和重复性好等特点。BT-1800型动态图像颗粒分析系统的研制成功,有效解决了窄分布粉体材料(如研磨材料、墨粉、高档铝粉等)的粒度测试难题,将图像颗粒分析技术又提高到了一个新水平。
  • 济南微纳亮相IPB2020 助力粉体粒度分析解决方案
    7月29日,由中国颗粒学会主办的IPB 2020第十八届中国国际粉体加工/散料输送展览会在上海世博展览馆隆重开幕,济南微纳颗粒仪器股份有限公司应邀参加。 IPB上海国际粉体展会是纽伦堡全球系列粉体展会的重要展会之一,始终致力于在中国粉体行业打造从材料加工改性到输送包装的完整产业链平台,不仅运用于化工、制药、食品工业的处理,更广泛应用于颜料染料,包装,采石,建筑,陶瓷等领域。这次粉体展涉及粉体的制备与合成、输送与储存、测量与控制、安全与环保以及颗粒分析与表征。 众所周知,原材料粉体的粒度分布会直接影响成品的性能,如在塑料或橡胶制品领域,填料的粒径大小和分布会直接影响到成品的力学性能,在染料或涂料领域,原材料的粒度分布直接影响到涂料的光学性能和流变性能,因此原材料粒径分布的控制与检测成为生产与生活中重要的课题。济南微纳作为粉体领域的粒度检测专家,专注于颗粒粒径检测技术的研发和激光粒度分析仪的制造,公司研发的干湿激光粒度仪、纳米粒度仪、喷雾粒度仪、图像粒度仪、在线粒度监测系统等可对微纳米颗粒、乳液、固体粉末、溶剂、混悬液、粉雾、水雾、油雾、气雾颗粒的粒径分布进行检测,还可对颗粒的粒形粒貌进行分析,济南微纳专注颗粒测试分析技术30多年,助力粉体颗粒粒度分析提供解决方案。 本次展会济南微纳展出光子相关纳米激光粒度仪Winner803、医药型喷雾激光粒度仪Winner311XP,湿法激光粒度分布仪Winner2000ZD和干湿两用激光粒度分布仪Winner2309。作为技术创新的纳米粒度仪,Winner803有效解决了具有吸光属性样品的粒度测试难题,受到现场客户的一致好评。 度万物之微,纳四海之阔。微纳坚持技术研发为主导,不断创新为宗旨,广泛开展产学研,与多所高校保持技术研发合作关系,不断提升自身品质,为颗粒测试技术的发展贡献自己的力量,为国产仪器的振兴添光增彩。
  • 中国颗粒学会微纳气泡专业委员会2021年年会在美丽的常州盛大召开
    中国颗粒学会微纳气泡专业委员会于2018年10月18日在苏州成立,微纳米气泡研究和应用是近二十年来新兴的研究领域。专委会的成立旨在加强微纳气泡基础研究和应用之间的深入交流和合作,推动微纳气泡领域在环境、农业、生物、健康、浮选、分离等领域的发展。目前专委会已批准成立了7个示范性基地。2021年10月22~25日,我们在美丽的常州西太湖再度相约、遇见泡泡,大会聚集了国内一批勇于钻研、乐于分享、兴趣浓厚的科学家、工程师和企业家们,共同探讨“如何利用微纳米气泡更好地造福人类而不懈努力”! 会议期间,中国颗粒学会微纳气泡专委会秘书长李兆军研究员发表致辞;中国科学院上海高等研究院胡钧研究员分析了2020-2021微纳气泡领域的研究进展;哈尔滨工业大学马军院士带来了微气泡在水质强化处理中的若干应用研究进展;常州大学冯胜教授、中国科学院上海高等研究院张立娟研究员、同济大学李攀副教授等微纳气泡领域的专家们做了精彩报告,并现场回答了参会者们提出的研究过程中遇到的问题,学术氛围浓厚。 北京海菲尔格科技有限公司作为此次会议的赞助商,在会议现场展示了PIXSCOPE浸入式探头和PIXCELL流通管两个规格的PBM微气泡监测系统,并做了现场演示。参会的各位专家学者聚集到海菲尔格展台,询问PBM微气泡监测系统的原理,详细了解我们展示的微气泡监测系统,对PBM的高分辨率的成像效果以及强大的数据分析处理能力赞叹不已。北京海菲尔格科技有限公司技术经理唐远旺做了“PIXACT气泡图像及颗粒度原位在线实时检测最新进展”的报告,惊艳全场!专家学者们纷纷提问,感谢海菲尔格科技将如此高端的PBM微气泡监测系统引入中国,PBM是我们微气泡研究过程中的眼睛,可以为微纳气泡的研究带来更多有价值的信息! PBM微气泡监测系统是为工业过程中在线分析气泡悬浮液和泡沫体系而专门设计,可以实时监测到:气泡计数、气泡浓度、气泡流动速度、气泡尺寸分部、平均气泡尺寸(长度平均直径、面积平均直径、体积平均直径)、标准偏差、索特平均直径、累积分布(D10、D50、D90等),是引领微纳气泡研究的新航标。微纳米气泡在基础研究和工业应用中展现出诸多新颖的特性,从而在污水处理、农业生产、水产养殖、工业清洗、医学成像、矿物浮选、泡沫分离以及医疗健康等方面迅猛发展。北京海菲尔格科技有限公司专注于PBM微气泡监测系统等在线实时测试技术的应用和推广,会为中国的微气泡行业发展贡献自己的力量!
  • 济南微纳颗粒参加2018印度国际粉体工业及散装技术展
    2018年10月11-13日,印度国际粉体工业及散装技术展在印度孟买会展中心拉开帷幕,济南微纳颗粒仪器股份有限公司应邀参展. 三天的展会时间里,微纳展台前的客户始终络绎不绝,大家争相参观此次展会微纳带去的Winner2000系列湿法激光粒度分析仪,作为经济普及型产品,Winner2000系列湿法激光粒度仪的性价比极高,历经十八年的考验,经过数次技术改进,量程精确,性能成熟,使用寿命长达十几年,正好符合印度等新兴市场不同企业的粒度测试需求。 在颗粒粒度测试领域,参加此次展会除了济南微纳外,还有新帕泰克跟马尔文,新帕泰克有限公司的Ulrich Kesten博士跟马尔文的印度大区负责人都到微纳展台参观并与微纳颗粒国际贸易部冯经理跟刘经理合影留念。 微纳颗粒将再接再厉,为全球客户提供更贴心的服务。
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 瑞士华嘉动态颗粒图像分析技术问世
    2009年,新年伊始,挪威安娜泰克有限公司(AnaTec AS,Norway)发布了其最新的动态颗粒图像分析技术,三维图像动态识别专利(3D images),并携带其主打产品,FPA颗粒图像分析仪及DustMon粉尘浓度测量仪,在中国各主要城市进行了为期一周的巡回展示,得到了相关应用领域专家的一致好评。   Mr. Terje Jorgensen,安娜泰克有限公司执行总裁,全程参与了瑞士华嘉有限公司为该产品在中国首发的一系列市场活动。作为一种全新的动态颗粒图像分析技术,安娜泰克公司采用了比常规动态图像分析方法更为先进的3D images(三维图像动态识别)专利,能实时区分同一颗粒在不同影像位置时的几何形态,配合多种高效快捷的全自动取/进样器,被测样品量大,能真正得到极具代表性的颗粒图像分析结果。   二十多年来,挪威安娜泰克有限公司一直致力于在线及实验室用颗粒图像分析技术的研究与生产,开发出一系列针对不同应用领域的高性能图像分析仪器。前身为Norsk Hydro集团(全球500强公司之一)的研发机构,安娜泰克以其在诸多工业应用领域成熟的技术平台,能够为终端客户量身定制,提供颗粒图像分析的全套解决方案,包括硬件配置,软件设计,系统安装,技术支持及反馈。安娜泰克的所有产品结构牢固,操作简单(兼容LIMS系统),在建筑材料,食品工业,矿物加工,制药原料,石油石化等领域有着广泛的应用前景。
  • 重庆大学预算783万元采购纳米颗粒跟踪分析仪等仪器设备
    项目编号:CQU-SS-HW-2023-003   项目名称:重庆大学医学公共实验中心实验设备(Ⅱ)采购   预算金额:783.0000000 万元(人民币)   最高限价(如有):729.0000000 万元(人民币)   采购需求:序号产品名称(设备名称)※数量单位备注1细胞能量代谢分析仪1套(核心产品)该设备经批准可以采购进口产品2纳米颗粒跟踪分析仪1套(核心产品)该设备经批准可以采购进口产品3活细胞工作站1套该设备经批准可以采购进口产品4大容量落地式离心机1套该设备经批准可以采购进口产品5大型灭菌器1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。6组合式全温振荡培养箱1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。   技术需求:序号设备名称技术需求1细胞能量代谢分析仪▲1.1平行检测样品量:一次可满足≥20个样品的平行检测;1.2数据采集:可在同一孔同时检测线粒体功能与无氧代谢,即时反应样本生理状态变化;1.3采用超敏感的惰性光学微传感器和非接触式设计,真正实现检测样本零损伤,在最接近样本的真实状态下,测量出反映样本能量代谢情况的动态数据;1.4实时多因子参数检测:同时分析02/H+,得到实时OCR/ECAR值,侦测有氧与无氧代谢途径;1.5可检测项目:基础代谢率、极限呼吸率、呼吸储备能力、质子漏水平、产氧自由基等有害物的情况等参数;1.6探针类型:检测探针为固态荧光探针,两种独立反应底物;※1.7检测器:配有≥20个独立的光电二极管检测器;1.8传感器:传感器为独立于每个孔的固态光纤传感器;※1.9自动加药槽:每个样品孔配有≥3通道自动加药槽,可按需设定加药程序;※1.10可在实验进程中加药,可调的混合系统,气体驱动的药物传递,自动混匀。整合了自动化药物注入系统,实验进程中可定时定量加入≥3种不同药物。2纳米颗粒跟踪分析仪2.1设备需要满足功能要求:2.1.1在主机内集成了高灵敏度传感器,温控单元以及不同波长的激光选择。便于移动、清洁,适合高通量检测;2.1.2采用整体设计,具有荧光增强检测能力。可以对于悬浮体系中的纳米颗粒进行粒径、散射光强、计数、zeta电位和荧光检测。检测能力使其在蛋白质团聚,外泌体、微泡、药物传递等领域具有广泛的应用。还可以利用荧光标定特定颗粒,单独对这些颗粒检测,而不受到复杂环境的影响;※2.1.3必须具备zeta电位测试功能。2.2技术指标:2.2.1粒径检测范围:0.01-2微米;※2.2.2浓度检测范围:106-109粒子/mL;2.2.3具有单个颗粒跟踪功能的激光散射视频技术,自动准直和自动聚焦;※2.2.4激光光源:双激光一体化配置,软件控制激光选择,无需拆卸;※2.2.5激光光源和相机同步移动,可自动测量样品至少10个测量位置达到有效统计点;2.2.6在1分钟内至少可测量样品1000个以上的颗粒,保证样品数据采集的有效性;※2.2.7仪器具备荧光测量功能,不同位置点的测量必须具有快速测试模式,在荧光淬灭前测量到样品10个不同位置的荧光数据;2.2.8光学系统:高灵敏度的CMOS相机,相机速度25fps;※2.2.9测量池必须是石英玻璃测量池,插入式设计,无需拆卸即可自动冲洗;2.2.10激光光源和检测器的位置必须全自动调节,无需人工操作;※2.2.11 Zeta电位测量范围:-400mV—400mV;2.2.12自动提示样品浓度与相机设定的匹配程度;※2.2.13可自动判断数据可靠性,并给出离散原因;2.2.14软件功能:提供布朗运动可视视频,提供平均粒径和分布宽度参数,提供颗粒浓度信息,提供粒径-数量分布和体积分布曲线,提供 Zeta 电位分布,可以在不同粒径范围进行分段计算,提供颗粒分布累积曲线,数据管理:可视频、文本、PDF、单一或叠加输出。3活细胞工作站※3.1系统包括高分辨荧光显微镜成像模块和活细胞培养模块,可通过电脑调用预设实验程序自动进行成像实验。3.2全电动荧光高分辨成像系统:3.2.1研究级全自动倒置荧光显微镜,可具备明场、荧光、相差、彩色明场成像功能;▲3.2.2相差具有立体浮雕效果,兼容塑料底耗材;3.2.3电动载物台,XY行程≥114mm×73mm;▲3.2.4物镜:至少四个,其中高倍物镜为水镜,NA≥1.2,可以自动添加水;3.2.5配有防震台;▲3.2.6配备硬件自适应焦面控制系统,兼容明场和荧光,可实现自动样品寻找和焦面寻找,并且可以在活细胞实验中维持焦平面的稳定;3.2.7机身预留灌流接口,可外置灌流系统;3.2.8配有用于76×26mm玻片、多孔板、35mm培养皿、腔室载玻片的适配器;※3.2.9拥有至少4色激发光,能同时激发DAPI,GFP,RFP,CY5等染料;※3.2.10至少配置4个高灵敏度荧光检测器,并可以4个通道同时成像;※3.2.11配备实时高分辨成像技术,最佳光学分辨率XY≤140nm;※3.2.12分辨率不低于400万像素条件下,同时4色成像速度≥20fps;▲3.2.13 4个荧光检测器QE量子效率:≥45%。※3.3环境控制模块:通过成像软件进行环境控制,温度、CO2控制及湿度控制均可由系统软件实现。3.4电脑工作站与软件系统:▲3.4.1电脑主机一台:处理器:不低于Intel Xeon Gold 5222;内存≥128GB,硬盘≥10TB;独立显卡≥8GB;显示器:≥32寸高对比度广视角液晶显示器,Win10专业版操作系统;含DVD刻录光驱;3.4.2配置UPS不间断电源一台;▲3.4.3软件功能:灵活的实验设计功能,可以针对实验需求灵活设置实验参数和自动化实验流程;多维图像成像功能,控制显微镜进行Time-lapse拍摄、多点拍摄、细胞跟踪、Z轴整合、自动对焦、样品的三维重建;图像处理和分析工具:包括可进行蛋白表达的定量分析、共定位分析、细胞内目标观测物的定量测定、动态示踪、量化参数列表和运动趋势/模式作图和视频制作等;3.4.4仪器可为后续信息化和智能化管理预留接口。4大容量落地式离心机※4.1最高转速不低于:29,000rpm,最大离心力不低于:100,605×g,最大容量≥4,000mL;▲4.2转速控制精度不高于:±50rpm;4.3具备密码保护功能;▲4.4程序保存不低于:99个;▲4.5加速至少可设定档位:9档,减速至少可设定档位:10档;4.6热输出<2.0kw,噪音<62dB;※4.7控制系统:微电脑控制,可简单快捷设定运行条件和运行参数,触摸屏液晶显示界面;4.8驱动系统:能有效降低升降速时间;▲4.9运行监测:实时显示运行曲线图,动态惯量检测功能,提高运行中的安全性;4.10转头识别与锁定:自动识别,自动锁定,具备转头管理功能,提高操作安全性;4.11温度设定范围:-20至+40℃,温度步升±1℃,温度精准度±2℃,最高转速下可保持4℃;※4.12安全系统:门互锁,对位不平衡检测(容忍度5%),超速和超温保护。5大型灭菌器▲5.1执行标准:中国标准GB8599;※5.2基本需求:采用脉动真空灭菌技术,300L≤容积≤400L,提供压力容器质量证明书、竣工图证明;▲5.3设计压力至少:0.25Mpa(-0.1),设计温度至少:139℃;▲5.4设计年限至少:8年(16000次灭菌循环);▲5.5运行时间:85min;※5.6程序最少包含:121℃塑料物品灭菌、134℃金属物品灭菌、134℃织物灭菌、121℃开口容器液体灭菌、121℃固体废弃物灭菌、121℃快速液体程序、BD测试、真空测试、自定义程序;5.7外形尺寸:尺寸1:1215×1880×1190mm;5.8夹套、门板、门档材质:304不锈钢或同类型档次材质;5.9管路:304不锈钢或同类型档次材质卫生级管路,卡箍连接;▲5.10工艺:至少满足手工焊接、无下沉工艺水平;5.11安装方式:地上安装;5.12主体结构:环形加强筋结构,内腔强度和稳定性更高;▲5.13生产厂家至少为:专业灭菌设备生产厂家,国家认定的企业技术中心,通过ISO9001、ISO13485、环境管理体系、职业健康安全管理体系认证,并提供相应证明;※5.14安全性能:压力容器安全联锁装置、超压自动泄放功能、夹套、内室各1个安全阀、漏电过载保护、经过电磁兼容检测。6组合式全温振荡培养箱6.1外形尺寸:一层、二层或三层叠加组合,以最小的占地面积为用户提供最大的使用空间;6.2三维一体的偏三轮驱动,运转平滑、稳定、耐久、可靠;▲6.3具有超温报警功能及异常情况自动断电功能;▲6.4具有断电恢复功能,避免因停电、死机而造成的数据丢失问题;6.5流线型外观,美观大方;内衬采用圆弧角镜面不锈钢设计,便于清洁,不容易滋生细菌、防腐蚀;外壳采用静电喷塑;▲6.6中空钢化玻璃门,方便随时在不开门情况下在各个角度观察箱体内部情况;6.7人性化设计,下两层为下翻式开门,第三层为上翻式开门,摇板可自由抽出,方便装卸摇瓶,每层可独立控制,各层可在不同温度转速下同时运转或根据需要运行一层、两层或三层;▲6.8精选优质进口压缩机、无氟环保制冷剂,噪音低、制冷效果好,确保设备在低温状态下长时间稳定运行;6.9配备滤波器磁环,减少外界和自身对机器稳定性的干扰;6.10人性化设计的开门即停功能,使用更加安全快捷;※6.11具有紫外线灭菌功能;▲6.12产品升级方案:可选配光照系统,光照强度可高达16000LX,高效节能,光效率高,1%—100%步进1%可调(1%、2%、3%—100%)使用寿命超长(可升级多种光源);6.13拥有数据记录功能,每分钟记录一次数据,可记录近三个月的数据,并且可显示温度、速度曲线,方便数据的分析;▲6.14配备高质伺服电机,控制速度精确、高速性能好、稳定性强;6.15特殊的制冷工艺,制冷量可调节,温度控制更加精准;▲6.16独特定时除霜功能,1—89分钟可自由设定,除霜间隔30—600分钟可调,能确保长时间在低温状态下运行时蒸发器不结冰;※6.17 LCD触摸屏,设定温度、转速、时间和实测温度、转速、剩余时间在同一界面显示,不用相互切换界面,观察更直观;6.18操作界面加密锁定功能,杜绝重复操作和人为误操作;可自由设定摇板正转或反转;强制对流的风扇常开或自动;※6.19振荡频率:可到达300rpm;※6.20温控范围:5~60℃;※6.21恒温精度:±0.5℃;※6.22温度均匀度:±0.8℃。   设备配置清单:序号设备及配件名称数量单位1细胞能量代谢分析仪1套1.1细胞能量代谢分析仪主机1台1.2数据处理和控制工作站(内置操作及分析软件一套)1套1.3微孔板套装(每套含6个探针板,10个细胞培养微孔板)2套1.4实时ATP速率测定试剂盒(6包/套)1套1.5细胞线粒体压力测试试剂盒(6包/套)1套2纳米颗粒跟踪分析仪1套2.1纳米颗粒跟踪分析仪主机(包含双激光模块,zeta电位模块和CMOS相机)1台2.2石英测量池1个2.3长通荧光滤光片1套2.4测量分析软件1套2.5标准样品1个2.6控制及数据采集系统1套3活细胞工作站1套3.1全自动活细胞显微成像系统主机,含全套适配器1台3.2采集与分析软件1套3.3计算机工作站1套3.4防震台1个3.5电脑桌2个3.6UPS不间断电源保护1个3.7除湿器2台3.8数据分析用电脑(含免费版软件、刻录光盘)1台3.9共聚焦皿1箱4大容量落地式离心机1套4.1离心机主机1台4.28×50mL定角转头,最高转速≥25,000rpm,最大相对离心力≥75,000×g1个4.34×1000mL定角转头,最高转速≥9,000rpm,最大离心力≥16,000×g1个4.450mL聚丙烯(PP)离心瓶≥50个4.510mL离心瓶≥50个4.61000mL聚碳酸酯(PC)离心瓶≥12个4.7250/500mL聚碳酸酯(PC)离心瓶≥12个4.810mL适配器8个4.9250/500mL适配器4个5大型灭菌器1套5.1大型灭菌器(设备包含压缩气、软化水等配套设备)1套6组合式全温振荡培养箱1套6.1三层组合式全温振荡培养箱1套   合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。   本项目( 不接受 )联合体投标。   获取招标文件   时间:2023年01月30日 至 2023年02月06日,每天上午9:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)   地点:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   方式:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   售价:¥0.0 元,本公告包含的招标文件售价总和   提交投标文件截止时间、开标时间和地点   提交投标文件截止时间:2023年02月20日 09点30分(北京时间)   开标时间:2023年02月20日 09点30分(北京时间)   地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)
  • 新帕泰克:“与众不同”的颗粒分析“先锋”——访德国新帕泰克有限公司总裁Stephan Rö thele博士
    目前,大约有15家国外知名颗粒测试仪器制造商活跃在中国市场中,德国新帕泰克有限公司正是先锋之一。成立于1984年的新帕泰克公司,是从以粉体研究而闻名世界的克劳斯塔尔工业大学(Technical University of Clausthal,TUC)中分出来的,经过27年的发展,现已成为一家集研发设计、生产和销售各种粒度粒形检测技术和产品的知名公司。   与马尔文、贝克曼库尔特相比,新帕泰克公司的市场占有率似乎并不高,但是自2004年进入中国市场以来,新帕泰克公司却凭借“与众不同”的经营战略、精湛的专利技术、德国产品特有的品质赢得了众多中国用户的青睐,而中国也已经成为其全球最重要的市场之一。   日前,在新帕泰克公司北京办事处开业典礼上,仪器信息网编辑(以下简称:Instrument)采访了德国新帕泰克有限公司总裁Stephan Rö thele博士,请其就新帕泰克公司的“与众不同”之处一一作了解答;在采访过程中,德国新帕泰克有限公司全球销售总监Ulrich Kesten博士、首席代表耿建芳博士全程陪同。 德国新帕泰克有限公司总裁Stephan Rö thele博士 公司发展战略“与众不同”:新帕泰克只做最好   Instrument:请介绍一下德国新帕泰克公司的发展历程以及目前全球总体发展情况?   Stephan Rö thele博士:20世纪80年代,我师从克劳斯塔尔工业大学Leschonski教授,共同开发出一种干粉分散测试技术;该技术是通过压缩气体把团聚在一起的小到0.1微米的超细粉分散开来(也就是众所周知的RODOS),但最初仅被应用于提高分级效率。后来,我们很快也意识到将该技术与激光技术(HELOS)结合可开发出干法激光粒度仪,于是,我们在1984年成立了德国新帕泰克有限公司,并为该项先进的分散技术申请了专利,将其应用在粒度粒形分析测试领域。   当时,我们是世界上第四家的颗粒测试仪器公司,但因为其他3家颗粒测试仪器公司全部采用湿法测试技术,所以新帕泰克公司是世界上第一家干法测试粒度仪公司。经过27年的发展,新帕泰克公司现在已经成为一家世界型的公司,提供全范围的粒度粒形检测仪器 此外还在颗粒测试的标准制定方面也取得了巨大成就,新帕泰克公司是首部国际激光粒度仪制造标准ISO13320、超声衰减粒度仪制造标准ISO20998主要技术内容的制定者。   Instrument:新帕泰克公司在中国的发展情况如何?中国市场在贵公司全球市场中处于怎样的地位?   Stephan Rö thele博士:新帕泰克公司在2004年进入中国,进入时间比较晚,但是新帕泰克公司中国市场一直保持着强劲的增长速度,每年的销售成绩都比我们预想的要高50%。从产值角度而言,目前中国市场占新帕泰克公司总产值还不到15%,但我相信在未来3年内新帕泰克公司在中国市场的产值将会翻倍。   Instrument:面对严峻的颗粒测试仪器市场环境,贵公司如何“独辟蹊径”求得突破?   Stephan Rö thele博士:的确,当前的市场竞争很激烈,同行都在争当行业“领头羊”;但新帕泰克公司有着与众不同的发展战略——我们不求做业内最大的公司,但一定要做业内最好的公司。   新帕泰克公司从不随波逐流,一直坚持技术创新,但创新并不等同于标新立异。就如同当初湿法分散技术盛行于粉体行业时,新帕泰克公司反而推出了更具应用前景的干法分散技术,而这项技术也最终被广大用户与竞争对手认可。简单来说,新帕泰克公司专注于研发颗粒在不同波长激光下的衍射反应,这是一种很基础的研究开发工作,但是只有做到产品的技术创新与品质提升,才会顺利打开更大、更多的市场,拥有更好的口碑与更忠实的用户。 新帕泰克公司德国总部 产品研发方向“与众不同”:适应不同特性的粉体测试需求   Instrument:贵公司以研究开发见长,那么贵公司的产品研发理念有何与众不同之处?   Stephan Rö thele博士:新帕泰克公司的理念是“BETTER Particles with BEST Instruments”,“BETTER Particles”是指颗粒体系,如客户生产的粉体产品,而我们的使命就是为客户提供“BEST instruments”,意指最适合于客户不同特性粉体样品的测试仪器,这就是我们不同于其他颗粒测试仪器制造商之处,他们是“Instrument Maker”,专注于销售与市场占有,而我们是“The Particle People”,对颗粒体系具有更深更专业的理解与认识,我们更加专注于提供最好的颗粒分析解决方案。   基于此,新帕泰克公司在产品的研发方面也是下足了功夫,我们的研发部门是公司最大的部门,拥有近30位的高学历研发人员。迄今为止,新帕泰克公司已成功推出世界第一台将干/湿法分散系统和图像分析系统结合的快速动态粒度粒形分析仪、世界第一台超声衰减粒度仪、世界第一台光子交叉相关光谱(PCCS)纳米粒度仪等。首次将专利干法分散系统RODOS和激光系统HELOS相结合,推出了集干法分散和颗粒测试于一体的激光粒度仪,被全球粉体工程界誉为颗粒测试领域的“突破性创新”,这一切都是新帕泰克公司27年来不断努力的结果和见证。 德国新帕泰克有限公司首席代表耿建芳博士   耿建芳博士:新帕泰克公司发源地为高等大学的研究机构,因此更为注重技术的开发,自始至终我们都认为用户的产品是主体,我们的仪器只是副体,因此,新帕泰克公司从被测粉体产品本身出发,推出了一系列适合粉体检测的技术与仪器。   Instrument:作为“精耕一方”的颗粒分析“先锋”,贵公司的主要产品架构是怎样的?   Stephan Rö thele博士:基于上述理念,经过27年粉体研究方面的专业知识和多年的实践经验的积累,新帕泰克公司目前拥有4种基于不同原理的粒度粒形检测仪:基于静态光散射理论的激光粒度仪HELOS、基于成像原理的快速动态图像分析仪QICPIC、基于超声衰减原理的湿法粒度仪OPUS、基于光子交叉相关光谱(PCCS)原理的纳米激光粒度仪NANOPHOX,这使新帕泰克公司可以为用户提供全方面的颗粒测试解决方案,无论是从实验室到工业在线,还是从干法到湿法,新帕泰克公司颗粒测试产品可以在水泥工业、磁性材料、石油化工、金属冶金、食品生产等各个行业派上大用场。 HELOS/OASIS全自动干湿二合一激光粒度仪 OPUS湿法在线粒度检测系统 市场展望“与众不同”:4大测试技术与市场均有很大发展空间   Instrument:作为新帕泰克公司高层,您如何看待贵公司的市场表现?   Stephan Rö thele博士:以新帕泰克公司最经典的HELOS系列为例,RODOS是一项突破性的创新产品。但正是因为其创新性,在HELOS系列推出的最初5年市场拓展工作比较困难,用户也很难接受这种“前所未见”新产品;但慢慢地我们的竞争对手也尝试复制干法分散系统的先驱RODOS—值得思考的是,为什么他们要仿制竞争对手的创新甚至还是较少应用的产品,而不使用原始的又有大量应用的产品呢—这时,用户已注意到了新帕泰克公司推出HELOS干法产品系列,因此干法颗粒测试市场也就此打开。   Ulrich Kesten博士:若按业务领域来分,新帕泰克公司的主营业务可以分为实验室与在线两部分。实验室部分是指在实验室进行质量检测与控制;在线部分是指在工艺过程中的生产控制。目前,新帕泰克公司的实验室业务所占份额居多,但近几年在线业务的发展势头很快,凭借我们的领先技术与优质产品,相信新帕泰克公司的在线业务将会占领更多的市场份额,实验室业务也将扩展更多的市场与应用。 德国新帕泰克有限公司全球销售总监Ulrich Kesten博士   Instrument:请谈谈粒度分析技术与市场的发展现状以及今后走向?   Stephan Rö thele博士:就新帕泰克公司本身拥有的4种粒度分析技术而言,我认为其都有很大的提升空间,只是提升程度不一。其中,激光衍射技术已有50多年的发展历史,目前仍旧不断取得突破 超声衰减技术的发展历程为30年,还拥有相当大的发展空间;而图像分析技术的发展历史仅仅才20年左右,目前正处于技术进展过程中的上升阶段,未来前景巨大;而动态光散射技术则是这4类技术中最新的一种新技术,可以为用户提供更为丰富的信息,需要足够的时间去开发更多的应用。如我先前所讲,我们想要生产经典的仪器,也就是我们只考虑具有100年或更多生命周期的技术。   至于哪种技术更具发展前景,这很难简单地下定论,一种技术的发展前景主要取决于用户需求与相关技术的进步。但总的来说,我认为这4种颗粒分析技术还有很大提升空间,也都具有至少100年的生命周期。   技术的提升空间也决定了仪器的市场前景,因此,静态激光粒度仪、超声衰减粒度仪、快速动态图像分析仪以及纳米粒度仪也将会有很好的市场前景。静态激光粒度仪技术方面已趋成熟,但产品的质量与性能还有很大的提升空间,作为一家德国仪器制造公司,我们非常注重提升产品的品质;此外,图像分析仪的市场容量也非常有前景,并与静态激光粒度仪有一定交错融合,但并不能因此而断言哪一种仪器需求更为巨大;至于纳米粒度仪是一种比较新型的产品,应用领域还有待开发,但其市场空间不容小觑。因此,我看好每一块市场,只要产品的价值在那里,我就相信新帕泰克公司就会在这一方面有所突破。 采访现场   后记:   在采访过程中,Stephan Rö thele博士多次向笔者强调了新帕泰克公司的“与众不同”之处,例如:   在众多仪器公司纷纷争做业内“最大”的时候,新帕泰克公司却转而向“最好”努力,同时,Stephan Rö thele博士表示,由于做“最大”不是公司的目标,并不考虑对其它公司的收购;我们要做最好,也表示我们拒绝被任何形式的收购。新帕泰克公司会始终坚持通过自身最大的努力研发最好的技术、推出高性能的产品,为用户提供“最高的品质”。   即使业内同行纷纷认为静态激光粒度仪市场容量已趋饱和,新帕泰克公司却坚持认为市场空间仍可扩展,数量趋于饱和,亦可在仪器品质上下功夫,这倒是验证了“德国产品精于品质”的说法。Stephan Rö thele博士对此解释到,随着样品测试需求的提升与增多,用户对仪器品质的需求也随即迅速增加,而新帕泰克公司一直坚持在技术创新的同时,也要保证产品品质的优良。   采访编辑:刘玉兰   附录1:Stephan Rö thele博士个人简介 教育经历 1966-1971 德国卡尔斯鲁厄理工学院:主修机械加工工程专业 1971-1972 德国卡尔斯鲁厄理工学院 合作研究中心62:Hans Rumpf教授助教 工作经历 1972-1977 德国克劳斯塔尔工业大学 机械加工工程学院:Kurt Leschonski教授首席工程师 1984 与立达控股公司(CH) 和Leschonski 教授在Remlingen合作成立“Sympatec – System-Partikel-Technik GmbH“(新帕泰克公司) 1987 管理收购新帕泰克与立达股份 1988至今 新帕泰克总裁兼总经理,负责新帕泰克德国、瑞士、荷兰、瑞典、美国、英国、法国、中国、韩国、印度和俄罗斯 2002-2004 在德国Clausthal-Zellerfeld创办新帕泰克总部: "Pulverhaus" –颗粒技术研发中心 荣誉 1985 干粉分散系统(RODOS)的发明荣获:德国Braunschweig商会Technology Transfer Award 1986 在线粒度分析(HELOS,RODOS,ROPRON)的创新应用荣获: 德国联邦教育与研究部Technology Transfer Award 2005 在颗粒测试技术开发领域杰出的创造性成果被授予:德国克劳斯塔尔工业大学名誉博士 2010 荣获“Cross of the Order of Merit of the Federal Republic of Germany“ 2011 荣获德国下萨克森州Foreign Trade Award of Niedersachsen Global GmbH 专利与论文 12项 专利 40篇 科学论文, 全部专注于颗粒技术,如干法分散、干法分级、颗粒处理、粒度分析   附录2:德国新帕泰克有限公司   www.sympatec.com   http://sympatec.instrument.com.cn/
  • “微纳颗粒”在新三板挂牌上市
    现今,上市对企业自身具有全方位的提升效应。首先中小企业进入资本市场,表明此企业的成长性、市场潜力和发展前景得到了承认,这本身就是荣誉的象征。在经营资本方面,上市改良了融资途径,有利于提高股份的流动性,完善企业的资本结构,增强企业的发展后劲。此外上市后会进一步完善企业治理,夯实基础管理、实现规范发展。最后上市对企业的品牌建设作用巨大。有利于树立企业品牌,改善企业形象,更为有效的开阔市场。 济南微纳颗粒仪器股份有限公司是集研发、生产、销售颗粒测试相关仪器设备于一体的高新技术企业。公司的前身为山东建材学院颗粒测试研究所,研究激光粒度测试技术自1982年承担国家七五科技攻关项目开始,至今已有30余年的历史。多年来微纳颗粒一直以“发展与普及当代最先进的颗粒测试技术”为己任,以先进的科技实力及过硬的产品质量,为高校科研院所及各行业提供技术支持与服务,获得了广大用户的好评。 为追求公司的长远战略,实现更大空间的跨越式发展,在山东省济南市和高新区政府的大力支持下,我公司于2011年完成了股份制公司改制,2013年通过新三板上市评估流程。2014年作为中国颗粒测试行业的第一支股票,证监会核定我公司证券名称为:“微纳颗粒”,证券代码为:430410,并定于元月24日在北京《全国中小企业股份转让系统》进行上市挂牌。 值此新年万象更新, “微纳颗粒”挂牌上市之际,我们诚挚的感谢领导、专家、企业、朋友多年来对“微纳颗粒”的长期支持与厚爱。微纳颗粒公司将秉承自身作为中国颗粒测试技术的领航者的职责,再接再厉以引领国内颗粒测试行业的新技术开发为己任。继续为中国粒度测试技术赶超世界一流水平做出不懈努力。
  • 千人大会精彩预告:超微及纳米颗粒分析表征技术百花齐放
    随着纳米科技的迅猛发展,超微及纳米颗粒在材料科学、生物医学、环境科学等领域展现出巨大的应用潜力。然而,要充分发挥超微及纳米颗粒的潜能,离不开对其精准、高效的分析表征技术的支持。这些技术能够帮助科研人员深入理解纳米颗粒的结构、形貌、成分及性能,为纳米材料的设计、合成及优化提供坚实的科学依据。为促进超微及纳米颗粒领域的研究与应用交流,推动纳米科技的创新与发展,仪器信息网联合中国颗粒学会将于2024年7月23-24日举办第五届“颗粒研究应用与检测分析”网络会议,特设“超微及纳米颗粒分析表征”专场。点击图片直达报名页面 会议特邀上海理工大学蔡小舒教授,国家纳米科学中心高级工程师郭玉婷、刘忍肖,以及HORIBA、丹东百特、安捷伦资深工程师,分享颗粒粒度、形貌、浓度、成分、Zeta电位等多元化表征技术及相关国家标准。上海理工大学教授 蔡小舒《纳米颗粒和微纳气泡的粒度、形貌和浓度测量新方法》(点击报名)蔡小舒教授研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、生命科学等测量方法、技术和应用的研究。先后负责了两机重大专项项目、973、863、国家自然科学基金重点项目、仪器重大专项项目和面上项目、科技部等纵向项目,欧共体项目、通用电气全球研发中心、日立估算研究中心、美国电力研究院和德国、捷克、波兰等大学的国际合作项目以及企业委托项目。发表论文200多篇,获发明专利20多项。 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等副理事长、常务理事、理事、理事长等,担任4个SCI刊物副主编、编委和多个国内学术刊物编委,多个国内外学术会议的名誉主席,主席等。纳米颗粒的粒度和形貌是表征纳米颗粒的最重要参数,也是纳米颗粒应用的最主要参数。对于不同的应用,对纳米颗粒的粒度和形貌有不同的要求。而对于微纳气泡,其粒度和数量浓度以及随时间变化等参数是最重要参数。在纳米颗粒的制备中,一些纳米颗粒的浓度非常高,对其进行稀释可能会影响体系的平衡,破坏了纳米颗粒的结构。为满足对纳米颗粒粒度和形貌表征,微纳气气泡的粒度和数量浓度测量的需要,以及直接测量高浓度纳米颗粒的要求,蔡小舒团队发展了图像动态光散射纳米颗粒粒度快速测量方法,偏振图像动态光散射纳米颗粒形貌及形貌分布测量方法,后向动态光散射高浓度纳米颗粒粒度测量方法和多波长消光法微纳米气泡粒度和数量浓度测量方法等。根据这些方法研制的仪器都采用笔记本电脑供电,可以方便携带到任何需要测量的场合进行测量。本报告将介绍这些测量新方法的原理,以及应用实例。HORIBA(中国)应用工程师 李倩《颗粒表征关键技术新进展》(点击报名)李倩现任HORIBA粒度产品应用工程师。主要负责粒度仪的方法开发以及技术支持,熟练掌握仪器特性及使用维护,为不同应用领域的粒径测试用户开发和优化粒径测试方法、提供解决方案,在半导体、能源、材料、环境、生命科学等多个领域积累了丰富的经验。颗粒表征对产品的研究开发和质量控制发挥着越来越重要的作用,如何根据需求和应用场景选择最合适的测量工具显得尤为重要。为了更好地帮助客户用颗粒表征结果指导自己的研究或生产,本次报告为大家介绍 HORIBA 颗粒表征技术以及相关产品的最新进展。丹东百特仪器有限公司产品总监 宁辉《动态光散射测试功能的延伸》(点击报名)宁辉博士为全国纳米技术标准化技术委员会委员,现任丹东百特仪器有限公司产品总监,具有十几年产品研发和产品应用的研究经历,是一位具有丰富实践经验的颗粒表征技术专家。对于纳米材料的相关应用具有较为深刻的理解。动态光散射技术是一种基于检测颗粒的布朗运动来获取样品的粒径信息的颗粒表征手段。基于传统的动态光散射技术,结合更多的光学和分离手段,可以拓展动态光散射的应用领域和检测能力。在这个报告中,宁辉将介绍动态光散射流动模式,进行高分辨率的粒径测试;窄带滤光片的应用及其对于荧光样品的测试,及其VV和VH模式对于各向异性样品的测试。国家纳米科学中心高级工程师 郭玉婷《单颗粒电感耦合等离子体质谱法检测纳米颗粒国家标准制定及应用研究》(点击报名)郭玉婷为中国科学院纳米标准与检测重点实验室高级工程师,全国标准化教育标准化工作组 (SAC/SWG27)委员,国际标准化组织纳米技术委员会(ISO/TC229)WG2和WG3工作组专家,从事纳米技术标准化及电感耦合等离子体质谱检测研究工作,主持制定六项国家标准,参编《纳米技术标准》书籍,发表多篇科技论文,参与两项国家重点研发计划和一项中科院战略性先导科技专项项目。随着纳米材料和纳米技术产品的广泛使用,纳米颗粒的检测成为纳米技术应用和潜在风险评估的重要环节。单颗粒电感耦合等离子体质谱法使用高时间分辨模式检测、分析速度快、所需样品少、颗粒浓度检出限低,可同时测量稀溶液中纳米颗粒的成分、粒径、粒径分布、数量浓度及溶解离子浓度等。郭玉婷所在实验室牵头制定了单颗粒ICP-MS检测水相中无机纳米颗粒的国家标准,开展了纳米产品和生物组织等复杂基质中纳米颗粒的检测研究。本报告将介绍国家标准内容,交流相关研究进展,以推广该方法在更多领域的应用。安捷伦科技(中国)有限公司工程师 董硕飞《应用单颗粒(sp)ICP-MS法对环境样品中的颗粒物进行定量检测》(点击报名)董硕飞为安捷伦资深原子光谱应用开发工程师,于2012年获得英国帝国理工学院地球化学博士学位,之后分别在美国和法国做博士后研究员。主要研究金属元素的生物地球化学循环,以及其作为环境污染物的分布和传输机制。在2017年加入安捷伦全球市场开发团队后,主要从事ICP-MS新应用方法开发工作,以合作研究的形式开展颗粒物在复杂基体中的分离、检测方法研究,以及应用元素指纹图谱法和同位素示踪法进行源解析等方面的研究,并在相关领域发表论文30多篇。应用单颗粒(sp)ICP-MS技术对纳米颗粒物进行定量分析的方法在近些年趋于成熟,特别是在环境研究领域被更多的研究人员接受。本报告概述(sp)ICP-MS技术对降尘、海水、底泥和土壤中的纳米颗粒物进行分析的研究方案,同时拓展该方法对单细胞中的元素进行定量分析,以及对微塑料颗粒进行分析的应用案例。国家纳米科学中心教授级高级工程师 刘忍肖《量子点材料及产品特性测试方法开发与标准化》(点击报名)刘忍肖主要从事典型纳米材料(量子点、石墨烯、碳纳米管等)特性参数测试方法开发,针对产业应用的国际标准、国家标准的研制,迄今作为负责人/技术骨干共研制国际标准7项、国家标准18项、国家标准物质6项、主导2项VAMAS国际比对、发表学术论文18篇、参编专著3部。作为项目/课题负责人承担十三五、十四五科技部国家重点研发计划、国家自然科学基金青年基金项目标准研制项目等。担任国家标准委审评中心标准审核专家、国际标准化组织纳米专业领域ISO/TC 229、IEC/TC113技术专家,担任全国纳米标委会(SAC/TC279)委员观察员、全国颗粒分委会(SAC/TC168/SC1)委员观察员、全国纳米光电显示技术标准工作组(SAC/TC279/WG10)委员兼秘书长等。量子点作为一类最典型的代表性纳米材料,具有独特的量子尺寸效应并展现出优异的光学特性,现已广泛应用在生物医学、信息显示等产业领域,尤其促生了纳米光电新型显示技术产业的革新升级。本报告针对量子点材料关键特性参数测试分析方法开发、纳米光电显示技术产业应用所关注的量子点部品应用性能评测技术开发、体系性技术标准研制等进行介绍。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/particuology2024/
  • 济南微纳研制世界首台大颗粒计数器
    济南微纳仪器公司研发团队成功研制出世界上第一台Winner大颗粒计数器, 该产品采用遮光原理对气体活透明液体中的大颗粒(粒径400um-5cm)进行测量,填补了国内该项目研究的空白。该计数器体积小,在对大颗粒进行连续、高速、精确、稳定地不接触测量的同时得到大颗粒的浓度和粒径分布,性能超过其他相关性能的分级设备。   该产品的性能特点:   1. 世界首创的大颗粒技术器   2.粒径数值精确,分辨率高(优于100um)   3.测量速度快,流量大   4.非接触式测量   5.与分级设备相比,具有样品需求少,体积少,代表性强等特点。   备注:有测试和控制需求的客户请致电:0531-88876019,我们将竭诚为您提供相关服务。
  • 华嘉公司发布最新代理在线/实验室颗粒图像分析产品
    华嘉(香港)有限公司与德国安娜泰克有限公司(AnaTec Deutschland GmbH)经过多方面的深入了解,决定在中国独家代理其最新产品,在线/实验室系列颗粒图像分析仪。前身为著名的Norsk Hydro集团的研发机构,二十多年来,安娜泰克一直致力于在线及实验室用颗粒图像分析技术的研究与生产,开发出一系列针对不同应用领域的高性能分析仪器,采用比常规图像分析方法更为先进的专利技术,为终端客户量身定制,提供颗粒图像分析的全套解决方案,包括硬件配置,软件设计,系统安装,技术支持及反馈。安娜泰克的所有产品结构牢固,操作简单(兼容LIMS系统),在建筑材料,食品工业,矿物加工,制药原料,石油石化等领域有着广泛的应用前景。 screen.width-300)this.width=screen.width-300" 华嘉(香港)有限公司作为一家著名的国际贸易集团公司,其仪器部专业提供各种分析仪器及设备,经过多年的专业市场化运作和高素质员工的敬业精神,华嘉公司在中国的诸多领域拥有稳定的客户关系,这次,华嘉(香港)有限公司与德国安娜泰克有限公司再次携手,希望能得到国内在线/实验室颗粒图像分析领域专家与用户的支持,实现技术合作与产品应用的双重收获。
  • 济南微纳35年专注激光粒度仪研发
    济南微纳颗粒仪器股份有限公司是集研发、生产、销售激光粒度仪仪器设备于一体的高新技术企业(证券名称:“微纳颗粒”,证券代码430410)。公司的前身为山东建材学院颗粒测试研究所,研究激光粒度测试技术自1982年承担国家七五科技攻关项目伊始,至今已有35余年的历史。 济南微纳35年专业研发激光粒度仪,30余项专利技术,从成功研发中国第一台激光粒度仪至今连创中国十多个第一!!! 济南微纳是行业领先品牌—"中国颗粒测试技术的领航者"、"中国颗粒测试第一股"! 主要产品激光粒度分析仪、纳米激光粒度仪、喷雾激光粒度仪、颗粒图像分析仪等系列均代表同行业最高水平. 激光粒度仪咨询电话: 4000-1919-82 0531-88873312 (济南微纳颗粒仪器股份有限公司) 公司总部员工有100人左右,其中高级工程师、工程师20人,拥有一支高科技含量的技术研发团队。微纳颗粒公司以高校为依托,培养了一流的技术开发团队,90%的员工具有本科以上学历,其中包括光学、电子、计算机、化工、材料各方面的专家和教授。公司的首席专家任中京教授,是我国激光粒度分析技术的开创者,在颗粒测试领域享有崇高声誉。 微纳颗粒公司以“发展与普及当代先进的颗粒测试技术”为己任,研制的激光粒度仪、纳米粒度仪、颗粒图像分析仪、喷雾粒度仪、在线粒度监测仪、颗粒计数器等系列的颗粒分析仪器均代表了国内同行业最高水平,并于2006年推出代表世界先进水平的在线测试激光粒度仪,2007年推出动态颗粒图像分析仪,2009年推出国内第一台动态光散射原理的光相关纳米粒度仪。将中国颗粒测试技术推向一个全新的高度。多年来济南微纳以先进的科技实力及过硬的产品质量,为中国科学学院、山东省科学院、北京大学、清华大学、上海交通大学等高校科研院所、及中国石化胜利油田有限公司、鞍钢集团、立邦涂料有限公司、中国民用航空总局等各行业的龙头企业提供技术支持与服务,获得了广大用户的好评。 济南微纳从成功研发中国第一台激光粒度仪至今连创中国十多个第一。济南微纳在颗粒测试领域不仅技术上遥遥领先,而且引领着中国颗粒测试技术的发展方向,并且多项产品和技术获得国家专利。 中国第一台激光粒度仪! 中国第一台干法激光粒度仪! 中国第一台动态颗粒图像仪! 中国第一台喷雾激光粒度仪! 中国第一台纳米激光粒度仪! 中国第一个在线粒度监测系统! 为追求公司的长远战略,实现更大空间的跨越式发展。在山东省济南市和高新区政府的大力支持下,我公司于2010年完成了股份制公司改制,2013年通过新三板上市评估流程。2014年作为中国颗粒测试行业的第一支股票,证监会核定微纳公司证券名称为:“微纳颗粒”,证券代码为:430410。并于2014年元月24日在北京《全国中小企业股份转让系统》进行上市挂牌。微纳公司成功登陆新三版,实现了中国颗粒仪器界在股市上零的突破,代表着一个行业走向成熟的里程碑。微纳公司将秉承自身作为中国颗粒测试技术的领航者的职责,再接再厉为中国粒度测试技术赶超世界一流水平做出不懈努力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制