当前位置: 仪器信息网 > 行业主题 > >

向上向下长波辐射传感器

仪器信息网向上向下长波辐射传感器专题为您提供2024年最新向上向下长波辐射传感器价格报价、厂家品牌的相关信息, 包括向上向下长波辐射传感器参数、型号等,不管是国产,还是进口品牌的向上向下长波辐射传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合向上向下长波辐射传感器相关的耗材配件、试剂标物,还有向上向下长波辐射传感器相关的最新资讯、资料,以及向上向下长波辐射传感器相关的解决方案。

向上向下长波辐射传感器相关的论坛

  • 太阳能总辐射传感器接线与安装

    太阳能总辐射传感器接线与安装

    太阳能总辐射传感器接线与安装气象站进行总辐射观测,应在日出前把金属盖打开,太阳能总辐射传感器就开始感应,记录仪自动显示总辐射的瞬时值和累计总量。日落停止观测后加盖。若夜间无降水或无其他可能损坏仪器的现象发生,太阳能总辐射传感器也可不加盖。太阳能总辐射传感器开启与盖上金属盖应特别小心,要旋转到上下标记点对齐,才能开启或盖上。由于石英玻璃罩贵重且易碎。启盖金属盖时动作要轻,不要碰玻璃罩。冬季玻璃罩及其周围如附有水滴或其他凝结物,应擦干后再盖上,以防结冻。一旦把金属盖冻住很难取下时,可用吹风机吹出的热风使太阳能总辐射传感器冻结物溶化或采用其他方法将盖取下,但要仔细以免损坏玻璃罩。[img=太阳能总辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205060906513507_8717_4136176_3.jpg!w690x690.jpg[/img]太阳能总辐射传感器维护和检查流程包括:仪器安装位置是否水平,感应面与玻璃罩是否完好等。1、太阳能总辐射传感器表面是否清洁,玻璃罩如有尘土、霜、雾、雪和雨滴时,应用镜头刷或鹿皮及时清除干净,注意不要划伤或磨损玻璃。2、太阳能总辐射传感器玻璃罩不能进水,罩内也不应有水汽凝结物。检查干燥器内硅胶是否变潮,如果由蓝色变成红色或白色后就不能继续使用,否则要及时更换。太阳能总辐射传感器受潮的硅胶,可在烘箱内烤干变回蓝色后再使用。3、太阳能总辐射传感器防水性能较好,一般短时间或小的降水可以不加盖。但降大雨、雪、冰雹等,或较长时间的雨雪,为保护仪器,观测员应根据具体情况及时加盖,雨停后即把盖打开。[img=太阳能总辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205060907166575_6726_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳光辐射传感器辐射值测量用途

    太阳光辐射传感器辐射值测量用途

    太阳光辐射传感器辐射值测量用途随着太阳能源利用开发建设,相关的行业领域对太阳能观测业务开展规划、评估和建设,为获取准确可靠的科学,很多太阳光辐射传感器需要全天候精密追寻太阳,要求追寻精度高、运行平稳、可靠全天候全自动系统。绿光全自动太阳光辐射传感器是为满足环境、太阳能评估、气象监测等领域高精度的太阳辐射测量与应用而研发的高精密仪器。太阳光辐射传感器产品应用于光伏、光热、气候、环境、太阳能源、科研教学等相关领域,采用主动追寻和被动追寻相结合方式,以主动追寻为主,被动追寻为辅,由于采用了全新算法和精密结构,追寻精度优于0.1°。[img=太阳光辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205090927480789_9197_4136176_3.jpg!w690x690.jpg[/img]太阳光辐射传感器是目前普遍使用的无人值守型太阳辐射仪,解决了国内太阳辐射仪器需人工维护的弊端(尤其是直接辐射和散射辐射),真正满足全自动化追寻测量。太阳光辐射传感器是基于光电原理的太阳辐射观测装置及实现方法,它由感光元件和微处理器组成,具有速度快,监测精准,功能齐全的特点。太阳光辐射传感器外形美观小巧,占用空间小;通过宽电压DC10~30V供电,适用三线制或四线制接线方法,接线简单,安装方便。太阳光辐射传感器配置高精度的感光元件,宽光谱吸收,全光谱范围内吸收量高,稳定性好;在感应元件外安装透光率高达95%的防尘罩,罩体采用特殊处理,能减少灰尘吸附,有效防止环境因素对内部元件的干扰,可以较为精准的测量太阳辐射量。[img=太阳光辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205090928047748_4775_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳辐射测试传感器室外辐照仪

    太阳辐射测试传感器室外辐照仪

    太阳辐射测试传感器室外辐照仪太阳辐射测试传感器温度响应误差:在研制标准太阳辐射测试传感器时,重点解决温度变化引起的测量误差,在大量试验与研究的基础上,根据各自仪器的温度特性,增加了温度补偿电路,这样大大地改善了温度性能。由实验结果可知,按检定时的环境温度为20±10估算,则温度误差≤1%。射角响应误差:由于太阳光线一年四季照射到仪器上的轨迹在变化,所以太阳辐射测试传感器具有入射角响应特性。人射角响应误差是指余弦响应和方位相应对理想值的偏差。在检定规程规定,太阳高度要大于30度。这样经过3-4小时的测定,对室外检定结果的分析与比较,结果的平均值基本上落在中午12时一13时之间,一般情况,这时太阳高度已超过40度。我们在研制标准太阳辐射测试传感器时,在制造工艺与选择材料等方面对于入射角进行了特别研究与试验,改进了其入射角响应特性。根据对余弦响应和方位响应误差的测定,则估计此项误差在控制范围之内。[img=太阳辐射测试传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211100908023817_8235_4136176_3.jpg!w690x690.jpg[/img]太阳辐射测试传感器操作误差主要是由于仪器水平调节造成的误差。室外检定时,将水平泡调整到水平器的中间位置。在一般情况下可造成0.20调节误差。然而灵敏度的检定要求太阳高度大于300,因进行几个小时的检定,经统计一般鉴定结果值均在400以上,所以造成测量结果的误差小于O.5%。光谱响应误差对理想的热点式太阳辐射测试传感器来说,在此期间0.3—3.0run光谱范围内,仪器的响应应该是无选择性的,但由于仪器的玻璃罩和感应面的图层,使得仪器产生光谱响应误差,确定仪器光谱响应误差的试验是很困难的。所以从两个方面进行误差估计。其一是玻璃罩,生产的这种仪器的玻璃罩均为石英玻璃罩,它在0.3—3.O光谱范围内的透过率是平坦的;其二是仪器感应面涂层为无光黑漆,对光谱应没有选择。再者,检定条件限定在天气晴朗,太阳高度角大于30。以上,这样估计光谱响应造成的误差小于1%。[img=太阳辐射测试传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211100909031791_3899_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳辐射仪光伏电站监测仪器

    太阳辐射仪光伏电站监测仪器

    太阳辐射仪光伏电站监测仪器太阳辐射仪可以根据响应时间、零点偏移、年稳定性、温度响应、倾斜响应、光谱灵敏度等指标辨别性能的优劣。以光伏发电站为例,根据光伏发电质量需要,在光伏环境监测仪上提供太阳辐射仪,直接辐射传感器和反射传感器等配置方案。具有2%精度和毫秒级响应时间的太阳辐射仪可以让太阳追寻系统自动调节光伏发电板的佳辐射位置,提高光伏发电站的整体发电效率。[img=太阳辐射仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206060918526325_663_4136176_3.jpg!w690x690.jpg[/img]太阳太阳辐射仪是由2个太阳辐射仪组成的净辐射传感器,主要用于科研级的能量平衡研究。仪器分为短波测量和远红外长波测量两部分。其中短波辐射由2个短波太阳辐射仪进行测量,长波辐射由2个长波太阳辐射仪测量。与以往的净辐射传感器相比,性能得到大幅提升,具有更高的精度,而体积则更加小巧,重量减轻。长波太阳辐射仪中可选配一个PT100温度传感器,用于测量内部温度,以进行温度修正。为了防止凝露、霜降对观测产生的不利影响,内置了加热装置,为长波太阳辐射仪进行加热,使其在低温等恶劣环境下也能正常工作。技术参数:温度范围:-40~80℃测量范围:0~2000W/m2温度传感器:pt100,用户也可以根据自身的需要自行选择其他温度传感器短波辐射表ISO级别:二级短波光谱范围:305~2800nm短波校准溯源:WRR长波光谱范围:4500~50000nm长波校准溯源:ITS90国际温标太阳辐射值在1000w/m2时的窗口热偏移:15w/m2加热时功耗:1.6W(12VDC时)[img=太阳辐射仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206060919098823_847_4136176_3.jpg!w690x690.jpg[/img]

  • 数字高精度太阳净辐射传感器

    数字高精度太阳净辐射传感器

    数字高精度太阳净辐射传感器太阳辐射是地球一大气系统重要的能量来源,也是产生大气运动的主要动力,它从根本上决定着地球一大气的热状况。太阳辐射在地球上的分布和变化,在气候变化及气候模式研究中有重要意义。太阳辐射的计算方法之一就是利用有限的地面辐射观测站资料与影响太阳辐射的各类因子建立统计模型来实现的。太阳总辐射与大气组成、气体吸收、分子和粒子散射以及辐射传输理论研究密切相关。世界气象组织《气象仪器和观测方法指南》给出了6种太阳净辐射传感器灵敏度的校准方法,用太阳或用实验室辐射源校准太阳净辐射传感器:①在直接太阳光束下,与标准直接辐射表(简称标准直表)比对和与有遮挡的总表进行散射部分的比较(简称成分和法);②用太阳作为太阳净辐射传感器辐射源,与标准直表比对,此时太阳净辐射传感器应有一可移动的遮光盘(简称遮/不遮法);③用太阳作为辐射源,使用标准直表和2台被校准的总表交替测量总辐射和散射辐射(简称迭代法);[img=太阳净辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211150923452770_8442_4136176_3.jpg!w690x690.jpg[/img]④用太阳作为辐射源,在其他的自然的暴露状态下(例如,均匀的多云天空),与标准太阳净辐射传感器比较(简称平行比对法);⑤在实验室中,在人造光源光台上,以垂直入射方式或以某特定的方位角和高度角入射的方式,与预先在室外检定过的相似的太阳净辐射传感器比对(简称太阳模拟器法);⑥在实验室中,借助于一个模拟天空散射辐射的积分球腔体,与预先在室外检定过的相似的太阳净辐射传感器比对(简称积分球法)。太阳净辐射传感器的校准包括确定其灵敏度系数及其对环境条件的依从关系,如:温度、辐照度的强弱、光谱分布、角度分布、时间变化、仪器倾斜等。随着科学技术的发展,对太阳辐射测量数据准确度的要求也更加多样化,也就是说,不同的目的,对应着使用不同级别的太阳净辐射传感器,也就需要不同的量值传递方法。[img=太阳净辐射传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211150924064203_4797_4136176_3.jpg!w690x690.jpg[/img]

  • 紫外线传感器在紫外辐射照度计中的应用分析

    紫外线传感器在紫外辐射照度计中的应用分析

    [align=left]说起“紫外线”相信大家不陌生,特别是女生很注重防晒的,其中防的就是紫外线。紫外线传感器就可广泛应用于紫外线强度检测,紫外线指数检测,也可用于紫外线消毒和紫外线固化,紫外火焰探测器等。[/align]紫外线传感器是通过光伏模式将UV信号转换为可测量的电信号并使用光敏元件将光导模式转换为光导模式的装置。早期的紫外线传感器基于纯硅的,但根据美国国家标准与技术研究院的数据,简单的硅二极管也会对可见光产生响应,产生不需要的电信号,导致精度低。[img=,331,220]https://ng1.17img.cn/bbsfiles/images/2018/12/201812201419376197_1958_3422752_3.jpg!w331x220.jpg[/img]紫外线波长短,能量高,而紫外线消毒的关键因素是紫外线消毒灯在253.7纳米波长处辐射紫外线强度,因为该波段是最强的能够杀死细菌。UVC波段的紫外线可以破坏微生物细胞中的DNA(脱氧核糖核酸)或RNA(核糖核酸)(细菌、病毒、孢子等),分子结构,细胞不能再生,细菌病毒失去自我复制的能力,因此紫外线传感器产品可广泛用于水消毒,如水。并且由于紫外线传感器的小尺寸和其他优点,UV-LED可用作完整的UV(紫外线)灭菌设备的来源。医院使用紫外线消毒也是比较常见的,但是紫外线照射灯管由于生产方法和照射时间等因素的影响,导致紫外线辐射难以达到标准的杀菌强度,而想要确保紫外线辐射强度必须用安装有紫外线传感器的紫外线辐射照度计来检测紫外线的强度,保证紫外线强度能够杀死细菌,在此OFweek Mall推荐使用GUVC-T10GD-L[b]韩国GENICOM 紫外线传感器-GUVC-T10GD-L[/b] 概述:紫外线传感器(UV sensor)GUVC-T10GD-L 是一款大感光面积的产品,主要检测的波段范围在254nm。该传感器封装在一个TO-46的金属外壳里面。感光芯片的面积为1.536mm2。紫外线传感器的输出主要和响应度、传感器感光面积以及光强有关,故大感光面积的产品能检测到微弱紫外线辐射。主要用于近距离火焰监测(黑暗环境下)和消毒设备中。[table][tr][td][align=center] [/align][/td][td][align=center]参数[/align][/td][td][align=center]备注[/align][/td][/tr][tr][td][align=center]使用温度[/align][/td][td][align=center]-30~85℃[/align][/td][td][align=center] [/align][/td][/tr][tr][td][align=center]反向电压[/align][/td][td][align=center]Max 2V[/align][/td][td][align=center] [/align][/td][/tr][tr][td][align=center]焊接温度[/align][/td][td][align=center]260℃[/align][/td][td][align=center]10s内[/align][/td][/tr][tr][td][align=center]响应度[/align][/td][td][align=center]0.05A/W[/align][/td][td][align=center]λ=254nm,Vr=0V[/align][/td][/tr][tr][td][align=center]波段范围[/align][/td][td][align=center]220-280nm[/align][/td][td][align=center]10% of Rp[/align][/td][/tr][tr][td][align=center]光电流[/align][/td][td][align=center]0.55uA[/align][/td][td][align=center]UVCLamp,1mw/cm2[/align][/td][/tr][tr][td][align=center]检测功率范围[/align][/td][td][align=center]0.01uw/cm2~100mw/cm2[/align][/td][td][align=center] [/align][/td][/tr][tr][td][align=center]感光面积[/align][/td][td][align=center]1.536mm2[/align][/td][td][align=center] [/align][/td][/tr][/table][img=,288,270]https://ng1.17img.cn/bbsfiles/images/2018/12/201812201419371007_8084_3422752_3.png!w288x270.jpg[/img]相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨紫外线传感器https://mall.ofweek.com/category_92.html丨水质传感器丨可燃气体传感器丨温湿度传感器丨酒精传感器丨微量氧传感器丨PID传感器丨PM2.5传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器丨CO2传感器丨CO传感器丨UV传感器丨光纤传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤压力传感器丨双气传感器丨

  • 太阳能辐射表太阳直射传感器日照时数

    太阳能辐射表太阳直射传感器日照时数

    太阳能辐射表太阳直射传感器日照时数太阳能辐射表先前的性能参数“光谱选择性”已被重新定义为光谱误差。对于A级太阳能辐射表(相当于以前的副基准级),新标准要求提供单独的温度响应和方向响应测试报告。在大多数太阳能监测指南和标准中,目前推荐使用ISO9060:1990“副基准级”太阳能辐射表,现在应该更新为ISO9060:2018“A级,光谱一致性”。原则上,这也适用于IEC61274-1,2017中的A类“高精度”监测。所有新出厂的太阳能辐射表,除了提供灵敏度校准证书外,还将免费增加单独的温度和方向响应特性。需要注意的是,ISO9060:2018A级太阳能辐射表的测量精度和稳定性可能没有ISO9060:1990副基准级太阳能辐射表高。勉强符合要求的仪器与明显超过要求的仪器之间仍然存在很大差异。但是,温度和方向响应测试仍然可以为产品性能的检查提供生产质量控制依据。如果使用提供的测试数据,测量的不确定性可以通过温度和方向误差的后校正得到改善。然而,目前显著的改进仍然是保持太阳能辐射表圆顶的清洁。[img=太阳能辐射表,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207070852173872_5570_4136176_3.jpg!w690x690.jpg[/img]在太阳能辐射表的设计过程中,要考虑数据的采集、数据的传输,通信的质量,节能尽量降低成本,便于布点和携带等。因为对气象数据的采集一般都是在比较恶劣的野外环境中,所以设计从以下几个方面考虑:(1)太阳能辐射表稳定性和抗干扰性:被测现场的环境一般都比较恶劣,所以本设计这些模块:比如电源、无线收发模块、采集模块都必须在被测现场可以正常工作。(2)太阳能辐射表节能:一般采集点都采用电池供电,同时传感器网络需要长时间工作,所以在选择芯片的时候要尽量低功耗的,达到节能的目的。(3)太阳能辐射表低成本:低成本是这种节点的基本要求。只有低成本才能大量的布置在目标区域内,这是大规模传感器网络实际运用的必要条件。[img=太阳能辐射表,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207070852423146_2762_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳辐射照度仪光伏总辐射表

    太阳辐射照度仪光伏总辐射表

    太阳辐射照度仪光伏总辐射表利用太阳辐射照度仪测量记录太阳辐射强度对于农业生产具有非常重要的作用,下面就简单介绍一下太阳辐射照度仪及该仪器的作用。太阳辐射照度仪是专用于太阳辐射监测仪器,系统具有8个辐射测量通道,可配置总辐射、直接辐射、散射、反射、净辐射、紫外、红外、光和有效、长波辐射等传感器,测量精度高,适合在工业环境中使用。内置大容量数据存储自动保存历史数据,并可根据需要设置数据存储间隔;使用配套的数据处理软件可以在电脑客户端远程监测及对数据做进一步的处理分析。[img=太阳辐射照度仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206070923238229_7640_4136176_3.jpg!w690x690.jpg[/img]常见的太阳辐射照度仪类型是热电堆型和光电型,为了能够测到太阳辐射传感器的电压值,需要用到数字万用表或数据采集器。如果使用数字万用表,则需要自行将mv读数转换为w/㎡。如果使用数据采集器,则需要设置数采进行单位转换。现在还有数字型太阳辐射照度仪,这就要求电脑或数据采集器能读取串口信息。通过外形结构可以发现太阳辐射照度仪不仅小巧美观,还便于携带,可以测量总辐射等,应用太阳辐射照度仪后,人们可以在农业、林业、光伏发电系统、建筑材料老化测试、气象检测站等领域开展多方位的光照辐射相关的与研究,为提升光能利用,促进农业提质增效和新能源的开发等提供重要的技术支持。太阳辐射照度仪可广泛用于气象、农业、太阳能、科学研究及教学等领域。而把太阳辐射照度仪应用到农业生产中,种植者可以利用太阳辐射照度仪准确的测量总辐射这个参数,为农业生产种植提供一定的科学指导,促进农作物健康生长,在一定程度上避免因为太阳辐射而给农作物带来的伤害。并且,伴随着光能产业的发展,太阳光照辐射的监测要求也是越来越大。[img=太阳辐射照度仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206070924225242_2797_4136176_3.jpg!w690x690.jpg[/img]

  • 试验仪器:波高采集系统压力传感器的10大误差分析

    在分析试验仪器波高采集系统压力传感器的总误差时,首先要考虑试验仪器每一个误差的来源,分析导致这些误差的因素,然后想办法减少这些误差,提高波高采集传感器系统总的性能。那么影响波高采集系统压力传感器性能的误差来源有哪些?  1、当计算波高采集系统压力传感器的总误差时,应使用下列定义的误差。为决定你已选择波高采集系统压力传感器特定误差的程度,参见在这目录中该传感器的规格说明。在特定用户应用中,有些标称的指标可以减少或消除的,例如,如果波高采集系统压力传感器用在规定温度范围的一半内,那么温度误差可以减少一半,如果使用自动调零技术,零点偏置和零飘误差可以消除。  2、零点偏置是同时加在膜片两侧上的相同压力时传感器输出。  3、量程是输出端点之间的代数差。通常二端点是零和满刻度。  4、零点温度偏移是由温度变化引起的压力传感器零点变化。零点偏移不是可预测的误差,因为每一个器件可以向上或向下偏移,温度变化将引起整个输出曲线沿电压轴向上或向下偏移。  5、灵敏度温度偏移是由温度变化引起的压力传感器灵敏度变化,温度变化将引起传感器输出曲线的斜率变化。  6、线性误差是在期望压力范围传感器输出曲线与一标定直线的偏差,计算线性误差的一个方法是最小二乘方,它从数学上提供对数据点的最佳配合直线。另一方法是末端基点线性度(T.B.L.)或端点线性度。T.B.L.由在输出曲线上二端数据点之间画一直线(L1)决定。接着从线L1 作一垂线至输出曲线, 选择相交数据点以达到垂线的最大长度,垂线的长度代表末端基点线性误差。  7、比率变化量是指在其他条件保持恒定情况下传感器输出比例于电源电压,比率变化量误差是在这比率中的变化,通常表达为压力传感器量程的百分值。  8、重复性误差是在其他条件保持恒定情况下连续加上任何给定输入压力在输出读数中的偏差。  9、迟滞误差通常表达为机械迟滞和温度迟滞的组合误差。机械迟滞:指输出在某一个给定输入压力时(上升、下降不同过程)的传感器误差。  10、温度迟滞是在一温度循环以前和以后在确切输入压力下的输出偏离。  以上是试验仪器波高采集系统压力传感器的误差来源总结。

  • 光电液位传感器原理_光电液位传感器些优势

    光电液位传感器原理_光电液位传感器些优势

    [align=left]光电液位传感器的原理是采用两种不同介质界面的光反射和折射原理。它是一种新型的接触点液位测量和控制装置,可以检测液位并将其转换为输出信号。当然光电液位传感器的应用也是很广泛的,它可以应用到石油化工、冶金、电力、制药、供排水、环保等领域,能够准确测量液体情况。OFweek Mall总结了光电液位传感器的一些优势:[/align]1、响应的时间比较短光的传播速度本身就很快,光的传播速度约为每秒钟300000千米,因此光电液位传感器的电路由电子元件组成,因此它不包含机械工作时间,响应时间非常短。2、高液位检测精度污垢、液体中的杂项、沉淀等不会影响光电液位传感器的检测精度,不像电容式浮球型液位开关的液位控制精度为±3mm,光电液位传感器可将液位精度控制在±0.5mm以内。3、可以检测多种类型的液体由于光电液位传感器具有光学反射原理而没有检测,因此不像浮子式液位开关那样受液体碎片、的粘度的限制。它可以用杂质、腐蚀污水、。液体、测试粘性柴油机油和其他液体。4、高可靠性光电液位传感器采用光学反射原理进行液位检测,因此受液体、液体中液体腐蚀性杂质等因素的影响较小。6、液位低,无极限浮球式液位开关通过液体的浮力向上和向下推动浮球,使内部簧片开关打开和关闭,因此浮子具有一定的水位,因此醉低液位将非常大。光电级开关的限制不存在。7、非接触式检测通过单独的光电液位传感器,液体容器可与机器分离,并可用于检测液位而不接触液体。可以移动水箱以便于清洁。正常情况下,OFweek Mall技术工程师推荐使用以下这款光电液位传感器:[b]英国SST 光电式液位传感器/光电液位开关-LLC200D3SH 特点[/b]1) M12或者1/2” SAE接口2) 三线电气接口3) 250mA输出4) 有常温和高温型两种版本可供选择(高温可达125摄氏度)光电式液位传感器/光电液位开关LLC200D3SH(工业级)典型应用:1.机器润滑油、散热剂、冷冻剂液位检测2.齿轮箱、传动箱油剂液位检测3.泵、变速箱液位检测[img=,299,258]https://ng1.17img.cn/bbsfiles/images/2018/11/201811061600389282_8779_3422752_3.png!w299x258.jpg[/img]光电液位传感器https://mall.ofweek.com/1854.html丨光电传感器丨液位传感器丨光电水位传感器丨水位传感器

  • 太阳辐射自动观测仪器光照度计

    太阳辐射自动观测仪器光照度计

    太阳辐射自动观测仪器光照度计在对太阳辐射理论和太阳运动理论的研究基础上,采用太阳模拟器技术和多自由度工作台,提出了一种新型多功能气象用太阳辐射自动观测仪器检定系统的总体设计方案,实现了对待检仪表的灵敏度,非线性误差、方位响应误差、余弦响应误差和倾斜响应误差等各项参数的检定。太阳辐射自动观测仪器检定系统主要山太阳模拟器和多维工作台组成。太阳模拟器为检定系统提供均匀稳定的模拟太阳光辐射:多维工作台能够为检定系统提供所需各种功能动作模拟不同的太阳角,两者集成共同实现了对太阳辐射自动观测仪器的标定。[img=太阳辐射自动观测仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140905147860_9891_4136176_3.jpg!w690x690.jpg[/img]由于在太阳辐射的测量中,存在太阳辐射自动观测仪器的“热偏移”现象。而对“热偏移”的研究过程中发现,太阳辐射自动观测仪器“热偏移”的大小主要和温度、湿度、风速和净波辐射这些环境因素有关,而太阳辐射自动观测仪器节点可以采集得到环境温度和湿度这些气象要素,风速和净波辐射的值则需要从协调器节点获得。当协调器节点需要向网络设备发送数据时,它会先发送信标帧在通信信道中,太阳辐射自动观测仪器节点在收到信标帧,会根据信标帧进行同步,而协调器节点会在下一个信标帧中指出协调器节点拥有某个传感器节点需要的数据,传感器节点收到信标帧后会向协调器节点的发送请求数据发送的MAC命令帧。太阳辐射自动观测仪器协调器节点在收到命令帧后,会先发送一个确认帧给传感器节点表示已经收到请求,紧接着开始传送数据。传感器节点成功接收数据后再回应一个数据确认帧给协调器节点。[img=太阳辐射自动观测仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211140905378537_6710_4136176_3.jpg!w690x690.jpg[/img]

  • 紫外线传感器在皮肤病治疗中的应用

    紫外线传感器在皮肤病治疗中的应用

    [align=left]太阳以它的光和热培育着万物,这是我们赖以生存的基本条件之一。早在远古时代,人们就发觉晒太阳对于健康有益, 中东人发觉日照中的紫外线能够医治相当一部分的肌肤病。现代人更是把晒太阳作为一种健身活动。[/align]说起日光的组成呢是比较复杂的,主要包括UⅥA、UVB、UVC等成分,UVB主要引肌肤晒伤,而UVA主要导致肌肤晒黑,UVC被云层遮盖极少到达地面,因而对肌肤的影响较小。20世纪70年代,国外的科学家们硏制了各种紫外线医治仪器,需要服用光敏剂后再照耀,即光化学疗法(PUⅥA),但该疗法有很多副效果:患者需要避光,并且肌肤反应也比较剧烈。不同波长的紫外线有不同的生物学效应。对肌肤的穿透能力亦不一样。通常来讲,波长越长,其穿透肌肤的能力越强 波长越短,穿透力越弱。短波紫外线起到破坏性,有较大的杀伤效果但它的穿透力最差,大部分被大气中的空气、云层、尘粒、水汽等汲取和辐射,使人体免受伤害,仅仅有在雨过天晴后,才有极少量的短波紫外线到达地面,所以,对人体差不多没有生物学效应。大气层的这一效果,爱护了地球上生物的生命。[img=,379,325]https://ng1.17img.cn/bbsfiles/images/2018/12/201812071524559789_7475_3422752_3.png!w379x325.jpg[/img]而应用在医学领域中的短波紫外线,均为人工光源,主要用于灭菌消毒。中波紫外线,是紫外线生物活性最活跃的部分,大部分为表皮所汲取,仅小部分可达真皮乳头层,所以在肌肤光生物学中十分重要。但是中波紫外线不可以透过玻璃,所以,隔着玻璃窗照耀肌肤,其医治效果是有限的。长波紫外线的穿透力最强,可穿透表皮,小部分被表皮汲取,大部分透入真皮,最深可达真皮中部并可效果于血管和其它组织,但其对肌肤的效果要比中波紫外线的效果为小,仅在某些光敏物存在时,才可以导致肌肤反应。UVB波段的一个重要应用则是肌肤病医治,即紫外光疗应用。科学家发觉波长在310nm左右的紫外线对肌肤有强烈的黑斑效应,能够加快速度肌肤的新陈代谢,提高肌肤的生长力,从而能够有效医治白癜风、玫瑰糠疹、多形性日光疹、慢性光化性皮炎、光线性痒疹等光照性肌肤病,所以在医疗行业,紫外光疗日前得到了更多的应用。目前在紫外线光疗仪器中都有紫外线传感器的,安装紫外线传感器能够准确的监测紫外线的各项数据情况,更直观的看出紫外线的变化,OFweek Mall了解在皮肤治疗仪器中使用最多的紫外线传感器是这种:GUVB-T11GD-L[b]韩国GENICOM 紫外线传感器-GUVB-T11GD-L[/b] 特点:-芯片大小1.4mm,TO 46封装-铝氮化镓材料-肖特基光电二极管-光伏模式操作-良好的可见盲-高响应,低暗电流UVB紫外线传感器GUVB-T11GD-L规格:[table][tr][td] [/td][td]参数[/td][td]备注[/td][/tr][tr][td]使用温度[/td][td]-30~85℃[/td][td] [/td][/tr][tr][td]反向电压[/td][td]MAX 2V[/td][td] [/td][/tr][tr][td]焊接温度[/td][td]260℃[/td][td]10S内[/td][/tr][tr][td]响应度[/td][td]0.13A/W[/td][td]λ=300nm[/td][/tr][tr][td]波段范围[/td][td]220-320nm[/td][td]10&of Rp[/td][/tr][tr][td]光电流[/td][td]1.5uA[/td][td]UVB灯, 1mw/cm2[/td][/tr][tr][td]检测功率范围[/td][td]0.01uw/cm2~100mw/cm2[/td][td] [/td][/tr][tr][td]感光面积[/td][td]1.536mm2[/td][td] [/td][/tr][/table]相比于传统光源,UV-LED的谱线纯净,能够最大程度上保证医治效果。UVB波段也能够应用于健康保健领域,经过UVB波段的照耀能够导致人体机体的光化学和光电反应,使肌肤产生各种活性物质,日前被应用于调节高级神经功效、改善睡眠、减少血压等方面。另外,已有研究表示UVB波段能够加快速度某些叶类蔬菜(如红生菜)中多酚类物质的产生,这些多酚类物质被宣称起到抗癌、抗癌扩散和抗癌突变等性质。[img=,306,265]https://ng1.17img.cn/bbsfiles/images/2018/12/201812071524544677_1094_3422752_3.png!w306x265.jpg[/img]相关传感器分类:气体传感器丨氨气传感器丨二氧化硫传感器丨一氧化碳传感器丨臭氧传感器丨氧化锆氧气传感器丨超声波传感器丨气体流量传感器丨空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器丨二氧化碳传感器丨氧气传感器丨紫外线传感器https://mall.ofweek.com/category_92.html丨水质传感器丨可燃气体传感器丨温湿度传感器丨酒精传感器丨微量氧传感器丨PID传感器丨PM2.5传感器丨湿度传感器丨光纤应变传感器丨voc传感器丨氧化锆传感器丨光电液位传感器丨超声波液位传感器丨CO2传感器丨CO传感器丨UV传感器丨光纤传感器丨光离子传感器丨PH传感器丨荧光氧气传感器丨流量传感器丨光纤压力传感器丨双气传感器丨

  • “非电离辐射”和“电离辐射”的区别

    “非电离辐射”和“电离辐射”的区别

    大自然中只要是有温度的物体,包括我们人体,都在对外散发着能量,也就是我们笼统上说的辐射。辐射的种类分为“[b][u][b]非电离辐射[/b][/u][/b]”和“[b][u][b]电离辐射[/b][/u][/b]”。[b]非电离辐射[/b]非电离辐射按照种类划分为声辐射(超声波、地震波等)、引力辐射(引力波)和低能量的电磁辐射,电磁辐射按照波长从大到小可分为无线电波(广播电台和手机使用的)、微波(微波炉)、红外线(红外线夜视仪)、可见光(人眼可以感知的)、中低频紫外线(人民币防伪机具)。非电离在日常生活中极为常见,我们身边的手机、电视、微波炉、电吹风、电脑等都会产生,正常使用不会影响健康。[img=,665,286]https://ng1.17img.cn/bbsfiles/images/2023/12/202312051107174993_1958_3222636_3.png!w665x286.jpg[/img][b]电离辐射[/b][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2023/12/202312051108045965_9931_3222636_3.png!w690x233.jpg[/img]电离辐射能量高,能使原子、分子产生电离,使不带电的物质在射线的作用下变成带电物质。电离辐射主要有α射线、β射线、X射线、γ射线和中子、质子辐射等几种。日常接触的电离辐射主要是医院里各种放射诊疗仪器及车站、机场的安检仪和工业探伤设备、核仪表等,其中产生X射线的设备只有当其通电时才会产生电离辐射。电离辐射可以通过利用铅板、钢板或墙壁屏蔽及佩戴铅衣、铅围裙、铅围脖等防护用品加以防护。[b]对人体真正有危害的辐射是什么呢?——电离辐射![/b] 电离辐射能够改变物质的化学状态,并造成生物层面的伤害。典型的电离辐射包括伽玛射线、粒子射线,以及光子束。这些电离辐射很多时应用在医疗上,比如说体检的时候咱们照的X光、CT、放射治疗使用的高能光子射线。[b]1、什么叫电离辐射[/b]是指波长短、频率高、能量也高的射线,能引起一切物质电离的总称,叫电离辐射。[b]2、我们身边常见的电离辐射 [/b]自然界中存在天然放射性物质,这些放射性物质在衰变过程中释放出3种射线:也就是我们熟悉的α射线、β射线、γ射线,还有1种我们熟悉的人工射线,X射线。由于他们特征不同,其穿透物质的能力也各有不同(如图所示),他们对人体造成危害的方式也不同。[img=,690,346]https://ng1.17img.cn/bbsfiles/images/2023/12/202312051108385593_6509_3222636_3.png!w690x346.jpg[/img]α射线穿透能力很低,一张白纸就可以挡住,只有吸入体内才会造成体内器官损伤,只能引起内照射。β射线的穿透能力略大于α射线的穿透能力,一张铝板就可以挡住,既能造成内照射,也能造成外照射。γ射线、X射线有极强的穿透能力,根据其活度估算混凝土的厚度才能挡住γ、X射线,如果防护不当,容易造成内照射,更容易造成外照射。此外,在日常生活环境中还有宇宙射线的存在。α、β、γ、X射线是看不见、闻不到、摸不着的能量流污染,[b]只能借助各种仪器设备来测量环境中辐射剂量,了解环境状况。[/b]人体有效剂量的单位是希沃特,符号为Sv,1Sv=1000mSv;环境中的辐射空气吸收剂量的单位是戈瑞,符号为Gy,1Gy=10[sup]3[/sup]mGy=10[sup]6[/sup]μGy=10[sup]9[/sup]nGy;放射性物质的活度单位是贝克勒尔,符号为Bq,1Bq=1000mBq;[b]3、正常情况下人们受到哪些电离辐射 [/b]来自天然辐射的个人年有效剂量全球平均约2.4mSv,其中,来自宇宙射线的为0.4mSv,来自地面γ射线的为0.5mSv,吸入(主要是室内氡)产生的为1.2mSv,食入0.3mSv。可以看出氡是最主要的辐射来源。辐射无处不在,我们吃的食物、住的房屋、天空大地、山水草木、乃至人的身体都存在着放射性物质。我国某些高本底地区个人年有效剂量达3.7mSv;砖房每年0.75mSv;宇宙射线每年0.4mSv;水、粮食、蔬菜、空气每年0.25mSv;土壤每年0.15mSv;每天抽20支烟,每年约0.5-1.0mSv;北京--欧洲飞机往返一次0.19mSv;胸部透视一次0.05mSv。核电站运行时对周围居民的辐射影响与天然辐射比较,可以说微乎其微。换句话说在日常生活中天然辐射大于人工辐射。[b]4、人工电离辐射 [/b]人类除受到天然电离辐射的照射外,还经常受到各种人工电离辐射的照射。现如今世界上的主要人工电离辐射源包括:医疗照射、核能生产应用中产生的人工辐射源或经过加工的天然电离辐射源,以及核爆炸和消费品中添加的电离辐射源等。(一)医疗照射目前世界人口受到的人工电离辐射的照射中,医疗照射居于首位。医疗照射来源于X射线诊断检查、体内引入放射性核素的核医学诊断以及放射治疗过程。随着医疗保健事业的发展,接受医疗照射的人数愈来愈多。据统计,在发达国家接受X射线检查的频率每年每1000居民约为300~900人次,在发展中国家接受X射线检查的频率约为发达国家的10%。医疗照射造成的剂量小者每次在0.05mGy量级,大者如介入放射诊疗受检者皮肤剂量可达20mGy以上。全世界由于医疗照射所致的年集体有效剂量约为天然辐射产生的年集体有效剂量的1/6,与此相应的世界居民的年人均有效剂量为0.4mSv。(二)核能的产生核能的产生包括铀矿开采、矿石加工、核燃料生产、反应堆动力生产、燃料后处理等一系列工业流程。核能生产的核燃料除用于制造核武器外,主要用作核电厂、舰船、潜艇等的核动力。在核能生产过程的各个环节中难免会有放射性物质排放到环境中。释放出的放射性物质的半衰期大部分较短,分散到较远的距离时已衰变掉很多,所以大部分放射性物质仅能造成局部环境污染。核电厂周围居民人均年有效剂量为0.1mSv。从事核能生产的职业人员接受的人工电离辐射的年有效剂量,基本与来自天然电离辐射照射的平均值处于同一数量级。(三)核爆炸核爆炸在大气中形成的人工放射性物质是重要的人工电离辐射来源之一。核爆炸形成的放射性落下灰对居民的危害主要是通过食入引起内照射,其次是外照射。除上述三种主要人工电离辐射会给人类造成照射外,空中旅行、宇宙航行以及各种生活用品(例如:含放射性发光涂料的夜光钟、表,含铀、钍的制品,某些电子、电气器件等)也会给人类造成照射。不过,由这些人工电离辐射所致的世界居民的集体有效剂量与天然辐射源所致的相比,一般都很小,不会超过天然电离辐射的有效剂量。下面介绍两款核辐射传感器[b]用于电离辐射检测[/b]:[b]瑞士Teviso 核辐射传感器 检测β γ辐射 X射线 BG51 描述:[/b]BG51辐射传感器的原理是基于一组定制PIN二极管的阵列。带温度补偿阈值的集成脉冲鉴别器提供真实的TTL信号输出。BG51能够检测β 射线(电子)、γ 辐射(光子)以及X射线。BG51固态传感器的性能结合对静电场高度免疫的特点,使其成为zui先进的新设计以及升级现有设计的理想选择。[b]瑞士Teviso 核辐射传感器 检测β γ辐射 X射线 BG51 特征和优势:[/b]检测β和γ辐射以及X射线新:超低功率要求 (25 μA)探测器灵敏度: 5 cpm/μSv/h对RF和静电场高度免疫宽温度范围(-30 °C ~ 60 °C)上的线性响应瑞士制造[b]瑞士Teviso 核辐射传感器 检测β γ辐射 X射线 BG51 应用领域:[/b]医疗环境放射性检测设备用于核保障与安全的辐射监测仪检测非法物质的γ探测器自然科学课程和实用实验室实验[b]瑞士Teviso 核辐射传感器 检测α β 粒子 γ 射线 AL53 描述:[/b]AL53辐射传感器的中心是一只定制PIN二极管,覆有一层锡箔,使其对光线不敏感。带温度补偿 阈值的集成脉冲鉴别器提供真实的T TL信号输出。AL53能够检测α 和β 粒子和γ 射线。AL53固态传感器的性能结合超低功率的特点,使其成为最先进的新设计以及升级现有设计的理想选择。[b]瑞士Teviso 核辐射传感器 检测α β 粒子 γ 射线 AL53 特征和优势:[/b]检测α (Am-241), β (C-14) 和γ射线超低功率要求 (25 μA)探测器灵敏度: 5 cpm/μSv/h对RF和静电场高度免疫宽温度范围(-30 °C ~ 60 °C)上的线性响应瑞士制造[b]瑞士Teviso 核辐射传感器 检测α β 粒子 γ 射线 AL53 应用领域:[/b]医疗环境放射性检测设备用于核保障与安全的辐射监测仪检测非法物质自然科学课程和实用实验室实验

  • 针对紫外线的四个波段,应用对应波段的紫外线传感器。

    紫外线传感器是传感器的一种,可以利用光敏元件通过光伏模式和光导模式将紫外线信号转换为可测量的电信号,目前紫外线传感器材料主要是GaN和SiC这两大类。GaN材质的传感器目前知名度比较高的是韩国Genicom的紫外线传感器,传感器的波段从200-510nm均有相对应的传感器来检测。针对UVA波段,主要有IIC、电流、电压输出方式的传感器。在智能穿戴以及一些要求传感器体积尽可能小或者对PCB尺寸要求比较小的场所可以使用GUVA-C32SM或者GUVA-S12SD(SMD3528封装)。针对一些要求温度稳定性比较高的场所,还有金属TO-46(GUVA-T11GD-L)、TO-39(GUVA-T21GD-U)、TO-5(GUVA-T21GH)封装产品。TO-5封装的产品里面都集成了运算放大电路,0-5V模拟量输出。方便使用。主要运用于UVA灯的检测,UV固化等。UVB传感器主要是用于检测B波段的LED灯、皮肤光疗仪以及UVI检测。UVI指数指标主要是针对B波段的紫外线而言的。主要运用到的型号有GUVB-C31SM(IIC输出)、GUVB-T11GD-L(电流输出)、GUVB-T21GH(0-5V输出)。UVC传感器由于具有日盲特性,除了用于紫外线消毒监测上,还可以用于火焰探测。火焰探测的前提条件是传感器能够检测极低辐射强度的紫外线,同时传感器的暗电流必须非常低,这样SiC材质的传感器就能满足需求目前知名度比较高的是德国Sglux的SiC紫外线传感器。该类型传感器能够耐高温以及强紫外线辐射。该厂商的传感器代表型号有SG01D,该传感器TO-5封装,带有聚光镜,在10uw/cm2辐射强度下可以输出350nA的电流。感光芯片面积可以从0.06mm2~36mm2。同时该产商TOCON-ABC系列可以在1.8pw/cm2~18w/cm2的范围内都有相对应的传感器来监测,能应对各种各样的需求。

  • 超声波传感器_超声波传感器探测功能

    [align=left]超声波传感器是一种机械波,其振动频率高于声波。它是在电压激励下由换能器晶片的振动产生的。当超声波撞击杂质或界面时,它将产生显着的反射以形成回波的反射,当其撞击移动物体时可产生多普勒效应。因此,超声检测广泛应用于工业、防御、生物医学等方面。超声波传感器是利用超声波的特性开发的传感器。在工业中,超声波的典型应用是金属的无损检测和超声波厚度测量。超声波传感器的医学应用主要是诊断疾病,已成为临床医学中不可或缺的诊断方法。[/align]超声波传感器根据待检测物体的体积、材料、以及是否可移动而具有不同的检测方法。常见的检测方法如下:P超声波传感器发射器和接收器分别位于两侧,当待检测物体在它们之间通过时,根据超声波的衰减(或遮挡)检测。有限距离类型:发射器和接收器位于同一侧,当检测到的物体通过规定的距离时,根据反射检测超声波。适用范围:发射器和接收器位于限制范围的中心,反射器位于限制范围的边缘,当没有待检测物体时,反射波衰减值用作参考值。当要检测的对象在有限范围内通过时,基于反射波的衰减来检测(将衰减值与参考值进行比较)。回归反射型:发射器和接收器位于同一侧,检测对象(平面物体)用作反射表面,并根据反射波的衰减进行检测。超声波传感器检测的好坏用万用表直接测试P + F超声波传感器没有任何反映。为了测试超声波传感器的质量,可以使用音频振荡电路。当C1为390μF时,可在逆变器的第8和第10引脚之间产生约1.9kHz的音频信号。将要检测的超声波传感器(发射和接收)连接在8到10英尺之间 如果超声波传感器可以发出声音,那么超声波传感器基本上是好的。由超声波探头发射的超声波脉冲信号在气体中传播,并被空气和液体之间的界面反射。在接收到回波信号之后,计算超声波往返的传播时间,并且可以转换距离或距离水平高度。 超声波传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨压阻式压力变送器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨风速传感器丨硫化氢传感器丨光离子传感器丨ph3传感器丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]光纤传感器丨超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]气压传感器丨bm传感器丨氧气传感器丨超声波风速传感器丨气压传感器丨电流传感器丨voc传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]光纤应变传感器丨流量传感器[/color][color=#333333]丨超声波传感器https://mall.ofweek.com/2133.html丨[/color][color=#333333]称重传感[/color][color=#333333]器[/color][color=#333333]丨压力传感器丨meas压力[/color][color=#333333]传感器丨位置传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨压电薄膜传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 太阳光辐射测量仪品牌厂家价格方案

    太阳光辐射测量仪品牌厂家价格方案

    太阳光辐射测量仪品牌厂家价格方案高精度太阳光辐射测量仪可用于太阳直接辐射、总辐射、敞射辐射、反射辐射、大气长波辐射和地面长波辐射的测量。仝自动太阳追寻器是高精度太阳光辐射测量仪中的关键设备之一,是计算机控制的光、机、电体化系统,采用日历追寻方式和传感器追寻方式行平滑切换的工作模式,运行过程中不需任何人工干预,实现全自动、全天候、高精度追寻太阳。高精度太阳光辐射测量仪的试验进行,同时,又安装了辐射站业务用的辐射测量系统与之比较,原系统与新系统其用同个数据采集器获取数据。新系统的并辐射量各自的名称表示,原系统的辐射量加台站上业务辆射现测资料以示区别。[img=太阳光辐射测量仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204130921503936_9921_4136176_3.jpg!w690x690.jpg[/img]多功能太阳光辐射测量仪结构,主要由以下部件组成:1、跟日系统包括蜗轮传动的、由步进电机驱动的二轴转动系——追寻台。其上装有跟踪准直筒,它可指向空间任意方向。准直筒轴线后部装有四象限元件。当它对准太阳中心时,四象限元件的四个输出信号恰好相等;如有偏离则四个信号发生变化。利用微机来处理误差信号,并驱动步进电机,转动准直简直到对准太阳中心,这便实现了自动追寻。2、步进电机驱动电源,由微机控制其工作,它可供三台电机同时用。3、太阳光辐射测量仪探测系统包括接收准直筒及限光光阑,会聚透镜,可安放八块滤光片的转盘,滤光片驱动电机,恒温室,光伏探测元件,前置放大器等。4、微机系统,为了兼顾数据处理能力和通用性,我们采用IBM—PO兼容机,可达到高性能价格比。系统配备了专用的I/0接口和多通道i2bit高性能的A/D转换板。[img=太阳光辐射测量仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204130922147079_9749_4136176_3.jpg!w690x690.jpg[/img]5、电子单元,包括4096倍程控变增益放大器,四象限信号放大器及其它接口电路。6、太阳光辐射测量仪温度控制器,用来控制探测元件室的温度,使其保持在40范围内,以提高仪器的长期温度稳定性。

  • 太阳辐射观测站基准太阳辐射监测仪

    太阳辐射观测站基准太阳辐射监测仪

    太阳辐射观测站基准太阳辐射监测仪太阳辐射观测站使用温度补偿检测器技术,它特别适合于气象网络和1.66秒的响应时间降低(63%)符合太阳能应用的要求。防水插座安装的签名黄色信号电缆,可在一个范围内的长度,天生防水插头。整体水平提高到壳体的顶部,可被视为没有去除遮阳板重新设计的单元,其中也包括连接器。镀金触点的连接器可以很容易地交换和重新校准。在干燥筒螺杆易于拆卸和更换干燥剂填充包提供方便。[img=太阳辐射观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207050855440174_6281_4136176_3.jpg!w690x690.jpg[/img]气象辐射观测是地面观测业务中重要的观测项目之一,包括总辐射、发射辐射、散射辐射、直接辐射和净辐射,其中总辐射是辐射观测中基本的项目。太阳辐射观测站是一种应用于太阳辐射观测的短波太阳辐射观测站。它符合新的ISO和WMO标准的“一级”表技术指标。太阳辐射观测站是用来测量从180°视场,以W/m2为单位,入射在一个区域表面的太阳辐射通量,采取完全无源工作方式,利用一个热电偶传感器生成一个与辐射通量成正比的输出电压。由于使用了两个球型玻璃罩,减少了测量误差;特别是热偏差,所以传感器具有很高的测量精度。太阳辐射观测站的使用十分简单,用户仅仅需要一个精确的毫伏量级的电压表来读取数据。要计算辐射等级,电压必须除以灵敏度,而灵敏度是一个每一台仪器都提供的常数。可以与大多数常用的数据采集系统连接。可以用于科学气象观测,建筑物理学,气候和太阳光采集试验。通常的应用是作为气象站的一个部分来测量户外的太阳辐射。[img=太阳辐射观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207050855590376_1581_4136176_3.jpg!w690x690.jpg[/img]

  • 压电薄膜传感器_压电薄膜传感器详情

    话说这个压电薄膜传感器是具有一种很独特的特性的,它是一种动态模式的应变性传感器,一般通过在人体的皮肤表层进行植入或者植入到人体内部,用来监测人体的一些生命迹象以及特征。其中压电薄膜传感器里面的一些薄膜元件是非常灵敏的,可以隔着外套探测出人体的脉搏。OFweek Mall传感器商城网说一下压电薄膜传感器在医疗行业的应用。1、压电薄膜传感器工作原理当你拉伸或弯曲一片压电聚偏氟乙烯PVDF高分子膜(压电薄膜),薄膜上下电极表面之间就会产生一个电信号(电荷或电压),并且同拉伸或弯曲的形变成比例。一般的压电材料都对压力敏感,但对于压电薄膜传感器来说,在纵向施加一个很小的力时,横向上会产生很大的应力,而如果对薄膜大面积施加同样的力时,产生的应力会小很多。因此,压电薄膜传感器对动态应力非常敏感,28μm厚的PVDF的灵敏度典型值为10~15mV/微应变(长度的百万分率变化)。使用'动态应力'这个术语是因为形变产生的电荷会从与薄膜连接的电路流失,所以压电薄膜传感器并不能探测静态应力。当需要探测不同水平的预应力时,这反而成为压电薄膜传感器的优势所在。薄膜只感受到应力的变化量,最低响应频率可达0.1Hz。2、压电薄膜传感器特点压电薄膜很薄,质轻,非常柔软,可以无源工作,因此可以广泛应用于医用传感器,尤其是需要探测细微的信号时。显然,该材料的特点在供电受限的情况下尤为突出(在某些结构中,甚至还可以产生少量的能量)。而且压电薄膜传感器极其耐用,可以经受数百万次的弯曲和振动。3、压电薄膜传感器医疗应用利用压电薄膜传感器的动态应变片特性,可以轻松的将压电薄膜直接固定在人体皮肤上(例如手腕内侧)。精量电子—美国MEAS传感器的产品型号1001777是一款通用传感器,传感器的一侧涂有压力敏感胶。但这款胶未经生物兼容性认证,在短期试验中可以将3M9842(聚亚安酯胶带)固定在皮肤上,再将压电薄膜传感器粘贴在3M胶带上。压电薄膜之所以即能探测非常微小的物理信号又能感受到大幅度的活动,是因为PVDF膜的压电响应在相当大的动态范围内都是线性的(大约14个数量级)。多数情况下,只要能明显区分目标信号和噪声的带宽,细小的目标信号都可以通过过滤器采集到。类似的压电薄膜传感器已在睡眠紊乱研究中用于探测胸部,腿部,眼部肌肉和皮肤的运动。另外,传感器可以通过探测肌肉(例如拇指和食指之间的肌肉)对电击的反应作为检验麻醉效果的指示器(神经肌肉传导)。压电薄膜传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨[url=http://mall.ofweek.com/1877.html]压电薄膜传感器[/url]丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 光电液位传感器相比浮球开关有哪些优势

    光电液位传感器相比浮球开关有哪些优势

    利用光学原理工作的光电液位传感器,避免了任何机械接触,实现了对液位的精确检测。相反,磁性浮子液位开关依靠水的浮力驱动浮子沿着液面升降,通过这种方式激活磁簧管来监测液位。然而,此类设备易受到水垢堆积、安装不当等因素的干扰,导致浮子卡死或失效。在体积和整体设计方面,光电液位传感器小巧紧凑,支持多角度安装,而磁性浮子液位开关则较为笨重,包含移动部件,整体设计上略显逊色,且安装方向受限,仅能垂直向上或向下。光电液位传感器的稳定性和可靠性也更胜一筹,它不会受到磁场、温度或振动的影响。而磁性浮子液位开关由于内置磁铁,容易受到外部磁场、温度变化和振动的干扰,影响性能甚至造成磁性丧失。[align=center][img=光电液位传感器,600,461]https://ng1.17img.cn/bbsfiles/images/2024/02/202402181606472075_7586_4008598_3.jpg!w600x461.jpg[/img][/align]光电液位传感器能够检测距离水箱底部仅1毫米的液位,表现出极高的灵敏度。反观磁性浮子液位开关,由于浮子和磁铁的质量,必须设计一定的浸没深度以保证其能够浮起,这限制了最低测量液位的高度。若尝试通过下沉安装方式解决这一问题,则需在水箱底部设置较大的凹陷区域。准确性方面,光电液位传感器在水平面测量上的精度可达±0.5毫米,而磁性浮子液位开关的精度则为±2.5毫米,显示出前者在精确度上有明显优势。从寿命来看,[url=https://www.eptsz.com]光电液位传感器[/url]的标准使用寿命可以达到50,000小时以上,远超磁性浮子液位开关的10,000至20,000次开闭寿命,展现出更长久的耐用性。

  • 力传感器_力传感器种类_力传感器用法

    [align=center][/align]力传感器在大家的生活中是无处不在的,力传感器是一种相对比较耐用的机电类产品,在使用力传感器的时候需要注意保证它的测试精度,如果这个没办法把握的话那测量的结果就不准确了,也没有可参考的价值,那么在使用力传感器的时候这个精度要怎么去注意呢?力传感器周围应尽量设置一些“挡板”,甚至用薄金属板把力传感器罩起来。这样可防止杂物玷污力传感器及某些可动部分,而这种“沾污”往往会使可动部分运动不爽,而影响称量精度。系统有无运动不爽现象,可以用以下方法判别。即在秤台上加或减大约千分之一额定负荷看看显示仪是否有反映,有反映,说明可动部分未受“沾污”。力传感器所有通向显示电路或从电路引出的导线,均应采用屏蔽电缆。屏蔽线的联接及接地点应合理。若未通过机械框架接地,则在外接地,但屏蔽线互相联接后未接地,是浮空的。注意:有3只力传感器是全并联接法,力传感器本身是4线制,但在接线盒内换成6线制接法。力传感器输出信号读出电路不应和能产生强烈干扰的设可”控硅,接触器等)及有可观热量产生的设备放在同一箱体中,若不能保证这一点,则应考虑在它们之间设置障板隔离之,并在箱体内安置风扇。用以测量力传感器输出信号的电子线路,应尽可能配置独立的供电变压器,而不要和接触器等设备共用同一主电源。力传感器应采用铰合铜线(截面积约50mm2)形成电气旁路,以保护它们免受电焊电流或雷击造成的危害。力传感器使用中,必须避免强烈的热辐射,尤其是单侧的强烈热辐射。力传感器电气连接方面备(如力传感器的信号电缆,不和强电电源线或控制线并行布置(例如不要把力传感器信号线和强电电源线及控制线置于同一管道内)。若它们必须并行放置,那么,它们之间的距离应保持在50CM以上,并把信号线用金属管套起来。尽量采用有自动定位(复位)作用的结构配件,如球形轴承、关节轴承、定位紧固器等。他们可以防止某些横向力作用在力传感器上。要说明的是:有些横向力并不是机械安装引起的,如热膨胀引起的横向力,风力引起的横向力,及某些容器类衡器上的搅拌器的振动引起的横向力即不是机械安装引起的。某些衡器上有些必须接到秤体上的附件(如容器秤的输料管道等),我们应让他们在力传感器加载主轴的方向上尽量柔软一些,以防止他们“吃掉”传感器的真实负荷合而引起误差。要轻拿轻放尤其是由合金铝制作弹性体的小容量力传感器,任何冲击、跌落,对其计量性能均可能造成极大损害。对于大容量的测力传感器,一般来说,它具有较大的自重,故而要求在搬运、安装时,尽可能使用适当的起吊设备(如手拉葫芦、电动葫芦等)。安装传感器的底座安装面应平整、清洁,无任何油膜,胶膜等存在。安装底座本身应有足够的强度和刚性,一般要求高于力传感器本身的强度和刚度。测力传感器虽然有一定的过载能力,但在测力系统安装过程中,仍应防止力传感器的超载。要注意的是,即使是短时间的超载,也可能会造成力传感器永久损坏。在安装过程中,若确有必要,可先用一个和力传感器等高度的垫块代替力传感器,到最后,再把力传感器换上。在正常工作时,力传感器一般均应设置过载保护的机械结构件。若用螺杆固定力传感器,要求有一定的紧固力矩,而且螺杆应有一定的旋入螺纹深度。一般而言,固定螺杆因采用高强度螺杆。力传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨[url=http://mall.ofweek.com/category_54.html]力传感器[/url]丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 新丁请教光辐射测量方法

    新丁请教光辐射测量方法 我想测量由于电弧产生的光辐射,请问有没有什么光学非接触式测量方法可以这个光辐射? 我对光学知识很浅薄,查找了一些资料发现有光通量测量系统,还有什么光辐射传感器,但具体原理实在是不明白,也不知道这些方法是不是光学非接触式测量方法,只好祈祷懂行人拉我一把了,先行谢过!

  • 超声波微气象传感器气象要素选型

    超声波微气象传感器气象要素选型

    超声波微气象传感器气象要素选型超声波微气象传感器广泛应用于气象、环保、机场、农林、水文、事、仓储、科学研究等领域。可以实时监测风速、风向、雨量、温度、湿度、气压、太阳辐射、土壤温度、土壤湿度等九要素气象参数。超声波微气象传感器配置的微电脑气象数据采集仪具有气象数据采集、实时时钟、定时存储、参数设定、参数和气象历史数据掉电保护等功能。超声波微气象传感器采用标准RS232/485通讯功能,支持MODBUS通讯协议,可以通过有线、移动无线GPRS和无线数传电台等多种通讯方式与气象计算机组成气象监测系统。电源系统有市电、直流和太阳能系统多种方式。采用全不锈钢支架和野外防护箱,外形美观、耐腐蚀、抗干扰。[img=超声波微气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210100905515838_6451_4136176_3.jpg!w690x690.jpg[/img]无线传输方式可根据通讯距离的不同分为短距离无线传输、中距离无线传输、长距离无线传输三种无线传输方式,也可通过无线通讯方式实现一个中心对多个站点的实时监测。(1)短距离无线传输方式:采用先进的微波射频通讯传输模块,通讯距离在0~300米范围之内,主要适合于校园内、场区内等短距离范围内数据传输,无任何通讯费用。(2)长距离无线传输方式:采用GSM网/GPRS网通讯技术,结合Internet网络通讯协议,配备无线通讯控制器可实现监测中心对各个站点进行实时监测,远程采集各监测站点的气象数据,不受距离限制,数据传输可靠。[img=超声波微气象传感器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210100906128344_8429_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳辐射综合观测系统基准辐射测量

    太阳辐射综合观测系统基准辐射测量

    太阳辐射综合观测系统基准辐射测量一般简单的太阳辐射传感器由于观测视野的限制,无法进行全向观测,而太阳的运行位置是在时刻不停地变化的。为了使太阳辐射传感器,尤其是在测量直接辐射(DNI)时,能够准确始终垂直于太阳,保证测量的准确性,绿光新能源推出太阳辐射综合观测系统。可用于光伏/光热发电、大气化学成分研究等领域需要用的准确的测光数据,是构建一座太阳辐射综合观测系统的必要组成部分。更是光伏电站光功率预测的重要工具助手。太阳辐射综合观测系统是目前市场上高准确性和高可靠性的一款高精度自动太阳辐射测量仪器。是太阳能和气象应用领域使用最为广泛的太阳辐射测量仪器,其性能可靠,符合全球基准辐射测量网络(BSRN)级别。采用高精度蜗轮蜗杆传动系统,具有主动跟踪和被动跟踪相结合的方式,安装和操作比其他许多太阳辐射仪器都要方便。适合在重负载以及最恶劣的气候条件下使用。它不需额外的计算机支持,并且可通过GPS自动进行时间和位置修正。[img=太阳辐射综合观测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210250912569137_1263_4136176_3.jpg!w690x690.jpg[/img]太阳辐射综合观测系统配置水平安装盘、倾角安装盘、可调天顶角支架(用于安装直接辐射传感器)和遮光机构等附件,从而构成一个完整的太阳辐射监测站点,最多可同时安装直接辐射,倾角总辐射各一台;天顶可安装散辐射,总辐射共3台或总辐射2台、云量仪1台等,总共5台辐射传感器;也可以增扩到2台直接辐射和1台镜面反射太阳光装置,用于测量电池板的洁净系数。太阳辐射综合观测系统应用领域1.光伏电站光功率预测2.光伏/光热发电太阳辐射资源监测3.海洋气象光学资源监测4.高精度太阳辐射研究5.大气化学成分研究[img=太阳辐射综合观测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210250913237766_8811_4136176_3.jpg!w690x690.jpg[/img]

  • 红外温度传感器工作原理选型应用

    红外温度传感器工作原理选型应用

    [b]红外温度传感器简介[/b]红外温度传感器[color=#333333],在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。[/color][color=#333333]温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。[/color][color=#333333][img=,236,195]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_01_3332482_3.jpg!w236x195.jpg[/img][/color][color=#333333][b]红外温度传感器工作原理[/b][color=#333333]红外线[/color][color=#333333]红外线是一种人眼看不见的光线,但事实上它和其它任何光线一样,也是一种客观存在的物质。任何物体只要它的温度高于热力学零度,就会有红外线向周围辐射。红外线是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.75~100μm的频谱范围之内。[/color][color=#333333]红外辐射[/color][color=#333333]红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱的各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红外辐射的频率范围之内,因此人们又将红外辐射称为热辐射或者热射线。[/color][color=#333333]传感原理[/color][color=#333333]热传感器是利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过赛贝克效应来探测辐射的,当器件接收辐射后,引起一非电量的物理变化,也可通过适当变化变为电量后进行测量。[/color][/color][color=#333333][color=#333333][img=,511,294]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_02_3332482_3.jpg!w511x294.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器选型要点[/b]主要从性能指标和环境和工作条件两方面来加以考虑。性能指标:首先就是量程也就是测温范围,选择红外温度传感器时一定要注意到它的量程,只有选择了适合的量程才能更好的测量。用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。其次是要注意传感器的尺寸,不能选择过大也不能太小,必须选择适合自己的尺寸才能更好的方便测量,量程和尺寸是选择传感器都要注意的,但是选择红外温度传感器还要确定光学分辨率、确定波长范围、确定响应时间、信号处理功能等。工作条件:红外温度传感器所处的环境条件对测量结果有很大影响,应加以考虑、并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。[/color][/color][color=#333333][color=#333333][img=,536,285]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_01_3332482_3.jpg!w536x285.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器应用[/b]非接触式温度测量红外辐射探测移动物体温度测量连续温度控制热预警系统气温控制医疗器械长距离测量[b]红外温度传感器在智能空调上的应用[/b]舒适的生活环境是我们大家共同追求的,随着电子技术的发展,科技已经改变了我们周围的生活,科技化智能化的家居生活将成为可能。空调作为重要的家电产品,其创新发展技术也在不断进步,新型的智能空调运用多种传感器技术以及新型科技技术,实现了空调健康舒适、节能环保的智能化目标。[b]红外温度传感器在智能空调上的应用[/b]传统的空调出风量和出风的位置是固定不变的,人们在房间的时候,空调的出风大小是不会改变的,这样只能固定的出风,不仅满足不了人们的需求,而且浪费电量,新型的智能传感器安装了利用红外传感器设计的动感仪,红外温度传感器感应人体活动量,按需分配风量,让不同的人各有舒适,空调上的动感仪可以对室内空间进行5区域的划分,并实时监控5个区域,并在140度的大范围实时监测和敏锐感知人体活动量并进行分区差异化按需送风,以此适应不同家庭成员的个性化使用需求,进而提高空调房间的整体舒适性。[/color][/color][color=#333333][color=#333333][img=,549,249]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_02_3332482_3.jpg!w549x249.jpg[/img][/color][/color][color=#333333][color=#333333][color=#333333]智能空调的动感仪由三组不同角度的红外温度感应器构成,每组动感仪有2个感应头,共有6个感应头对出风口进行智能调节风量及风向,自动识别人体位置和活动量,不断更新采集数据,智能分析数据,根据不同的人体活动量进行差异化送风,让不同活动量的人都感觉舒适,并且减少了达到人感所需温度的时间。[/color][/color][/color][color=#333333][color=#333333][color=#333333][img=,388,316]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_03_3332482_3.jpg!w388x316.jpg[/img][/color][/color][/color][color=#333333][color=#333333][color=#333333]以上就是工采网小编今天给大家介绍的关于[/color]红外温度传感器[color=#333333]的相关知识及它的应用范围的介绍,因为红外温度传感器的使用帮助我们生产和科研的过程编的更加的简单,所以我们增加对于它的相关知识的了解是非常的有必要的,毕竟是我们经常会使用的工具。这就是今天讲解的全部内容了,希望对大家在日后的生活中能够有所帮助。[/color][/color][/color]

  • 路面太阳辐射反射系数检测仪

    路面太阳辐射反射系数检测仪

    路面太阳辐射反射系数检测仪太阳辐射反射系数检测仪是在水平表面上从2π球面度立体角中接收到的太阳直接辐射和太阳散射辐射之和(短波),即太阳直接辐射的垂直分量和水平面上接受到的散射辐射总量,业务上通常用太阳辐射反射系数检测仪来进行观测。根据安装状态不同,太阳辐射反射系数检测仪可分别测量太阳总辐射、反射辐射,或借助遮光装置测量散射辐射。对于太阳辐射反射系数检测仪传感器的选择主要有以下三点:一、能否达到既定的太阳辐射测量精度要求;二、在满足测量精度的情况下,太阳辐射反射系数检测仪尽量使用低功耗的传感器,这是由于系统的设计电源是采用电池供电;三、太阳辐射反射系数检测仪传感器要能满足被测介质和使用环境的特殊要求,例如在高温、低温下的工作情况以及防腐等。[img=太阳辐射反射系数检测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210170914044180_4640_4136176_3.jpg!w690x690.jpg[/img]用于测量太阳和天空辐射,适应很宽的波长范围。太阳辐射反射系数检测仪为可以借助不同牌号的有色光学玻璃制作的半球形外进行不同宽波段太阳辐射的测量。太阳辐射反射系数检测仪由一个组合热电堆电路组成,可以很好的抵抗机械震动和打击。太阳辐射反射系数检测仪的接收器上有一层黑漆,底部为一个半球形玻璃项罩。玻璃半球使用的是测量用玻璃,其对于0.305pm-2.8pm的波长具有非常好的透光性,而且能量传输非常的均一。太阳辐射反射系数检测仪根据黑色涂料吸收太阳辐射产生热效应的温升值来确定辐射强度。温升值采用热电堆测得。[img=太阳辐射反射系数检测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210170914391157_1723_4136176_3.jpg!w690x690.jpg[/img]

  • 光电传感器与红外传感器的区别

    光电传感器与红外传感器的区别

    [font=宋体][color=#1E1F24]光电传感器与红外传感器的主要区别在于它们的工作原理和用途。[/color][/font][font=宋体][color=#1E1F24]光电传感器通常使用光敏元件(如光敏电阻、光电池等)来检测光线或可见光的强度。当光线照射到光敏元件上时,光敏元件会根据光线强度产生相应的电信号。因此,光电传感器主要用于检测可见光的存在、测量光的强度和辨别颜色等。[/color][/font][font=宋体][color=#1E1F24]红外传感器则使用红外线来探测目标物体。红外线是一种波长在红色光和微波之间的电磁波,具有穿云透雾的能力。红外传感器通常使用热敏元件来探测目标物体发出的红外辐射,并根据目标物体的温度差异来判断是否存在目标物体。因此,红外传感器主要用于热成像、夜视、监控、消防等领域。[/color][/font][align=center][img=光电液位传感器,600,324]https://ng1.17img.cn/bbsfiles/images/2023/11/202311091558166644_7199_4008598_3.jpg!w600x324.jpg[/img][/align][font=宋体][color=#1E1F24]光电传感器和红外传感器在结构、性能和应用方面也存在差异。光电传感器的结构相对简单,通常由一个光敏元件和一些电子元件组成。而红外传感器的结构较为复杂,通常需要使用光学系统、热敏元件和信号处理电路等。光电传感器的响应速度较快,适用于高速检测和自动化控制等领域,而红外传感器的响应速度较慢,但具有较高的灵敏度和分辨率,适用于远距离探测和热成像等领域。[/color][/font][font=宋体][color=#1E1F24][url=https://www.eptsz.com]光电传感器[/url]和红外传感器是两种不同的传感器类型,它们的工作原理、结构、性能和应用等方面存在明显的差异。在选择使用时,需要根据实际需求和应用场景来选择合适的传感器类型。[/color][/font]

  • 超声波传感器检测方法_超声波传感器常见应用

    超声波传感器检测方法_超声波传感器常见应用

    [align=left]超声波是一种振动频率高于声波的机械波。它是在电压激励下由换能器透镜的振动产生的。它的高频率为、,短波长为、。衍射现象很小,特别是方向性好。、可以是射线和方向的。沟通等特点。液体固体的超声波渗透性很强,特别是在太阳光的不透明固体重量下,其可以穿透超过十米的深度。[/align]当超声波撞击杂质或界面时,它将产生显着的反射以形成回波的反射,当它撞击移动物体时可产生Domiller效应。这种超声波检测广泛应用于工业、防御、生物医学等方面。超声波传感器广泛用于现代工业领域。超声波传感器使用不同的检测方法。有四种常见的检测方法:1、透射:发射器和接收器分别位于两侧。当待测物体在它们之间通过时,根据超声波的衰减(或遮挡)检测。2、有限距离类型:发射器和接收器位于同一侧。当检测到的物体在限定的距离内通过时,根据反射的超声波检测物体。3、范围:发射器和接收器位于有限范围的中心,反射器位于有限范围的边缘,当没有待检测物体时的反射波衰减值用作参考值。当要检测的对象在有限范围内通过时,基于反射波的衰减来检测(将衰减值与参考值进行比较)。4、逆向反射:发射器和接收器位于同一侧,检测对象(平面物体)用作反射面,检测基于反射波的衰减。OFweek Mall技术工程师推荐使用以下几种超声波传感器:[b]MaxBotix 超声波传感器 人体检测传感器-MB1004[/b] 特点近端探测低成本的邻近目标检测方案测量周期快超低功耗适合电池供电系统可以自由运行测量或者外部触发测量宽供电电压2.5V~5.5V可输出高低电平报警信号[img=,262,231]https://ng1.17img.cn/bbsfiles/images/2018/11/201811091145153734_4623_3422752_3.png!w262x231.jpg[/img]超声波传感器可用于灰尘、雾、或蒸汽。它非常适合非接触式位置和距离测量。可以在不考虑颜色或形状的情况下以毫米精度检测不同材料的物体。超声波传感器使用超出人类可听声音的高频超声波作为测量介质。超声波传感器在工业中的三种常见应用主要体现在以下方面:1、超声波可应用于食品加工厂,实现塑料包装检测的闭环控制系统。采用新技术,它可以在湿环中进行测试,如洗瓶机、噪声环境、极端温度变化环境。2、用于医学检测的超声波传感器—— B超检查。3、超声波传感器质量检测——超声波探伤仪,超声波探伤仪主要用于金属部件内部的质量检测,如检测金属气泡,焊接部位未焊接等缺陷。超声波传感器https://mall.ofweek.com/2133.html丨超声波液位传感器丨无人机超声波传感器丨超声波风速传感器超声波水位传感器

  • 大连化物所开发出柔性可穿戴长波红外光热电探测器

    [color=#000000]近日,大连化物所催化基础国家重点实验室热电材料与器件研究组(525组)姜鹏研究员、陆晓伟副研究员、包信和院士团队开发了柔性、可穿戴长波红外光热电探测器,并将其用于电子皮肤非接触温度感知。[/color][color=#000000]仿生触觉是智能机器人感知外部环境刺激的基础。在传统触觉系统中,触觉传感器需要与外部环境物理接触进而获取温度信息,无法在接触前对外部刺激作出预判。因此,发展具有非接触温度感知能力的先进触觉传感技术,将有助于为机器人交互感知领域带来全新的体验。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/d9f98d30-33d3-4a5f-ae64-7284b6ef766d.jpg[/img][/align][color=#000000]光热电探测器是基于光热、热电两个能量转换过程,可在无需制冷、无需偏置电压、无接触的条件下实现对长波红外辐射(8至14μm)的灵敏探测。本工作中,研究团队在前期光热电探测器工作([/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]Adv. [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b]M [/b][/i][/url][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202204355][i][b][color=#0070c0]ater. [/color][color=#0070c0][/color][/b][/i][/url][color=#000000],2022;[/color][url=https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201902044][i][b]Adv. Mater [/b][/i][/url][color=#0070c0][i][b].[/b][/i][/color][color=#000000],2019;[/color][url=https://www.nature.com/articles/s41467-018-07860-0][i][b]Nat. Commun. [/b][/i][/url][color=#000000],2019)的基础上,在具有长波红外吸收能力的柔性聚酰亚胺(PI)衬底上构建了Te/CuTe热电异质结,制备出高灵敏度、柔性、可穿戴长波红外光热电探测器。Te/CuTe热电异质结一方面可以提升复合薄膜的热电功率因子,起到降低器件噪音的作用;另一方面可以通过降低其光学反射损耗,并将其光学反射极小值与PI吸收峰对齐,增强光热电耦合,提升器件灵敏度。[/color][color=#000000]在非接触式温度感知测试中,当目标温度从零下50°C上升至110°C,所制备的柔性光热电探测器灵敏度均优于商业刚性热电堆,温度分辨能力可达0.05°C。以此为基础,研究团队利用该红外探测器在接近辐射源过程中响应电压的斜率变化,开发了动态温度预警系统,使得软体机械手可对热源进行预先判定。该工作为在仿生触觉系统中引入红外探测技术提供了可行的解决方案,在机器人交互感知、虚拟现实等领域具有重要的应用前景。[/color][color=#000000]相关研究成果以“[b]Touchless thermosensation enabled by flexible photothermoelectric detector for temperature prewarning function of electronic skin ”[/b]为题,发表在[b]《先进材料》[/b][i](Advanced Materials)[/i]上。上述工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金、大连化物所创新基金等项目的资助。(文/图 郭晓晗、陆晓伟)[/color][color=#000000]文章链接:[/color][url=https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911][b]https://onlinelibrary.wiley.com/doi/10.1002/adma.202313911[/b][/url][来源: 中国科学院大连化物所][align=right][/align]

  • 超声波液位传感器和浮球传感器哪个更具有优势

    超声波液位传感器和浮球传感器哪个更具有优势

    [font=宋体][color=#212121]超声波液位传感器和浮球传感器都是常见的液位传感器,但它们各自具有不同的优势。下面我们来比较一下这两种传感器的优劣。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]首先,超声波液位传感器采用超声波技术检测液位,不需要接触液体,因此不会对液体产生污染,符合食品级要求,可以保证液体的安全性。而浮球传感器则需要接触液体,容易受到液体污染,不太适合在食品、医疗等领域使用。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]其次,超声波液位传感器精度高、误差小,可以精确地检测液位变化。而浮球传感器的精度相对较低,误差较大,不太适合对液位变化要求较高的场合。[/color][/font][align=center][img=,385,254]https://ng1.17img.cn/bbsfiles/images/2023/06/202306141601536677_9599_4008598_3.jpg!w385x254.jpg[/img][/align][font=宋体][color=#212121]另外,超声波液位传感器可以检测非常高的液位,适用范围广,而浮球传感器的检测范围相对较窄,只适用于一些特定的场合。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]最后,超声波液位传感器体积小、安装方便,不需要额外的电源和控制器,维护简单。而浮球传感器体积较大,安装和维护相对较为复杂。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121][font=宋体]深圳市能点科技有限公司是一家专业的开关生产厂家,主要供应[url=https://www.eptsz.com]液位传感器[/url],倾倒开关,小型流量计,分离式液位开关,水位传感器,水位开关,轻触开关[/font][font=Helvetica],[/font][font=宋体]水箱控制开关,鱼缸自动智能补水器等产品。液位传感器广泛应用于扫拖机,洗地机,饮水机,咖啡机加湿器等家电设备。[/font][/color][/font][font=宋体][color=#212121][/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制