当前位置: 仪器信息网 > 行业主题 > >

氢氧化钠烧碱浓度折射仪

仪器信息网氢氧化钠烧碱浓度折射仪专题为您提供2024年最新氢氧化钠烧碱浓度折射仪价格报价、厂家品牌的相关信息, 包括氢氧化钠烧碱浓度折射仪参数、型号等,不管是国产,还是进口品牌的氢氧化钠烧碱浓度折射仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氢氧化钠烧碱浓度折射仪相关的耗材配件、试剂标物,还有氢氧化钠烧碱浓度折射仪相关的最新资讯、资料,以及氢氧化钠烧碱浓度折射仪相关的解决方案。

氢氧化钠烧碱浓度折射仪相关的资讯

  • 日本ATAGO折光仪携手德祥参展BCEIA 2009
    日本ATAGO折光仪携手德祥参展BCEIA 2009 2009年11月25日-28日,由中国分析测试协会主办的&ldquo 第十三届北京分析测试学术报告会及展览会(BCEIA)&rdquo 在北京展览馆隆重召开。 作为日本ATAGO折光仪、旋光仪在中国大陆地区及港澳地区的签约经销商,德祥科技携ATAGO在国内最畅销的台式折射仪RX-5000a及部分便携式产品在展会亮相。 本次展出的台式折射仪RX-5000a以及PAL-3、PAL-ES2数显手持式折射仪、MASTER-alpha手持刻度折射仪等产品均为国内畅销型号,在食品饮料、化工、科研、品质管理以及制药等领域有着广泛的应用和客户群。本次展出吸引了众多客户的关注和咨询,并现场成功敲定了多笔订单!  成立于1940年ATAGO(爱宕dang),近70年的光电产品制造经验  市场份额*,从食物加工,石油化学到金属制造,ATAGO(爱宕)产品现今被广泛的应用。凭借着可靠*的品牌知名度,ATAGO产品获得来自全世界一百多个不同国家客户的完全信赖  公司在07年和08年两次获得了世界*的标准普尔公司的日本SME(中小型企业)*评级 aaa ATAGO产品广泛应用于: 1、 食品行业: 测量水果的糖度(测定准确的收采时期, 作甜度分级分类;超市里也使用糖度并在水果的价格标签上标出水果的糖度,以便顾客参考选购); 测量饮料的BRIX值(适用于果汁,清凉饮料及碳酸饮料的生产线上,品质管理,发货前检验等); 测量果酱,液糖的糖度(适用于果酱, 糖稀,液糖等含糖分较多产品的糖度测量.另外还有专门测量蜂蜜水分的蜂蜜折射仪); 测量调味料的BRIX值(适用于酱油,番茄酱等各种酱类产品的浓度测量.如需烹煮过程中测量,您可以选购有耐热性的H系列); 测量各个食品的盐分(适用于酱油,番茄酱等各种酱类产品及汤,调味液,水产物用的盐腌液等的盐分测量); 测量茶类产品的浓度(绿茶,乌龙茶,红茶等饮料的可溶性固体物质的浓度低,其BRIX值大约0.3%&darr 我们可提供具有高精度而适合测量浓度较低的样品的折射仪); 测量海水浓度(可应用于海洋,渔场,养殖场使用的海水,水族馆使用的海水或人工海水, 储藏鱼使用的盐水等的浓度管理.海水浓度折射仪以其标度为「千分比&permil 」及比重); 测定油脂(每个国家都对植物油脂原油,食用植物油脂(如黄豆油,橄榄油)的折射率有规定.手持式折射仪在现场也使用)。 2、 工业: 测量不冻液的浓度(适用于调整汽车的冷却水, 冷媒液用的不冻液的浓度); 测量水容性切割油的浓度(用于管理/控制水容性切割油,研削油的浓度.使用之前需要做BRIX对浓度的换算表); 测量清洗液的浓度(用于管理清洗金属加工零件用的清洗液的污浊程度); 测量水溶液的折射率与浓度(用于乙醇&bull 过氧化氢水&bull 氢氧化钠等各种水溶液的浓度管理.使用之前需要做 折射率对浓度 或 折射率对比重的换算表); 测量玻璃片及胶卷等折射率(用于测量玻璃片,塑料片及胶卷等固体样本的折射率)。 更多后续报道及产品信息,敬请关注www.tegent.com.cn 客服热线:4008 822822
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 大庆华科股份有限公司465.60万元采购离子色谱仪
    详细信息 大庆华科股份有限公司工业用氢氧化钠(液碱)年度框架公开招标(二次) 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2023-09-19 招标文件: 附件1 附件2 附件3 大庆华科股份有限公司工业用氢氧化钠(液碱)年度框架公开招标(二次)招标公告 招标编号: DQSH-DLGK2023-40 1. 招标条件 本招标项目大庆华科股份有限公司工业用氢氧化钠(液碱)年度框架公开招标,招标人为大庆华科股份有限公司,招标项目资金来源已落实。该项目为依规招标项目,已具备招标条件,现对此项目进行公开招标。 2. 项目概况与招标范围 2.1项目概况 本次招标是大庆华科股份有限公司工业用氢氧化钠(液碱)招标,涉及1个品种,主要用于大庆华科股份有限公司化工作业区使用。 本次招标为:预估数量约4000吨(氢氧化钠(以NaOH计)的质量分数≥30%) 交货地点:大庆市龙凤区乙烯环南路1号 交货期:合同生效后12个月内 最高限价:465.6万元。 运输方式:公路运输 生产使用情况说明:C5石油树脂装置使用。 供货需求说明:交付期限、交付地点和交付数量按合同约定执行。 结算数量计算方式:计算数量以我公司实际接收数量为准,货到验收合格卖方开具结算期增值税专用发票后三个月内付款。 签订合同方式:本次供货双方签订框架买卖合同。 使用单位:大庆华科股份有限公司化工作业区 业务主管部门:机动工程部 项目联系人:杨 媛 联系方式:0459-6280225 2.2 招标范围 招标物资明细见下表(或附物资明细表): 物资名称 规格型号 单位 预估数量 交货期 氢氧化钠水溶液(液碱) 氢氧化钠(以NaOH计)的质量分数≥30%),具体详见附件一技术要求 吨 4000 合同生效后12个月内 2.3 技术要求 主要技术要求: 产品生产工艺要求采用离子膜法生产,产品质量指标符GB/T 209-2018工业用氢氧化钠,满足下表各项要求: 序号 项目 质量指标 检测方法 1 产品生产工艺 离子交换膜法 2 外观 无色透明,稠状液体 目视观察 3 氢氧化钠(以NaOH计)的质量分数 ≥30% GB/T209-2018 4 碳酸钠(以Na2CO3计)的质量分数 ≤0.2% GB/T209-2018 5 氯化钠(以NaCL计)的质量分数 ≤0.008% GB/T209-2018 6 三氧化二铁(以Fe2O3计)的质量分数 ≤0.001% GB/T209-2018 其他要求详见附件。 2.4其他需说明事项 2.4.1履约保证金:成交金额的10%((履约保证金以万元向下进行收取,不足万元部分不计)作为履约保证金,汇款信息如下: 公司名称:大庆华科股份有限公司 开户银行:工行开发区支行 收入户:0905063509245012079 中标单位凭中标通知书和履约保证金存款证明到大庆华科股份有限公司签订合同。 2.4.2本项目中标价格执行单价(含货款、运输费、包装费、装车费、卸车费及增值税费等费用)。 当隆众资讯网30%离子膜市场主流价格平均值涨跌幅(价格变化率)超过10%时,进行价格调整,调整方法如下: 本项目中标价格执行调价机制(含13%增值税、含运杂费)。具体调价机制如下: 参照隆众资讯(https://www.oilchem.net/)网山东、河北、东北和华北地区30%离子膜碱国内市场主流价格与大庆华科股份有限公司公开招标中标价格,具体计算方法如下: ①山东地区 30%离子膜碱当日国内市场主流价格=(山东地区32%离子膜碱国内市场主流价格*30/32) ②河北地区 30%离子膜碱当日国内市场主流价格=(河北地区32%离子膜碱国内市场主流价格*30/32) ③东北地区 30%离子膜碱当日国内市场主流价格=(东北地区32%离子膜碱国内市场主流价格*30/32) ④华北地区 30%离子膜碱当日国内市场主流价格=(华北地区32%离子膜碱国内市场主流价格*30/32) 合同履行期间每个月结算前,选取隆众资讯网烧碱板块30%离子膜碱国内市场主流价格上月21日至结算月21日期间所有数据并取平均值,当30%离子膜碱国内市场主流价格平均值涨跌幅度(价格变化率)超过10%时,启动价格调整机制(保留两位小数)。 1)结算价格=中标价格*(1+价格变化率); 2)价格变化率=(①变化率+②变化率+③变化率+④变化率)/4,(如个别地区无数据或结算期间数据不足5天不统计,取剩余地区平均值计算); 3)变化率=(A-B)/B*100% A=结算当期该地区30%离子膜碱国内市场主流价格平均值(如个别地区无数据或结算期间数据不足5天不统计,取剩余地区平均值计算); B=招标文件发售之日起至开标之日止,该地区30%离子膜碱国内市场主流价格平均值(如个别地区无数据或结算期间数据不足5天不统计,取剩地区平均值计算); 3)结算数量以上月21日至结算月20日期间实际送货数量为准。 注:价格确认部门有权对隆众资讯(https://www.oilchem.net)价格信息进行核对、甄别,有权对个别地区大幅异于常规的价格数据进行筛除处理,无需征得合同相对人同意,价格确认相关部门共同签字确认后生效实施。 3. 投标人资格要求 本项目生产商与代理商均可参与投标。 投标人须提供下列资格要求: 3.1、生产商须提供: 3.1.1营业执照; 3.1.2银行开户许可证或者企业基本存款账户信息; 3.1.3安全生产许可证(生产范围含有投标产品); 3.1.4全国工业产品生产许可证(明细含有投标产品); 3.1.5 法定代表人身份证明及法定代表人授权书。 3.2、代理商须提供: 3.2.1营业执照; 3.2.2银行开户许可证或者企业基本存款账户信息; 3.2.3危险化学品经营许可证(经营范围含有投标产品); 3.2.4所代理生产企业的资质满足第1条生产商的资质要求; 3.2.5生产企业的合法授权书。若成交,代理商不可更换产品生产企业。 3.2.6法定代表人身份证明及法定代表人授权书。 3.3、不接受联合体投标 以上资格要求均为关键条款,如不满足,投标将被否决。 4. 招标文件的获取 4.1凡有意参加投标的潜在投标人,请于 2023年 09月 20 日 8:30:00 时至 2023 年 09 月 25日 16:00:00 时,登录 中国石油电子招标投标平台下载电子招标文件。 4.1.1登录“中国石油招标投标网”,进入中国石油电子招标投标平台在线报名,如未在中国石油电子招标投标平台上注册过的潜在投标人需要先注册并通过平台审核,审核通过后登录平台在“可报名项目”中可找到本项目并完成在线报名。 4.1.2办理本项目标书费缴纳事宜。 购买招标文件采用网上支付的模式(在交易平台内),系统仅支持个人网银支付,详细操作步骤参见中国石油电子招标投标交易平台-工具中心-投标人用户手册。 若通过个人账户购买,将被认为购买人已经获得了公司的授权,等同于公司购买,不接受个人名义购买。 投标人在购买招标文件时,应确认中国石油电子招标投标交易平台上的投标人名称、通信地址、联系人、联系方式等基本信息准确无误,招投标全流程信息发布和联络以此为准。招标过程中因联络方式有误导致的一切后果由投标人自行承担。 支付成功后,投标人直接从交易平台上下载招标文件电子版。招标人/招标机构不再提供任何纸质招标文件。支付成功,即视为招标文件已经售出,文件一经售出概不退款。 招标文件购买操作失败或其他系统问题,请与招标机构项目负责人或平台运营联系。 4.1.3此次采购招标项目为全流程网上操作,投标人需要使用中国石油电子招标投标平台的U-key才能完成投标工作,因此要求所有参与本次采购招标的投标人必须办理U-key(具体操作请参考中国石油招标投标网首页----操作指南---《关于招标平台U-KEY办理和信息注册维护通知》)。其他具体操作请参考中国石油招标投标网操作指南中“投标人用户手册”的相关章节,有关注册、报名等交易平台的操作问题也可咨询技术支持团队相关人员,咨询电话:4008800114。 4.2招标文件每套售价为 200 元人民币,请有意参加投标的潜在投标人确认自身资格条件是否满足要求,售后不退,应自负其责。 4.3本次招标文件采取线上发售的方式。 5. 投标文件的递交 5.1本次招标采取网上递交电子投标文件的投标方式。 5.1.1网上电子投标文件递交: 投标人应在5.2规定的投标截止时间前通过“中国石油电子招标投标平台”递交电子投标文件(为避免受网速及网站技术支持工作时间的影响,建议于投标截止时间前24小时完成网上电子投标文件的递交);投标截止时间前未被系统成功传送的电子投标文件将不被接受,视为主动撤回投标文件。 在提交投标文件时,投标人应支付 4万元 人民币的投标保证金,投标保证金应从投标人基本帐户通过企业网银支付或电汇形式向保证金账户汇出,昆仑银行将依此向大庆石化工程招标代理有限公司提供投标保证金担保明细。(投标人须注意,投标保证金汇入昆仑银行指定账户后,还须进入该项目主控台,分配至本项目方为提交成功。) 5.2投标截止时间及开标时间(网上开标): 2023 年 10 月 7日 08 时 30 分(北京时间)。 5.3开标地点(网上开标):中国石油电子招标投标平台(所有投标人可登录中国石油电子招标投标平台在线参加开标仪式)。 6. 异议的提出与受理 本次招标异议由招标机构受理,其提出必须符合附件《招标投标活动异议提起须知》要求,否则无效。 7. 发布公告的媒介 本次招标公告同时在中国招标投标公共服务平台(http://www.cebpubservice.com)、中国石油招标投标网(http://www.cnpcbidding.com) 和大庆石化公司主页(http://dqsh.cnpc.com.cn)上发布。 8. 联系方式 招 标 人:大庆华科股份有限公司 地 址:黑龙江省大庆市龙凤区 联 系 人:杨 媛 电 话:0459-6280225 招标机构:大庆石化工程招标代理有限公司 地 址:黑龙江省大庆市龙凤区乙烯大庆石化公司安全楼317室 联 系 人:周志宏 电子邮件:zhouzhih-ds@petrochina.com.cn 电 话:0459-6767701 9. 投标保证金递交相关信息 开户行名称:昆仑银行股份有限公司大庆分行 开户行行号:313265010019 账户名称:昆仑银行电子招投标保证金 银行账号:26902100171850000010 昆仑银行客服电话:95379-1-9-9 附件一:大庆华科C5石油树脂装置工业用氢氧化钠(液碱)招标采购技术要求.pdf 投标人电子交易平台简易手册.pdf 招标投标活动异议提起须知.pdf × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:离子色谱仪 开标时间:2023-10-07 00:00 预算金额:465.60万元 采购单位:大庆华科股份有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆石化工程招标代理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大庆华科股份有限公司工业用氢氧化钠(液碱)年度框架公开招标(二次) 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2023-09-19 招标文件: 附件1 附件2 附件3 大庆华科股份有限公司工业用氢氧化钠(液碱)年度框架公开招标(二次)招标公告 招标编号: DQSH-DLGK2023-40 1. 招标条件 本招标项目大庆华科股份有限公司工业用氢氧化钠(液碱)年度框架公开招标,招标人为大庆华科股份有限公司,招标项目资金来源已落实。该项目为依规招标项目,已具备招标条件,现对此项目进行公开招标。 2. 项目概况与招标范围 2.1项目概况 本次招标是大庆华科股份有限公司工业用氢氧化钠(液碱)招标,涉及1个品种,主要用于大庆华科股份有限公司化工作业区使用。 本次招标为:预估数量约4000吨(氢氧化钠(以NaOH计)的质量分数≥30%) 交货地点:大庆市龙凤区乙烯环南路1号 交货期:合同生效后12个月内 最高限价:465.6万元。 运输方式:公路运输 生产使用情况说明:C5石油树脂装置使用。 供货需求说明:交付期限、交付地点和交付数量按合同约定执行。 结算数量计算方式:计算数量以我公司实际接收数量为准,货到验收合格卖方开具结算期增值税专用发票后三个月内付款。 签订合同方式:本次供货双方签订框架买卖合同。 使用单位:大庆华科股份有限公司化工作业区 业务主管部门:机动工程部 项目联系人:杨 媛 联系方式:0459-6280225 2.2 招标范围 招标物资明细见下表(或附物资明细表): 物资名称 规格型号 单位 预估数量 交货期 氢氧化钠水溶液(液碱) 氢氧化钠(以NaOH计)的质量分数≥30%),具体详见附件一技术要求 吨 4000 合同生效后12个月内 2.3 技术要求 主要技术要求: 产品生产工艺要求采用离子膜法生产,产品质量指标符GB/T 209-2018工业用氢氧化钠,满足下表各项要求: 序号 项目 质量指标 检测方法 1 产品生产工艺 离子交换膜法 2 外观 无色透明,稠状液体 目视观察 3 氢氧化钠(以NaOH计)的质量分数 ≥30% GB/T209-2018 4 碳酸钠(以Na2CO3计)的质量分数 ≤0.2% GB/T209-2018 5 氯化钠(以NaCL计)的质量分数 ≤0.008% GB/T209-2018 6 三氧化二铁(以Fe2O3计)的质量分数 ≤0.001% GB/T209-2018 其他要求详见附件。 2.4其他需说明事项 2.4.1履约保证金:成交金额的10%((履约保证金以万元向下进行收取,不足万元部分不计)作为履约保证金,汇款信息如下: 公司名称:大庆华科股份有限公司 开户银行:工行开发区支行 收入户:0905063509245012079 中标单位凭中标通知书和履约保证金存款证明到大庆华科股份有限公司签订合同。 2.4.2本项目中标价格执行单价(含货款、运输费、包装费、装车费、卸车费及增值税费等费用)。 当隆众资讯网30%离子膜市场主流价格平均值涨跌幅(价格变化率)超过10%时,进行价格调整,调整方法如下: 本项目中标价格执行调价机制(含13%增值税、含运杂费)。具体调价机制如下: 参照隆众资讯(https://www.oilchem.net/)网山东、河北、东北和华北地区30%离子膜碱国内市场主流价格与大庆华科股份有限公司公开招标中标价格,具体计算方法如下: ①山东地区 30%离子膜碱当日国内市场主流价格=(山东地区32%离子膜碱国内市场主流价格*30/32) ②河北地区 30%离子膜碱当日国内市场主流价格=(河北地区32%离子膜碱国内市场主流价格*30/32) ③东北地区 30%离子膜碱当日国内市场主流价格=(东北地区32%离子膜碱国内市场主流价格*30/32) ④华北地区 30%离子膜碱当日国内市场主流价格=(华北地区32%离子膜碱国内市场主流价格*30/32) 合同履行期间每个月结算前,选取隆众资讯网烧碱板块30%离子膜碱国内市场主流价格上月21日至结算月21日期间所有数据并取平均值,当30%离子膜碱国内市场主流价格平均值涨跌幅度(价格变化率)超过10%时,启动价格调整机制(保留两位小数)。 1)结算价格=中标价格*(1+价格变化率); 2)价格变化率=(①变化率+②变化率+③变化率+④变化率)/4,(如个别地区无数据或结算期间数据不足5天不统计,取剩余地区平均值计算); 3)变化率=(A-B)/B*100% A=结算当期该地区30%离子膜碱国内市场主流价格平均值(如个别地区无数据或结算期间数据不足5天不统计,取剩余地区平均值计算); B=招标文件发售之日起至开标之日止,该地区30%离子膜碱国内市场主流价格平均值(如个别地区无数据或结算期间数据不足5天不统计,取剩地区平均值计算); 3)结算数量以上月21日至结算月20日期间实际送货数量为准。 注:价格确认部门有权对隆众资讯(https://www.oilchem.net)价格信息进行核对、甄别,有权对个别地区大幅异于常规的价格数据进行筛除处理,无需征得合同相对人同意,价格确认相关部门共同签字确认后生效实施。 3. 投标人资格要求 本项目生产商与代理商均可参与投标。 投标人须提供下列资格要求: 3.1、生产商须提供: 3.1.1营业执照; 3.1.2银行开户许可证或者企业基本存款账户信息; 3.1.3安全生产许可证(生产范围含有投标产品); 3.1.4全国工业产品生产许可证(明细含有投标产品); 3.1.5 法定代表人身份证明及法定代表人授权书。 3.2、代理商须提供: 3.2.1营业执照; 3.2.2银行开户许可证或者企业基本存款账户信息; 3.2.3危险化学品经营许可证(经营范围含有投标产品); 3.2.4所代理生产企业的资质满足第1条生产商的资质要求; 3.2.5生产企业的合法授权书。若成交,代理商不可更换产品生产企业。 3.2.6法定代表人身份证明及法定代表人授权书。 3.3、不接受联合体投标 以上资格要求均为关键条款,如不满足,投标将被否决。 4. 招标文件的获取 4.1凡有意参加投标的潜在投标人,请于 2023年 09月 20 日 8:30:00 时至 2023 年 09 月 25日 16:00:00 时,登录 中国石油电子招标投标平台下载电子招标文件。 4.1.1登录“中国石油招标投标网”,进入中国石油电子招标投标平台在线报名,如未在中国石油电子招标投标平台上注册过的潜在投标人需要先注册并通过平台审核,审核通过后登录平台在“可报名项目”中可找到本项目并完成在线报名。 4.1.2办理本项目标书费缴纳事宜。 购买招标文件采用网上支付的模式(在交易平台内),系统仅支持个人网银支付,详细操作步骤参见中国石油电子招标投标交易平台-工具中心-投标人用户手册。 若通过个人账户购买,将被认为购买人已经获得了公司的授权,等同于公司购买,不接受个人名义购买。 投标人在购买招标文件时,应确认中国石油电子招标投标交易平台上的投标人名称、通信地址、联系人、联系方式等基本信息准确无误,招投标全流程信息发布和联络以此为准。招标过程中因联络方式有误导致的一切后果由投标人自行承担。 支付成功后,投标人直接从交易平台上下载招标文件电子版。招标人/招标机构不再提供任何纸质招标文件。支付成功,即视为招标文件已经售出,文件一经售出概不退款。 招标文件购买操作失败或其他系统问题,请与招标机构项目负责人或平台运营联系。 4.1.3此次采购招标项目为全流程网上操作,投标人需要使用中国石油电子招标投标平台的U-key才能完成投标工作,因此要求所有参与本次采购招标的投标人必须办理U-key(具体操作请参考中国石油招标投标网首页----操作指南---《关于招标平台U-KEY办理和信息注册维护通知》)。其他具体操作请参考中国石油招标投标网操作指南中“投标人用户手册”的相关章节,有关注册、报名等交易平台的操作问题也可咨询技术支持团队相关人员,咨询电话:4008800114。 4.2招标文件每套售价为 200 元人民币,请有意参加投标的潜在投标人确认自身资格条件是否满足要求,售后不退,应自负其责。 4.3本次招标文件采取线上发售的方式。 5. 投标文件的递交 5.1本次招标采取网上递交电子投标文件的投标方式。 5.1.1网上电子投标文件递交: 投标人应在5.2规定的投标截止时间前通过“中国石油电子招标投标平台”递交电子投标文件(为避免受网速及网站技术支持工作时间的影响,建议于投标截止时间前24小时完成网上电子投标文件的递交);投标截止时间前未被系统成功传送的电子投标文件将不被接受,视为主动撤回投标文件。 在提交投标文件时,投标人应支付 4万元 人民币的投标保证金,投标保证金应从投标人基本帐户通过企业网银支付或电汇形式向保证金账户汇出,昆仑银行将依此向大庆石化工程招标代理有限公司提供投标保证金担保明细。(投标人须注意,投标保证金汇入昆仑银行指定账户后,还须进入该项目主控台,分配至本项目方为提交成功。) 5.2投标截止时间及开标时间(网上开标): 2023 年 10 月 7日 08 时 30 分(北京时间)。 5.3开标地点(网上开标):中国石油电子招标投标平台(所有投标人可登录中国石油电子招标投标平台在线参加开标仪式)。 6. 异议的提出与受理 本次招标异议由招标机构受理,其提出必须符合附件《招标投标活动异议提起须知》要求,否则无效。 7. 发布公告的媒介 本次招标公告同时在中国招标投标公共服务平台(http://www.cebpubservice.com)、中国石油招标投标网(http://www.cnpcbidding.com) 和大庆石化公司主页(http://dqsh.cnpc.com.cn)上发布。 8. 联系方式 招 标 人:大庆华科股份有限公司 地 址:黑龙江省大庆市龙凤区 联 系 人:杨 媛 电 话:0459-6280225 招标机构:大庆石化工程招标代理有限公司 地 址:黑龙江省大庆市龙凤区乙烯大庆石化公司安全楼317室 联 系 人:周志宏 电子邮件:zhouzhih-ds@petrochina.com.cn 电 话:0459-6767701 9. 投标保证金递交相关信息 开户行名称:昆仑银行股份有限公司大庆分行 开户行行号:313265010019 账户名称:昆仑银行电子招投标保证金 银行账号:26902100171850000010 昆仑银行客服电话:95379-1-9-9 附件一:大庆华科C5石油树脂装置工业用氢氧化钠(液碱)招标采购技术要求.pdf 投标人电子交易平台简易手册.pdf 招标投标活动异议提起须知.pdf
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • 吉天仪器FIA 6000+ 全自动流动注射分析仪在河流污染中的应用
    水是生命之源,但是随着我国人口数量的几何增长、现代工业废水的乱排乱放、城市垃圾、农村农药喷洒等等,造成河流污染严重,本来已是极少的淡水资源加剧短缺,无法为人所用。  随着国务院“水十条”的颁布,实验室水质检测能力的提高迫在眉睫,新的环境标准也应运而生。2017年3月30日,环保部发布了七项国家环境保护标准(水质),其中的四项标准涉及流动注射仪器分析方法。  本文介绍了一种快速、准确、安全的流动分析技术,使用聚光科技下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)fia6000+全自动流动注射分析仪对河水中的挥发酚、氰化物、阴离子表面活性剂和硫化物进行分析及加标回收率的测定。该仪器应用非稳态fia理论,使用在线加热、蒸馏、冷凝、萃取等系统,完全符合环保部最新发布的国家环境保护标准。吉天仪器fia6000+为环境行业的水质分析提供了高效准确的溶液化学分析解决方案。吉天仪器fia6000+可以做什么?fia 6000+ 全自动流动注射分析仪方案优势  完全符合环境新标准hj 825-2017、hj 824-2017、hj 823-2017、hj 826-2017。  配有试剂包解决方案,提供了方便、快速、可靠、绿色的试剂配制方式。  检测过程高效,反应在密闭的管路中进行,避免接触有害试剂。  检测项目全面,广泛应用于水质分析、环境分析等多个领域。样品制备  挥发酚  采集河水样品,需现场检测有无游离氯等氧化剂存在,参照hj825-2017方法,“样品滴于淀粉-碘化钾试纸上出现蓝色,说明存在氧化剂”。氧化剂(如游离氯)能将一部分酚类化合物氧化使结果偏低,如有氧化剂存在(水样酸化后滴于碘化钾-淀粉试纸上出现蓝色),立即加入过量的硫酸亚铁铵消除干扰。(硫酸亚铁铵的配制方法:在500ml的容量瓶中,溶解0.55g硫酸亚铁铵[fe(nh4)2(so4)2?6h2o]于包含0.5ml浓硫酸的250ml去离子水,用去离子水定容,摇匀)。  现场未发现河水样品存在氧化剂。样品储存在硬质玻璃瓶中,采用氢氧化钠固定,冷藏(4℃),在采集后24h内进行测定。  氰化物  采集河水样品,首先检验是否有硫化物和活性氯等氧化剂的干扰,参照hj823-2017方法,“试样中存在活性氯等氧化性物质干扰测定,可在蒸馏前加亚硫酸钠(na2so3)溶液消除干扰”“试样中存在硫化物干扰测定,可在蒸馏前加碳酸镉(cdco3)或碳酸铅(pbco3)固体粉末消除干扰”。  采样现场滴一滴样品在乙酸铅试纸上,如果试纸变黑,则显示有硫化物存在于样品当中,加碳酸镉或碳酸铅固体粉末,生成黄色的硫化镉或黑色的硫化铅沉淀,再用乙酸铅试纸检测是否使试纸变黑,如果确定试纸不变黑,则过滤溶液除去硫化物。  采样现场滴一滴样品在淀粉-碘化钾试纸上,如果试纸显示蓝色,则样品需要预处理,加入一些抗坏血酸固体于水样中,过一段时间再用淀粉碘化钾试纸检测,如不显示蓝色证明干扰已被消除,然后在每升水样中加入0.6g抗坏血酸。亚砷酸钠和亚硫酸钠也用来消除此干扰。  现场未发现河水样品存在硫化物和活性氯等氧化剂。因此采取立即加氢氧化钠固定的方法,一般每升水加0.5g固体氢氧化钠,尽量使样品的ph12,并将样品存于聚乙烯塑料瓶或硬质玻璃瓶中,存放在暗处,避免紫外光的照射。  阴离子表面活性剂  采集河水样品,采样和保存样品应使用清洁的玻璃瓶,并事先经甲醇清洗过。  hj826-2017说明“主要干扰物为有机的磺酸盐、羧酸盐、酚类以及无机的硫酸盐、亚硫酸盐、硝酸盐、氰酸盐、硫氰酸盐等”,可以通过水溶液反洗,消除这些正干扰,未能除去的可用气提萃取法,参见gb7494。  在测量前,将水样经0.45μm的滤膜过滤,以除去悬浮物。吸附在悬浮物上的表面活性剂不计在内。  硫化物  采集河水样品。现场采集并固定的样品应保存在棕色瓶内。为了消除样品采集过程中的损失,首先对于每100ml样品,加入10 滴15m naoh(大约0.5ml)和400mg 抗坏血酸于容器中,然后加样品于容器中(样品的ph11)。冷却至4oc,马上进行分析。  为防止采集的河水样品中大颗粒堵塞管路,所有采集的样品都使用0.45μm的膜过滤后再进行分析。 仪器  吉天仪器fia6000+流动注射仪:包括自动进样器、挥发酚、氰化物、阴离子表面活性剂和硫化物4个化学反应模块(预处理通道、注入泵、反应通道及流通检测池)、数据处理系统。  分析天平:精度为0.1mg。  超声波仪:频率 40 khz。试剂配置  吉天仪器和安谱实验强强联合,为仪器配有专门的试剂包方案,是适用于全自动流动注射分析仪fia6000+的配套产品,方便、快速、可靠、绿色的试剂配置方式。试剂无需称量,开包溶解即用。  挥发酚  hj825-2017规定了测定水中挥发酚的流动注射-4-氨基安替比林分光光度法。表1 吉天挥发酚试剂包与hj825试剂配制比较试剂类型吉天仪器试剂包hj825要求比较蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾溶液ph=10.3铁氰化钾溶液ph=10.3配制过程完全相同显色剂4-氨基安替比林溶液ρ=0.64 g/l4-氨基安替比林溶液:ρ=0.64 g/l配制过程完全相同  氰化物  hj823-2017规定了测定水中氰化物的流动注射-分光光度法。其中包括异烟酸-巴比妥酸法和吡啶-巴比妥酸法。  由于吡啶剧毒,不建议采用,实际上异烟酸无吡啶的剧毒性,显色原理基本相同,因此采用异烟酸-巴比妥酸法进行检测。表2 吉天仪器氰化物试剂包与hj823试剂配制比较试剂类型吉天试剂包hj823要求比较载流、吸收液氢氧化钠c=0.025mol/l氢氧化钠c=0.025mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异缓冲溶液铁氰化钾缓冲液ph=10.3铁氰化钾缓冲液ph=10.3配制过程完全相同氯胺t氯胺t溶液ρ=4 g/l氯胺t溶液ρ=6 g/l或=2 g/l配制密度略有差异显色剂异烟酸-巴比妥酸试剂异烟酸-巴比妥酸试剂配制过程完全相同  阴离子表面活性剂  hj826-2017规定了测定水中阴离子表面活性剂的流动注射-亚甲基蓝分光光度法。  hj826-2017中的甲基蓝原液需净化萃取,将甲基蓝原液萃取6-7次,直至有机相澄清;吉天试剂包优化了试剂配制方法,甲基蓝原液无需净化萃取。 表3 吉天仪器阴离子试剂包与hj826试剂配制比较试剂类型吉天仪器试剂包hj826要求比较碱性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异酸性亚甲基蓝溶液不需要萃取需要萃取配制过程有所差异氯仿不含氯仿优级纯氯仿需要单独购买  硫化物  hj824-2017规定了测定水中硫化物的流动注射-亚甲基蓝分光光度法。表4吉天仪器硫化物试剂包与hj824试剂配制比较试剂类型吉天仪器试剂包hj824要求比较载流及吸收液氢氧化钠c=0.025 mol/l氢氧化钠c=0.025 mol/l配制过程完全相同蒸馏试剂磷酸磷酸体积分数略有差异显色剂对氨基二甲基苯胺溶液对氨基二甲基苯胺溶液配制过程完全相同氯化铁氯化铁溶液ρ=13.3g/l氯化铁溶液ρ=13.3g/l配制过程完全相同标准曲线  新环境标准中的“标准系列的准备”将工作曲线的最高浓度设置为测定范围的最高值,本解决方案对于标准样品的配置浓度进行了优化,如表5所示。标准曲线的绘制按照新环境标准的要求“以信号值(峰面积)为纵坐标,对应的浓度为横坐标”进行绘制,所得到的曲线如图1所示,相关系数都可以达到0.999以上,说明相关性很好。表5 标准样品浓度对比表(μg/l)挥发酚总氰阴离子硫化物实验数据hj825推荐实验数据hj823推荐实验数据hj824推荐实验数据hj824推荐0.000.000.000.000.000.000.000.002.0010.02.002.025.010020.01005.0025.05.005.050.020050.020010.050.010.010.010050010050020.010020.050.02001000200100030.020050.01255002000500200050.0-100250800-1000-100-2005001000---四种方法的工作曲线检出限和精密度  计算了仪器测定4种方法的检出限和精密度,与新环境标准进行比较,数据见表6。其中,仪器检出限采用epa方法dl=t(n-1,α=0.99)*(s),当测定次数n=7时,t=3.14,计算结果;仪器的精密度则通过连续进样7次得到的数据进行计算。表6 仪器检出限、精密度与新环境标准对比项目检出限(μg/l)精密度rsdfia6000+新hj标准fia6000+新hj标准挥发酚0.31220.0μg/l0.77%20.0μg/l0.7-2.9%氰化物0.26120μg/l0.92%20μg/l0.7%-2.1%阴离子8.9540500.0μg/l1.11%500.0μg/l 1.1%-4.9%硫化物1.884200.0μg/l0.85%200.0μg/l1.5%-2.3%质量控制  以挥发酚为例:采用国家环境保护总局标准样品研究所的挥发酚质控样(200331,标准值49.8μg/l,不确定度±4.5μg/l),对方法及仪器进行检验,测定结果见表7。质量控制的结果符合要求,说明仪器稳定可靠。表7 挥发酚质控样的测定序号样品属性已知浓度(μg/l)回算浓度(μg/l)吸光度峰面积1质控样品49.8±4.548.00.872982质控样品49.8±4.548.80.887663质控样品49.8±4.548.10.87486实验结果  参照环境标准的方法,我们对采集的河水水样进行了分析,并进行了加表实验。实际样品并未检出挥发酚和硫化物,检出的氰化物和阴离子表面活性剂的浓度分别为11.8μg/l和1.20μg/l。  参照环境标准的要求,挥发酚、氰化物、硫化物的加标回收率应在70%~120%之间,阴离子表面活性剂的加标回收率应在80%~120%之间。实际的加标回收结果均符合要求。表8 实际样品检测结果及加标回收实验结果检测项目空白浓度(μg/l)加标浓度(μg/l)加标后回算浓度(μg/l)回收率挥发酚010098.098.0%氰化物11.820.032.2102.5%阴离子表面活性剂1.2020020097.8%硫化物0500498.599.7%结论  本文基于环保部最新发布的四项国家环境保护标准(水质),为测定环境水(河水)中的挥发酚、氰化物、阴离子表面活性剂和硫化物提供了解决方案。用fia6000+全自动流动注射分析仪测定这几种物质,完全符合环境标准方法,快速简便、灵敏度和准确度高,是未来环境行业水质检测的重要发展趋势。
  • “渐冻症”患者的福音——连续流工艺生产依达拉奉
    研究背景依达拉奉是一类能清除自由基的脑保护剂,2001年在日本获批用于改善急性脑梗死引起的神经及功能障碍。2017年,FDA批准依达拉奉用于治疗肌萎缩性脊髓侧索硬化(ALS,俗称“渐冻症”)患者。因此,当前市场对依达拉奉的需求不断增加。传统的生产方式是将乙酰乙酸乙酯及苯肼在乙醇中回流得到依达拉奉粗品,通过重结晶来提升产物纯度。这个方法的缺点是收率低,在进行100g规模的制备过程中发现文献报道的杂质3~6出现在粗品产物中(如图1所示),粗品纯度只有82.1%,虽然可以通过重结晶提高产物纯度但收率下降很多。图1 依达拉奉合成路线和文献报道杂质(3-6)近年来有文献报道采用微波法和超声波法合成依达拉奉,收率高,杂质少,但工业化放大有难度。来自沈阳药科大学制药工程学院的孙铁民教授课题组开发了一种连续流合成依达拉奉的新方法。该方法采用两步连续反应、一次重结晶的方法,终产品纯度可达99.95%,收率88.4%(较釜式工艺提高6.2个百分点),产能可达11.3 kg/d。与传统间歇法相比,连续流通过减少反应过程中的水分、氧气和光照的暴露,最大限度地减少了苯肼的分解,有利于提高产品的纯度和收率。本文将详细介绍该方法的开发过程,以期为您连续流工艺研究提供有效参考。 研究过程一、初步研究在初步实验中,以乙醇为溶剂溶解(图1)1和2,在微反应器中反应,最终得到反应液经液相色谱检测,结果表明未得到目标产物依达拉奉,但生成了中间体7。经过反应条件优化后,通过升高反应温度得到了目标产物依达拉奉,但杂质含量却比较高(见图2)。这样的结果显然不够理想。图2. 高温反应液HPLC图谱 通过分析前期的研究数据及反应的机理,研究者提出了一个两步法的解决方案。在早期的研究中在温度较低的情况下主要得到中间体7,此时反应条件温和,杂质较少,且避免了高温下烯醇互变异构产生的杂质6。根据相关文献分析了环化反应的可能反应机理(如图3),作者认为有必要添加碱以使反应容易完成。因此研究者也对碱及重结晶条件浓度、停留时间和反应温度等进行了优化。图3. 可能的反应机理 小贴士反应机理分析整个过程是胺进攻羰基进行亲核加成得到四面体中间态,然后脱去乙氧基得到依达拉奉。加成得到的四面体中间态可以以多种形式存在,质子化的程度和位置不同,如中间体8~10。由于中间体8乙氧基阴离子的离去能力很差,直接从中间体8生成依达拉奉的速度很慢,而更多的是从中间体10生成依达拉奉。当有碱存在时,中间体8会迅速转化成更稳定的中间体10,即使在较低的温度下,反应速度也会比以前快。最后,中间体10定量地产生依达拉奉。应当注意,当使用碱时,也可以避免杂质5,因为中间体10的形成很快,抑制了不希望的消除(脱水)反应。 二、两步连续流合成实验完成了上述研究后,将两步反应按顺序连接到一套装置(图4),将苯肼和乙酰乙酸乙酯输送至微反应器R1(25°C,0.5min,1bar),流速均为10mL/min。然后,反应液通过预热装置使溶液保持在60°C后流入微反应器R2,同时,以10mL/min的速度将氢氧化钠溶液输送至微反应器R2(60°C,1min,1bar),完成第二步环化反应。从R2流出的反应液用6M盐酸调节为中性并过滤后得到粗品依达拉奉。最后,用乙醇−水进行一次重结晶,得到纯度为99.95%的依达拉奉,收率88.4%,较釜式工艺提高6.2个百分点。图4 连续流合成依达拉奉的工艺流程图 结果与讨论: 研究者研究开发了一种两步法连续流生产依达拉奉的新工艺,降低了杂质含量,提高了收率; 与间歇实验相比,该工艺效率更高、速度更快,工艺运行稳定,进行工业化生产的可能性高; 在该方法第二步中,氢氧化钠更容易催化反应,通过调节pH值,使反应液在流出后直接沉淀,得到产物; 研究者两步反应的方法是基于对整个反应过程以及反应机理的理解和研究基础之上的,因此开发连续流工艺深入理解化学反应原理非常重要。 参考文献: https://doi.org/10.1021/acs.oprd.1c00228
  • 环氧树脂的羟值测定
    环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。5月份,我们带来了环氧树脂水分含量检测的应用方案,现在我们带着环氧树脂羟值测定的应用方案与您见面了! 一、背景介绍羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。目前胶黏剂中的环氧树脂、聚酯多元醇和聚醚多元醇及聚氨酯等对羟值有要求。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯胶黏剂生成时,羟值与酸值大小,是异氰酸酯加入改性的重要依据。故我们需要对羟值进行检测。依据标准:GB/T 12008.3-2009 塑料 聚醚多元醇 第3部分:羟值的测定。 二、羟值测定方法1、测试原理用过量酸酐与产品中羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。根据氢氧化钠的消耗量,可计算出产品的羟值。由于滴定终点颜色变化不易观察,因此通过电位来指示终点。 2、仪器及试剂:● ZDJ-5B型自动滴定仪● 231-01 pH玻璃电极+232-01参比电极● 咪唑、吡啶、邻苯二甲酸酐、0.5mol/L氢氧化钠标定滴定溶液 3、测试(1)样品前处理:● 向试料和空白锥形瓶中准确移取25ml邻苯二甲酸酐酰化试剂。摇动瓶子,至试料溶解,每个锥形瓶接上空气冷凝管,放在115+2℃油浴里30min。● 加热后,将装置从油浴中拿出并冷却至室温。用30ml吡啶冲洗冷凝管并取下冷凝管。将溶液定量转移到250ml烧杯中,用20mL吡啶冲洗锥形瓶。(2)空白测定:将空白样品置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。(3)样品测定:将试样置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。注意事项图1 样品测定曲线 (1)过量的水会破坏酯化试剂而干扰测定,试剂需要保持干燥,酰化试剂吸潮后需要重新配置。(2)酯化完成,冷却后,可以先加少量水,使过量的酸酐直接水解,在用氢氧化钠标准溶液进行滴定。(3)样品的取样量要进行估算,尽可能的使试料质量与理论计算值相近。 三、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 吉天仪器为您配齐流动注射土壤检测方案
    概述:流动注射(FIA)技术已被广泛应用于很多分析领域,使用流动注射分析仪不仅可以大大提高检测分析的效率,并且具有检测精度高、可靠性好、稳定性强等特点,所以在土壤检测方面同样具有广泛的应用。本文采用聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)土壤样品经过批量处理后使用流动注射分析仪进行检测,根据检测项目的不同对土壤样品进行不同方法的样品处理,本文介绍了使用流动注射分析仪检测土壤中“氮”和“磷”含量的样品前处理方法。一、土壤中全氮的测定(HJ 717-2014):  1.1方法原理:  该方法基于改进的贝特洛反应,氨氯化生成一氯胺,一氯胺与水杨酸盐反应生成5-氨基水杨酸盐,接下来的氧化和氧化偶合反应生成了绿色的络合物,该络合物在660nm有最大吸收峰。  1.2试样的制备:  将土壤样品置于风干盘中,平摊成2~3cm厚的薄层,先剔除植物、昆虫、石块等残体,用铁锤或瓷质研磨棒压碎土块,每天翻动几次,自然风干。  充分混匀风干土壤,采用四分法,一份留存,一份用研磨机研磨至全部通过2mm(10目)土壤筛。取10g~20g过筛后的土壤样品,研磨至全部通过0.25mm(60目)土壤筛,装于样品袋或样品瓶中。  1.3还原剂的制备:  将五水合硫代硫酸钠(Na2S2O35H2O)研磨后过0.25mm(60目)筛,临用现配。  1.4催化剂的配置:  将200g 硫酸钾(K2SO4)、6 g 五水合硫酸铜(CuSO4?5H2O)和 6 g 二氧化钛(TiO2)于玻璃研钵中充分混匀,研细,贮于试剂瓶中保存。  1.5样品处理(HJ717-2014):  称取适量上述土壤样品(3.2)0.2000g~1.0000g(含氮约 1mg),精确到0.1mg,放入凯氏氮消解瓶(容积50ml或100ml)中,用少量水(约 0.5ml~1ml)润湿,再加入4ml 浓硫酸(H2SO4),瓶口上盖小漏斗,转动凯氏氮消解瓶使其混合均匀,浸泡8小时以上。使用干燥的长颈漏斗将0.5g 还原剂(3.3)加到凯氏氮消解瓶底部,置于消解器(或电热板)上加热,待冒烟后停止加热。冷却后,加入1.1g 催化剂 (3.4),摇匀,继续在消解器(或电热板)上消煮。消煮时保持微沸状态,使白烟到达瓶颈 1/3 处回旋,待消煮液和土样全部变成灰白色稍带绿色后,表明消解完全,再继续消煮1h,冷却。在土壤样品消煮过程如果不能完全消解,可以冷却后加几滴高氯酸后再消煮。  注 1:消解时温度不能超过400℃,以防瓶壁温度过高而使铵盐受热分解,导致氮的损失。  1.6样品处理(非标准方法):  称取上述土壤样品1.5g(精确至0.1mg)于50ml的消化管中(每个样品3次重复),每支消化管中加入2.0g加速剂(m硫酸钾:m五水合硫酸铜=10:1)和5ml浓硫酸(H2SO4),然后将样品和空白试剂置于远红外消解炉消解,直至土壤样品为蓝绿色或灰白色(颜色较浅)。待溶液冷却后,定容至50ml,摇匀过滤,滤液用于样品氮含量的测定。  1.7应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中全氮含量测定。图1 iFIA7全自动流动注射分析仪-全氮分析通道  1.7.1:标准曲线的测定:表1 土壤中全氮标准曲线标准样品浓度(mg/L)吸光度峰高吸光度峰面积回算浓度(mg/L)00.00020.03340.07520.10.00340.74590.15250.250.00911.99040.28760.50.01914.2120.528610.03928.62791.007720.078917.30181.948850.201744.17124.8642100.414890.69.9017200.8449184.449920.0844图2土壤中全氮标准曲线分析图图3 土壤中全氮方法工作曲线  1.7.2土壤有效态成分分析标准物质全氮的测定:  采用中国计量科学研究院的土壤有效态成分分析标准物质(GBW07414,标准值0.094%,不确定度0.005%, GBW07417,标准值0.076%,不确定度0.004%),对方法及仪器进行检验,测定结果如下。表2 土壤有效态成分分析标准物质全氮含量测定结果样品名称已知含量(%)回算含量(%)GBW074140.094±0.0050.095GBW074170.076±0.0040.078 二、土壤中氨氮的测定(HJ 634-2012):  2.1方法原理:  氯化钾溶液提取土壤中的氨氮,在碱性条件下,提取液中的氨离子在有次氯酸根离子存在时与苯酚反应生成蓝色靛酚染料,在630?nm波长具有最大吸收峰。在一定浓度范围内,氨氮浓度与吸光度值符合朗伯-比尔定律。  2.2试样的制备:  将采集后的土壤样品去除杂物,手工或仪器混匀,过样品筛。在进行手工混合时应戴橡胶手套。过筛后样品分成两份,一份用于测定干物质含量,测定方法参见HJ613;另一份用于测定待测组分含量。  2.3样品处理:?  称取40.0g试样(1.2),放入500ml聚乙烯瓶中,加入200ml氯化钾溶液(1mol/L),在20±2℃的恒温水浴振荡器震荡提取1h。转移约60ml提取液于100ml聚乙烯离心管中,在3000r/min的条件下离心分离10min。然后将约10ml上清液转移至10ml样品管中。三、土壤中硝酸盐氮/亚硝酸盐氮的测定(HJ 634-2012):  3.1硝酸盐氮方法原理:  氯化钾溶液提取土壤中的硝酸盐氮和亚硝酸盐氮,提取液通过还原柱,将硝酸盐氮还原成亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰,测定硝酸盐氮和亚硝酸盐氮总量。硝酸盐氮和亚硝酸盐氮总量与亚硝酸盐氮含量之差即为硝酸盐氮含量。  3.2亚硝酸盐氮方法原理:  氯化钾溶液提取土壤中的亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰。在一定浓度范围内,亚硝酸盐氮浓度与吸光度值符合朗伯-比尔定律。  3.3试样的制备:同2.2  3.4样品处理:同2.3四、土壤中全磷的测定(GB 9837-88):  4.1方法原理:  土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶液熔块,在规定条件下样品溶液与钼锑抗显色剂反应,生成磷钼蓝。  4.2样品的制备:  取通过1mm孔径筛的风干土样在牛皮纸上铺上薄层,划分成许多小方格。用小勺在每个方格中提取出等量土样(总量不少于20g)与玛瑙研钵中进一步研磨,是全部通过0.149mm孔径筛。混匀后装入磨口瓶中备用。  4.3溶样(样品处理):  准确称取风干样品0.25g(精确到0.1mg)小心放入镍(或银)坩埚,切勿粘在壁上。加入无水乙醇3~4,滴润湿样品,在样品上平铺2g氢氧化钠(NaOH)。将坩埚(处理大批样品时暂放入大干燥器中以防潮吸潮)放入高温电路,升温。当温度升至400℃左右时,切断电源,暂停15min。然后继续升温720℃,并保持15min,取出冷却。加入80℃的水10ml,待熔块溶解后,将溶液无损失地转入100ml容量瓶内,同时用3mol/L的硫酸溶液和10ml水多次洗坩埚,洗涤液也一并移入该容量瓶。冷却,定容。用无磷定性滤纸过滤或离心澄清。同时做空白式样。五、土壤中有效磷的测定(HJ 704-2014):  5.1方法原理:  用0.5mol/L碳酸氢钠溶液(pH=8.5)浸提土壤中的有效磷。浸提液中的磷与钼锑抗显色剂反应生成磷钼蓝,在波长880nm处测量吸光度。在一定浓度范围内,磷的含量与吸光度值符合朗伯-比尔定律。  5.2干扰和消除:  砷(V )、铌、钽、锆、钛和钼酸铵产生同主反应类似的杂多酸,砷大于2mg/L干扰测定,1μg砷同0. 35 μg磷相当,当水样中砷含量超过磷时,应采用硫代硫酸钠掩蔽。对铌、钽、锆、钛的影响可通过萃取或加氟化物来避免。硅和钼酸铵产生同主反应类似的杂多酸,干扰测定,使结果偏高,在微酸性(pH4-6)的条件下,加入酒石酸可消除干扰。铁含量为20mg/L,使结果偏低5%,在大于30mg/L以上会使钼蓝退色, 可加入过量抗坏血酸抑制。亚硝酸影响钼兰显色,显色液中亚硝酸盐达数毫克会使显色液褪色,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。六价铬大于50mg/L有干扰,可用亚硫酸钠去除。硫化物含量大于2mg/L有干扰,在酸性条件下通氮气可去除。强氯化剂及铬酸盐使生成钼蓝褪色,高亚硝酸盐也有褪色作用,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。  5.3浸提剂的制备c(NaHCO3)=0.5mol/L:  称取42.0g碳酸氢钠溶于约800ml水中,加水稀释至约990ml,用氢氧化钠溶液(10%)调节至pH=8.5(用pH计测定),加水定容至1L,温度控制在25±1℃。贮存于聚乙烯瓶中,该溶液应在4h内使用。  注1:浸提剂温度需控制在25±1℃。具体控制时,最好有1小间恒温室,冬季除室温要维持25℃外,还需将去离子水事先加热至26~27℃后再进行配制。  5.4样品采集与保存:  按HJ/T 166的相关规定进行采集和保存土壤样品。  5.5试样的制备:  试样的制备按NY/T 395-2012《农田土壤环境质量监测技术规范》进行土壤处理和制备。  5.6干物质含量的测定:  准确称取适量试样(5.5),参照HJ 613测定样品干物质的含量。  5.7样品处理:  称取2.50g试样(5.5),置于干燥的150ml具塞锥形瓶中,加入50.0ml浸提剂(5.3),塞紧,置于恒温往复振荡器上,在25±1℃下以180~200r/min的振荡频率振荡30±1min,立即用无磷滤纸过滤,滤液应当天分析。  注2:浸提时最好有1小间恒温室,冬季应先开启空调,待室温达到25℃,且恒温往复振荡器内温度达到25℃后,再打开振荡器进行振荡计时。  5.8应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中有效磷含量测定:  5.8.1标准曲线的测定:表3土壤中有效磷工作曲线标准样品浓度(μg/L)吸光度峰高吸光度峰面积回算浓度(μg/L)00.00010.01236.0100.00170.315212.6200.00340.639619.6500.01041.942747.91000.02284.141195.72000.04938.7410195.65000.137022.8786502.6图4土壤中有效磷标准样品分析图图5土壤中有效磷方法工作曲线  5.8.2土壤中有效态成分分析标准物质有效磷的测定:表4 土壤中有效态成分分析标准物质有效磷含量测定结果样品名称已知浓度mg/kg回算浓度mg/kgGBW0741413.8±2.314.2GBW0741413.8±2.313.6GBW0741413.8±2.313.6GBW0741614.8±3.114.9GBW0741614.8±3.115.0GBW0741614.8±3.115.0GBW0741748±348.0GBW0741748±347.8GBW0741748±347.6  5.8.3 土壤中有效态成分分析标准物质土壤有效磷加标测定:表5 土壤中有效磷加标回收率实验样品名称样品浓度(mg/kg)加标前浓度(mg/kg)加标浓度(mg/kg)加标后浓度(mg/kg)回收率(%)GBW0741413.8±2.313.9 20.0 32.392.0GBW0741614.8±3.1 15.0 10.0 24.9 99.0GBW0741748±3 47.8 20.0 67.799.5
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 《重磅新闻:新国标GB5009.34-2022 食品中二氧化硫的测定发布》济南盛泰科技推出专用机
    2022年7月28日国家卫生健康委颁布了新的食品二氧化硫国家标准《GB5009.34-2022 》,并定于2022年12月30日实施。新国标与原GB 5009.34-2016比较,其主要变化有以下几点:(1)修订了原滴定法为酸碱滴定法。(2)增加分光光度法、离子色谱法。第一法 酸碱滴定法,前处理使用充氮蒸馏方法,试样酸化后在加热条件下亚硫酸盐等系列物质释放二氧化硫,使用过氧化氢溶液吸收,二氧化硫被氧化为硫酸根离子,采用氢氧化钠标准溶液滴定,根据消耗量计算二氧化硫的含量。第二法 分光光度法,样品使用甲醛缓冲吸收液浸泡或加酸充氮蒸馏使其中的二氧化硫释放被甲醛溶液吸收,生成稳定的羟甲基磺酸加成化合物,酸性条件下与盐酸副玫瑰苯胺生成蓝紫色络合物,通过测定该络合物的吸光度得到二氧化硫的浓度。第三法 离子色谱法,前处理通过将试样中的亚硫酸盐系列物质进行酸处理后转化为二氧化硫,采用充氮-水蒸气蒸馏方法随水蒸气馏出,被过氧化氢吸收并氧化为硫酸根离子,使用离子色谱仪进行测定。在标准附录B中,对水蒸气蒸馏装置(图5)进行了要求。相比于前两种方法,离子色谱法的水蒸气蒸馏装置更加复杂,对检测机构和食品企业出厂检测的效率提出了挑战。同时存在占用实验室空间、蒸气与氮气流量不易控制、装置气密性难以保证等问题,最终影响到检测结果。在新标准中,上述第一法与第二法的前处理过程均使用了玻璃充氮蒸馏器装置(图2)济南盛泰电子科技有限公司继为《GB5009.34-2016》国标研制了全国第一台型号为:ST106-1RW的智能一体化蒸馏仪(又名:食品二氧化硫测定仪),具有:远红外自动加热+自动称重计量蒸馏+内置压缩机冷却水自循环系统+自动清洗等特色功能,深受国内各级食药检验检测单位、海关、高等院校、科研院所等单位的喜爱。这次新国标的修订,济南盛泰科技全程参与了新国标数据的验证,并为此次新国标研发了四款全新配套仪器,ST109A/ST109B/ST109C/ST109D。可适用于第一法、第二法的全自动化检测或充氮蒸馏预处理;第三法离子色谱法的水蒸气蒸馏。这四款产品的型号分别为:ST109A全自动食药二氧化硫分析仪ST109B智能食药二氧化硫测定仪ST109C智能食药二氧化硫测定仪ST109D智能一体化水蒸气蒸馏仪欢迎大家做更多的了解!济南盛泰电子科技有限公司
  • 探秘《止咳药被检出硫磺》的行业“潜规则”!
    今天,关于“止咳药被检出硫磺”的新闻,在朋友圈已经开启了刷屏模式。因为使用了经过硫磺熏蒸的浙贝作为原料,国内多家知名药厂或被牵涉其中。  更让我们痛心的是,硫磺熏蒸浙贝犹如医药行业的“三聚氰胺”,已经成为中药材行业的潜规则,而有关检测的缺失则让这一潜规则发展成为“明规则”!    为您的食品药品安全保驾护航,海能应用实验室运用专业的检测仪器——SOA100二氧化硫残留量测定仪,迅速对止咳常用药中的二氧化硫含量进行测定,提供一手资料,希望对大家有所帮助!  1引言  硫磺燃烧产生二氧化硫,直接杀死虫卵、蛹等,抑制霉菌、真菌滋生,达到防虫防霉作用。二氧化硫与药材中的水分子结合形成亚硫酸。具有脱水、漂白作用。二氧化硫使表皮细胞破坏,促进干燥,特别象产地在南方潮湿地区天麻、 山药等。从毒理学上来说,硫磺属低毒化学品,但其蒸汽及硫磺燃烧后发生的二氧化硫对人体有剧毒。食用二氧化硫超标的食品,容易产生恶心、呕吐等胃肠道反应,此外,还可影响钙吸收,促进机体钙流失。过量进食引起的急性中毒可出现眼、鼻黏膜刺激症状,严重时产生喉头痉挛、喉头水肿、支气管痉挛等。  药典规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg,上述限量标准均在世界卫生组织(WHO)认可的安全标准范围内。测定中药及其饮片成品药中二氧化硫含量是为保障人体健康做的最后一道防线,预防救命药变成毒药。  2参考文献  2015版《中国药典》  3药典原理步骤  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置两颈圆底烧瓶中,加水300-400ml,打开回流冷凝管开关给水,将冷凝管的上端E口处连接一橡胶导气管置于100ml锥形瓶底部。锥形瓶内加入3%过氧化氢溶液50ml作为吸收液(橡胶导气管的末端应在吸收液面一下)。使用前,在吸收液中加入3滴甲基红乙醇溶液指示剂(2.5mg/ml),并用0.01mol/L的氢氧化钠滴定液滴定至黄色(即终点,如果超过终点,则应舍弃该吸收溶液)。开通氮气,使用流量计调节气体流量至约0.2L/min,打开分液漏斗C的活塞,使盐酸溶液(6mol/L)10ml流入蒸馏瓶,立即加热两颈烧瓶内的溶液至沸,并保持微沸,烧瓶内的水沸腾至1.5h后,停止加热。吸收液放冷后,置于磁力搅拌器上不断搅拌,用氢氧化钠滴定液(0.01mol/L)滴定,至黄色持续时间20s不褪,并将滴定结果用空白试验校正。  4反应方程式  SO32- + 2H+→ H2O + SO2  SO2 + H2O2→H2SO4  H2SO4 + NaOH →Na2SO4 + H2O  5仪器  SOA100二氧化硫分析仪(如图1)  T860自动电位滴定仪  pH复合电极  烧杯  6试剂  60%磷酸  3%H2O2  NaOH滴定液(C(NaOH)=0.02mol/L) (图 1)  去离子水  供试品  7试样处理  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置于400ml蒸馏管中。  (取样如图2)    (图2)  测定蒸馏: 开机,设置参数,进行实验。(图3)  参数设置(如图3)  自动测试  稀释水量:50ml  接收液量: 25ml  加酸体积:10ml  蒸馏时间:7min  淋洗水量:10ml  (蒸馏过程如图4)   (图4)  l 滴定  参数设置  终点设置滴定  终点数:1  终点结束体积:10.00ml  终点pH: 6.20  最小添加体积:0.01ml  初次添加体积:0.02ml  终点预控范围:1.50pH  (滴定过程如图5)    (图5)  SO2总含量计算:  二氧化硫残留量(ug/g)=(A-B)*C*0.032*106/W  式中 A---供试品溶液消耗氢氧化钠滴定液的体积,ml  B---空白消耗氢氧化钠滴定液的体积,ml  C---氢氧化钠滴定液摩尔浓度,mol/L  0.032---1ml氢氧化钠滴定液(1mol/L)相当于二氧化硫的质量,g  W ---供试品的重量,g  实验结果  2 中药材:浙贝母    备注:实验结果只用于为验证实验方法  8结果与讨论  实验选取的浙贝母中二氧化硫的平均含量为644.13ug/g(mg/kg),明显超国家规定的400mg/kg。而含浙贝的止咳药中均检出二氧化硫且含量很高,相比同类止咳药川贝类药品中二氧化硫含量明显低于浙贝产品。国家药典委员会规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg。  在使用药典法测试液体类样品中二氧化硫含量时,需剧烈振摇样品或者超声加热除去其中的二氧化碳,因为在滴定过程中二氧化碳会消耗滴定剂氢氧化钠。  在使用SOA100采用药典法进行蒸馏时,建议将6mol/L的盐酸换作60%的磷酸,由于机器蒸馏功率大,易挥发的盐酸很容易蒸馏到吸收液中,造成结果偏大,而磷酸作为中强酸,沸点比盐酸高,不易挥发,效果更好。日本公定法及台湾药典均采用磷酸而非盐酸。  采用药典法进行测试时,由于吸收液过氧化氢不稳定,易分解生成水和氧气,需即用即配。  在使用SOA100采用药典法进行蒸馏时,实验之前需将吸收液H2O2调至pH=6.2,因为过氧化氢显酸性,滴定过程中会消耗氢氧化钠,造成实验结果偏大。  中药中淀粉含量较大,若测试试样为粉末状,在称样前需在蒸馏管中加入20ml蒸馏水,将样品放入后进行摇匀,防止实验时样品结块,造成结果偏低。
  • 盘点Protein A亲和填料质控必看的重要参数
    继上篇《浅谈令人“爱恨交加”的Protein A亲和层析介质》(点击回顾)后,江必旺博士本期带我们了解影响Protein A层析介质的多种参数,供广大用户学习,也欢迎大家在评论区留言讨论。Protein A亲和填料的关键考核要素Protein A是用于抗体第一步分离纯化,其性能影响抗体生产的效率,成本,纯度等等,因此抗体厂家对Protein A 介质的要求较高。其关键点在Protein A 介质的载量,机械强度,耐碱性,使用寿命,纯度和回收率,配基脱落及HCP的残留及产品的质量和稳定供应等等。介质载量:层析介质的载量是药厂选择的重要参数,载量越高,同样柱体积填料可以处理更多的抗体料液,生产效率也就越高。但Protein A 亲和填料载量与柱保留时间有关,一般情况是柱留时间越长,测试的载量越大,也就是说流动相速度越快载量越低,这主要是因为抗体在介质微球中的扩散速度受限造成的。抗体的纯化生产效率与流动相速度有关,速度越快生产效率越高,但速度越快载量越低,上样量越少,因此要平衡好载量和流速以达到最高生产效率。评估亲和介质载量要看,其载量是在什么样的流速下测试的,理想的介质是在高流速条件下具有较高的载量。这样有利于兼顾生产效率和产量;抗体回收率和纯度:一般来说Protein A亲和层析介质用于抗体分离纯化回收率都比较高(一般都高于90%以上),回收率越高,成本越低。另外纯化后抗体的纯度也是药厂重点考虑的因素,Protein A 亲和层析往往是用于第一步捕获,一步亲和层析就可以把纯度提高到95%以上,通过第一步纯化后抗体纯度越高,后续精细分离的压力越小。抗体回收率和纯度往往更Protein A配基种类有关系,不同厂家采用的配基不同,会影响收率和纯度。介质寿命及耐碱性:亲和层析介质比离子交换介质价格高很多,而且使用寿命又比离子交换介质短很多,使得亲和层析介质在抗体的纯化介质中占据80%成本。因此亲和层析介质的寿命是抗体厂家要考虑的另外一个重要参数。高效服役时间的长短会在一定程度上影响纯化的经济性,也能从某种程度上避免更换填料带来的潜在问题;另外药物生产过程中,氢氧化钠被广泛用于层析介质及系统的清洗、消毒及存储等过程。采用氢氧化钠再生可避免不同cycle间的蛋白及核酸的交叉污染,也可有效降低Bioburden。当浓度大于0.1M时,可有效灭活Murine Leukemia Virus等病毒,杀灭细菌及芽孢杆菌,降低内毒素水平。因此Protein A 亲和层析介质的耐碱性对其寿命及纯化抗体的质量具有重大意义。一般Protein A 亲和层析介质需要耐受0.5 M NaOH溶液清洗,且在经过100 Cycles清洗后,动态载量仍要维持在95%以上; 表1氢氧化钠对不同病毒灭活的效果统计HIVBVDCPVBHVPOLSV-40MLVADV0.1M NaOHSpike2.0×1069.5×1062.0×1096.9×1097.1×1081.7×1082.6×1052.2×10820min5.8×1021.5×1049.6×1024.5×1012.0×1044.7×1044.0×1016.3×10160min5.8×1022.7×1045.0×1034.5×1012.1×1032.0×1044.3×1012.9×101Inactivat(log10)3.52.55.68.25.53.93.86.90.5M NaOH Spike2.0×1069.5×1062.0×1096.9×1097.1×1081.7×1082.6×1052.2×10820min5.6×1021.7×1021.5×1035.9×1012.0×1048.4×1034.7×1012.0×10160min6.7×1022.7×1025.0×1035.9×1016.2×1031.0×1035.5×1012.2×101Inactivation(log10)3.54.76.18.15。16.23.77Note:病毒浓度检测采用组织细胞感染计量TCID50大量的微生物如酵母细菌可干扰层析过程,同时可以造成筛板堵塞等问题,更重要的是微生物产生的内毒素和蛋白酶严重污染纯化料液。氢氧化钠可有效抑制、杀灭酵母及细菌等微生物。数据见下表。表2 氢氧化钠对不同病毒灭活的效果统计OrganismConc.NaOH(M)Time(hrs)Temp.E.coli0.0124/22℃S.aureus0.114/22℃C.albicans0.514/22℃A.niger0.514/22℃B.subtilis spores14822℃P.aeruginosa1122℃Note:细菌低于检测限度(3Organisoms/ml)所需要的时间内毒素是革兰氏阴性菌细胞壁成分,主要是类脂多糖,也被称作热源。注射药物中含有纳克级含量即可使人体产生寒颤,高热甚至休克等不良反应。GMP生产的各环节严格控制热源,层析过程也是重点监控步骤。采用氢氧化钠对层析系统及填料进行SIP可确保把热源含量降至最小。下图是不同浓度氢氧化钠对于内毒素的灭活效果。机械强度:高机械强度的介质耐压性好,耐受更高的流速,从而提高生产效率,缩短纯化周期;另外高机械强度填料可装填更长柱子,从而提高批次处理量;高机械强度介质可以减少碎片避免筛板堵塞,降低压力;还有高机械强度的介质可以上高浓度,高粘度的样品;最后高机械强度有利于放大生产,越大的柱子,对介质机械强度要求越高,因此高机械强度的介质在大规模层析纯化过程中越不容易给压塌,可以确保生产的安全性。Protein A层析介质除了要考虑载量,机械强度,耐碱性及寿命外,还要考虑Protein A的 脱落及内毒素的控制及生产的批次稳定性等。下期,江必旺博士将为我们带来“Protein A 亲和层析介质的制备方法”干货文章,敬请期待。
  • 实验室环境污染,绝对不是小事!
    1 实验室环境污染种类及危害1.1 按污染性质分1.1.1化学污染化学污染包括有机物污染和无机物污染。有机物污染主要是有机试剂污染和有机样品污染。在大多数情况下,实验室中的有机试剂并不直接参与发生反应,仅仅起溶剂作用,因此消耗的有机试剂以各种形式排放到周边的环境中,排放总量大致就相当于试剂的消耗量。日复一日,年复一年,排放量十分可观。有机样品污染包括一些剧毒的有机样品,如农药、苯并(α)芘、黄曲霉毒素、亚硝胺等。无机物污染有强酸、强碱的污染,重金属污染,氰化物污染等。其中汞、砷、铅、镉、铬等重金属的毒性不仅强,且有在人体中有蓄积性。1.1.2生物性污染生物污染包括生物废弃物污染和生物细菌毒素污染。生物废弃物有检验实验室的标本,如血液、尿、粪便、痰液和呕吐物等;检验用品,如实验器材、细菌培养基和细菌阳性标本等。开展生物性实验的实验室会产生大量高浓度含有害微生物的培养液、培养基,如未经适当的灭菌处理而直接外排,会造成严重后果。生物实验室的通风设备设计不完善或实验过程个人安全保护漏洞,会使生物细菌毒素扩散传播,带来污染,甚至带来严重不良后果。2003年非典流行肆虐后,许多生物实验室加强对SAS病毒的研究,之后报道的非典感染者,多是科研工作者在实验室研究时被感染的。1.1.3 放射性污染物放射性物质废弃物有放射性标记物、放射性标准溶液等。1.2 按污染物形态分1.2.1 废水实验室产生的废水包括多余的样品、标准曲线及样品分析残液、失效的贮藏液和洗液、大量洗涤水等。几乎所有的常规分析项目都不同程度存在着废水污染问题。这些废水中成分包罗万象,包括最常见的有机物、重金属离子和有害微生物等及相对少见的氰化物、细菌毒素、各种农药残留、药物残留等。1.2.2 废气实验室产生的废气包括试剂和样品的挥发物、分析过程中间产物、泄漏和排空的标准气和载气等。通常实验室中直接产生有毒、有害气体的实验都要求在通风橱内进行,这固然是保证室内空气质量、保护分析人员健康安全的有效办法,但也直接污染了环境空气。实验室废气包括酸雾、甲醛、苯系物、各种有机溶剂等常见污染物和汞蒸汽、光气等较少遇到的污染物。1.2.3 固体废物实验室产生的固体废物包括多余样品、分析产物、消耗或破损的实验用品(如玻璃器皿、纱布)、残留或失效的化学试剂等。这些固体废物成分复杂,涵盖各类化学、生物污染物,尤其是不少过期失效的化学试剂,处理稍有不慎,很容易导致严重的污染事故。 2 对实验室污染物的处理办法为防止实验室的污染扩散,污染物的一般处理原则为:分类收集、存放,分别集中处理。尽可能采用废物回收以及固化、焚烧处理,在实际工作中选择合适的方法进行检测,尽可能减少废物量、减少污染。废弃物排放应符合国家有关环境排放标准。2.1 化学类废物一般的有毒气体可通过通风橱或通风管道,经空气稀释排出。大量的有毒气体必须通过与氧充分燃烧或吸收处理后才能排放。废液应根据其化学特性选择合适的容器和存放地点,通过密闭容器存放,不可混合贮存,容器标签必须标明废物种类、贮存时间,定期处理。一般废液可通过酸碱中和、混凝沉淀、次氯酸钠氧化处理后排放,有机溶剂废液应根据性质进行回收。2.1.1 含汞废液的处理排放标准3:废液中汞的最高容许排放浓度为0.05mg/L(以Hg计)。处理方法:①硫化物共沉淀法:先将含汞盐的废液的pH值调至8-10,然后加入过量的Na2S,使其生成HgS沉淀。再加入FeS04(共沉淀剂),与过量的S2-生成FeS沉淀,将悬浮在水中难以沉淀的HgS微粒吸附共沉淀.然后静置、分离,再经离心、过滤,滤液的含汞量可降至0.05mg/L以下。②还原法:用铜屑、铁屑、锌粒、硼氢化钠等作还原剂,可以直接回收金属汞。2.1.2 含镉废液的处理①氢氧化物沉淀法:在含镉的废液中投加石灰,调节pH值至10.5以上,充分搅拌后放置,使镉离子变为难溶的Cd(OH)2沉淀分离沉淀,用双硫腙分光光度法检测滤液中的Cd离子后(降至0.1mg/L以下),将滤液中和至pH值约为7,然后排放。②离子交换法:利用Cd2+离子比水中其它离子与阳离子交换树脂有更强的结合力,优先交换。2.1.3 含铅废液的处理在废液中加入消石灰,调节至pH值大于11,使废液中的铅生成Pb(OH)2沉淀,然后加入Al2(S04)3(凝聚剂),将pH值降至7-8,则Pb(OH)2与Al(OH)3共沉淀,分离沉淀,达标后,排放废液。2.1.4 含砷废液的处理在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的pH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。放置一夜,分离沉淀,达标后,排放废液。2.1.5 含酚废液的处理酚属剧毒类细胞原浆毒物,处理方法:低浓度的含酚废液可加入次氯酸钠或漂白粉煮一下,使酚分解为二氧化碳和水。如果是高浓度的含酚废液,可通过醋酸丁酯萃取,再加少量的氢氧化钠溶液反萃取,经调节pH值后进行蒸馏回收.处理后的废液排放。2.1.6 综合废液处理用酸、碱调节废液pH为3-4、加入铁粉,搅拌30min,然后用碱调节pH为9左右,继续搅拌10min,加入硫酸铝或碱式氯化铝混凝剂、进行混凝沉淀,上清液可直接排放,沉淀于废渣方式处理。 2.2 生物类废物生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。
  • 流动注射-酒中氰化物的检测解决方案
    前言:  白酒在酿制过程中,由于原料中有含氰甙配糖体,或生产配制酒时原料酒精中含有氰化物,使酒中含有氰化物。氰化物属于剧毒物质,国家对酒中的氰化物有明确限量。目前酒中氰化物的检测方法GB5009.36-2016异烟酸-吡唑啉酮法显色条件较为苛刻,也存在安全、二次污染以及干扰物较多等问题,对酒中氰化物的检测造成一定困难。使用聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)全自动流动注射分析仪测定酒类氰化物含量,不但可以提高氰化物检测的准确度和灵敏度,并且此方法具有检测速度快、重现性好、操作更加安全等特点。同时对异烟酸-巴比妥酸法对酒中氰化物的检测条件进行了优化,可以适用于大部分酒类中氰化物的检测。一、实验目的  建立更加简便、快速、安全、准确的一种检测酒中氰化物的方法体系。二、方法原理  样品经氢氧化钠碱解后,经过在线高温蒸馏将简单氰化物及部分络合氰化物以氢化氰的形式蒸出,经氢氧化钠吸收后,在酸性条件下,氰离子与氯胺T反应生成氯化氰,氯化氰与异烟酸反应,经水解生成戊烯二醛,戊烯二醛与巴比妥酸缩合生成蓝紫色染料,在600nm处进行比色测定。三、实验步骤  样品处理:清香型及浓香型白酒,用适量 NaOH溶液稀释酒样于容量瓶中,摇匀碱解酒样,放置10min,上机测定。若样品氰化物检测较高,应进一步稀释酒样,使得加标回收率合格。  酱香型白酒、蒸馏酒及有色酒:按大于等于100倍比率稀释。四、实验仪器及结果4.1实验仪器:  本实验使用吉天仪器全自动流动注射分析仪iFIA7进行各类酒样品中氰化物含量的检测。iFIA7全自动流动注射分析仪-氰化物通道4.2标准曲线的测定:酒中氰化物工作曲线酒中氰化物标准样品分析图形酒中氰化物工作曲线A.部分样品加标数据酒样加标检测数据B.精密度和检出限检测a.精密度b.浓香型酒检出限c.蒸馏酒酒检出限五、实验结论  将酒样稀释一定倍数后,利用氢氧化钠碱解,iFIA7流动注射仪在线进行氰化物检测,使用此方法所用条件检测酒中氰化物的检测结果准确可靠,重现性较好,分析速度快,是检测酒中氰化物的一种简便快捷的方法。六、参考标准、文献[1] 中华人民共和国国家标准: GB5009.36-2016 食品安全国家标准 食品中氰化物的测定[S].[2] 杨凯,曹巧玲,田葆萍,王京.异烟酸-巴比妥酸分光光度法检测水中氰化物影响因素分析[J].[3] HJ823-2017 水质 氰化物的测定 流动注射-分光光度法.[4] 张文德,孙仕萍,胡志芬,尹璐.酒中微量微量氰化物的测定方法研究[B].中国食品卫生杂志,2004,16(3):232-235.
  • 化学实验室的废液怎么处理,倒哪里去?
    废液应根据其化学特性选择合适的容器和存放地点,通过密闭容器存放,不可混合贮存,容器标签必须标明废物种类、贮存时间,定期处理。一般废液可通过酸碱中和、混凝沉淀、次氯酸钠氧化处理后排放,有机溶剂废液应根据性质进行回收。废液处理原则对高浓度废酸、废碱液要经中和至中性时排放。对于含少量被测物和其他试剂的高浓度有机溶剂应回收再用。用于回收的高浓度废液应集中储存,以便回收 低浓度的经处理后排放,应根据废液性质确定储存容器和储存条件,不同废液一般不允许混合,避光、远离热源、以免发生不良化学反应。废液储存容器必须贴上标签、写明种类、储存时间等。废液处理方法含汞、铬、铅、镉、砷、酚、氰的废液必须经过处理达标后才能排放,实验室处理方法如下:1、含铜废液的处理实验用过的硫酸铜废液通过加适量铁粉回收金属铜,母液再经沉淀、过滤、稀释排放。2、含汞废液的处理排放标准:废液中汞的最高容许排放浓度为0.05mg/L(以Hg计)。处理方法:①硫化物共沉淀法:先将含汞盐的废液的pH值调至8-10,然后加入过量的Na2S,使其生成HgS沉淀。再加入FeS04(共沉淀剂),与过量的S2-生成FeS沉淀,将悬浮在水中难以沉淀的HgS微粒吸附共沉淀.然后静置、分离,再经离心、过滤,滤液的含汞量可降至0.05mg/L以下。②还原法:用铜屑、铁屑、锌粒、硼氢化钠等作还原剂,可以直接回收金属汞。3、含镉废液的处理①氢氧化物沉淀法:在含镉的废液中投加石灰,调节pH值至10.5以上,充分搅拌后放置,使镉离子变为难溶的Cd(OH)2沉淀.分离沉淀,用双硫腙分光光度法检测滤液中的Cd离子后(降至0.1mg/L以下),将滤液中和至pH值约为7,然后排放。②离子交换法:利用Cd2+离子比水中其它离子与阳离子交换树脂有更强的结合力,优先交换.4、含铅废液的处理在废液中加入消石灰,调节至pH值大于11,使废液中的铅生成Pb(OH)2沉淀.然后加入Al2(S04)3(凝聚剂),将pH值降至7-8,则Pb(OH)2与Al(OH)3共沉淀,分离沉淀,达标后,排放废液。5、含砷废液的处理在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的pH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。放置一夜,分离沉淀,达标后,排放废液。6、含酚废液的处理酚属剧毒类细胞原浆毒物,处理方法:低浓度的含酚废液可加入次氯酸钠或漂白粉煮一下,使酚分解为二氧化碳和水。如果是高浓度的含酚废液,可通过醋酸丁酯萃取,再加少量的氢氧化钠溶液反萃取,经调节pH值后进行蒸馏回收.处理后的废液排放。7、综合废液处理用酸、碱调节废液PH为3-4、加入铁粉,搅拌30min,然后用碱调节p H为9左右,继续搅拌10min,加入硫酸铝或碱式氯化铝混凝剂、进行混凝沉淀,上清液可直接排放,沉淀于废渣方式处理。8、含 铬废液的处理含铬废液中加入还原剂,如硫酸亚铁、亚硫酸钠、铁屑,在酸性条件下将六价铬还原成三价铬,然后加入碱,如氢氧化钠、氢氧化钙碳酸钠等,使三价格形成Cr(OH)3沉淀,清液可排放。沉淀干燥后可用焙烧法处理,使其与煤渣一起焙烧,处理后可填埋。9、含 氰废液的处理低浓度废液可加入氢氧化钠调节PH为10以上,再加入高锰酸钾粉末(3%),使氰化物分解。若是高浓度的,可使用碱性氯化法处理,先用碱调至PH为10以上,加入次氯酸钠或漂白粉。经充分叫板,氢化物分解为二氧化碳和氮气,放置24小时排放。含氰化物费也不得乱倒或与酸混合,生成挥发性氰化氢气体有剧毒。10、三氯甲烷的回收将三氯甲烷废液一次用水、浓硫酸(三氯甲烷量的十分之一)、纯水、盐酸羟胺溶液(0.5% AR)洗涤。用重蒸馏水洗涤两次,将洗好的三氯甲烷用污水氯化钙脱水,放置几天,过滤,蒸馏。蒸馏速度为每秒1~2滴,收集沸程为60~62摄氏度的馏出液(标框下),保存于棕色试剂瓶中(不可用橡胶塞)。11、实验室废液处理注意事项1)、尽量回收溶剂,在对实验没有妨碍的情况下,把它反复使用2)、为了方便处理,其收集分类往往分为:a)可燃性物质b)难燃性物质c)含水废液d)固体物质等。3)、可溶于水的物质,容易成为水溶液流失。因此,回收时要加以注意。但是,对甲醇、乙醇及醋酸之类溶剂,能被细菌作用而易于分解。故对这类溶剂的稀溶液经,用大量水稀释后,即可排放。4)、含重金属等的废液,将其有机质分解后,作无机类废液进行处理。12、生物实验室废液处理生物实验室产生的废液污染主要是化学性污染和生物性污染,另外还有放射性污染,化学性污染包括有机物污染和无机物污染。有机物污染主要是有机试剂污染和有机样品污染。在大多数情况下,实验室中的有机试剂并不直接参与发生反应,仅仅起溶剂作用,因此消耗的有机试剂以各种形式排放到周边的环境中,排放总量大致就相当于试剂的消耗量。日复一日,年复一年,排放量十分可观。有机样品污染包括一些剧毒的有机样品,如农药、苯并(α)芘、黄曲霉毒素、亚硝胺等。无机物污染有强酸、强碱的污染,重金属污染,氰化物污染等。其中汞、砷、铅、镉、铬等重金属的毒性不仅强,且有在人体中有蓄积性。生物性污染包括生物废弃物污染和生物细菌毒素污染。生物废弃物有检验实验室的标本,如血液、尿、粪便、痰液和呕吐物等 检验用品,如实验器材、细菌培养基和细菌阳性标本等。生物实验室的通风设备设计不完善或实验过程个人安全保护漏洞,会使生物细菌毒素扩散传播,带来污染,甚至带来严重不良后果。2003年非典流行肆虐后,许多生物实验室加强对SAS病毒的研究,之后报道的非典感染者,多是科研工作者在实验室研究时被感染的。注意事项:废液的浓度超过规定的浓度时,必须进行处理。但处理设施比较齐全时,往往把废液的处理浓度限制放宽。最好先将废液分别处理,如果是贮存后一并处理时,虽然其处理方法将有所不同,但原则上要将可以统一处理的各种化合物收集后进行处理。处理含有络离子、螯合物之类的废液时,如果有干扰成份存在,要把含有这些成份的废液另外收集。以下所列废液不能相互混合:①过氧化物与有机物 ②氰化物、硫化物、次氯酸盐与酸 ③盐酸、氢氟酸等挥发性酸与不挥发性酸 ④浓硫酸、磺酸、羟基酸、聚磷酸等酸类与其它的酸 ⑤铵盐、挥发性胺与碱。要选择没有破损及不会被废液腐蚀的容器进行收集。将所收集的废液的成份及含量,贴上明显的标签,并置于安全的地点保存。特别是毒性大的废液,尤要十分注意。对硫醇、胺等会发出臭味的废液和会发生氰、磷化氢等有毒气体的废液,以及易燃性大的二硫化碳、乙醚之类废液,要把它加以适当的处理,防止泄漏,并应尽快进行处理。含有过氧化物、硝化甘油之类爆炸性物质的废液,要谨慎地操作,并应尽快处理。含有放射性物质的废弃物,用另外的方法收集,并必须严格按照有关的规定,严防泄漏,谨慎地进行处理。小 结实验室每天都会产生很多含有酸、碱、有机等有毒有害废液。如果随意排放或处理必将会对水质和环境产生危害,所以作为实验室的分析人员,小编认为大家有必要强化自身安全意识,不随意倾倒化学废液,减少有毒有害废液对人体、环境的伤害。
  • 葛老师话说实验室第十九期:玻璃仪器洗涤液的配制2
    大家好,欢迎来到葛老师话说实验室。之前我们讲到了玻璃仪器的常规清洗,那么本期就大致介绍下实验室洗涤液的配制。洗涤,简称洗液,多用于不便于用刷子洗刷的仪器,如滴定管、移液管、容量瓶、蒸馏瓶等特殊形状的仪器,也用于洗涤长久不用的杯皿器具和刷子刷不下的结垢。洗液洗涤仪器的原理是,利用洗液本身与污物起化学反应,然后将污物去除,因此,在洗涤仪器时,需将仪器浸泡在洗液中一定时间,以便于充分作用。根据不同的实验要求,有各种不同的洗液,较常用的有一下几种。1、铬酸洗液铬酸洗液,又称强酸氧化剂洗液,是用重铬酸甲(K2Cr2O7)和浓硫酸(H2SO4)配成。K2Cr2O7在酸性溶液中,有很强的氧化能力,对玻璃仪器又极少有侵蚀作用,所以这种洗液在实验室内使用最广泛。铬有致癌作用,因此配制和使用洗液时要极为小心,常用两种配制方法如下:(1)取100mL工业浓硫酸置于烧杯内,小心加热,然后慢慢加入5g重铬酸钾粉末,边加边搅拌,待全部溶解并缓慢冷却后,贮存在磨口玻璃塞的细口瓶内。(2)称取5g重铬酸钾粉末,置于250mL 烧杯中,加5mL 水使其溶解,然后慢慢入100mL 浓硫酸,边倒边用玻璃棒搅拌,并注意不要溅出,混合均匀,待冷却后,待其冷却后贮存于磨口细玻璃瓶内。配好的溶液,应贴好标签,注明溶液名称、配制人、配制时间。新配制的洗液为红褐色,氧化能力很强。当洗液用久后变为黑绿色,即说明洗液无氧化洗涤力。这种洗液在使用时切忌注意不能溅到身上,以防“烧”破衣服和损伤皮肤。洗液倒入要洗的仪器中时,应使仪器周壁全浸洗后稍停一会再倒回洗液瓶。第一次用少量水冲洗刚浸洗过的仪器后,废水不要倒在水池里和下水道里,防止长久会腐蚀水池和下水道,应倒在废液缸中,如果无废液缸,倒入水池时,要边倒边用大量的水冲洗。2、碱性洗液碱性洗液用于洗涤有油污物的仪器,用此洗液是采用长时间(24小时以上)浸泡法,或者浸煮法。从碱洗液中捞取仪器时,要戴乳胶手套,以免烧伤皮肤。常用的碱洗液有:碳酸钠液(Na2CO3,即纯碱),碳酸氢钠(NaHCO3,小苏打),磷酸钠(Na3PO4,磷酸三钠)液,磷酸氢二钠(Na2HPO4)液等。3、碱性高锰酸钾洗液用碱性高锰酸钾作洗液,作用缓慢,适合用于洗涤有油污的器皿,其二氧化锰残渣可用浓硫酸或亚硫酸钠溶液洗掉。配法:取高锰酸钾(KMnO4)4克,加少量水溶解后,再加入10%氢氧化钠(NaOH)100mL。4、纯酸纯碱洗液根据器皿污垢的性质,直接用浓硫酸(HCl)或浓硫酸(H2SO4)、浓硝酸(HNO3)浸泡或浸煮器皿(温度不宜太高,否者浓酸挥发刺激性强)。纯碱洗液多采用10%以上的浓烧碱(NaOH)、氢氧化钾(KOH) 或碳酸钠(Na2CO3)液浸泡或浸煮器皿(可以煮沸)。5、有机溶剂带有脂肪性污物的器皿,可以用汽油、甲苯、二甲苯、丙酮、酒精、三氯甲烷、乙醚等有机溶剂擦洗或浸泡。但用有机溶剂作为洗液浪费较大,能用刷子洗刷的大件仪器尽量采用碱性洗液。只有无法使用刷子的小件或特殊形状的仪器才使用有机溶剂洗涤,如活塞内孔、移液管尖头、滴定管尖头、滴定管活塞孔、滴管、小瓶等。6、洗消液检验致癌性化学物质的器皿,为了防止对人体的侵害,在洗刷之前应使用对这些致癌性物质有破坏分解作用的洗消液进行浸泡,然后再进行洗涤。在食品检验中经常使用的洗消液有:1%或5%次氯酸钠(NaOCl) 溶液、20%HNO3和2% KMnO4溶液。1%或5%NaOCl溶液对黄曲霉素有破坏作用。用1%NaOCl溶液对污染的玻璃仪器浸泡半天或用5%NaOCl溶液浸泡片刻后,即可达到破坏黄曲霉毒素的作用。配法:取漂白粉100克,加水500mL,搅拌均匀,另将工业用Na2CO3 80克溶于温水500mL中,再将两液混合,搅拌,澄清后过滤,此滤液含NaOCl为2.5%;若用漂粉精配制,则Na2CO3 的重量应加倍,所得溶液浓度约为5%。如需要1%NaOCl溶液,可将上述溶液按比例进行稀释。20% HNO3溶液和2%KMnO4溶液对苯并(a)芘有破坏作用,被苯并(a)芘污染的玻璃仪器可用20%HNO3浸泡24小时,取出后用自来水冲去残存酸液,再进行洗涤。被苯并(a)芘污染的乳胶手套及微量注射器等可用2%KMnO4溶液浸泡2小时后,再进行洗涤。以上就是本期人和《葛老师话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 毒品现场确证 | EXPEC 3600 移动式GC-MS快速检测毛发中痕量毒品
    概述甲基苯丙胺(Methamphetamine, MA)俗称冰毒,是一种具有精神活性的苯丙胺类兴奋剂,是联合国精神药品公约管制的精神活性物质。滥用冰毒不仅会对吸食者个人的身体和心理造成严重的危害,也会滋生出各种违法犯罪活动。与传统的血液、尿液检测相比,毛发检测具有时效长、检测毒品信息全面、样本易于提取保存等独特优势。实现现场快速筛查毛发中的毒品,对于执法人员精准打击毒品犯罪具有重大意义。如何能快速检测毛发中的毒品呢?目前最常见的毛发现场快速筛查技术主要有表面增强拉曼光谱法(SERS)、便携式质谱法(MS)、量子点荧光法和GC-MS法。相较于其他方法,GC-MS技术能在现场进行快速准确定性定量分析,是行业的毒品检测“金标准”,可进一步辅助实验室精准检测,为执法人员快速确定嫌疑人是否吸毒,及时有效地打击毒品犯罪提供有效依据。谱育科技研发的EXPEC 3600 移动式GC-MS具有移动性好、分析速度快、定性能力强、人机界面简单等优点,与EXPEC 230固相微萃取综合前处理仪相结合,能够实现对毛发中甲基苯丙胺的快速定性定量分析,实现痕量毒品的现场确证。方法应用,现场确证 SPME前处理标准曲线配制浓度为0.2ng/mg、0.5ng/mg、1.0ng/mg的甲基苯丙胺/氢氧化钠水溶液,并参照SPME前处理实验条件对样品进行前处理后,按照分析条件进行测定,最后采用最小二乘法绘制标准曲线,甲基苯丙胺在线性范围内所得校准曲线相关系数R2大于0.998,线性良好。检出限配制浓度为0.2ng/mg的甲基苯丙胺/氢氧化钠水溶液,按照优化的条件参数进行处理后平行测定7组,计算标准偏差,MDL=3.143*s,从而获得本方法的检出限为0.0474 ng/mg。 毛发中甲基苯丙胺的含量测定按照上述前处理条件对毛发进行处理,具体如下:取疑似阳性毛发50 mg置入萃取瓶中,加入5 mol/L的氢氧化钠溶液5 mL,密封,于60°C加热10 min至毛发完全消解。按照EXPEC 3600参数对毛发样品进行测试,总离子流图如下,带入甲基苯丙胺的标准曲线可以得到毛发中甲基苯丙胺的含量为0.423 ng/mg,大于公安部《涉毒人员毛发样本检测规范》(公禁毒[2018]938号)规定的毛发样品中甲基苯丙胺检测的0.2 ng/mg含量阈值。小结EXPEC 3600移动式GC-MS结合EXPEC 230固相微萃取综合前处理仪能够实现对毛发中甲基苯丙胺的快速定性定量分析,可积极发挥仪器体积小、易携带等优势,更适用于在毒品检测中的现场确证。【温馨提示】远离毒品,珍爱生命!!!
  • 水厂加氯消毒工艺改进,看看绍兴市上虞区水司是怎么做的!
    导读2019年7月,清时捷和《净水技术》杂志联合设立了“供排水企业运行及管理成果专栏”。众多行业专家依据多年的从业经验,结合水厂的实际情况,分享了他们所在单位在日常运行管理中实际生产运行遇到的问题以及所采用的应对策略。消毒是保障饮用水微生物安全的重要环节,但消毒工艺控制水平的优劣,除直接影响消毒效果外,也影响到消毒副产物的产生。此外,消毒工艺所涉及的药剂、设备等,也是水厂安全运行管理中心的重要部分,是各水厂关注的焦点。本次带来了绍兴市上虞区供水有限公司分享的——水厂加氯消毒工艺改进实例,看看他们在水厂加氯消毒这方面给我们带来了哪些实践经验。水厂加氯消毒工艺改进实例吴建江,李晓云,娄风(绍兴市上虞区供水有限公司,浙江绍兴,312300)为防止饮用水传播疾病,保障百姓的身体健康,在自来水厂中消毒是必不可少的一个环节,也是保证水质的最后一关。含氯消毒剂用于饮用水消毒最早可追溯到1903年[1],是历史最为悠久的饮用水消毒方式,在水处理消毒行业中拥有重要地位。随着科学技术的发展,紫外线消毒、臭氧消毒等新方式逐渐进入人们的视线,然而,氯化消毒因其消毒效率高、效果持续稳定、经济成本可控等原因,仍然是水处理工艺中较为主流的消毒技术。含氯消毒剂主要有氯气、二氧化氯、次氯酸钠三种。氯气是化工业的主要产品,价格低廉,容易获得,同时消毒效果明显,因而早期自来水厂多选择使用氯气作为消毒制剂。随着城市发展,原先处于城市边缘的自来水厂、污水厂逐渐处于城市中心地段,生产管理的安全问题越来越受到监管部门重视,氯气作为剧毒危险化学品在运输和储存过程中具有安全隐患,受到公安、安监部门严格监管。同时在消毒过程中,氯气分子与水中自然有机物发生反应,还会产生三氯甲烷等具有致癌性的消毒副产物;二氧化氯本身亦属于危险品,且其反应副产物氯酸盐含量较高。随着人们对饮用水安全和饮用水品质的重视程度越来越高,目前,我国大型城市自来水厂正逐步限制氯气和二氧化氯的使用,从而寻求更加安全有效、副产物更少的消毒剂。一、大三角水厂加氯消毒工艺迭代概况上虞大三角水厂在寻找有效的氯气替代工艺时,对比了二氧化氯和次氯酸钠的工艺安全、消毒效率、维护成本等,选择了更为安全、高效和经济的次氯酸钠作为消毒药剂。水厂在消毒工艺的迭代过程中经历了成品次氯酸钠投加,管式次氯酸钠发生器的试用以及板式次氯酸钠发生器的使用三个过程,在摸索中获得了一定的对比经验,可用于后续数据分析,供其他水厂消毒工艺升级时参考。上虞大三角水厂设计日处理水量为15万t,投产时采用传统氯气消毒工艺。2013年,出于工艺安全以及消毒副产物控制的考虑,水厂决定升级消毒系统。当时在使用次氯酸钠消毒时,行业内有次氯酸钠发生器和次氯酸钠成品两种选择方案,可分别通过次氯酸钠发生器现场制备有效氯浓度0.8%的次氯酸钠溶液,或采购10%的成品次氯酸钠溶液,利用计量泵加注至各投加点。因成品次氯酸钠投加工艺工程量小,投产速度较快,前期投入小,大三角水厂选用采购10%次氯酸钠成品运输至现场稀释到5%储存并投加消毒,废除了原加氯设备除余氯仪表外等全部设备,并增加了次氯酸钠储存投加设备,大大提高了加氯工艺的安全性,投用效果良好。2016年,由于杭州周边G20等重大活动的举办和筹备,成品次氯酸钠的运输受到限制,给水厂消毒工艺的运行造成了一定压力,以此为契机,水厂考虑升级为次氯酸钠现场制备工艺。2016年底,汤浦水厂试用了管式次氯酸钠发生器,现场制备有效氯浓度为0.8%的次氯酸钠溶液并通过计量泵调节流量,经运行一年,投加效果与成品次氯酸钠无异2018年,大三角水厂通过改造,增加了次氯酸钠制备设备,使用工艺更为先进的板式次氯酸钠发生器,仍利用智能型计量泵加注至各投加点,运行至今半年,投加效果稳定。二、消毒效果与药剂品质对比从氯气到成品次氯酸钠到现场制备的次氯酸钠,含氯制剂的消毒原理大同小异,都是通过与水反应生成具有强氧化性的次氯酸,反应如式(1)和式(2),次氯酸会分解形成新生态氧,通过次氯酸和新生态氧所具备的强氧化性使菌体病毒上的蛋白变性,从而达到杀菌消毒的目的。含氯药剂的有效杀菌能力可通过有效氯浓度体现,一般都可通过投加量的调节,实现有效杀菌。CL2+H2O=HOCl+Hˉ+Clˉ(氯气)(1)NaOCl+H2O=HOCl+Na﹢+OHˉ(次氯酸钠)(2)应用次氯酸钠消毒的优势主要体现在消毒副产物的产生量上。在消毒过程中,和氯气或二氧化氯不同,次氯酸钠不会在水中产生游离分子氯,避免了氯代化合反应,减少了消毒副产物的产生量【2】。同时,使用次氯酸钠避免了氯气与水反应时盐酸的产生,取而代之生成氢氧化,对于原水为弱酸性水库水的水厂尤为适用。(大三角水厂原水取自上虞汤浦水库,水质呈弱酸性,常年pH值在6.5-6.8,日常需通过投加熟石灰调节pH,改造后水厂石灰投加量明显降低)。同时生成的附产物为略带嗅味的氯胺化合物,该物质也是一种低效的消毒剂,不会造成安全问题【2】。大三角水厂最先选用10%次氯酸钠成品用于消毒使用,有效解决了氯气管理的安全性问题。但成品次氯酸钠多由电化厂通过氯气和氢氧化钠的中和反应生成,其原料不可控,成品品质不稳定。工业制次氯酸钠由于其反应机制,常带有游离碱(成品次氯酸钠因含有0.6%-1%游离碱,对pH的提高效果更明显,在原水pH较高的河道水源水厂应用时需考虑这一情况)。次氯酸钠在pH值小于7.5的环境下杀菌效果最好,选用游离碱含量较高的成品次氯酸钠消毒,可能会影响消毒效果,并影响出水pH值。由于高浓度储存和高温环境下的歧化反应,如式(3),高温下NaClO不稳定,易分解为NaClO3和NaCl。3NaClO=NaClO3+2NaCl(3)成品次氯酸钠常含有少量氯酸盐副产物,在7kg/kt(最大)投加量下,一般不会超过0.7mg/L的国家标准限制【3】。但其储存时间不宜过长,储存温度要尽量低,且需要避光储存。使用发生器现场制取的次氯酸钠对比成品次氯酸钠,其原料为食盐和水,生产过程不引入氢氧化钠,原料相对可控,没有化工产品质量风险。现场制备时氯酸盐产物极低,其中板式次氯酸钠发生器氯酸盐产物更低(表1)。三、安全性对比成品次氯酸钠的安全隐患主要来自于药剂运输与储存。为保证水厂连续运行,在使用成品次氯酸钠时,大三角水厂设置了90t次氯酸钠总储量,如果按成品5%有效氯计算,总有效氯储量达到4.5t,而按次氯酸钠发生器制备的有效氯为0.8%的次氯酸钠溶液储存时,总有效氯储量为0.72t,泄漏风险大幅下降,水厂运行管理安全性得到提升。次氯酸钠现场制备的风险主要来源于脱氢系统,食盐电解工艺经过多年的发展,已具备成熟的脱氢工艺。大三角水厂选用的次氯酸钠发生装置不论管式还是板式都装备有氢气脱氢桶,可在桶内将氢气稀释至1%(体积比)以下排放,远远低于爆炸极限(4%-76%),而且1%含量以下的氢气排放属于有序排放,不会增加环境负荷。同时,厂区安装了氢气探头,氢气稀释装置、风量报警等一系列自动监测和控制系统,多重保障氢气有序、安全排放,安全性得到了进一步保障。四、经济数据对比在水厂的运行过程中,后期维护相关的经济数据也是重要的参考依据。大三角水厂在投人使用前的调研数据显示,成品氯气及成品次氯酸钠前期投入成本较小,而次氯酸钠发生器前期投入约是氯气的2倍,是成品次氯酸钠的3倍(表2)。然而对于后期运行费用来说,次氯酸钠发生器的运行成本为8.1元/kt,仅为成品次氯酸钠的0.6倍,氯气的1.6倍。其中,板式次氯酸钠发生器由于其电效率得到了有效的提高,电耗最低,使用效率最高。在后期使用中,通过对相关水厂不同加氯工艺进行成本核算,板式隔膜次氯酸钠发生器的运行成本相对最低的,基本符合前期调研结果,具体数据如表1所示。五、其他影响决策的因素在技术因素之外,在实际生产过程中,有许多其他因素影响水厂对消毒工艺的选择。水厂消毒是民生需求,必须具备安全连续稳定的特点,对消毒药剂供给有较高要求。成品药剂交通运输的不稳定性及药剂库存的不安全性是选择使用现场制备次氯酸钠消毒工艺的重要原因。10%次氯酸钠属于危险品范畴,在国家重大活动期间其生产运输将受到严格控制,在重大社会活动期间可能会出现药剂供应厂家暂时停产的情况,导致药剂的应急储备急剧增加,从而影响水厂正常生产运行,对水厂药剂库存安全储备和生产运行稳定可靠可能带来极大的考验。此外,在政策方面,我国《生活饮用水卫生标准》(GB5749-2006)以及全国第一部饮用水水质地方标准—上海地方标准《生活饮用水卫生标准》(DB31/T1091-2018)【4】中对消毒副产物有了明确的限定,这预示着水行业在发展过程中对消毒副产物的重点防治将是趋势所向。因此,在大三角水厂进行消毒工艺的选择时,对消毒副产物指标也进行了细致的对比,选择了副产物浓度更小的板式隔膜发生器,使该水厂在健康、安全消毒工艺的发展上走在了同行前列。六、总结通过对安全性、消毒副产物的产生量、经济可行性等对比,现场制备次氯酸钠的加氯消毒方式更为经济、消毒稳定性更高,其中对于板式次氯酸钠发生器较管式次氯酸钠发生器产能更大,盐耗与电耗都更低,同时由于阳离子膜的使用,消毒副产物也更少,在经济预算允许的情况下,板式隔膜次氯酸钠发生器制备次氯酸钠消毒是加氯消毒的推荐工艺。- END -参考文献:(1)田园,唐超然浅谈饮用水的氯消毒万法【J】.林业科技情报,1997(2):6-7(2)闫贵才次氯酸钠、二氧化氯和臭氧的比较【J】.商品与质量,2009(7):147-150(3)彭敏,吕斯濠,范洪波不同游离碱含量的次氯酸钠消毒效果与消毒副产物比较【J】.给水排水,2015(7):12-14(4)朱慧峰上海市《生活饮用水水质标准》解读与高品质饮用水目标的展望【J】净水技木,2018,37(8):39-44●往期推荐 ●● 次氯酸钠消毒工艺全过程监控解决方案● 我国自来水处理工艺常见问题及解决措施,你了解么?● 农村饮水安全问题,你那里解决了吗?● 实验室安全消解,你选对了吗?长按关注清时捷公众号微信号 : sinsche-com联系热线:400-660-7869免责声明微信图片系网络转载,仅供分享不作商业用途,版权归原作者和原出处所有。如原版权所有者不同意转载的,请及时联系我们(0755-21033425),我们会立即删除,谢谢!
  • 原子荧光光谱法测定食品添加剂中砷元素
    GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定代替GB/T 5009.76-2003 食品添加剂中砷的测定,将于2016年3月1日正式实施。标准中将原子荧光光谱法作为食品添加剂中砷的测定方法之一。原子荧光作为检测砷、汞、铅等重金属的常规分析仪器具有灵敏度高、操作简便等特点,而作为中国氢化法原子荧光技术发源地的北京金索坤推出的新一代原子荧光光度计更是具有“多、快、好、省”四大特色。下面为各位实验室检测同行分享下如何应用原子荧光光度计测试食品添加剂中的砷元素。 按照新标准,应用原子荧光光度计测试食品添加剂中的砷元素需要准备以下试剂:氢氧化钠(NaOH)(优级纯)、硼氢化钠或硼氢化钾(NaBH4或KBH4)、硫脲(CH4N2S)、硝酸(HNO3)(优级纯)、硫酸(H2SO4)(优级纯)、高氯酸(HCIO4)(优级纯)、盐酸(HCl)(优级纯)、硝酸镁[Mg(N03)2.6H2O]、氧化镁(MgO)、过氧化氢(H2O2)。 试剂的配制1、氢氧化钠溶液(2 g/L):称取2.0 g氢氧化钠,溶于1 000 mL水中,混匀。2、硼氢化钠溶液(10 g/L):称取10.0 g硼氢化钠,溶于1 000 mL氢氧化钠溶液中,混匀。临用现配(也可称取14 g硼氢化钾代替硼氢化钠)。3、硫脲溶液(50 g/L):称取50 g硫脲,溶于1 000 mL水中,混匀。4、硫酸溶液(1+9):量取100 mL硫酸,小心倒入水900 ml。中,混匀。5、氢氧化钠溶液(100 g/L):称取1.0 g氢氧化钠,溶于10 mL水中。6、盐酸溶液(1+1):量取100 mL盐酸缓慢倒入100 mL水中,混匀,冷却后使用。7、硝酸镁溶液(150 g/L):称取150 g硝酸镁,溶于1 000 mL水中,混匀。 标准溶液的配制1、砷标准储备液(0.1 mg/mL。):精确称取于100℃干燥2h以上的三氧化二砷0.1320 g,加100 g/L氢氧化钠溶液10 mL溶解,用水定量转入1 000 mL容量瓶中,加硫酸溶液(1+9)25 mL定容至刻度。2、砷标准使用液(1/μg/mL):吸取1.00 mL砷储备标准液于100 mL容量瓶中,用水稀释至刻度。 分析步骤以湿法消解为例称取固体试样1 g~2.5 g(精确至0.001 g),液体试样5 g~10 g(精确至0.001 g),置于100 mL锥形瓶中,加硝酸20 mL~40 mL,硫酸1.25 mL,放置过夜。次日置于电热板上加热消解(主气流量:为定值,500mL/min左右 辅气流量:800~1000mL/min泵速:70~80转/min检出限(参考值):0.01ng/mL 注意事项:(1)在盐酸中一般都存在着一定含量的As,因此采用优级纯HCL可减少空白。但也有个别情况分析纯中As含量低于优级纯,以及不同生产厂或不同的生产批号As的含量差别也很大, 因此建议在使用前先用少量的HCl配制成10%(V/V)条件下进行对比检验。(2)将所使用前的各种器皿必须用(1+1)HNO3浸泡24小时,然后认真清洗干净,防止As的污染。(3)本说明所配制的砷标准贮备液为三价状态,为防止在保存期间砷被氧化,仍建议加入硫脲+抗坏血酸,碘化钾预先还原As(Ⅴ)至As(Ⅲ),还原速度受温度影响,室温低于或小于15℃,至少应放置30分钟,样品也必须同样进行预还原。(4)配置标准溶液的容量瓶必须长期固定不变,不能任意变动。(5)配制标准溶液时宜采用固定的一支5mL刻度的移液管,可直接用于配制全部标准系列。(6)硼氢化钾溶液浓度对As测定有较大影响。
  • 全自动乌氏粘度计测定聚丙烯酸钠(PAAS)极限黏数
    聚丙烯酸钠,化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色黏稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得。无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀,聚丙烯酸钠还具有很强的吸水性,常规聚丙烯酸钠的吸水率(纯净水)是其自身的数百倍,改进后的产品可以达到数千倍。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法,研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。 目前毛细管法测定聚丙烯酸钠(PAAS)极限粘数是行业内作为控制产品质量重要的指标之一,按HG/T 2838-2010中描述的步骤测定PAAS的极限黏数,溶剂优先选择氢氧化钠和硫氰酸钠,温度为30℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、干燥箱、万分之一电子天平。实验所需试剂:氢氧化钠溶液(80g/L)、硫氰酸钠溶液(101g/L)、纯水、乙醇。1、溶剂粘度的测定:卓祥全自动粘度仪设置到30℃温度值并且稳定后,加入硫氰酸钠溶液(101g/L),软件中启动测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。2、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。3、PAAS稀溶液样品的制备:称取**g试样置于培养皿中,用氢氧化钠溶液调节试液的PH值至**,然后放入干燥箱中干燥,箱中冷却至室温待用,用万分之一天平称量**干燥试样,到0.2mg,置于烧杯中,加入硫氰酸钠溶液溶解,全部转移至溶量瓶中,用硫氰酸钠溶液稀释至刻度,摇匀待用。4、样品粘度的测定:加入样品试液,启动软件中特定公式测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。5、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。6、通过自动测量软件自动计算得出对应的数据及报表。
  • 公开征求氧化铁铬等4种食品相关产品新品种意见
    根据《食品相关产品新品种行政许可管理规定》和《食品相关产品新品种申报与受理规定》要求,氧化铁铬等4种食品相关产品新品种已通过专家评审委员会技术评审(具体情况见附件)。现公开征求意见。请于2024年1月21日前将书面意见反馈至我中心,如在截止日期前未反馈相关意见,视为无不同意见。邮 箱:biaozhun@cfsa.net.cn 一、氧化铁铬1.背景资料:该物质在常温下为黑色粉末,不溶于水。 美国食品药品管理局和日本化学研究检验所均允许该物质 作为着色剂用于食品接触用塑料材料及制品。2.工艺必要性。该物质为黑色无机着色剂,具有较好的 耐候性、耐温性、化学稳定性等性能,并可用于黑色塑料制 品的红外线识别。二、(1R,2R,3S,4S)-rel-二环[2.2.1]庚烷-2,3-二羧酸钙盐 (1:1) 1.背景资料:该物质在常温下为白色粉末,极微溶于水。 美国食品药品管理局和欧盟委员会均允许该物质用于聚丙 烯(PP)、聚乙烯(PE)塑料材料及制品。2.工艺必要性:加入该物质的 PP、PE 具有较低的水蒸 气渗透率和氧气透过率。三、聚丁二酸-己二酸丁二酯1.背景资料:该物质在常温下为白色颗粒,不溶于水, 可溶于氢氧化钠和氯仿。美国食品药品管理局和欧盟委员会 均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该树脂较易熔融,加工性能良好。以该 物质为原料生产的塑料薄膜,具有较好的透明度和光泽度。四、1,3-苯二甲酸与 1,4-苯二甲酸和 1,4-二(羟甲基)环己烷的聚合物 1.背景资料:该物质在常温下为固体,不溶于水和乙醇。 美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方 共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性:该物质为基础树脂,相较于其他聚酯材 料密度低,可以制造较轻便的产品;有较低的吸水性,能更 好的保持尺寸稳定性,可应用于透明板材、薄膜等产品生产。
  • 实验室安全需知之【废液处理】
    p style=" text-align: justify "   实验室的废液种类多、成分复杂,具有经常性、间歇性、分散性等特点,难于统一处理,这就需要加强实验室安全管理,建立实验室废液污染防治体系。 /p p style=" text-align: justify "    strong 实验室废液主要包括: /strong /p p style=" text-align: justify "   1.实验操作过程中产生的各种强酸、强碱、有机溶液等 /p p style=" text-align: justify "   2.清洗各种实验用具和设备 (各种玻璃容器、进样瓶、制样设备等)时产生的废液 /p p style=" text-align: justify "   3.设备冷却装置(如各种蒸馏冷却装置、仪器设备冷却装置等)产生的废液。 /p p style=" text-align: justify "   这些废液应按其性质、成分等采取不同的处理方式。有的废液可以回收利用其中有用的物质,有的可以直接排至外部排水管网,有的则采用适当方法处理,然后再排外部管网。 /p p style=" text-align: justify "   例如:一般设备冷却水经使用后仅水温有所升高,这类废液不经处理就可排人水体或外部排水管网:有的经简单的处理还可重复使用,用于实验用具的清洗等过程 有的废液含有毒有害物质、放射性物质,则需经适当处理或间收利用其有用的物质后,使之符合国家规定的排放标准,才可排人水体或外部排放管网。 /p p style=" text-align: justify "    strong 实验室废液处理 /strong /p p style=" text-align: justify "   收集的实验室废液应有适当的贮存场所,避免高温、日晒、雨淋以及应有防漏和防渗设施,最好放置在有抽气设备的贮存柜中或存放于有换气设备的房间中。贮存容器应明显标示其种类与性质,不同类型的废液应分别贮存,不同类型废液容器不可混贮。 /p p style=" text-align: justify "   对高浓度废酸、废碱液要经中和至中性时排放。对于含少量被测物和其他试剂的高浓度有机溶剂应回收再用。用于回收的高浓度废液应集中储存,以便回收 低浓度的经处理后排放,应根据废液性质确定储存容器和储存条件,不同废液一般不允许混合,避光、远离热源、以免发生不良化学反应。废液储存容器必须贴上标签、写明种类、储存时间等。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 含不同化学物质的废液处理方法 /strong /span /p p style=" text-align: justify "   含 span style=" color: rgb(0, 112, 192) " 汞、铬、铅、镉、砷、酚、氰 /span 的废液必须经过处理达标后才能排放,实验室处理方法如下: /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " i 含汞、铅、镉废弃物的处理 /i /span /p p style=" text-align: justify "   若不小心将金属汞散落在实验室里(如打碎温度计)必须及时清除。如用滴管或用在硝酸汞的酸性溶液中浸过得薄铜片、铜丝收集与烧杯中用水覆盖。散落在地面上的汞颗粒应撒上硫磺粉,生成毒性较小的硫化汞 或喷上用盐酸酸化过的高锰酸钾溶液(5:1000体积比),过1至2小时后清除 或喷上20%三氯化铁水溶液,干后再清除(但该方法不能用于金属表面,会产生腐蚀)。 /p p style=" text-align: justify "   对于含汞废液的处理,可先将废液调至PH8~10家入过量硫化钠,使其生成硫化汞沉淀,再加入硫酸亚铁作为共沉淀剂,生成硫化铁沉淀可将硫化汞微粒吸附沉淀,然后静止分离,清液可排放,残渣可用焙烧法回收汞或制成汞盐。 /p p style=" text-align: justify "   用碱将废液PH调至8~10,生成Pb(OH)2和Cd(OH)2沉淀,再加入硫酸亚铁作为共沉淀剂,沉淀物可与其他无机物混合进行烧结处理,清液排放。 /p p style=" text-align: justify "   i span style=" color: rgb(0, 112, 192) "  含铬、砷、酚、氰废弃物的处理 /span /i /p p style=" text-align: justify "   含铬废液中加入还原剂,如硫酸亚铁、亚硫酸钠、铁屑,在酸性条件下将六价铬还原成三价铬,然后加入碱,如氢氧化钠、氢氧化钙碳酸钠等,使三价格形成Cr(OH)3沉淀,清液可排放。沉淀干燥后可用焙烧法处理,使其与煤渣一起焙烧,处理后可填埋。 /p p style=" text-align: justify "   加入氧化钙,使PH为8,生成砷酸钙和亚砷酸钙沉淀,在Fe3+存在时共沉淀。或使溶液PH大于10,加入硫化钠,与砷反应生成难容、低毒的硫化砷沉淀。产生含砷气体的试验在通风橱中进行。 /p p style=" text-align: justify "   低浓度含酚废液可加入次氯酸钠或漂白粉,使酚氧化城市和二氧化碳。高浓度可使用丁酸乙脂萃取,在用少量氢氧化钠溶液反复萃取。调解PH后,进行重蒸馏,提纯后使用。 /p p style=" text-align: justify "   低浓度废液可加入氢氧化钠调节PH为10以上,再加入高锰酸钾粉末(3%),使氰化物分解。若是高浓度的,可使用碱性氯化法处理,先用碱调至PH为10以上,加入次氯酸钠或漂白粉。经充分叫板,氢化物分解为二氧化碳和氮气,放置24小时排放。含氰化物费也不得乱倒或与酸混合,生成挥发性氰化氢气体有剧毒。 /p p style=" text-align: justify "    strong 废液的回收使用: /strong /p p style=" text-align: justify "   加强试剂回收利用不仅可以减少实验室废液产生的总量,同时又节省了实验室的费用支出。例如实验室中部分有机溶剂不直接参与化学反应,使用后杂志含量少,可通过蒸馏、萃取、吸附等方法回收提纯,监测后可再次使用。 /p p style=" text-align: justify "   混合废液 /p p style=" text-align: justify "   互不作用的废液可用铁粉处理。调节废液PH3-4,加入铁粉,搅拌半小时,用碱调节PH 9左右,搅拌10分钟,加入高分子混凝剂沉淀,清液可排放,沉淀物作为废渣处理。 /p p style=" text-align: justify "   三氯甲烷的回收 /p p style=" text-align: justify "   将三氯甲烷废液一次用水、浓硫酸(三氯甲烷量的十分之一)、纯水、盐酸羟胺溶液(0.5% AR)洗涤。用重蒸馏水洗涤两次,将洗好的三氯甲烷用污水氯化钙脱水,放置几天,过滤,蒸馏。蒸馏速度为每秒1~2滴,收集沸程为60~62摄氏度的馏出液(标框下),保存于棕色试剂瓶中(不可用橡胶塞)。 /p p style=" text-align: justify "   实验室 strong 废液处理方式: /strong /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " 1.焚烧法 /span /p p style=" text-align: justify "   ①将可燃性物质的废液,置于燃烧炉中燃烧。如果数量很少,可把它装入铁制或瓷制容器,选择室外安全的地方把它燃烧。点火时,取一长棒,在其一端扎上沾有油类的破布,或用木片等东西,站在上风方向进行点火燃烧。并且,必须监视至烧完为止。 /p p style=" text-align: justify "   ②对难于燃烧的物质,可把它与可燃性物质混合燃烧,或者把它喷入配备有助燃器的焚烧炉中燃烧。对多氯联苯之类难于燃烧的物质,往往会排出一部份还未焚烧的物质,要加以注意。对含水的高浓度有机类废液,此法亦能进行焚烧。 /p p style=" text-align: justify "   ③对由于燃烧而产生NO2 SO2 或HCl 之类有害气体的废液,必须用配备有洗涤器的焚烧炉燃烧。此时,必须用碱液洗涤燃烧废气,除去其中的有害气体。 /p p style=" text-align: justify "   ④对固体物质亦可将其溶解于可燃性溶剂中然后使之燃烧。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " 2.溶剂萃取法 /span /p p style=" text-align: justify "   ①对含水的低浓度废液,用与水不相混合的正己烷之类挥发性溶剂进行萃取,分离出溶剂层后,把它进行焚烧。再用吹入空气的方法,将水层中的溶剂吹出。 /p p style=" text-align: justify "   ②对形成乳浊液之类的废液,不能用此法处理,要用焚烧法处理。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " 3.吸附法 /span /p p style=" text-align: justify "   用活性炭硅藻土矾土层片状织物聚丙烯聚酯片氨基甲酸乙酯泡沫塑料稻草屑及锯末之类能良好吸附溶剂的物质使其充分吸附后与吸附剂一起焚烧。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " 4.氧化分解法 /span /p p style=" text-align: justify "   在含水的低浓度有机类废液中,对其易氧化分解的废液,用H2O2 KMnO4 NaOCl H2SO4+HNO3 HNO3+HClO4 H2SO4+HClO4 及废铬酸混合液等物质,将其氧化分解。然后,按上述无机类实验废液的处理方法加以处理。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " 5.水解法 /span /p p style=" text-align: justify "   对有机酸或无机酸的酯类,以及一部份有机磷化合物等容易发生水解的物质,可加入氢氧化钠或氢氧化钙, 在室温或加热下进行水解。水解后,若废液无毒害时,把它中和、稀释后,即可排放。如果含有有害物质时,用吸附等适当的方法加以处理。 /p p style=" text-align: justify "   span style=" color: rgb(0, 112, 192) "  6.生物化学处理法 /span /p p style=" text-align: justify "   用活性污泥之类东西并吹入空气进行处理。例如,对含有乙醇、乙酸、动植物性油脂、蛋白质及淀粉等的稀溶液,可用此法进行处理。 /p p style=" text-align: justify "  & nbsp strong 含一般有机溶剂的废液: /strong /p p style=" text-align: justify "   一般有机溶剂是指醇类、酯类、有机酸酮及醚等由C、H、O 元素构成的物质。对此类物质的废液中的可燃性物质,用焚烧法处理。对难于燃烧的物质及可燃性物质的低浓度废液,则用溶剂萃取法、吸附法及氧化分解法处理。再者,废液中含有重金属时,要保管好焚烧残渣。但是,对其易被生物分解的物质(即通过微生物的作用而容易分解的物质),其稀溶液经用水稀释后,即可排放。 /p p style=" text-align: justify "   含石油动植物性油脂的废液此类废液包括:苯、已烷、二甲苯、甲苯、煤油、轻油、重油、润滑油、切削油、机器油、动植物性油脂及液体和固体脂肪酸等物质的废液。对其可燃性物质,用焚烧法处理。对其难于燃烧的物质及低浓度的废液,则用溶剂萃取法或吸附法处理。对含机油之类的废液,含有重金属时,要保管好焚烧残渣。 /p p style=" text-align: justify "    strong 生物实验室废液处理: /strong /p p style=" text-align: justify "   生物实验室产生的废液污染主要是化学性污染和生物性污染,另外还有放射性污染。 /p p style=" text-align: justify "   化学性污染包括有机物污染和无机物污染。有机物污染主要是有机试剂污染和有机样品污染。在大多数情况下,实验室中的有机试剂并不直接参与发生反应,仅仅起溶剂作用,因此消耗的有机试剂以各种形式排放到周边的环境中,排放总量大致就相当于试剂的消耗量。日复一日,年复一年,排放量十分可观。有机样品污染包括一些剧毒的有机样品,如农药、苯并(α)芘、黄曲霉毒素、亚硝胺等。无机物污染有强酸、强碱的污染,重金属污染,氰化物污染等。其中汞、砷、铅、镉、铬等重金属的毒性不仅强,且有在人体中有蓄积性。 /p p style=" text-align: justify "   生物性污染包括生物废弃物污染和生物细菌毒素污染。生物废弃物有检验实验室的标本,如血液、尿、粪便、痰液和呕吐物等 检验用品,如实验器材、细菌培养基和细菌阳性标本等。生物实验室的通风设备设计不完善或实验过程个人安全保护漏洞,会使生物细菌毒素扩散传播,带来污染,甚至带来严重不良后果。2003年非典流行肆虐后,许多生物实验室加强对SAS病毒的研究,之后报道的非典感染者,多是科研工作者在实验室研究时被感染的。 /p p style=" text-align: justify "   在对这些污染处理的时候,需要注意以下几个方面: /p p style=" text-align: justify "   废液的浓度超过规定的浓度时,必须进行处理。但处理设施比较齐全时,往往把废液的处理浓度限制放宽。 /p p style=" text-align: justify "   最好先将废液分别处理,如果是贮存后一并处理时,虽然其处理方法将有所不同,但原则上要将可以统一处理的各种化合物收集后进行处理。 /p p style=" text-align: justify "   处理含有络离子、螯合物之类的废液时,如果有干扰成份存在,要把含有这些成份的废液另外收集。 /p p style=" text-align: justify "    strong 下列废液不能互相混合: /strong /p p style=" text-align: justify "   ①过氧化物与有机物 /p p style=" text-align: justify "   ②氰化物、硫化物、次氯酸盐与酸 /p p style=" text-align: justify "   ③盐酸、氢氟酸等挥发性酸与不挥发性酸 /p p style=" text-align: justify "   ④浓硫酸、磺酸、羟基酸、聚磷酸等酸类与其它的酸 /p p style=" text-align: justify "   ⑤铵盐、挥发性胺与碱。 /p p style=" text-align: justify "   要选择没有破损及不会被废液腐蚀的容器进行收集。将所收集的废液的成份及含量,贴上明显的标签,并置于安全的地点保存。特别是毒性大的废液,尤要十分注意。 /p p style=" text-align: justify "   对硫醇、胺等会发出臭味的废液和会发生氰、磷化氢等有毒气体的废液,以及易燃性大的二硫化碳、乙醚之类废液,要把它加以适当的处理,防止泄漏,并应尽快进行处理。含有过氧化物、硝化甘油之类爆炸性物质的废液,要谨慎地操作,并应尽快处理。 含有放射性物质的废弃物,用另外的方法收集,并必须严格按照有关的规定,严防泄漏,谨慎地进行处理。 /p p style=" text-align: justify "    strong 生物类废物: /strong /p p style=" text-align: justify "   生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。 /p p style=" text-align: justify "   液体废物一般可加漂白粉进行氯化消毒处理。固体可燃性废物分类收集、处理、一律及时焚烧。固体非可燃性废物分类收集,可加漂白粉进行氯化消毒处理。满足消毒条件后作最终处置。 /p p style=" text-align: justify "   1.一次性使用的制品如手套、帽子、工作物、口罩等使用后放入污物袋内集中烧毁。 /p p style=" text-align: justify "   2.可重复利用的玻璃器材如玻片、吸管、玻瓶等可以用1000-3000mg/L有效氯溶液浸泡2-6h.然后清洗重新使用,或者废弃。 /p p style=" text-align: justify "   3.盛标本的玻璃、塑料、搪瓷容器可煮沸15min.或者用1000mg/L有效氯漂白粉澄清液浸泡2-6h,消毒后用洗涤剂及流水刷洗、沥干 用于微生物培养的,用压力蒸汽灭菌后使用。 /p p style=" text-align: justify "   4.微生物检验接种培养过的琼脂平板应压力灭菌30min,趁热将琼脂倒弃处理。 /p p style=" text-align: justify "   5.尿、唾液、血液等生物样品,加漂白粉搅拌后作用2-4h,倒入化粪池或厕所。或者进行焚烧处理。 /p p style=" text-align: justify "    strong 放射性废弃物: /strong /p p style=" text-align: justify "   一般实验室的放射性废弃物为中低水平放射性废弃物,将实验过程中产生的放射性废物收集在专门的污物桶内,桶的外部标明醒目的标志,根据放射性同位素的半衰期长短,分别采用贮存一定时间使其衰变和化学沉淀浓缩或焚烧后掩埋处理。 /p p style=" text-align: justify "   1.放射性同位素的半衰期短(如:碘131、磷32等)的废弃物,用专门的容器密闭后,放置于专门的贮存室,放置十个半衰期后排放或者焚烧处理。 /p p style=" text-align: justify "   2.放射性同位素的半衰期较长(如:铁59、钻60等)的废弃物,液体可用蒸发、离子交换、混凝剂共沉淀等方法浓缩,装入容器集中埋于放射性废物坑内。 /p p /p
  • 聚焦3.15,海能在行动——瘦肉精死灰复燃
    1 前言一年一度的3.15晚会如期而至,平时有太多的消费隐患藏匿在我们的生活中,每个人都是一名消费者,因此消费者权益晚会,总会受到很多人的关注。本次晚会以“提振消费 从心开始”为主题。其中有关食品安全“瘦肉精——‘硬羊’背后的秘密”的问题被点名,海能技术对此食品安全问题及时做出应对,为消费者提供全面的检测方案,希望可以为大家提供一定的参考。“一样的羊不一样的养”,有的羊可以一只多卖五六十块钱,到底是怎样做到的呢?记者在调查时发现,不少地方的养殖户为了利益不惜铤而走险,依然在偷偷使用违禁药物——瘦肉精!我国虽然于2000年提出禁止使用“瘦肉精”类药物,但在畜牧业生产中“瘦肉精”的使用仍屡禁不止。近年来,因食用被“瘦肉精”污染的食物导致中毒事件屡有发生,且后果极其严重,引起了高度重视。虽然许多国家都禁止在食源性动物的生产中使用盐酸克伦特罗(瘦肉精)。但记者在现场偷偷带回的白色粉末以及饲料,在经过瘦肉精快速检测条检测后,结果均为阳性。肉类中的瘦肉精该如何使用高效液相色谱仪检测出来呢?海能技术悟空团队快马加鞭,为您准备了一份完整的检测方案。实验名称:动物性食品中克伦特罗的测定-高效液相色谱法2 仪器与试剂2.1仪器高效液相色谱仪 、水浴超声清洗器、磨口玻璃离心管、酸度计、离心机、振荡器、旋转蒸发器、涡旋式混合器、针筒式微孔过滤膜(0.45μm)、 匀浆器 、N2 -蒸发器。 2.2试剂克伦特罗,纯度≥99.5%、磷酸二氢钠、氢氧化钠、氯化钠、高氯酸、浓氨水、异丙醇、乙酸乙酯、甲醇:HPLC级、乙醇、高氯酸溶液(0.1mol/L)、氢氧化钠溶液(1mol/L)、磷酸二氢钠缓冲液(0.1mol/L,pH=6.0)、异丙醇+乙酸乙酯(40+60)、乙醇+浓氨水(98+2)、甲醇+水(45+55)。克伦特罗标准溶液的配制:准确称取克伦特罗标准品用甲醇配成浓度为250mg/L的标准储备液,贮于冰箱中;使用时用甲醇稀释成0.5mg/L的克伦特罗标准使用液,进一步用甲醇+水(45+55)适当稀释。弱阳离子交换柱(LC-WCX)(3mL)。3 实验方法3.1提取3.1.1肌肉、肝脏、肾脏试样称取肌肉、肝脏或肾脏试样10g(精确到0.01g),用20mL 0.1mol/L高氯酸溶液匀浆,置于磨口玻璃离心管中;然后置于超声波清洗器中超声20min,取出置于80℃水浴中加热30min。取出冷却后离心(4500r/min)15min。倾出上清液,沉淀用5mL 0.1mol/L高氯酸溶液洗涤,再离心,将两次的上清液合并。用1mol/L氢氧化钠溶液调pH值至9.5±0.1,若有沉淀产生,再离心(4500r/min)10min,将上清液转移至磨口玻璃离心管中,加入8g氯化钠,混匀,加入25mL异丙醇+乙酸乙酯(40+60),置于振荡器上振荡提取20min。提取完毕,放置5min(若有乳化层稍离心一下)。用吸管小心将上层有机相移至旋转蒸发瓶中,用20mL异丙醇+乙酸乙酯(40+60)再重复萃取一次,合并有机相,于60℃在旋转蒸发器上浓缩至近干。用1mL 0.1mol/L磷酸二氢钠缓冲液(pH6.0)充分溶解残留物,经针筒式微孔过滤膜过滤,洗涤三次后完全转移至5mL玻璃离心管中,并用0.1mol/L磷酸二氢钠缓冲液(pH6.0)定容至刻度。3.1.2尿液试样用移液管量取尿液5mL,加入20mL 0.1mol/L高氯酸溶液,超声20min混匀,置于80℃水浴中加热30min。以下按3.1.1从“用1mol/L氢氧化钠溶液调pH值至9.5±0.1”起开始操作。3.1.3血液试样将血液于4500r/min离心,用移液管量取上层血清1mL置于5mL玻璃离心管中,加入2mL 0.1mol/L高氯酸溶液,混匀,置于超声清洗器中超声20min,取出置于80℃水浴中加热30min。取出冷却后离心(4500r/min)15min。倾出上清液,沉淀用1mL 0.1mol/L高氯酸溶液洗涤,离心(4500r/min)10min,合并上清液,再重复一遍洗涤步骤,合并上清液。向上清液中加入约1g氯化钠,加入2mL异丙醇+乙酸乙酯(40+60),在涡旋式混合器上振荡萃取5min,放置5min(若有乳化层稍离心一下),小心移出有机相于5mL玻璃离心管中,按以上萃取步骤重复萃取两次,合并有机相。将有机相在N2-浓缩器上吹干。用1mL 0.1mol/L磷酸二氢钠缓冲液(pH6.0)充分溶解残留物,经筒式微孔过滤膜过滤完全转移至5mL玻璃离心管中,并用0.1mol/L磷酸二氢钠缓冲液(pH6.0)定容至刻度。3.2净化依次用10mL乙醇、3mL水、3mL 0.1mol/L磷酸二氢钠缓冲液(pH6.0)、3mL水冲洗弱阳离子交换柱,取适量3.1.1、3.1.2、3.1.3的提取液至弱阳离子交换柱上,弃去流出液,分别用4mL水和4mL乙醇冲洗柱子,弃去流出液,用6mL乙醇+浓氨水(98+2)冲洗柱子,收集流出液。将流出液在N2-蒸发器上浓缩至干。3.3试样测定前的准备于净化、吹干的试样残渣中加入100μL~500μL流动相,在涡旋式混合器上充分振摇,使残渣溶解,液体浑浊时用0.45μm的针筒式微孔过滤膜过滤,上清液待进行液相色谱测定。3.4色谱参考条件仪器: 高效液相色谱仪:K2025P2二元高压输液泵、K2025AS自动进样器、K2025CO柱温箱、K2025UVD紫外-可见光检测器、Wookinglab色谱工作站;色谱柱:BDS或ODS柱,250mmx4.6mm,5μm;流动相:甲醇+水(45+55);流速:1mL/min;进样量:20μL~50μL;检测波长:244nm;柱温:25℃。3.5测试吸取20μL~50μL标准校正溶液及试样液注入液相色谱仪,以保留时间定性,用外标法单点或多点校准法定量。参考文献[1] GB/T 5009.192-2003 动物性食品中克伦特罗残留量的测定 第二法 高效液相色谱法(HPLC)
  • 聚焦3.15,海能在行动——瘦肉精死灰复燃
    1 前言一年一度的3.15晚会如期而至,平时有太多的消费隐患藏匿在我们的生活中,每个人都是一名消费者,因此消费者权益晚会,总会受到很多人的关注。本次晚会以“提振消费 从心开始”为主题。其中有关食品安全“瘦肉精——‘硬羊’背后的秘密”的问题被点名,海能技术对此食品安全问题及时做出应对,为消费者提供全面的检测方案,希望可以为大家提供一定的参考。“一样的羊不一样的养”,有的羊可以一只多卖五六十块钱,到底是怎样做到的呢?记者在调查时发现,不少地方的养殖户为了利益不惜铤而走险,依然在偷偷使用违禁药物——瘦肉精!我国虽然于2000年提出禁止使用“瘦肉精”类药物,但在畜牧业生产中“瘦肉精”的使用仍屡禁不止。近年来,因食用被“瘦肉精”污染的食物导致中毒事件屡有发生,且后果极其严重,引起了高度重视。虽然许多国家都禁止在食源性动物的生产中使用盐酸克伦特罗(瘦肉精)。但记者在现场偷偷带回的白色粉末以及饲料,在经过瘦肉精快速检测条检测后,结果均为阳性。肉类中的瘦肉精该如何使用高效液相色谱仪检测出来呢?海能技术悟空团队快马加鞭,为您准备了一份完整的检测方案。实验名称:动物性食品中克伦特罗的测定-高效液相色谱法2 仪器与试剂2.1仪器高效液相色谱仪 、水浴超声清洗器、磨口玻璃离心管、酸度计、离心机、振荡器、旋转蒸发器、涡旋式混合器、针筒式微孔过滤膜(0.45μm)、 匀浆器 、N2 -蒸发器。 2.2试剂克伦特罗,纯度≥99.5%、磷酸二氢钠、氢氧化钠、氯化钠、高氯酸、浓氨水、异丙醇、乙酸乙酯、甲醇:HPLC级、乙醇、高氯酸溶液(0.1mol/L)、氢氧化钠溶液(1mol/L)、磷酸二氢钠缓冲液(0.1mol/L,pH=6.0)、异丙醇+乙酸乙酯(40+60)、乙醇+浓氨水(98+2)、甲醇+水(45+55)。克伦特罗标准溶液的配制:准确称取克伦特罗标准品用甲醇配成浓度为250mg/L的标准储备液,贮于冰箱中;使用时用甲醇稀释成0.5mg/L的克伦特罗标准使用液,进一步用甲醇+水(45+55)适当稀释。弱阳离子交换柱(LC-WCX)(3mL)。3 实验方法3.1提取3.1.1肌肉、肝脏、肾脏试样称取肌肉、肝脏或肾脏试样10g(精确到0.01g),用20mL 0.1mol/L高氯酸溶液匀浆,置于磨口玻璃离心管中;然后置于超声波清洗器中超声20min,取出置于80℃水浴中加热30min。取出冷却后离心(4500r/min)15min。倾出上清液,沉淀用5mL 0.1mol/L高氯酸溶液洗涤,再离心,将两次的上清液合并。用1mol/L氢氧化钠溶液调pH值至9.5±0.1,若有沉淀产生,再离心(4500r/min)10min,将上清液转移至磨口玻璃离心管中,加入8g氯化钠,混匀,加入25mL异丙醇+乙酸乙酯(40+60),置于振荡器上振荡提取20min。提取完毕,放置5min(若有乳化层稍离心一下)。用吸管小心将上层有机相移至旋转蒸发瓶中,用20mL异丙醇+乙酸乙酯(40+60)再重复萃取一次,合并有机相,于60℃在旋转蒸发器上浓缩至近干。用1mL 0.1mol/L磷酸二氢钠缓冲液(pH6.0)充分溶解残留物,经针筒式微孔过滤膜过滤,洗涤三次后完全转移至5mL玻璃离心管中,并用0.1mol/L磷酸二氢钠缓冲液(pH6.0)定容至刻度。3.1.2尿液试样用移液管量取尿液5mL,加入20mL 0.1mol/L高氯酸溶液,超声20min混匀,置于80℃水浴中加热30min。以下按3.1.1从“用1mol/L氢氧化钠溶液调pH值至9.5±0.1”起开始操作。3.1.3血液试样将血液于4500r/min离心,用移液管量取上层血清1mL置于5mL玻璃离心管中,加入2mL 0.1mol/L高氯酸溶液,混匀,置于超声清洗器中超声20min,取出置于80℃水浴中加热30min。取出冷却后离心(4500r/min)15min。倾出上清液,沉淀用1mL 0.1mol/L高氯酸溶液洗涤,离心(4500r/min)10min,合并上清液,再重复一遍洗涤步骤,合并上清液。向上清液中加入约1g氯化钠,加入2mL异丙醇+乙酸乙酯(40+60),在涡旋式混合器上振荡萃取5min,放置5min(若有乳化层稍离心一下),小心移出有机相于5mL玻璃离心管中,按以上萃取步骤重复萃取两次,合并有机相。将有机相在N2-浓缩器上吹干。用1mL 0.1mol/L磷酸二氢钠缓冲液(pH6.0)充分溶解残留物,经筒式微孔过滤膜过滤完全转移至5mL玻璃离心管中,并用0.1mol/L磷酸二氢钠缓冲液(pH6.0)定容至刻度。3.2净化依次用10mL乙醇、3mL水、3mL 0.1mol/L磷酸二氢钠缓冲液(pH6.0)、3mL水冲洗弱阳离子交换柱,取适量3.1.1、3.1.2、3.1.3的提取液至弱阳离子交换柱上,弃去流出液,分别用4mL水和4mL乙醇冲洗柱子,弃去流出液,用6mL乙醇+浓氨水(98+2)冲洗柱子,收集流出液。将流出液在N2-蒸发器上浓缩至干。3.3试样测定前的准备于净化、吹干的试样残渣中加入100μL~500μL流动相,在涡旋式混合器上充分振摇,使残渣溶解,液体浑浊时用0.45μm的针筒式微孔过滤膜过滤,上清液待进行液相色谱测定。3.4色谱参考条件仪器: 高效液相色谱仪:K2025P2二元高压输液泵、K2025AS自动进样器、K2025CO柱温箱、K2025UVD紫外-可见光检测器、Wookinglab色谱工作站;色谱柱:BDS或ODS柱,250mmx4.6mm,5μm;流动相:甲醇+水(45+55);流速:1mL/min;进样量:20μL~50μL;检测波长:244nm;柱温:25℃。3.5测试吸取20μL~50μL标准校正溶液及试样液注入液相色谱仪,以保留时间定性,用外标法单点或多点校准法定量。参考文献[1] GB/T 5009.192-2003 动物性食品中克伦特罗残留量的测定 第二法 高效液相色谱法(HPLC)
  • 氢气的提纯方法
    关于氢气生成技术的技术考量为气相色谱和气相色谱/质谱应用提供载气的氢气发生器利用多项技术提供高纯度氢气。本文将探讨各种氢气提纯方法。前 3 种方法结合使用 PEM(质子交换膜)和多种提纯技术,第 4 种方法使用综合钯电解槽。PEM/钯扩散钯薄膜氢气提纯器利用压力驱动跨钯薄膜扩散原理工作。只有氢气能够扩散穿过钯扩散器。钯扩散器款式多样,包括管、螺旋管或薄膜箔阵列。钯扩散器由钯银合金材料制成,该材料在加热到标称 300oC 以上时具有只允许单原子氢穿过其晶格的独特属性。与钯薄膜表面接触的氢分子离解为单原子氢并穿过薄膜。在钯薄膜的另一侧,单原子氢重新组合为双原子氢。 PEM/钯扩散过程特点与优势 超高纯度氢气,几乎无水分或氧气携带。纯度超过 99.99999%。 无需例行维护。 提纯器中钯扩散器的预计正常使用寿命约为 5 年,取决于具体应用以及使用情况(来源: http://pureguard.net/cm/Library/FAQs.html)问题 使用钯银合金时,意外断电会对扩散器造成无法逆转的损害。 钯银合金会吸收氢气,导致体积增加或变形变脆。 如果扩散器因孔洞而破裂,对此进行维修无经济优势。 在氢气存在时保证钯薄膜不冷却对于延长使用寿命至关重要。即使提纯器短时间内在最佳工作温度范围外运行,也会使其耐用性下降。 氢气进入扩散器“提纯”侧后,需定期清理电解槽“未提纯”侧遗留氢气(仍包含氧气和水分等杂质)。这样可以确保有充足数量的氢分子可进行跨钯薄膜传递,以便维持扩散器效率。这一过程非常复杂,如果系统设计不佳,会使扩散器输出压力/流量产生脉冲效应。 反应在超高温度下进行,该过程中出现任何火源都非常危险,由此会引发安全顾虑。用于驱动加热器盒的电流在此温度下非常危险,如果发生任何问题都有可能产生明显电弧。 需要更换提纯器中的钯薄膜,更换间隔约为 5 年。 推荐使用备用电解槽消除停机时间。 碳排放量更大,因为需要用电将钯合金加热至工作温度。 钯电解槽/提纯器综合系统采用金属钯阳极,由于水无法有效传导电流,因此添加强水溶性电解质,通常使用 20% 的氢氧化钠 (NaOH)。钯管束作为阴极,只有氢及其同位素能够穿过阴极,生成超高纯度氢气。钯电解槽/提纯器综合系统特点与优势超高纯度氢气,几乎无水分和氧气携带问题 每 12 个月必须更换电解槽中的电解质溶液。使用的电解质为 NaOH(氢氧化钠),氢氧化钠为腐蚀性物质,必须小心处理。更换过程至少需要 8 个小时的冷却时间和 4 个小时的启动时间。必须事先排空所有之前使用的电解质溶液。 含硫化合物和不饱和碳氢化合物会降低渗透性。 氢氧化钠会腐蚀设备,久而久之会造成损害。 使用质量较差的电解质会损害电解槽的电化学装置。 存在电解质泄漏风险,会灼伤皮肤。 PEM/吸附剂变压吸附变压吸附技术利用改变通过两个充满吸附材料(珠状)柱的流量的原理工作,其中的吸附材料作为分子筛。氢通过一个柱时,少量干燥气体沿另一柱传递。无吸附能力时,吸附材料会强制再生。该动作会在柱中完全再生吸附材料,因此无需更换材料。少量产品氢气冲走废物后,容器为下一生产周期准备就绪。生产的氢气干燥程度极高,水分含量仅为 1ppm。 PEM/吸附 PSA 过程特点与优势 稳定性高,可再生技术。 无高压或与之关联的高电流。 连续氢气流,无压力波动或脉冲效应。 维护要求限于消电离器盒的更换。无需更换干燥剂或危险的腐蚀剂。 启动和停机程序简短方便。 操作简便,运行可靠。 与其他氢气提纯方法相比,能耗较低,因此运行成本更低。 行业研究表明使用钯技术能够生产最干燥的氢气,但根据 Agilent 技术公司的纯度建议,PSA 足以满足气相色谱/质谱的要求。问题电解槽更换成本更高。用于再生分子筛的氢气会排入空气。也可选择市场中将此部分氢气通过催化剂以消除向空气排放氢气的氢气发生器。 PEM/硅胶干燥系统使用硅胶干燥柱是另一常用提纯方法并且因其简便易行而被广泛采用。使用 PEM 技术产生的氢气会流过不锈钢干燥盒去除水分。干燥柱通常由硅胶珠组成,硅胶珠在氢气中作为干燥剂,可产生满足行业纯度要求的高纯度氢气。 PEM/硅胶干燥过程特点与优势干燥器(硅胶)和消离子器盒更换简便。满足气相色谱纯度的一般要求。与其他提纯方法相比,性价比高。问题通常会存在一些水分或氧气携带。干燥剂(硅胶)需要连续监控并定期更换,具体取决于系统使用情况。使用频繁时,干燥盒可能需要每周更换。
  • 瘦肉精变身兴奋剂!食品检测如何帮助运动员避免躺枪?
    目前,来源于肉类食品的饮食污染、其他食品或药物误服而导致的食源性兴奋剂困扰事件层出不穷,食源性兴奋剂的预防控制也成为各类体育赛事管理机构和供应服务基地保障的重要内容。 食源性兴奋剂食源性兴奋剂是指来源于食品中的兴奋剂,包括一般性食品及保健食品中从生产到加工过程中天然存在或故意添加而残留的兴奋剂成分,如肉类食品多次被爆出的“瘦肉精”。“瘦肉精”是一大类药物的总称从兴奋剂的分类来看,它属于β-肾上腺素受体激动剂。克伦特罗、沙丁胺醇、莱克多巴胺是常见的三种在畜牧养殖使用的“瘦肉精”,同时也是常见的人为服用兴奋剂。[1]世界反兴奋剂机构在其2021年的指导性文件里特别指出,如果克伦特罗、莱克多巴胺等四种违禁物质的阳性结果显示浓度低于5纳克/毫升,他们将进行调查。[2] 兴奋剂成分检测仪器灵敏度及相应物质的检测标准的不断提升、新技术的应用为反兴奋剂管理机制提供了坚强保障。有关单位通过开展微生物检验、样品制备管理等,高质量、高标准、高效率开展食品检验检测工作,监测评估食品安全风险,竭力保障食源性兴奋剂“零检出”,使运动员得以安心训练备战。[3] 食品中4种瘦肉精类残留量测定依据《GB/T 22286-2008 动物源性食品中多种β-受体激动剂残留量的测定 液相色谱串联质谱法》,试样中的β-激动剂经过酶解,用高氯酸调节pH值,沉淀蛋白后离心,上清液用氢氧化钠调节pH后用异丙醇-乙酸乙酯提取,用阳离子交换柱净化,采用液相色谱-串联质谱法进行测定,内标法定量。仪器和耗材1 仪器Fotector Plus高通量全自动固相萃取仪;Auto EVA 60全自动平行浓缩仪;Agilent 1290II/6470 高效液相色谱-串联质谱MCX固相萃取柱(RayCure,60mg/3mL)全自动固相萃取仪全自动氮吹浓缩仪 2 试剂乙酸乙酯、异丙醇、甲醇均为色谱纯;甲酸、高氯酸、氨水、氢氧化钠;β-盐酸葡萄糖醛苷酶/芳基硫酸酯酶。0.2mol/L乙酸钠缓冲液:称取13.6g乙酸钠,溶解于500ml水中,用适量乙酸调节pH至5.2。标准品:莱克多巴胺盐酸盐,克伦特罗盐酸盐,沙丁胺醇,特布他林硫酸盐,100ng/ml。内标物:沙丁胺醇-D3,克伦特罗-D9,10ng/ml。 样品制备1 酶解准确称取5g(精确到0.01g)经捣碎的样品于50mL离心管内,加入0.2moL/L乙酸钠溶液(pH=5.2)20mL,再加入β-盐酸葡萄糖醛苷酶/芳基硫酸酯酶100μL,漩涡混匀,于37℃下避光水浴水解12h。2 提取添加1ml的内标工作液于待测样品中,加盖置于水平振荡器震荡15min,5000r/min高速离心10min,准确取10mL上清液于另一50mL离心管中,用高氯酸调节PH至1.0±0.3,4000r/min离心5min,将上清液转移至另一50mL离心管中,用10moL/L氢氧化钠溶液调节pH至11,加入4~5g氯化钠,加入异丙醇:乙酸乙酯=6:4 15mL,充分提取,4000r/min离心5min,吸取全部有机相到睿科全自动氮吹浓缩仪EVA-60plus 50℃下氮气吹干,加入0.2M乙酸铵溶液5mL溶解,超声混匀,使残渣充分溶解后备用。3 净化将MCX固相萃取柱安装在Raykol Fotector Plus高通量全自动固相萃取仪上,依次用甲醇3 mL、水3 mL活化。备用液全部过柱,用水2 mL、2%甲酸水2ml、甲醇2 mL依次淋洗,抽干,用5%氨水甲醇溶液2 mL洗脱,收集洗脱液,使用EVA-60plus全自动氮吹浓缩仪于40℃水浴氮气吹干,用10%乙腈水溶液(含0.1%甲酸)1.0 mL溶解,滤过,液相色谱-串联质谱测定。具体的固相萃取方法见图。 结果与讨论为了验证该方法的回收率,本实验分别在猪肉样品中加入盐酸克伦特罗、沙丁胺醇、莱克多巴胺、特布他林4种混合标准品进行加标回收验证(n=3),加标水平为0.5ug/kg,数据如表-2所示。加标回收率在87.8-112.4%之间,RSD值控制在10%以内。说明该方法能够很好地运用于猪肉中瘦肉精残留量的检测。表-2.猪肉样品加标回收率及RSD值注:其中克伦特罗的内标为克伦特罗-D9;沙丁胺醇、特布他林与莱克多巴胺的内标为沙丁胺醇-D3。 本解决方案操作方便、提取和浓缩效率高、回收率好。符合GB/T 22286-2008《动物源性食品中多种β-受体激动剂残留量的测定 液相色谱串联质谱法》要求。 食源性兴奋剂的风险控制不仅要依靠检测标准,还应借鉴“预防为主”原则,加强“从农田到餐桌”整个链条中食品安全的监控,与时俱进的检测方法和技术手段的应用利于防止误食兴奋剂事件的发生,运动员得以吃得健康、吃得安心。 参考文献[1]黄炜:运动员冬奥会期间不要吃中国肉!反兴奋剂机构又来了… … ,观察者网[2]冬奥会食品符合食源性兴奋剂“零检出”特殊要求,新华每日电讯/2022 年/1 月/19 日/第 006 版[3]严字当头“零容忍” 全力以赴“零出现”——心怀“国之大者”,反兴奋剂中心备战北京冬奥会,国家体育总局反兴奋剂中心
  • 实验室化学试剂管理要注意哪些事项?你知道吗?
    化学试剂是实验室里品种最多、消耗量最频繁、危险性也最大的物质。如易燃易爆化学试剂、剧毒性化学试剂、强腐蚀性、强氧化性等化学试剂领取后要存放在专用的危险性试剂柜里 使用时也要特别注意,有针对性的采取一些安全防范措施,以免使用不当对实验人员及实验设备造成危害。下面就实验室化学试剂的购置、保管、存放及安全使用注意事项等方面谈一谈对化学试剂的管理。   1、实验室化学试剂的领取   (1)化学试剂的领取要根据实验通知单,实验室管理员备好需要的化学试剂。一般化学试剂,由学科教师办理登记手续,方可领取。危毒品、贵金属化学试剂,要以满足实验教学为原则,经任课教师申请、经分管领导的核准,方可领取。   (2)每次领取的化学试剂数量,实验室管理员要称量,及时记载在容器上的毛重标签上,以作记帐凭证之用。   (3)领取化学试剂或者药品时,应确认容器上标示名称是否为需要的实验用药品。注意药品危害标示和图样,是否有危害。为了你的安全和实验的顺利进行,请察看药品报告单 ( 若存在的话) 和试剂或药品的安全数据单(MSDS)。   (4)领用易燃易爆、剧毒品、强腐蚀性、强氧化性等危险性试剂时必须提前申请上报,做到用多少领多少,并一次配制成使用试剂。对剧毒品发放本着先入先出的原则,发放时有准确登记 ( 试剂的计量、发放时间和经手人)。凡是剧毒品必须是双人领取,双人送还,否则剧毒品仓库保管员有权不予发放。   2 实验室化学试剂的保管   2.1 化学试剂的保管应视其性质而定   一般试剂可保存在玻璃瓶内 对玻璃有强烈腐蚀作用的试剂,如氢氟酸、氢氧化钠应保存在聚乙烯塑料瓶内 易被空气氧化、分化、潮解的试剂应密封保存 易感光分解的试剂应用有色玻璃瓶贮存并藏于暗处 易受热分解及低沸点溶剂,应存于冷处 剧毒试剂应存于保险箱 有放射性的试剂应存于铅罐中。   2.2做好化学试剂的经常性保养工作   如果化学试剂保管不当,就会失效变质,影响实验的效果,并造成物质的浪费,甚至有时还会发生事故。因此,科学地保管好试剂对于保证实验顺利进行,获得可靠的实验数据具有非常重要的意义。化学试剂的变质,大多数情况是因为受外界条件的影响,如空气中的氧气、二氧化碳、水蒸气、空气中的酸碱性物质以及环境温度、光照等,都可使化学试剂发生氧化、还原、潮解、风化、析晶、稀释、锈蚀、分解、挥发、升华、聚合、发霉、变色以及燃爆等变化。经常检查储存中的化学试剂的存放状况发现实际起过的储存期或变质应及时报告,并按规定妥善处理 ( 降级使用或报废) 和销帐。在正常储存条件下,一般化学试剂贮有不宜超过2年,基准试剂不超1年。   为了避免环境和其他因素的干扰,所有化学试剂一经取出不得放回贮有容器: 属于必须回收的试剂或指定、退库、的试剂,必须另设专用容器回收或贮存,具有吸潮性或易氧化,易变质的化学试试剂必须密封保存,避免吸湿解,氧化或变质。定期盘点,核对出现差错应及时检查原因,并报主管领导或部门处理。   3实验室化学试剂的存放   化学试剂都应存放在试剂瓶里,塞紧瓶盖子,放置牢固橱柜架上,以保安全。且放置应排列整齐有序,并方便取用。所有化学试剂均应粘贴标签,标明试剂溶液的明称、浓度和配制时间。标签大小应与试剂瓶大小相适应,字迹应清晰,字体书写端正,并粘于瓶子中间部位略偏上的位置,使其整齐美观,标签上可以涂以熔融石蜡保护。保存化学试剂要特别注意安全,放置试剂的地方应阴凉,干燥,通风良好。因试剂的种类多种多样,一般试剂按无机物和有机物两大类进行分类存放,特殊试剂及危险试剂另存。   3.1无机物化学试剂的存放   按盐类、单质、氧化物、碱类、酸类等类别分别存放。盐类一般按金属离子所在周期表中的位置,也是从左向右,先下盐后酸式盐的方法分类: 如钠盐&mdash 硫化钠、碳酸钠、硅酸钠、亚硝酸钠、硫酸钠、硫代硫酸钠、钙盐等。单质再分成金属和非金属类或以单质元素在元素周期表中的族分类。氧化物也按元素周期表的族的顺顺序分类。酸类中的不含氧酸可按酸根元素在周期表中的族次由左向右,从上到下来分类: 如氢卤酸、氢氟酸、盐酸、氢溴酸、氢碘酸等。含氧酸可按成酸元素的族次分类: 硼酸、硝酸、硫酸、磷酸等。碱类主要按碱可中金属元素在周期表中的族次分类: 如氢氧化钠、氢氧化钾、氢氧化镁、氢氧化钙等。   3.2有机物化学试剂的存放   按官能团分类: 如烃类 ( 饱和烃、不饱和烃) ,烃的衍生物 ( 醇、醛、酮、酸、醚、酯) ,碳水化合物,含氮化合物,有机离分子化合物等。每种试剂应按纯度级别依次排列,配制的溶液应与固体试剂分别存放。   3.3特别注意: 危险性化学试剂的存放   危险性化学试剂具有较高化学活性的物质,如易燃易爆试剂、腐蚀性试剂、毒害性试剂、氧化性试剂、放射性等有害于人和环境的一系列的&ldquo 烈性&rdquo 化学物质,其&ldquo 活性&rdquo 之高,甚至可以自行分解并威胁生命财产安全,必须认真对待。根据国家的有关规定,危险性化学试剂的包装上均带有危险性标志、危规编号,在相关的试剂手册中也有文字说明。   (1) 易燃易爆性化学试剂必须存放于专用的危险性试剂仓库里,并存放在不燃烧材料制作的柜、架上,温度不宜超过28℃ ,按规定实行&ldquo 五双&rdquo 制度。实验室少量瓶装可设危险品专柜,按性质分格贮存,同一格内不得混放氧化剂等性质的抵触品,并根据贮存种类配备相应的灭火设备和自动报警装置。低沸点极易燃烧试剂宜低温下贮存 ( 5℃以下,禁用有电火花产生的普通家用电冰箱贮存)。   (2)氧化性试剂则不得与其他性质抵触的试剂共同储存。包装要完好,密封,严禁与酸类混放,应置于阴凉通风处,防止日光曝晒。   (3)腐蚀性试剂储存容器必须按不同的腐蚀性合理选用,酸类应与氰化物,发泡剂、遇水燃烧品、氧化剂等远离,不宜与碱类混放。   (4)剧毒性试剂应远离明火、热源、氧化剂、酸类及食用品的通风良好处贮存,一般不与其他种类共同储存,且应按规定贯彻 &ldquo 五双&rdquo 制度。。   (5)化学试剂中遇水易燃试剂一定要存放在干燥、严防漏水及暴雨或潮汛期间保证不进水的仓位。不得于有盐酸、硝酸等散发酸雾的物品存放在一起,亦不得与其他危险品混存混放。   除以上三大类还有其他类: 如指示剂,按酸碱指示试剂,氧化还原指示剂,其他指示剂,染色剂等分类存 清洗剂又按酸性化学洗液,碱性化学洗液,其他化学洗液及普通清洗剂。   4化学试剂安全使用的注意事项   取出的药剂不能倒回原试剂瓶中,取完药剂应随即盖好,不要乱放,以免张冠李戴。为安全起见,在使用化学试剂之前,首先对其安全性能&mdash 是否易燃易爆,是否有腐蚀性,是否有毒,是否有强氧化性等等,要有一个全面的了解。在使用时才能有针对性的采取一些安全防范措施,以免使用不当造成对实验人员及实验设备的危害。下面从化学试剂的安全性能分类,对各类化学试剂使用中的注意事项分别加以介绍。   4.1易燃易爆化学试剂   一般将闪点在 25℃以下化学试剂列入易燃化学试剂,它们多是极易挥发的液体,遇明火即可燃烧。闪点越低,越易燃烧。使用易燃化学试剂时绝不能使用明火,加热也不能直接用加热器,一般不用水浴加热。在使用易燃化学试剂的实验人员,要穿好必要的防护用具,最好戴上防护眼镜。   4.2有毒化学试剂   一般化学试剂对人体都有毒害,在使用是一定要避免大量吸入 在使用完公演试剂后,要及时洗手,洗脸洗澡,更换工作服,对于一些吸入或食入少量即能中毒致死的化学试剂,如: 氰化钾、氰化钠及其氰化物 三氧化二砷及某些砷化物、二氯化汞及某些汞盐、硫酸、二甲酯等等。在使用时一定要了解这些试剂中毒时的急救处理方法,剧毒试剂一定要有专人保管,严格控制使用量。   4.3腐蚀性化学试剂   任何化学试剂碰到皮肤、粘膜、眼、呼吸器官是都要及时清理,特别是对皮肤、粘膜、眼睛、呼吸器官有极强腐蚀性的化学试剂,如: 各种酸和碱、三氯化磷、溴、苯酚、天水肼等,在使用前一定要了解接触到这些腐蚀性化学试剂的急救处理方法。如: 酸溅到皮肤上要用碱液清洗等等。   4.4强氧化性化学试剂   强氧化性化学试剂都是过氧化后是含有强氧化能力的含氧酸及其盐。如: 过氧化氢、硝酸钾、高氯酸及其盐、高锰酸钾及其盐过氧化苯甲酸、五氧化二磷等等。再适当的条件下可放出氧发生爆炸,并且与有机物、铝、锌粉硫等易燃物形成爆炸性混合物,在使用时环境温度不高于30℃,通风要良好,并不要与有机物或还原性物质共同使用 ( 加热) 。   4.5遇水易燃试剂   这类化学试剂有钾、钠、锂、钙、电石等等,遇水即可发生激烈反应,并放出大量热,也可燃烧,在使用时要避免与水直接接触,也不要与人体接触,以免灼伤皮肤。   4.6放射性化学试剂   使用这类化学试剂时,一定要按放射性物质使用方法,采取保护措施。其它类的危险化学试剂,无论常用不常用,在使用前一定要了解它的安全使用注意事项,方可使用。   在化学实验过程中由于操作不当或疏忽大意必然导致事故的发生。问题是遇到事故发生时要有正确的态度、冷静的头脑,做到一不惊慌失措,二要及时正确处理,三按要求规范操作,尽量避免事故发生。例如浓硫酸稀释时,浓硫酸应沿着容器的内壁慢慢注入水中,边加边搅拌使热量均匀扩散。在做有毒气体的实验中,应尽量在通风橱中进行。不慎将苯酚沾到手上时,应立即用酒精擦洗,再用水冲洗等等。   总之,化学试剂的管理必须要求管理人员具备专业的从事化学试剂管理的知识。包括常用试剂的性状、用途、一般安全要求、急救措施、报废试剂的处理及消防知识等。严加管理化学试剂才能确保实验的顺利进行,这是实验室安全的重要环节。
  • 油品实验室危险因素及防护措施
    油品实验室危险因素及防护措施 油品实验室与一般的化学实验室不同,操作人员长期接触大量的油液样品和化学试剂,且绝大多数具有有毒、易燃易爆的特点,操作稍有不当都有发生火灾、爆炸及中毒等事故的可能。规范管理油品实验室安全工作必须结合油品实验室的特点,避免事故发生。 油品实验室的特点 1 油品检验专业性强    油品实验室和化学专业实验室不同,它涵盖了理化性能检验和油液状态监控两大部分,因此使用的各类易燃易爆气体和试剂也比较多,存在的安全隐患也相对较复杂。 2 分析项目多    目前油品实验室包括水分、粘度、密度、水分离性、闪点、酸值、倾点、凝点、污染度、元素分析等多项检测,所使用的仪器品种多样,其中水分就包括蒸馏法和微量水分测定两类。 3 有害气体多    油品的闪点、水分(蒸馏法)在检测过程中易产生较多有毒有害气体,污染度等检测项目要接触石油醚等试剂,容易对人体造成伤害。 油品实验室常用的危险化学品及防护措施    油品实验室经常遇到的有三类:压缩气体和液化气体、易燃气体和腐蚀品。    油品实验室在进行各种分析时要用到一些气体,如氢气、氮气、氧气、乙炔等。绝大多数实验室使用气体钢瓶来满足分析的需要,气体钢瓶在使用过程中存在大量的不安全因素,只有安全规范的使用气体钢瓶才能防止事故的发生。 1 压缩气体和液化气体   山东盛泰仪器有限公司  压缩气体和液化气体是潜在的不安全因素,易燃、易爆。目前油品实验室常用的是开口闪点测定仪的液化气瓶和污染度测试仪的压缩空气。    防护措施:    液化气瓶必须直立固定,必须远离热源和火源,不得处于烈日暴晒下;搬运时应盖上钢瓶帽轻拿轻放,防止因为意外摔掷、敲击、滚滑或剧烈震动,避免撞击引起爆炸。使用时必须严格遵守操作规程,否则可能引起爆炸事故。    气瓶内气体不能全部用尽,可燃气体应保留0.2MPa—0.3MPa,气瓶应定期检验,防止漏气。 2 易燃液体    易燃液体极易挥发成气体,遇到明火即可燃烧。油品实验室常用的易燃液体有乙醇、石油醚、溶剂汽油等。    防护措施:   山东盛泰仪器有限公司  所有易燃气体应贮存于低温通风处,储存温度不能高于25℃,远离火种、热源、避光保存;不能与氧化剂共同储存;禁止使用易产生静电火花的工具开启瓶盖。    当空气中浓度超标时,需要佩戴自吸过滤式防毒面罩,操作时需佩戴专用防护眼镜;用手接触时,需佩戴乳胶手套。 3 腐蚀品    腐蚀品包括液态和固体,油品实验室常用的腐蚀品有盐酸和氢氧化钠。    防护措施:    盐酸气体对眼和皮肤黏膜都有刺激,因此需在通风橱内完成操作。如吸入盐酸气体可吸入少量的酒精和的混合蒸汽以解毒。    酸值测定仪的中和液中含有氢氧化钠,易造成灼伤。如不慎接触,应先用大量水冲洗,再用稀释的醋酸冲洗再用水冲洗。如眼睛受到化学烧伤,立即以洗瓶水流冲洗(不要让水流直射眼球,也不要揉眼)。水洗后,如为碱灼伤,再用2%硼酸淋洗。 气体钢瓶的使用注意事项   (1)易起聚合反应的气体钢瓶,如乙炔等,应在储存期限内使用。    (2)气瓶着火时,应向钢瓶浇洒大量冷水,或将气瓶投入水中使之冷却。    (3)气瓶必须定期检验。贮存一般气体的气瓶三年检验一次。贮存惰性气体的    钢瓶每五年检验一次;贮存腐蚀性气体的钢瓶每两年检验一次。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 三类化学试剂存放,每一个实验室人都应该知道!
    因为化学试剂的特殊性,所以对于它们的存放管理有很多需要注意的地方。今天我简单给大家讲解下,化学试剂的存放。化学试剂存放主要分3块,1是有机物化学试剂;还有2是无机物化学试剂;3是危险化学试剂的存放;下面来分开讲下。  一、有机物化学试剂存放  有机物化学试剂,按官能团分类: 如烃类、烃的衍生物、碳水化合物、含氮化合物、有机离分子化合物等。有机物化学试剂应按纯度级别依次排列,配制的溶液应与固体试剂分开存放。  二、无机物化学试剂存放  无机物化学试剂,应按盐类、单质、氧化物、碱类、酸类等类别分开存放。盐类一般按金属离子所在周期表中的位置,也就是从左向右,先下盐后酸式盐的方法分类。 如钠盐—硫化钠、碳酸钠、硅酸钠、亚硝酸钠、硫酸钠、硫代硫酸钠、钙盐等。单质再分成金属和非金属类,或以单质元素在元素周期表中的列分类。酸类中的不含氧酸可按酸根元素在周期表中位置由左向右,从上到下来分类。如氢卤酸、氢氟酸、盐酸、氢溴酸、氢碘酸等。含氧酸可按成酸元素的列分类: 硼酸、硝酸、硫酸、磷酸等。碱类主要按碱可中金属元素在周期表中的列分类: 如氢氧化钠、氢氧化钾、氢氧化镁、氢氧化钙等。  三、危险化学试剂存放  对于化学试剂管理本来就应该需要特别注意,而化学试剂的重中之重就是危险性化学试剂了。因为危险化学试剂具有较高化学活性的物质,如易燃易爆性、腐蚀性、毒害性、氧化性、放射性等有害于人和环境的一系列的“烈性”化学物质。其活性之高,甚至可以自行分解并威胁生命财产安全,必须加以认真对待。根据相关关规定,危险性化学试剂的包装上必须带有危险性标志、危规编号,在相关试剂手册上也要有文字说明。  1、易燃易爆性化学试剂必须存放在专用的危险性试剂仓库里,并存放在不燃烧材料制作的柜、架上,温度不宜超过28℃,按规定实行“五双”制度。实验室少量瓶装可设危险品专柜,按性质分格贮存,同一格内不得混放氧化剂等性质的试剂,并根据存储种类配备相应的灭火设备和自动报警装置。低沸点极易燃烧试剂宜低温下存储在5℃以下,禁用有电火花产生的普通家用电冰箱贮存。  2、氧化性试剂不得与其它性质抵触的试剂共同储存,而且包装要完好并且密封,严禁与酸类混放,应置于阴凉通风处,防止日光曝晒。  3、腐蚀性试剂储存容器必须按不同的腐蚀性来选择存放,酸类应与氰化物,发泡剂、遇水燃烧品、氧化剂等远离,不宜与碱类混放。  4、剧毒性试剂应远离明火、热源、氧化剂及食物用品,且通风良好处贮存,一般不与其它种类共同储存,且应按规定贯彻“五双”制度。  5、化学试剂中遇水易燃试剂一定要存放在干燥、严防漏水及暴雨或潮汛期间保证不进水的仓位。不得与有盐酸、硝酸等散发酸雾的物品存放在一起,亦不得与其它危险品混存混放。  以上这三大类是比较常见的化学试剂,其它还有如指示试剂就不另外说了。关于化学试剂的管理和存放,相信大家都知道大概流程了。但如果还仅依靠传统人工管理,那肯定容易出问题,这时借助专业试剂耗材管理系统,就能到到事半功倍之效。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制