当前位置: 仪器信息网 > 行业主题 > >

多通道飞秒钛宝石放大器

仪器信息网多通道飞秒钛宝石放大器专题为您提供2024年最新多通道飞秒钛宝石放大器价格报价、厂家品牌的相关信息, 包括多通道飞秒钛宝石放大器参数、型号等,不管是国产,还是进口品牌的多通道飞秒钛宝石放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多通道飞秒钛宝石放大器相关的耗材配件、试剂标物,还有多通道飞秒钛宝石放大器相关的最新资讯、资料,以及多通道飞秒钛宝石放大器相关的解决方案。

多通道飞秒钛宝石放大器相关的资讯

  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 230万!中国科学院精密测量科学与技术创新研究院钛宝石飞秒振荡器等仪器设备采购项目
    项目编号:OITC-G220321054项目名称:中国科学院精密测量科学与技术创新研究院钛宝石飞秒振荡器等仪器设备采购项目预算金额:230.0000000 万元(人民币)最高限价(如有):230.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品分项最高限价1钛宝石飞秒振荡器1是170万元双通道成像光谱仪1是30万元多通道锁相放大器1是30万元2、投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p style=" text-align: center " img width=" 250" height=" 321" title=" ea14fe0b8668f5b02fa47ae1ab982279.jpg" style=" width: 250px height: 321px " src=" http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。 /p
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。   在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。   无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。   新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。   关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。   高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 br/ /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院) /p p br/ /p p br/ /p
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title=" 微信图片_20170518091903_副本.jpg" / /p p style=" text-align: center " 文章封面以及毛细力构筑单热点结构示意图 /p
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • Molecular Devices 网络讲座:如何更有效使用Axon pCLAMP软件和Axon放大器系列讲座之二
    立即注册参加Axon传统电生理网络讲座 题目:全细胞电压钳记录模式为何需要补偿串联电阻?日期:2012年9月26日,周三时间:9:00 -10:00 AM 建议参会人包括: 正要建立新电生理实验室的教授及研究人员 大学研究院所和医药界的电生理学家 现在使用Axon软件及放大器的用户题目: 全细胞电压钳记录模式为何需要补偿串联电阻?主讲人:Jeffrey Tang, PhD, Product Marketing Manager of Axon Conventional Electrophysiology, Molecular Devices, LLC. 请点击 在线注册 注册本次网络讲座。本次讲座费用全免,但是参会人数有限,请尽快注册。在线注册后,您将收到一封确认邮件,同时附有如何登陆本次网络讲座的资料。我们期待您的参与! 若您在注册时遇到任何问题,请联系info.china@moldev.com或jeffrey.tang@moldev.com询问。
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • 405万!同济大学多模式飞秒超快光谱系统采购项目
    项目编号:3109-234Z20233009(项目编号:Z20230347)项目名称:同济大学多模式飞秒超快光谱系统采购项目预算金额:405.0000000 万元(人民币)最高限价(如有):405.0000000 万元(人民币)采购需求:号产品名称数量简要技术规格1多模式飞秒超快光谱系统 1套1. 飞秒振荡器:小于等于100fs脉冲,780-820nm可调,固定为800nm时带宽60nm,重频84MHz,功率750mW(最小带宽时),噪音2.飞秒放大器Femtosecond amplifier:35-120fs输出,平均功率7.0W,能量稳定性1000:1,后脉冲对比度 100:1,光束指向不稳定性1.采购人信息名称:同济大学地址:中国上海四平路1239号联系方式:段老师 86-21-659826702.采购代理机构信息名称:上海政采项目管理有限公司地址:上海市静安区天目中路380号11楼联系方式:戴小军、朱逸元、王静雯、王悦 8621-620912733.项目联系方式项目联系人:戴小军电话:8621-62091273
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 中国科大彭新华教授团队实现新型自旋量子放大技术
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授研究组在自旋量子精密测量领域取得重要进展,首次提出和验证了Floquet自旋量子放大技术,该技术克服了以往只在单个频率处量子放大的局限性,实现了多频段极弱磁场信号的量子放大,灵敏度达到了飞特斯拉水平。相关研究成果于6月9日以“Floquet Spin Amplification”为题在线发表于著名国际学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 128, 233201 (2022)],并被选为“编辑推荐(Editors’Suggestion)”文章。现代自然科学和物质文明是伴随着测量精度的不断提升而发展的。随着量子力学基础研究和科学技术的发展,通过原子、分子、自旋等物理系统可以实现微弱信号的量子增强放大。相比于基于经典电路的传统放大技术,量子增强放大受限于更低的量子噪声且具有更高的放大增益,为提升测量精度提供了强有力的研究手段,因此受到大家的广泛关注和研究。目前,量子放大技术已经在诸多测量过程发挥不可替代的作用,催生出许多革命性成果,例如微波激射器、激光器、原子钟,甚至宇宙微波背景辐射的首次发现等,诺贝尔物理学奖也曾多次授予相关领域。然而目前对量子放大精密测量技术的探索仍然有限,实现信号放大主要依赖于量子系统固有的离散能级跃,由于可调谐性的限制,量子系统固有离散跃迁频率往往无法满足放大需要的工作频率,因此限制了量子放大器的性能,如工作带宽、频率和增益等。如果能够克服以上困难,量子放大技术的性能将可以得到很大改善,对探测极弱电磁波和奇异粒子等基础物理和实际应用具有重要意义。成果示意图:(a)Floquet能级;(b)Flqouet量子自旋放大器原理图;(c)磁探测灵敏度。针对以上难题,本文研究人员提出了Floquet自旋量子放大技术,成功克服了以往探测频率范围小等限制,实现了对多个频率的极弱磁场放大。这项技术得益于该组之前提出的“自旋放大技术”[Nat.Phys. 17, 1402 (2021)]和“Floquet调制技术”[Sci. Adv. 7(8), eabe0719 (2021)],将二者有机结合,从而将量子放大技术推广到Floquet自旋系统:利用Floquet调制技术调控自旋的能级与量子态,将固有的二能级系统(如129Xe核自旋)修饰为周期性驱动Floquet系统,从而具有很多独特的性质,使得系统形成了一系列等能量间距分布的Floquet能级结构,在这些能级之间可以发生共振跃迁,因此有效拓广了磁场放大的频率范围。通过理论计算和实验研究,首次展示了Floquet系统可以实现多个频率待测磁场2个数量级的同时量子放大,测量灵敏度达到了飞特斯拉级级别。该工作首次将量子放大技术扩展到Floquet自旋系统,有望进一步推广到其他量子放大器,实现全新的一类量子放大器——“Floquet量子放大器”。彭新华研究组长期瞄准量子精密测量领域,利用量子精密测量技术来解决世界前沿科学问题。包括于2018年自主研发出超灵敏原子磁力计,并且利用该技术实现了无需磁场的新型核磁共振技术——“零磁场核磁共振”[Sci. Adv. 4(6), eaar6327 (2018)];于2019年至2020年发展新型原子磁力仪技术[Adv. Quantum Technol. 3, 2000078 (2020),Phys. Rev.Applied 11, 024005 (2019)],达到了国际领先水平的磁场探测灵敏度;通过进一步研究,于2021年实现了新型的自旋微波激射器,在低频段创造了国际最佳的磁探测灵敏度[Sci. Adv. 7(8), eabe0719 (2021)]。之后,该研究组将已发展的平台型量子精密测量技术用于寻找超越标准模型的新粒子,取得了一系列对推动学科领域发展有实质性贡献的研究成果。包括于2021年利用新型量子自旋放大器搜寻暗物质候选粒子,首次突破国际公认最强的宇宙天文学界限[Nat.Phys. 17, 1402 (2021)],以及实现了对一类超越标准模型的新相互作用的超灵敏检验,实验界限比先前的国际最好水平提升至少2个数量级[Sci. Adv. 7, eabi9535 (2021)]。中科院微观磁共振重点实验室江敏副研究员、博士研究生秦毓舒和王鑫为该文共同第一作者,彭新华教授为该文通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.233201量子自旋放大技术论文链接:https://www.nature.com/articles/s41567-021-01392-z
  • 全球创新性飞秒激光蓝宝石切片机和蓝宝石划片机研发成功
    孚光精仪公司联合德国,俄罗斯和立陶宛合作伙伴历时2年研发的新一代飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机成功问世,将大幅度提高智能手机蓝宝石屏的加工效果和效率,据悉,这一新技术将在10月份向全球推广。这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机采用全球领先的工业级飞秒激光,突破飞秒激光成本高,效率低的缺点,革命性地提高蓝宝石划片和切割效果,没有毛刺,没有熔融问题产生。经过评估,这种飞秒激光蓝宝石划片机和飞秒激光蓝宝石切片机达到了预定研发目标,具有如下优势:不仅适合蓝宝石划片切割,还适合不同玻璃的加工满足不同形状切割需求高速划片切割,划片速度高达800mm/s光滑切片,粗糙度Ra www.f-opt.cn Tel: 021-51300728, 4006-118-227
  • 国内首台产品级掺镱高功率飞秒振荡器研制成功
    近日,北京量子信息科学研究院(简称“量子院”)全光量子源团队开发完成了国内首台产品级高功率飞秒振荡器——Fermion-007。该产品弥补了国内瓦量级飞秒振荡器的产品空白,在国际上仅有立陶宛Light Conversion等少数几家公司具有相当技术指标的产品。Fermion-007采用了多项创新技术,仅一级振荡器即可输出大于7W、重频80MHz的飞秒脉冲激光,其指标、可靠性均达到国际先进水平。目前,研发团队已接到超快电镜应用领域的商业合作订单。作为产生飞秒脉冲激光的“种子”,超快飞秒振荡器(Ultrafast femtosecond oscillator)具有高重频、高光束质量等优势,但输出功率普遍较低,往往需要对其进行功率放大以满足应用需求。然而,这种“振荡器+放大器”的技术路线会大大增加系统复杂度,导致成本变高、可靠性变差,从而限制了飞秒激光的受众范围。此外,超快电镜、飞秒双光子显微成像等应用对激光重复频率也有较高要求,因此,高功率飞秒振荡器成为相关领域的急需产品。飞秒振荡器主要分为光纤和固体两大类。固体振荡器虽然技术难度较高,但最高输出功率比光纤高3个量级,且具有更高重频和更长的锁模器件寿命,是满足应用需求的最佳技术方案。二者的具体对比见表1。表1 光纤、固体飞秒振荡器参数对比光纤飞秒振荡器固体飞秒振荡器直接输出功率百pW至mW量级几十mW至W量级最高重复频率百MHz几GHz飞秒锁模方式/器件寿命SESAM/3个月1. SESAM/3个月2. 克尔透镜锁模/无寿命问题技术难度技术门槛较低。基于标准化光纤器件、光纤熔接机设计、生产。技术门槛较高。对于腔型设计、调试经验、工程化等均有要求较高。对于产品商业化而言,工程水平的高低起决定作用。定制化程度激光器结构、指标类似,激光表现主要依赖于光纤、熔接仪器等的上游器件的性能。结构灵活性好,适合针对应用定制功率、重频、脉宽、中心波长等指标国内商业化现状5-10家商业化公司目前尚无商业化公司基于上述应用需求和技术路线分析,北京量子院开发了Fermion系列高功率全固态(DPSS)飞秒振荡器。在不需要额外放大的情况下,Fermion-007可直接输出大于7W、80MHz的飞秒脉冲激光,脉冲宽度~120fs,中心波长1035nm。此外,输出激光还具有优异的光束质量和长期稳定性,两维M2小于1.2,12小时连续运转功率均方根值小于0.3%。图1 Fermion-007 光谱及脉冲宽度测量图2 Fermion-007 光束质量及长期稳定性工程化是激光器从实验样机蜕变成可用产品的核心环节。Fermion-007采用了低热阻晶体封装、一体化密封、温湿度负反馈控制等多项工程技术,并对腔体、冷却模组的设计进行了模拟优化,以降低高泵浦热量对激光器运行环境的不利影响。激光器采用克尔透镜锁模(Kerr-lens mode locking)作为飞秒脉冲产生、维持的机制,相比可饱和吸收体(SESAM)具有更长的寿命和更高的器件可靠性。此外,研发团队首次将新型“射频同步技术”应用到Fermion-007中,用以自启动及维持飞秒锁模状态,从根本上克服了克尔透镜锁模飞秒振荡器长期存在的“失锁”问题。图3 Fermion-007 机械热分布及水路的模拟高功率飞秒振荡器在双光子显微成像、光参量泵浦等领域应用广泛。近年来,随着相关技术的发展,超快电镜、超快电子衍射等标准化仪器对此类激光器的市场需求也在迅速提升。超快电子显微镜(Ultrafast electron microscopy(UEM))是由传统电镜升级改造而成的高端分析仪器,“飞秒激光驱动光阴极”系统是其新增的核心模块。升级后的超快电镜除了拥有原子尺度的空间分辨率外,还具有飞秒-皮秒尺度的超高时间分辨率,由此成为研究材料动力学过程的有力工具。图4 Fermion系列产品在超快电镜中的应用研发团队与相关系统商开展了新型超快电镜开发的前沿合作,首次提出利用飞秒振荡器产生高重频的超快电子,以降低激光脉冲对光阴极造成的损伤风险。该方案有望从根本上解决此类仪器长期存在的光阴极可靠性问题,提高超快电镜产品的使用寿命和市场竞争力。据合作系统商的预估,超快电镜未来3年总市场需求量可达到50台/年。研发团队简介高功率飞秒振荡器是量子院全光量子源团队于子蛟助理研究员主导完成的研究项目。全光量子源团队于2020年由鲁巍教授组建,隶属于北京量子院技术产业开发中心。团队致力于打造支撑量子产业相关的关键激光设备,包括超快超强激光装置(TW-PW系统)、激光加速桌面光源及应用、新型高端科研飞秒激光器的前沿技术研究、产品研发及产业化落地。
  • 昊量光电2024年慕尼黑上海光博会邀请函
    慕尼黑上海光博会将于2024年3月20-22日在上海新国际博览中心(上海市浦东新区龙阳路2345号)举办,届时我们将携前沿光电产品及技术解决方案在W4馆4420亮相,展品涵盖生物显微、半导体检测、激光医疗、光纤传感、精密光谱、机器视觉、偏振测量、光束匀化、光束偏转等热门应用领域,本次慕尼黑上海光博会除了前沿技术产品亮相,还有超赞的干货演讲等活动,诚邀各位新老客户拨冗莅临展位洽谈交流!W4馆4420 主题演讲日程预览 展位活动详情 展品应用速递 PPLN晶体,显微镜LED光源,LED点光源,MEMS扫描镜,AOTF,AOM,调温式热封机VTS,混频器,隔震平台,空间光调制器,LCOS,半导体激光器,荧光标准片,DMD空间光调制器,压电纳米平移台,标准分辨率靶,SCMOS,光子晶体光纤,920飞秒激光器,显微高光谱成像,微型光谱仪,3D光场显微成像模块、微球显微镜,光纤耦合LED光源,3D光场显微相机,生物阻抗分析仪,纳米孔读取器,多通道电流放大器,膜片钳,蛋白质测序仪,单光子相机,无掩模光刻机。在线椭偏仪,在线膜厚测量仪,在线拉曼光谱成像,在线荧光寿命成像,在线荧光光谱成像,自动化光电流成像,超分辨光学微球显微镜、锁相放大器、激光干涉仪,高频激振器,TDTR,266nm窄线宽激光器,波前传感器,激光光束分析仪,激光位置和指向稳定系统,多通道声光调制器AOMC,声光偏转器AODF,非球面匀化镜。2940nm铒激光器,2020nm铥激光器,激光光束分析仪,非球面匀化镜,调温式热封机VTS,混频器,激光传能光纤,激光功率计,生物电阻抗断层成像仪,医用激光光纤(紫外-中红外),医用光纤温度传感器,医用光纤压力传感器 温度解调系统,时域红外光谱仪,扫频激光器,法珀腔医疗压力传感器。PPLN晶体,显微镜LED光源,LED点光源,MEMS扫描镜,AOTF,AOM,调温式热封机VTS,混频器,隔震平台,空间光调制器,LCOS,半导体激光器,荧光标准片,DMD空间光调制器,压电纳米平移台,标准分辨率靶,SCMOS,光子晶体光纤,920飞秒激光器,显微高光谱成像,微型光谱仪,3D光场显微成像模块、微球显微镜,光纤耦合LED光源,3D光场显微相机,生物阻抗分析仪,纳米孔读取器,多通道电流放大器,膜片钳,蛋白质测序仪,单光子相机,无掩模光刻机。共聚焦拉曼光谱仪,共聚焦荧光寿命成像系统,共聚焦荧光成像,超导探测器、单光子计数器、激光稳频器、超稳腔、窄线宽稳频激光器、锁相放大器、任意波形发生器、偏频锁定模块、超快飞秒激光器、单光子相机、光刻机,单腔双光梳激光器,光纤光谱仪,拉曼光谱仪,近红外光谱仪,多光谱相机、高光谱相机,光纤探头,激光光束分析仪,PPLN晶体,声光偏转器AOD,声光调制器AOM,非球面匀化镜,激光位置和指向稳定系统,非线性晶体,F-theta场镜,扩束镜,隔震平台。二维光谱成像测量系统,多光谱相机、高光谱相机、热成像相机,变焦镜头,在线颜色测量,二维光谱颜色测量,线激光3D相机,结构光3D相机,光场相机,高光谱相机,3D傅里叶显微成像仪,光纤传感器。偏振态测量仪(三款),偏振相,锁相放大器,小尺寸宽带偏振态测量仪,高精度偏振(斯托克斯量)测量系统,光弹调制器,托卡马克专用光弹调制器,偏振分析专用锁相放大器,成像型穆勒矩阵测量系统,高精度波片相位延迟测量系统,光弹性系数测量仪,桌面主动隔振台。声光偏转器,电光偏转器,电光偏转系统,KTN电光偏转器,液晶偏振光栅,大角度闭环微型振镜,MEMS扫描镜,压电纳米平移台,液晶空间光调制器,主动隔振台,光纤偏振态测量仪,中空回射器。 昊量展位指引 关于我们
  • 美国RHK Technology公司推出新一代革命性扫描探针显微镜控制平台R9plus
    继美国RHK Technology公司推出的革命性扫描探针显微镜控制平台R9取得大成功之后,其研发团队通过升软硬件及功能隆重发布新一代R9plus控制器。基于特的单箱集成,R9plus将无限的灵活性,精心设计的实用功能和高的设备稳定性巧妙结合在一起。R9plus细化和扩展的固件、软件,以及进一步优化的模拟电路提供给用户优越的性能和体验。 相比于R9控制器,升后的R9plus(图1)特点主要有:全新的FPGA固件构架大地提高了配置灵活性,对于高测量提供有60多个可用的数据通道,数据流和扫描速度均提高5倍,模拟电路噪声水平降低到原来的1/4,锁相放大器的解调带宽增加至100KHz,一个控制器可以运行两个立的扫描探针显微镜(SPM)和设置任意密度的网格点进行图谱测量等。图1:R9plus便捷的单箱集成 图2:R9plus更低的噪声水平 R9plus允许高质量图像和谱图数据的采集。利用R9plus采集扫描隧道谱图,即网格谱线数据,允许实时显示10条阈值谱线(图3)。谱线的每个像素点可以单显示和分析。谱线数据可以取平均值用于与衬底的噪声进行比较。图3:硅的网格扫描隧道谱图 R9plus对于原子力显微镜(AFM)的控制也有大的优势。先,其多个内部集成的锁相放大器可以探测针-样品间非线性相互作用机制;其次,通过表征非接触原子力显微镜(Non-contact atomic force microscope)和频率调制开尔文探针显微镜(Frequency-modulated Kelvin probe microscope)结合技术中的边带振幅,NC-AFM锁相环(phase lock loop)的带宽可以与开尔文测试分离,由此可以更快地扫描且噪声更低。再次,两个锁相环可以同时立地测试双探针NC-AFM。后,提供一个切换开尔文探针不同模式的开关键,且可以同时测量2*?Bias and 3*?Bias由此得到 dC/dZ和dC/dV信号。图4:边带频率调制开尔文测量噪声较低 R9plus基本功能可被初学者快速掌握,使用方便,同时R9plus的灵活性又适用于高用户,可突破限制,灵活设计更加符合实验需求的功能和模式。对于任何别的用户体验和简单或苛刻实验步骤的任何阶段,R9plus以其完全充分整合的内部电路、直观的图形用户界面,易于定制的硬件描述语言,高的数据完整性,有利的诊断工具,低的噪音和高的速度为用户提供有力的支持。 相关产品:RHK-R9扫描探针显微镜控制器:http://www.instrument.com.cn/netshow/SH100980/C159539.htm
  • 864项!2019至2022年度中科院自主研制科学仪器产品汇总
    科学仪器是科技创新的重要基础和保障,也是创新研究成果的重要产出形式之一,标志着国家创新能力和科学技术可持续发展的水平。然而,目前我国大部分的科学仪器依赖进口,高端仪器和核心部件往往受制于人。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标》中明确要求要“加强高端科研仪器设备研发制造”。中国科学院作为国家战略科技力量,是我国开展科学仪器创新研制的主力之一,从“八五”期间开始设立“科学仪器设备升级改造和自主研制”专项。通过长期坚持高端科学仪器的自主创新研制,中国科学院取得了一系列重要成果,积累了一批关键核心技术,产出了一批具有知识产权的科学仪器设备。自2019年起,中国科学院系统梳理了具有自主知识产权的仪器设备和关键零部件,编制《中国科学院自主研制科学仪器产品名录》,并通过《中国科学院院刊》出版和传播,进一步加强中国科学院自主研制科学仪器的推广和应用。本文特汇总了2019至2022年度《中国科学院自主研制科学仪器产品名录》,供科技工作者、相关部门和企业等了解和参考。2019-2022年度中国科学院自主研制科学仪器产品名录中国科学院自主研制科学仪器2022序号产品名称数理与天文科学1量子钻石原子力显微镜2低温扫描隧道显微镜3低温扫描隧道显微镜-分子束外延联合系统4低温强磁场用扫描探针显微镜5金刚石量子计算教学机6钨灯丝扫描电子显微镜7脉冲式电子顺磁共振谱仪8氦质谱检漏仪9便携式伽玛射线成像仪10便携式核素识别仪1110拍瓦超强超短激光器121拍瓦超强超短激光器13中子斩波器14大型平行光管15核与辐射应急车载平台16激光雷达望远镜171米口径光学望远镜18大口径标准镜面1920英寸大面积微通道板型光电倍增管20超快位敏型微通道板型光电倍增管21靶斑仪22多波长飞秒全固态激光器23高重频钛宝石飞秒激光放大器24氟化钡闪烁晶体探测器25星载铷原子钟26芯片原子钟27显微共焦拉曼荧光光谱测量模块28有机玻璃内应力无损定量移动式检测装置29同步控制系统30太阳辐照度绝对辐射计化学与材料科学31分子束外延系统32深紫外激光光致发光光谱仪33深紫外激光光发射电子显微镜34场发射扫描电子显微镜35原子层沉积系统36磁控溅射台37电子束蒸发镀膜设备38系列高离化磁控溅射镀膜仪39碳化硅晶体生长炉40等离子体化学气相沉积镀膜设备41有机、无机薄膜沉积设备42台式电子顺磁共振波谱仪43X波段连续波/W波段脉冲电子顺磁共振波谱仪44全自动比表面及孔径分析仪45微型流化床反应动力学分析仪46多功能内耗仪47多相流非均相特性测量系统48光谱椭圆偏振仪49激光共聚焦法流体液膜厚度及物性测量仪50高能衍射仪51多维跨尺度材料热性能测量仪52微颗粒实时在线监测仪5380-400开尔文低温绝热量热仪54实验室中能X射线吸收谱仪55偏振光栅光刻机56台式数字光刻机57蒸发源及控制器58射频电源59分子泵60双级高速离心式空气压缩机信息与工程科学61X射线三维分层成像仪62红外焦平面探测器测试分析系统63投影光刻机64接触式曝光机系列65大视场三线阵立体航测相机66傅里叶变换红外光谱辐射分析仪67激光干涉仪68衍射光栅(平面刻划光栅、平面全息光栅、曲面全息光栅)69超高分辨率超声缺陷检测设备70高密度等离子体刻蚀机71高精度电光晶体定向仪72超高精度面形干涉测量设备73智能环形抛光机74纤维增强复合材料超快激光切割装备75万瓦级半导体激光器综合测试系统76单频激光噪声测试仪77相干光场波前测量仪78长焦可见光/红外共口径光学成像相机79显微红外成像光谱仪80机载双频激光雷达81激光跟踪仪82卫星移动通信终端综合测试仪83光矢量网络分析仪84数字延时脉冲发生器85系列深紫外准分子激光器86高温液态金属流速实时在线监测仪87集束型纳米薄膜生长系统88涡轮叶片表面温度测量仪89线阵列X射线探测器90中红外锑化物大功率激光器地球与环境科学91地面电磁探测系统92小型绝对重力仪93近钻头方位伽马成像地质导向系统94分布式光纤声传感系统95偶极横波远探测井仪96高精度光纤地震采集系统97岩石空心圆柱扭剪试验系统98天光背景测量仪99质子转移反应质谱仪100大气臭氧观测激光雷达101便携式多组份气体紫外分析仪102车载双光路污染气体分布及网格化排放遥测系统103大气成分差分光学吸收光谱在线监测系统104轨道对地高时空分辨率快速成像仪105大动态范围积分球辐射源106温室气体柱总量地基观测系统107宽波段可调谐光腔衰荡光谱仪108激光散射大气颗粒物偏振浊度计109高频单颗粒偏光粒径谱仪110深海激光拉曼光谱原位定量探测系统111声学多普勒流速剖面仪112基于大型浮标的自由伸缩式海洋剖面观测平台113三锚式浮标综合观测平台114深海海底理化环境长期观测系统115深海多参数剖面观测浮标116海底地震仪117船载挥发性有机物监测仪118系列拉曼光谱探针1196000米级可视化可控轻型柱状取样器120漫反射标准参照板生命与医学科学121人体肺部气体磁共振成像仪1221.5T无液氦超导磁共振成像系统123乳腺/灵长类正电子发射断层成像仪124小动物能谱显微CT125消毒防疫机器人126全自动数字PCR检测系统127自动化核酸快速提取仪128固态纳米孔制备仪129流式光片成像仪
  • 免费试用!国仪量子微弱信号测量系列产品等你体验
    随着科技不断进步,科研以及工业领域精细测量微弱信号的需求不断增长。为满足用户需求,同时推动国产科研仪器发展,国仪量子于近日正式推出“微弱信号测量系列设备免费试用”活动(包括国仪量子的锁相放大器、任意波形发生器、时间数字转换器、同步控制系统等产品,如有更多产品试用需求请在下方问卷中登记)。活动免费试用产品扫描下方二维码或点击底部“阅读原文”填写相关需求,参与试用活动。填问卷试用仪器数字锁相放大器LIA001M国仪量子 LIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效简化科研工作流程和设备依赖,提高科研效率和质量。任意波形发生器AWG4100国仪量子 AWG4100是一款多通道的高性能任意波形发生器。该产品拥有四个相互独立的波形输出通道,每个通道可以提供高达1.2 GSa/s采样率、16位垂直分辨率的单端波形输出。每通道拥有最大512 MSa的存储深度,配合灵活的用户自定义波形编辑以及序列播放功能,能够轻松应对各种不同场景的复杂波形需求。时间数字转换器TDC1610国仪量子 TDC1610是一款结构紧凑的高精度时间测量仪器,拥有16个采集通道,8 ps时间分辨率;支持时间标签模式,可以实时记录采集信号的时间信息。产品采用易于操作的图形化界面,提供C++、Python和LabVIEW的SDK供用户进行二次开发,可广泛应用于统计激光器后脉冲分布、量子光学、光检测和激光雷达测距等科研领域。同步控制系统SCS1800国仪量子 SCS1800同步控制系统是基于高精度网络时钟与时间同步技术,实现多节点时钟信号的分发和亚纳秒级同步控制,可广泛应用于量子计算、工业自动化控制、分布式基站、电力电网同步、自适应阵列天线和多基地雷达等多种应用场景。注:1.本次试用产品包括国仪量子的锁相放大器、任意波形发生器、时间数字转换器、同步控制系统,如有其他产品试用需求,请登记详询;2.本次活动时间截止到2022年12月31日,后续如有变动,将另行通知;3.本次活动最终解释权归国仪量子(合肥)技术有限公司所有。
  • 先进超快(飞秒、皮秒)激光器
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 先进超快(飞秒、皮秒)激光器 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中科院物理研究所 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 方少波 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Renee_zlj@126.com /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:304px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 304" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 激光器被广泛运用于工业、农业、精密测量和探测、通讯与 /span span style=" font-family:宋体" a href=" https://www.baidu.com/s?wd=%E4%BF%A1%E6%81%AF%E5%A4%84%E7%90%86& tn=44039180_cpr& fenlei=mv6quAkxTZn0IZRqIHckPjm4nH00T1Ykmy7WP1K-Pjf3PhRdPynv0ZwV5Hcvrjm3rH6sPfKWUMw85HfYnjn4nH6sgvPsT6KdThsqpZwYTjCEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-TLwGUv3EnHmsrjfsPjT1" target=" _blank" span style=" color:windowtext text-underline:none" 信息处理 /span /a /span span style=" font-family:宋体" 、医疗、军事等各方面,并在许多领域引起了革命性的突破。其中,超快激光器倍受各界追捧。它不仅可以实现加工的“超精细”,还实现了真正意义上的激光“冷”加工;由于超快特性,可以用于更精密的手术;更高的峰值功率,可引雷、放电,快速毁坏目标,导弹拦截、卫星致盲等等。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 由于飞秒激光的前沿性,是激光产业中高利润的高端产品。国际市场每年飞秒激光相关产值约100 亿美元,国内市场为国外公司垄断,大量外汇流失(10亿美元),同时影响国家安全。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 中国科学院物理研究所光物理重点实验室从事飞秒激光器研究多年,开发出一系列飞秒激光器及相关科研成果,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒钛宝石激光振荡器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" TW /span span style=" font-family:宋体" 级飞秒超强激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 高重复频率飞秒激光放大器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光纤飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态飞秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 全固态皮秒激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 低噪声光学频率梳 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 窄线宽及可调谐激光器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步及延时控制器 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 周期量级激光及其CEP锁定 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 用户定制激光器 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 部分产品和指标达到国际领先或国内首次的程度,包括: /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 同步飞秒激光器(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒PW超强激光(世界纪录) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 若干全固态飞秒激光(国际首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 紫外波段皮秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 红外波段飞秒激光(国际领先) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒激光装置(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒光学频率梳(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒参量激光振荡器(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒镁橄榄石激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒Cr:YAG激光(国内首次) /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 飞秒激光压缩器(国内最短脉宽) /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 主要技术指标: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ea10646a-372a-4205-8429-4a0ef2b8d87e.jpg" title=" 3.png" / /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超快:国内最短激光脉冲,3.8fs/可见光波段 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 超强:1.16PW峰值功率,当时的世界纪录 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 阿秒:160as/XUV极紫外波段,国内首次实现 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 光梳:稳定度~10-18 /秒,国际同类最高结果之一 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 自20世纪60年代问世以来,激光已在工业、医学、军事等众多领域广泛应用。近年,超短脉冲激光即超快激光成为激光领域的先端发展趋势。脉冲越短,激光的精度越高、释放的能量越大。在实验室, a href=" http://laser.ofweek.com/tag-%E6%BF%80%E5%85%89%E8%84%89%E5%86%B2.HTM" target=" _blank" title=" 激光脉冲" span style=" color:windowtext text-underline:none" 激光脉冲 /span /a 已短到飞秒级别(1飞秒等于千万亿分之一秒)。超快激光投入应用,成为人类工具史上的又一“利器”。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 飞秒激光作为最重要的前沿方向,可以完成常规激光无法完成的工作,因此应用更为广泛,需求量巨大。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在加工制造领域:比常规激光更高的精度、更高质量的加工效果。如发动机汽缸、太阳能电池、仿生加工… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在医疗领域:由于超快特性,可以用于更精密的手术,无痛、高效。近视、老花… /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在国防领域:更高的峰值功率,快速毁坏目标,导弹拦截、卫星致盲。引雷、放电等常规激光所不能。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在科研领域:常规激光远远不能的科学前沿:激光粒子加速、高能物理、光钟…… /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 已经申请相关发明专利23项。包括—— /span /p p style=" text-indent:28px line-height:24px" a title=" 高对比度飞秒激光脉冲产生装置" span style=" font-family:宋体 color:windowtext text-underline:none" 高对比度飞秒激光脉冲产生装置 /span /a span style=" font-family:宋体" (申请号CN201210037173.1) /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 一种全固态皮秒激光再生放大器(申请号CN201210360026.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 飞秒锁模激光器" span style=" font-family: 宋体 color:windowtext text-underline:none" 飞秒锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201410251367.0) /span /p p style=" text-indent:28px line-height:24px" a title=" 基于全固态飞秒激光器的天文光学频率梳装置" span style=" font-family:宋体 color:windowtext text-underline:none" 基于全固态飞秒激光器的天文光学频率梳装置 /span /a span style=" font-family:宋体" (申请号CN201410004852.8) /span /p p style=" text-indent:28px line-height:24px" a title=" 全固态陶瓷锁模激光器" span style=" font-family:宋体 color:windowtext text-underline:none" 全固态陶瓷锁模激光器 /span /a span style=" font-family:宋体" (申请号CN201310349408.5)等 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 曾获得国家自然科学二等奖 /span /p /td /tr /tbody /table p br/ /p
  • SILICON SEMICONDUCTOR I 高真空对于电扫描探针显微镜的优势
    SILICON SEMICONDUCTOR I 高真空对于电扫描探针显微镜的优势高真空对于电扫描探针显微镜的优势Advantages Of High Vacuum For Electrical Scanning Probe Microscopy 来自IMEC和比利时鲁汶大学物理与天文学系的Jonathan Ludwig,Marco Mascaro,Umberto Celano,Wilfried Vandervorst,Kristof Paredis学者们利用Park NX-Hivac原子力显微镜对MoS2在形态和电学方面进行了研究。2004年,石墨烯作为一类新材料原型的被发现,引起了人们对二维(2D)层状材料的极大兴趣。从那时起,人们合成并探索了各种各样的二维材料。 其中,过渡金属二氯代物 (TMDs) 因其固有的带隙、小的介电常数、高的迁移率和超薄的材质而引起了人们的广泛关注, 这使其有望成为将逻辑技术延伸到5 nm以上节点的候选材料。然而,在300 mm兼容的制造环境中集成此类材料仍然面临许多挑战,尤其是因为在薄片或单个晶粒中观察到的有用特性,高质量TMD层的可控生长、转移和加工仍然是一个关键障碍。 扫描探针显微镜作为一种固有的高分辨率二维技术,是研究TMDs形态和电学特性的强大工具。本技术说明以MoS2为例,利用Park NX-Hivac原子力显微镜系统的功能,探讨了高真空用于电学测量的优势。调查:材料和方法MoS2 用MOCVD在蓝宝石衬底上生长了一系列不同层厚的MoS2样品。所有的测量都是在生长的、未转移的MoS2 / 蓝宝石上进行的。相同材料制成的元件的室温迁移率高达μm~30 c㎡/Vs,较厚样品的平均迁移率更高。图1:(a-c)所研究样品的AFM形貌图。(d)用于测量蓝宝石上多层MoS2的C-AFM装置示意图。(e)显示悬臂在高摩擦区域扫描时如何扭曲的动画。(f)对应于(b)中黑线的形貌横截面,在MoS2岛边缘显示0.6 nm台阶,在蓝宝石台地上显示0.2 nm台阶。所有的图像都是用Gwydion绘制的。比例尺为500 nm。 所有被测样品的原子力显微镜(AFM)图像如图1所示。总共测量了三个样品,其层厚为1-2层,3-4层,还有一个具有金字塔结构,这里称为多层MoS2。1-2层样品由一个完全封闭的单层MoS2薄膜组成,在顶部形成额外的单层岛。这些单层岛构成了第二层生长的开始,在形貌图上可以识别为浅色区域。与此相似,3-4层样品由一个完全封闭的三层MoS2薄膜和附加的单层岛组成。图1(d)显示了3-4层样品的样品结构示例。在这里,每个绿色层代表一层MoS2。除了MoS2岛,我们还看到对角线贯穿每个样本。这些是蓝宝石衬底上的台阶,可以通过2D薄膜看到。蓝宝石阶梯与MoS2层之间可以通过台阶高度明确区分,c面蓝宝石为0.2nm,单层MoS2台阶为0.6 nm,如图1(f)横截面所示。多层样品与其他两个样品不同之处在于MoS2表面具有3D金字塔状结构。这些金字塔位于一个完全封闭的三层结构上,其形成是由于随着层厚的增加,生长机制由逐层向三维转变。增长的细节可以在参考文献12中找到。导电扫描探针显微镜 本文采用两种导电扫描探针显微镜(SPM)来表征MoS2的电子性质:导电原子力显微镜(C-AFM)和扫描隧道显微镜(STM)。在C-AFM中,悬臂梁与材料表面接触,并且同时记录形貌和电流。为了测量电流,在样品台上施加一个偏压,并通过连接到导电AFM探针的外部电流放大器来测量电流。材料的电接触是通过在材料的顶部和侧面涂上银漆来实现的。我们使用商用Pt-Ir涂层探针,如PPP-CONTSCPt或PPP-NCSTPt,其标称弹簧常数在0.2-7N/m之间。由于C-AFM是一种基于接触的AFM技术,它还能够实现其他C-AFM通道的同时一起记录侧向力。横向力显微镜(LFM)测量激光在PSD上的横向偏转,这是由于悬臂梁在扫描表面时的扭转或扭曲而引起的,如图1(e)所示。LFM图像的正向和反向的差异与物质的摩擦力成正比,后者不同于C-AFM,因为裁剪的Pt-Ir导电导线,在我们的例子中,用于测量当探针高于表面几埃时探针与样品之间的隧穿电流。STM可以通过保持高度恒定并记录电流(称为恒定高度模式)或使用反馈保持电流水平恒定并记录高度(恒流模式)来执行。在恒流模式下,高度图像包含形貌和电学信息。C-AFM 在空气中与在高真空中 为了证明二维材料表面水层的重要性,我们分别对空气和高真空(HV)中的相同MoS2样品进行了C-AFM测量,如图2(a-b)和(c-d)。虽然在空气中和在高真空环境中扫描的形貌图像非常相似,但是C-AFM图像有很大的不同。最值得注意的是,在高真空下测量的电流增加了三个数量级。在5V偏压下,空气中的平均电流水平为1.4nA,而在高真空下,平均电流水平为1.1μA。电流水平的提高是由于去除了空气中始终存在于样品表面的薄水层。该水层对MoS?尤其成问题,因为它对材料进行p-掺杂,有效地切断了它的电性。从类似的CVD生长的MoS2器件的电输运来看,在暴露于去离子水两小时后,通态电流严重退化,迁移率降低了40%。图2: 3-4 MoS2样品的C-AFM显示高真空下电流水平和灵敏度增加。(a)和(b)分别是在空气中5V偏压下的形貌图和电流图像。(c)和(d)是在0.5 V偏压下泵送至高真空后立即拍摄的形貌图和电流图像。在空气和高真空中采集的数据采用相同的参数:相同的探针,弹簧常数k为7 N/m,设定值为10 nN,扫描频率为1 Hz。比例尺为500 nm。 除了电流的增加,高真空下的C-AFM图像也显示了更多的细节。从空气中的图像来看,电流是相对均匀的。除此之外,C-AFM 在空气中针对此样品提取不出太多的信息。相比之下,从真空下扫描的电流图,我们可以清楚地看到MoS2层中的晶界。尽管C-AFM探针与材料直接接触,但施加的力很小,因此在重复扫描过程中不会去除MoS2材料。图3所示为同一样品在高压下以~30nN力进行5次扫描后的形貌图,探针的标称弹簧常数为~7N/m。图3: (a)是3-4层MoS2的最初形貌图,(b)是在0.1V设定值下连续扫描5次后的形貌图,使用弹簧常数约为7 N/m的PPP NCSTPt探针。比例尺为50nm。专为晶界分析的C-AFM和LFM 当使用低弹簧常数探针成像时,例如标称弹簧常数为0.2N/m的PPP-CONTSCPt,我们可以用C-AFM同时获得摩擦数据,从而考虑到形貌、电学和材料特性之间的相关性。图3显示了1-2层MoS2样品的高度、摩擦和电流图像。在图3(a)中,第一层和第二层区域分别标记为1Ly和2Ly。晶界处的摩擦比原始区域高,因此它们在摩擦中表现为黑线。通过比较电流和摩擦力,可以看出摩擦图像中的黑线与电流中的黑线相匹配。然而,由于衬底对2D薄膜的局部导电性的影响,电流图像显示了额外的特征。图4:(a)形貌,(b)摩擦,(c)在1-2层生长的MoS2 / 蓝宝石样品上同时获得的电流。各区域的层厚如(a)所示。比例尺为200 nm。扫描隧道显微镜观察MoS2 借助Park NX-Hivac原子力显微镜,我们还能够获得高质量的STM图像,而无需复杂的超高真空系统和特殊的样品制备/处理。图4显示了在恒流模式下成像的多层MoS2样品的500 nm扫描,Iset=0.5nA, Vbias=1V。由于STM给出了形貌与电子结构的卷积,我们在高度图像中看到了层岛和晶界。图5:多层膜的MoS2 / 蓝宝石的STM图像。裁剪的Pt-Ir导线在恒流模式下 。Iset=0.5nA, Vbias=1V。比例尺为200nm。结论 本研究利用Park NX-Hivac AFM系统,对过渡金属二氯生化合物(TMDs)家族的二维材料二硫化钼(MoS2)进行了形态和电学方面的研究。在AFM形貌图像上观察了单层和多层的差异。此外,在多层图像上确定了由逐层生长机制引起的三维金字塔状结构的细节。 利用导电SPM(C-AFM和STM)研究了MoS2在空气中和高真空条件下的电学性能。在高真空条件下,尽管存在氧化层,但测量到的电流信号清晰、均匀、较高。最后,结合C-AFM和LFM获得了晶界分析的形貌、电学和力学信息。这种方法可以在晶界上找到更具体和更详细的结构。 二维层状材料广泛应用于工业和学术的各个研究领域。二维材料电性能和力学性能的表征与探索是材料研究领域的一个重要课题。原子力显微镜是一种多功能的成像和测量工具,它允许我们使用各种成像模式从多个角度评估二维材料。本研究强调材料分析的改进策略。此外,这些结果强调了多方向和多通道分析二维材料的重要性,其中包括半导体工业高度关注的过渡金属二氯代物。References1. K. S. Novoselov, A. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, &A. A. Firsov. Electric field effect in atomically thin carbon films. Science306, 666–669 (2004).2. A. K. Geim & I. V. Grigorieva. Van der Waals heterostructures. Nature499, 419–425 (2013).3. K. F. Mak, C. Lee, J. Hone, J. Shan, & T. F. Heinz. Atomically Thin MoS 2?: A New Direct-Gap Semiconductor. Phys Rev Lett105,136805 (2010).4. H. Liu, A. T. Neal, Z. Zhu, Z. Luo,X. Xu, D. Tománek,&P. D. Ye. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano8, 4033–4041 (2014).5. J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao,&K. Wu. Rise of silicene: A competitive 2D material. Prog Mater Sci83, 24–151 (2016).6. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, & J. Hone.Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol5, 722–726 (2010).7. X. Xu, W. Yao, D. Xiao, &T. F. Heinz. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.10, 343–350 (2014).8. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K.Banerjee,& L. Colombo. Electronics based on two-dimensional materials. Nat Nanotechnol9, 768–779 (2014).9. X. Xi, L. Zhao,Z. Wang, H. Berger, L. Forró, J. Shan,& K. F. Mak. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol.10, 765–769 (2015).10. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, &A. Kis. 2D transition metal dichalcogenides. Nat. Rev. Mater.2, 17033 (2017).11. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande,&Y. H. Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today20, 116–130 (2017).12. D. Chiappe, J. Ludwig, A. Leonhardt, S. El Kazzi, A. Nalin Mehta, T. Nuytten, U. Celano, S. Sutar, G. Pourtois, M. Caymax, K. Paredis, W. Vandervorst, D. Lin, S. Degendt, K. Barla, C. Huyghebaert, I. Asselberghs, and I. Radu, Layer-controlled epitaxy of 2D semiconductors: bridging nanoscale phenomena to wafer-scale uniformity. Accepted Nanotechnology (2018).13. E. R. Dobrovinskaya, L. A.Lytvynov,& V. Pishchik. Sapphire: material, manufacturing, applications. Springer Science & Business Media, 2009.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制