当前位置: 仪器信息网 > 行业主题 > >

多模式动物活体成像系统

仪器信息网多模式动物活体成像系统专题为您提供2024年最新多模式动物活体成像系统价格报价、厂家品牌的相关信息, 包括多模式动物活体成像系统参数、型号等,不管是国产,还是进口品牌的多模式动物活体成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多模式动物活体成像系统相关的耗材配件、试剂标物,还有多模式动物活体成像系统相关的最新资讯、资料,以及多模式动物活体成像系统相关的解决方案。

多模式动物活体成像系统相关的资讯

  • 博鹭腾· 多模式动物活体成像系统AniView100隆重上市
    AniView100多模式动物活体成像系统是广州博鹭腾仪器仪表有限公司全新推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机具有极高的检测灵敏度,而经过特殊设计的暗箱能够有效避免外界光线及宇宙射线对成像的影响。大功率全波长卤素灯激发光源配合精密复杂的全局光源和万向鹅颈管点状光源光路系统,再加上顶级的光谱转换能力和滤光片组合,极大地提高了荧光信号的特异性,并大大缩短曝光时间,减少实验对小鼠的影响。 AniView100多模式动物活体成像系统包含专业化的软件,简洁的全中文软件操作界面,可预设多种实验方案,一键快速成像,具备成像和多图层定量分析功能,符合GLP原始数据、操作记录规定,可直接输出实验报告。产品特点1.超灵敏 全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView100可以检测到小鼠体内、多种可自由组合的滤光片、全局照射和万向鹅颈管点状荧光照射装置,配合顶级的光谱转换能力以及荧光自发光干扰扣除功能,完全满足荧光成像实验“低背景”的要求。3.超大视野 AniView100的广角镜头和硬件结构的完美结合造就了超大的成像视野,最大可实现6只小鼠或1只兔子同时成像。并且软件预设实验方案,可根据样品尺寸自动调整视野大小,自动对焦,实现一键成像。4.人性化 人性化的软件可自动控制仪器载物台升降、温度及各种光源;多种荧光强度表达方式可选,量化分析功能,直接输出实验报告,简化仪器操作,节约您的时间。5.简便化 内置动物温控床、X-ray动物结构成像系统、气体麻醉模块,可根据实验需求,快速选用相应系统。6.多样化 仪器内部还配备多个法兰接口及电源插口,可连接显微镜、上转换荧光UCNPs检测系统等,实验方法更加多样,功能更加强大。应用范围癌症与抗癌药物研究,免疫学与干细胞研究,细胞凋亡,病理机制及病毒研究,基因表达和蛋白质之间相互作用,转基因动物模型构建,药效评估,药物甄选与预临床检验,药物配方与剂量管理,肿瘤学应用,生物光子学检测等。 肿瘤学应用AniView100可以直接快速地测量各种癌症模型中肿瘤的生长和转移,能够无创伤定量检测原位瘤、转移瘤及自发瘤。可以在早期就能区别正常的癌细胞与凋亡的癌细胞,能够方便的观察肿瘤转移与复发的情况。 Luciferase标记肿瘤转移模型 动物基因功能研究AniView100能够直接反映细胞或基因表达的空间和时间分布,从而了解体内的特异性基因的功能和相互作用、胚胎发育等生物学过程。 GFP转基因小鼠 进口品质,国产价格。AniView100多模式动物活体成像系统绝对是您研究动物在体实验的最佳选择。
  • 文献速递|多模式动物活体成像系统在鱼疫苗研发中的应用
    病毒性疾病爆发是水产养殖业最严重的问题,具有传播快、发病快和致死率高等特点,对水产养殖业造成了巨大的经济损失;而疫苗免疫是对其进行防控的最有效措施。在水产动物免疫途径中,注射方式效果较好,但不适合渔业生产;浸浴免疫操作简单,适合在鱼苗和鱼类大规模养殖中推广使用,但是浸浴疫苗的应用需要克服生物屏障等阻碍作用,才能使疫苗发挥出理想的免疫效果。 研究发现,纳米载疫苗靶向递呈技术是解决水产养殖产业实现疫苗高效免疫保护最安全有效的手段之一;单壁碳纳米管(SWCNTs)是一种高效的疫苗载体,具有高穿透性、高承载力、易修饰性和安全性等特性;甘露糖受体(Mannose receptor)是抗原呈递细胞上的标志性受体,能够结合甘露糖修饰的抗原物质,可以作为疫苗的靶点。 近日,西北农林科技大学动物科技学院朱斌教授课题组运用纳米载疫苗靶向递呈技术,构建靶向性碳纳米管载疫苗系统,选择高效的疫苗载体(单壁碳纳米管)来突破生物屏障的限制,并利用合适的佐剂(甘露糖修饰的抗原物质)来增强疫苗的免疫效果,使疫苗充分发挥治疗和免疫保护效果。这些研究成果相继发表在期刊Vaccines和Journal of Nanobiotechnology,可以为其它水产动物纳米载疫苗系统的研究、应用奠定理论基础,对渔业的可持续发展和水产品食品安全生产具有重要意义。文章一 草鱼呼肠孤病毒(GCRV)已被公认为是所有水生病毒物种中最具致病性,VP7作为GCRV的外衣壳蛋白,是一种可以诱导宿主免疫反应的主要抗原。通过构建靶向浸没疫苗递送系统(CNTs-M-VP7),该系统由SWCNTs作为疫苗载体,GCRV VP7蛋白作为抗原,甘露糖作为抗原呈递细胞靶向部分。结果表明CNTs-M-VP7疫苗可通过粘膜组织(皮肤,腮和肠)进入鱼体内,呈现给免疫相关组织,显著诱导的成熟和呈递过程,从而引发强大的免疫反应。a、CNTs-M-VP7纳米疫苗的制备过程;b、巨噬细胞对纳米疫苗的吸收;c、鱼组织中纳米疫苗的摄取;d、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;e、草鱼接种后,用GCRV人工攻击后的相对存活百分比(每组n =100)。文章二 鲤春病毒血症(Spring viremia of carp,SVC)是危害最严重的水产病毒性疾病之一,SVCV作为SVC的病原,其表面糖蛋白(G)被认为是一种主要抗原,可以诱导原发性宿主免疫反应。通过化学修饰的方法将SVCV的抗原蛋白(G)、功能化单壁碳纳米管和功能化甘露糖进行结合,构建了靶向性碳纳米管载疫苗系统(SWCNTs-MG)。结果表明SWCNTs-MG通过提高疫苗进入鱼体的含量,并增强对抗原呈递细胞的靶向呈递作用,进而提高疫苗浸浴免疫的效果。a、SWCNTs-MG纳米疫苗的制备过程;b、纳米疫苗在体内和体外的安全性评估;c、鲤鱼巨噬细胞体外纳米疫苗的摄取;d、鱼组织中纳米疫苗的摄取;e、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;f、在接种的鲤鱼中用SVCV人工攻击后的相对存活百分比。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到参考文献:1、Zhang C , Wang G X , Zhu B . Journal of Nanobiotechnology, 2020, 18(1).2、Zhu B, Zhang C, Zhao Z, Wang GX. Vaccines(Basel). 2020 8(1):87. 3、张晨.[D]. 西北农林科技大学,2019.
  • 文献速递ㅣ多模式活体成像系统在肝癌药物载体研究中的应用
    肝癌是最常见的致命癌症之一。目前临床上主要采用手术切除癌变肝组织,同时以化疗、放疗等方式阻止正常肝细胞被感染恶化来治疗肝癌;但是,化疗会滥杀滥伤各组织的正常细胞,并产生极大的副作用,而且在肝癌细胞发生转移或再生后也难以治愈。因此,设计与制造出更好的用于肝癌治疗的药物,是医药研究人员亟待解决的难题。如何提高药物疗效,不仅可以从药物结构本身出发,而且可以从药物载体入手。选择新型药物载体或靶向基团,可以使有效药物分子直接作用于癌症患处,提高药物靶向性,减少药物对正常组织的伤害,减轻患者的疼痛。近日,辽宁新药研发重点实验室李丽教授课题组成功构建并制备了两种甘草次酸修饰的金属有机框架药物载体,并通过组织分布和活体成像实验,验证载体具有明显的肝靶向性。该成果已发表在纳米技术与精密工程领域国际权威期刊《Nanotechnology》。1. 甘草次酸(GA)甘草次酸(Glycyrrhetininc Acid,GA)是从中草药甘草中提取分离出来的具有抗炎、抗病毒、抗溃疡等多种药理活性的甘草酸苷元。近期研究发现,在肝细胞膜上镶嵌着许多GA特异性受体,可与GA特异性结合,因此,GA作为药物靶向分子进行修饰的药物载体已经成为研究热点和一种新的靶向性治疗肝癌的有效途径。2. 金属有机框架(MOFs)金属有机框架材料(Metal-organic Frameworks,MOFs),是一类通过组装无机金属离子与有机配体形成的具有多孔隙、高比表面积的新型材料。它的最大的优点是具有良好的生物相容性,而且会在体内特定环境中自行分解,减少药物在体内的副作用,降低耐药性,提高药物治疗效率。通过在MOFs表面修饰GA,可以实现MOFs的肝靶向性,并且MOFs的孔隙率高,具有超大比表面积,可以有效装载药物,提高载药能力。两种MOFs载体:Uio-66-COOH-1,4-丁二胺-GA与UiO-66-NH2-GA。3. 小鼠体内靶向性研究DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在小鼠体内不同时间段的荧光成像图DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在心、肝、脾、肺、肾的荧光成像图关于多模式动物活体成像系统AniView100多模式动物活体成像系统是广州博鹭腾生物科技有限公司全新推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机,具有极高的检测灵敏度。大功率全波长卤素灯激发光源配合精密复杂的全局光源和万向鹅颈管点状光源光路系统,再加上顶级的光谱转换能力和多组滤光片组合,极大的提高了荧光信号的特异性,并大大缩短曝光时间。
  • Kodak多模式活体成像系统连续中标
    Kodak多模式活体成像系统,集多种成像模式于一身,性能卓越,受到了国内越来越多活体研究用户的青睐,近日又连续中标两台。   1)吉林大学生科院:设有分子生物学系、生物药学系、生物大分子研究室、考古DNA实验室、Edmond H.Fischer细胞信号传导实验室等单位及校直属科研单位分子酶学教育部重点实验室,现有PI近40人。为满足该院多方向的活体成像研究,该院中心实验室公开招标活体成像仪器。Kodak多模式活体成像系统凭借先进的产品理念和出色的性能,成功中标,并签署合同。   2)中国医科大学附属第一医院:创院有有百年历史,现有中国工程院院士1人,副教授和教授级460人,拥有多个国家重点科室。该院中心实验室公开招标活体成像仪器,构建活体成像研究平台。Kodak多模式活体成像系统凭借先进的产品理念和出色的性能,成功中标,并签署合同。   欲了解Kodak多模式活体成像系统更多信息,请访问东胜创新网站:www.eastwin.com.cn   或拨打技术专家咨询热线:15010 596317
  • Carestream多模式活体成像声明
    Carestream多模式活体成像重要声明   2010年7月, Carestream起诉Caliper(原Xenogen)活体成像产品直接侵犯了我公司的成像专利(美国专利号7,734,325) 在2010年2月,Caliper的全资子公司Xenogen,以及Stanford大学起诉Carestream在其成像系统的营销和销售中,间接涉及由斯坦福大学独家授权给Xenogen的成像专利。为了调停诉讼,双方于2011年8月达成和解协议。但是近期,个别代理机构利用Caliper Life Sciences, Inc. 和我公司双方专利诉讼调停的报道,来故意误导中国境内的客户,造成了严重的不良影响,Carestream中国区在此澄清和声明:   1 利兰-斯坦福青年大学托管委员会于1995年向中国国家知识产权局所申请的专利均为研究方法学专利,非仪器和功能专利(专利号:95198006.8)。   2 Carestream多模式小动物活体成像仪,具备发光,荧光,x-ray,同位素检测等功能,目前为止,已经为中国和世界其它各地的广大科研工作者提供了性能优异,质量可靠的活体成像的研究工具。   3 根据中华人民共和国专利法第六十九条第四款规定,为科学研究和实验等用途而使用专利的,不视为专利侵权,可无偿使用 此规定为包括美国、欧洲、日本等国家在内的国际通行准则。   4 我公司对任何错误解读翻译和误导该事件的商业行为所造成的不良影响和后果,将保留通过法律途经追究相关责任的权利,以维护我公司的合法权益 同时,本着对客户负责任的态度,我公司郑重对客户承诺,在Carestream多模式小动物活体成像仪器使用中,如有涉及专利方面的事宜,请直接与我们联系,我公司将会认真处理,避免给客户带来任何损失。   如有任何疑问请致电我公司   电话: 021-3852 6888   Carestream   Molecular Imaging
  • Kodak多模式活体成像技术巡回研讨班报名
    新学期开学、秋高气爽之际,美国Carestream Health公司(原Kodak医疗集团)分子影像部和与北京东胜创新生物科技有限公司(Kodak活体成像系统中国总代理)将再次联手举办“Kodak多模式活体成像技术巡回研讨班”。继2008年第一届之后,2009年第二届已于上半年举行了春季巡讲,现将举行秋季巡讲。   Kodak多模式活体成像系统代表着小动物活体成像领域的最先进理念,它将功能成像与结构成像很好地组合在一起,带来更真实的活体成像。   为了将这一最新技术介绍给更多的科研工作者,将于2009年9月21-24日分别在天津、广州、上海四地举行“第二届分子影像技术进展与应用巡回研讨会暨2009秋季Kodak多模式活体成像技术巡回研讨班”。本次我们邀请到了柯达医疗分子影像部欧洲的应用科学家Dr. Jens Waldeck和东胜创新公司的首席技术官聂尚海博士,与各位科研工作者一起就分子影像技术的发展与应用中应当关注的问题展开讨论。   我们诚挚地邀请您出席本次研讨班,与专家们做现场交流。   席位有限,请尽快预约确认!   2009年9月10日   时间/地点/议程: 主讲人1:特邀欧洲专家—Dr. Jens Waldeck(柯达医疗分子影像部 应用科学家) 主题:State-of-the-art Molecular Optical Imaging Techniques and Applications 主讲人2:聂尚海博士(东胜创新,首席技术官) 主题:分子影像技术实验设计及操作过程中应考虑的问题 【第一站—天津】:2009年9月21日下午14:00-17:00 【第二站—广州】:2009年9月22日下午14:00-17:00 【第三站—上海】:2009年9月24日下午14:00-17:00   主讲人简介:   聂尚海博士:北京大学博士,军科院博士后,曾在中山大学任教,多家生物研发公司担任首席科学家,有十余年丰富的科研与产业开发经验。   Dr. Jens Waldeck::Ph.D of University of Muenster(Germany). He has rich experience of specific tracer development and small animal imaging. He is an owner of numerous peer reviewed papers as well as three patents.   感谢关注东胜创新,如您未及到场参与本次会议但需要本次会议资料,请您点击链接www.eastwin.com.cn/sun/0910.rar直载参会回执,填写信息后发往邮箱:marketing@bio168.net。收到邮件后,我们将尽快与您联系核实信息并发送会议资料给您!
  • 3i动物活体成像|"多模态活体动物宏微尺度综合成像系统"国重项目启动会在西安顺利召开
    根据哈尔滨工业大学(威海)检测与控制研究中心公众号发布:2024年4月20日,由国家自然科学基金委员会中国21世纪议程管理中心指导,苏州国科医工科技发展(集团)有限公司主办的国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项(定向项目)“多模态活体动物宏微尺度综合成像系统”项目启动会暨实施方案论证会在西安顺利召开该项目由苏州国科医工牵头承担,华东光电集成器件研究所、中国科学院上海技术物理研究所、哈尔滨工业大学(威海)、东南大学、中国科学院广州生物医药与健康研究院、苏州国科视清医疗科技有限公司、中国科学院福建物质结构研究所、南京医科大学、工业和信息化部电子第五研究所共同参与,进行协同攻关。哈尔滨工业大学(威海)作为课题承担单位,负责课题三多模态活体动物宏微尺度综合成像系统光声/超声成像模块研制的科研攻关工作。图:参会人员合影现场专家及项目组成员中国21世纪议程管理中心裴志永处长、中国科学院主管业务局相关处室负责同志出席会议并讲话,中国科学院生物物理研究所韩玉刚研究员、中国仪器仪表学会分析仪器分会吴爱华秘书长作为责任专家出席会议,国科大杭州高等研究院王跃明教授、复旦大学他得安教授、哈尔滨工业大学刘绍琴教授、微光夜视技术重点实验室程宏昌研究员、西北大学樊海明教授、中国科学院国家天文台董惠琴高级会计师应邀作为专家参与项目实施方案评审。项目负责人付威威研究员、各课题负责人以及项目技术骨干等30余人参与本次会议。会议由中国科学院苏州生物医学工程技术研究所科技发展部业务主管白启帆主持。图:启动会现场项目负责人付威威研究员首先代表项目组汇报了项目的实施方案、技术路线和研究方法等。华东光电集成器件研究所、中国科学院上海技物所、哈工大(威海)、苏州国科医工、东南大学课题负责人/技术骨干分别汇报了课题的研究内容及具体实施方案图:项目负责人付威威研究员汇报图:各课题汇报专家组认为本项目的立项体现了国家对高端科学仪器的重视,就关键技术攻关、系统集成开发、应用示范、知识产权、财务管理等要点给出了建设性意见。专家组肯定了项目及课题的实施方案,一致认为项目整体实施方案内容详实,覆盖了任务书的技术指标要求,方案合理可行,风险可控,同意通过实施方案评审。图:专家组现场点评和指导中国21世纪议程管理中心裴志永处长对项目的立项获批表示祝贺,并对项目管理、经费执行等提出了要求。付威威研究员表态将认真履行好牵头单位责任,组织、推进、完成好项目任务,为高端科学仪器活体动物科学成像系统的国产替代贡献力量,并再次对各级部门、领导、专家、项目组同仁给予的支持表达了衷心的感谢。图:中国21世纪议程管理中心裴志永处长现场点评和指导哈尔滨工业大学(威海)检测与控制研究中心孙明健教授团队承担了课题三多模态活体动物宏微尺度综合成像系统光声/超声成像模块研制的科研攻关工作,将针对光声/超声高分辨率多模态硬件模块设计与搭建和光声/超声高分辨率多模态成像技术研发两个主要内容开展研究,通过光声/超声成像模块的研发实现高度集成的动物信息可视化功能,为动物成像系统获取实时精确的多模态影像服务。
  • 热烈祝贺Kodak多模态小动物活体成像系统在北京大学和天津医科大学招标中成功中标
    在4月21日的北京大学和天津医科大学小动物活体成像仪器招标中,柯达多模态小动物活体成像系统凭着先进的多模态设计理念、精湛的仪器设计、卓越的性能表现和杰出的应用支持能力,在激烈的竞争中脱颖而出,击败市场上几个主要竞争伙伴,成功中标!东胜愿意携带柯达多模态小动物活体成像系统,充分展示系统的优势和理念,与新老用户共同前进,给用户带来实质性帮助! 小动物活体成像技术,经历了生物发光一家独秀,到荧光成像五彩缤纷,到现在生物发光、荧光成像、同位素成像和X光成像协同作战的一个发展历程,到如今,多模态的设计理念已经成为小动物活体成像的技术潮流,并有将更多分子影像技术纳入这一体系的趋势,必将有更好的未来。现如今,荧光成像技术的日益成熟,多模态理念的广泛认可,小动物活体成像技术已经成为最受市场欢迎的新技术平台之一,受到各领域科研单位的热捧。国内重点高校院所的中心实验室、药学院、生科院、医学院、化学院、材料学院、大型医院放射科、分子影像中心等诸多研究单位和领域都在着手或已经配备这一技术平台。
  • 文献速递ㅣ动物活体成像系统在外泌体研究中的应用
    细胞外囊泡(Extracellular vesicles,EVs)是来源于细胞的脂质双层包裹的纳米囊泡。外泌体(Exosomes)作为EVs的一个亚型,由于具有体积较小、能跨越生物屏障、循环稳定和固有靶向性等特性,成为非常有吸引力的药物输送载体。目前对于外泌体的获取,主要是基于差速超速离心,对细胞培养上清液的外泌体进行离心分离、收集和浓缩;但是在分析外泌体的内容物、研究其功能或用于治疗应用之前,储存条件对sEVs(small EVs)特性的影响还没有完全阐明,也缺乏对不同储存条件的对比评价。▲ 典型的外泌体结构。外面由磷脂双层包围,含有对运输很重要的膜联蛋白;用于细胞靶向的四环素以及参与其他生物过程的蛋白。近日,中南大学、湖南省转化医学与创新药物工程研究中心向大雄教授课题组通过差速超速离心分离获得bEnd.3细胞来源的sEVs,并测试了保存条件对sEVs的大小、数量、蛋白质/RNA含量和与治疗应用相关的性质影响。在研究不同储存温度对sEVs在活体治疗应用的影响时,采用博鹭腾AniView100多模式动物活体成像系统进行了连续纵向检测sEVs在活体体内生物分布。结果直观清晰地显示储存会显著影响bEnd.3细胞来源的sEVs的脑靶向能力;因此,对于sEVs的治疗应用,应使用新鲜的sEVs或可在-80℃下短期保存备用。相关成果已发表在期刊《Drug Delivery》,可为未来sEVs的商业化储存提供参考。▲ 使用博鹭腾AniView100拍摄的sEVs在小鼠体内和体外器官的生物分布结果。(A) sEVs在健康小鼠体内的生物分布(B) 在小鼠主要器官的生物分布(C) sEVs在小鼠脑部生物分布比较(D) sEVs在小鼠器官中的荧光信号强度(E) sEVs在小鼠脑部荧光信号的强度参考文献:1、Wu J Y , et al. Preservation of small extracellular vesicles for functional analysis and therapeutic applications: a comparative evaluation of storage conditions[J]. Drug Delivery, 2021, 28(1):162-170.2、Kourembanas, Stella. Exosomes: Vehicles of Intercellular Signaling, Biomarkers, and Vectors of Cell Therapy[J]. Annual Review of Physiology, 2015, 77(1):13-27.AniView100多模式动物活体成像系统应用实例肿瘤学研究新药筛选评价干细胞研究病毒感染模式疫苗开发基因表达调控研究
  • PerkinElmer发布全新高通量小动物活体成像系统
    PerkinElmer发布全新高通量小动物活体成像系统IVIS® Lumina™ S5及 Lumina™ X5 顶级二维多模式成像系统帮助科学家从结构及分子层面研究疾病并开发药物 作为全球顶级的生命科学解决方案供应商,PerkinElmer正式发布了两款全新的高通量小动物活体二维成像系统 IVIS® Lumina™ S5及X5。基于先进的软硬件及智能化的成像配件,这两款成像系统能够帮助科学家更便捷、高效地开展成像实验,用于进行包括癌症、感染、免疫等多种疾病的研究。 IVIS® Lumina™ S5是第四代小动物活体光学二维成像平台,该系统在继承Lumina系列高灵敏度生物发光成像性能与专利的荧光多光谱扫描及分离(Spectral unmixing)成像性的基础上,进一步拓展成像视野,成为市场中最先进的高通量活体成像系统之一。 IVIS® Lumina™ X5除具有S5的所有功能外,还集成高分辨率X射线功能,是目前最高端的光学/X光多模式成像系统之一。 “作为一家被广泛认可的二维及三维小动物活体光学成像技术领导者,我们持续致力于为研究者带来创新性的解决方案,帮助研究者在小动物疾病模型中更深入地洞察生物学变化,”PerkinElmer 研发和分析解决方案部门执行副总裁兼总裁 Jim Corbett 表示,“我们全面的活体成像技术平台能够帮助科学家获得对疾病的更好解读并加速药物及治疗方案的开发。” 关键特性: IVIS® Lumina™ S5及X5的新特性 拓展的相机视野:研究者可同时获取更多只实验动物影像; 高通量及高分辨率X光成像; 用于影像获取及分析的智能化配件:帮助研究者更便捷地进行动物预处理及记录分析。 更多内容: IVIS® Lumina™ S5及X5是PerkinElmer IVIS Lumina™ 小动物活体二维系列成像平台的新成员。PerkinElmer公司的小动物活体成像设备及试剂已得到全球科学家的广泛应用,涉及的研究领域包括癌症、心血管疾病、神经疾病、肺部疾病、炎症及感染等。 欲了解更多关于PerkinElmer IVIS小动物活体成像系统及整体解决方案,请访问我们的网站。 关于珀金埃尔默(PerkinElmer) PerkinElmer公司作为全球领导者,一直致力于为一个更健康的世界而不断创新。全球拥有约9,000名员工,致力于为客户提供更好的体验,以帮助客户解决关键问题,特别是在诊断,探索与分析解决方案这两大市场。我们在检测、成像、信息学和实验室服务领域的创新能力,结合深厚市场积累和专业知识,帮助客户获得更超前和更准确的研究,以改善人类健康及生态环境。公司2016年收入约为21亿美元,为超过150个国家的客户提供服务,同时该公司也是标准普尔500 指数的成员。更多信息,请访问1-877-PKI-NYSE。
  • 10月高校采购意向汇总:70台套动物活体成像系统,总金额超4亿元
    近期政策利好消息推动国内高校、科研院所纷纷启动仪器设备采购工作。自国庆假期结束后,清华大学、北京大学等22所国内高校分别发布了科学仪器采购意向,据仪器信息网最新统计(截止时间2022年10月31日),总意向金额累计超过180亿元,高校科学仪器市场迎来又一波采购热潮。近年来,动物成像技术在生命科学、医药研究中发挥着越来越重要的作用,涌现出各种动物活体成像系统,为科学研究提供了强有力的工具。截至10月31日,北大、复旦等16所高校发布了动物活体成像系统的采购意向,总意向金额累计超过4亿元。兰州大学以采购总预算13001万元位居高校榜首,意向采购数量高达18套(台)。其次是北京化工大学,采购总预算达7365万元。排名第三的是中山大学,采购总预算达3940万元。另外,中南大学于10月16日发布了中南大学湘雅医学院动物实验平台采购项目,预算金额为11216万元,包含3套动物活体成像系统、2套超高频高分辨率小动物超声成像系统、1套小动物三维活体成像以及1套小动物Micro CT活体成像系统。16所高校意向采购动物活体成像系统项目详情如下:序号采购项目名称采购需求概况预算金额(万元)兰州大学1第一第二临床医学院西部高发肿瘤诊疗创新平台建设项目-小动物PET/MRI 成像仪项目详情 32002医学实验中心9.4T小动物PET/MRI采购项目项目详情 31003医学实验中心高分辨率小动物超声光声多模式成像采购项目项目详情 7634第一第二临床医学院西部高发肿瘤诊疗创新平台建设项目-小动物PET/CT成像仪项目详情 7365医学实验中心小动物PET成像系统采购项目项目详情 7346医学实验中心小动物光声成像采购项目项目详情 6707化学化工学院小动物活体成像系统采购项目项目详情 6008超高频高分辨率小动物超声成像系统采购项目项目详情 4509兰大二院超高频高分辨率小动物超声成像系统采购项目项目详情 45010医学实验中心小动物超声采购项目项目详情 45011公共卫生学院+重金属暴露与健康效应研究-IVIS Spectrum 小动物活体成像系统项目详情 38012医学实验中心宽光谱小动物活体成像系统采购项目项目详情 36013小动物活体成像系统采购项目项目详情 20014基础医学院小动物超声成像设备采购项目项目详情 20015兰大二院小动物活体成像系统采购项目项目详情 20016医学实验中心大动物CT采购项目项目详情 20017药学院高通量高灵敏小动物活体成像仪采购项目项目详情 18018基础医学院小动物视网膜成像系统设备采购项目项目详情 128共计13001中南大学1中南大学湘雅医学院动物实验平台采购项目(动物活体成像系统3套)项目详情 112162中南大学高等研究中心小动物活体三维多模式成像系统(三维光学成像和micro CT一体机)采购项目项目详情 650共计11866北京化工大学1分析测试中心小动物磁共振成像系统项目详情 14602科学技术发展研究院小动物磁共振成像系统项目详情 14603生命学院小动物磁共振成像仪项目详情 12004高分辨率小动物光声超声多模成像系统项目详情 6905低剂量小动物活体CT成像项目详情 5206全波长激光-小动物声学成像系统项目详情 5157超高频高分辨率小动物超声成像系统项目详情 4608小动物活体原位(In Vivo)细胞成像系统项目详情 4309小动物光学活体成像(二区)项目详情 21010动物磁粒子成像系统项目详情 21011近红外二区小动物活体成像系统项目详情 210共计7365中山大学1多模式小动物光声成像系统项目详情 7002化学学院小动物超声&光声二合一成像系统采购项目项目详情 6603超高分辨率小动物超声实时影像系统项目详情 5504化学学院单/双光子多模态小动物活体成像仪采购项目项目详情4505小动物活体三维断层扫描成像系统项目详情 4206小动物活体Micro-CT成像系统项目详情 4007近红外一区&近红外二区小动物全身3D光声成像系统项目详情 3608小动物活体成像(深圳校区)项目详情 2009小动物活体成像系统项目详情 200共计3940华南理工大学1自旋科技研究院购置小动物核磁共振成像设备项目项目详情 12002三维小动物活体成像系统和小动物活体MicroCT系统项目详情 6603小动物活体成像仪项目详情 3504自旋科技研究院购置小动物近红外荧光活体成像设备项目项目详情 3005近红外全景小动物活体荧光成像系统项目详情 2206小动物彩色多普勒超声成像系统项目详情 220共计2950复旦大学1小动物高场磁共振成像系统项目详情 18002小动物活体成像仪项目详情 550共计2350中国医药大学1中国药科大学小动物PET/CT项目项目详情 10002中国药科大学小动物活体光声超声多模成像系统项目项目详情 9003中国药科大学跨尺度NIR-II高分辨小动物活体成像系统项目项目详情 3004中国药科大学小动物成像系统(镜头)项目项目详情 100共计2300四川大学1高分辨活体小动物X射线断层扫描系统 In-vivo Micro CT for small animal项目详情 4502小动物活体Micro CT成像仪项目详情 3503小动物活体成像系统项目详情 3204近红外二区小动物活体成像系统项目详情 1955小动物活体成像系统项目详情 180共计1495吉林大学1三维小动物光学活体成像系统项目详情 4502小动物活体Micro-CT成像系统项目详情 4003全光谱跨尺度小动物活体成像系统项目详情 2804小动物活体光学成像系统项目详情 246共计1376北京大学1北京大学医学部小动物超光声多模态成像系统采购项目项目详情 6502小动物四模态(PET/SPECT/CT/FMT)成像系统电子模块加工集成项目详情 415共计1065华中科技大学1小动物Micro-CT成像系统项目详情 3202小动物三维活体光学成像系统项目详情 330共计650南京农业大学1小动物活体三维多模式成像系统项目详情 650山东大学1活体成像系统项目详情 480浙江大学1小动物活体成像系统项目详情 170北京师范大学1近红外二区小动物荧光活体成像系统项目详情 170东北师范大学1小动物核磁共振检测系统项目详情 170相关推荐:1.近期高校采购意向汇总:40台套分子互作分析仪,总额超1.3亿元 (点击查看)2.仅18天超2.4亿流式细胞仪采购招标!近期高校采购计划汇总 (点击查看)
  • 走出象牙塔,行走于"刀尖"|专注国产光-声多模态小动物活体成像技术——访光声科技CEO王巍博士
    近年来,光学成像技术如荧光分子成像、光声成像和生物发光成像等广泛应用于小动物活体成像。同时,多模态成像技术的兴起将多种成像技术结合,为小动物活体成像提供了更精确和信息丰富的工具。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别策划“小动物活体成像技术”主题征稿活动。本期约稿特别邀请广东光声科技有限公司CEO兼联合创始人王巍博士,就小动物活体成像技术发展、市场规模及未来趋势进行分享,并就广东光声科技研发的光声多模态小动物成像技术展开阐述,以飨读者。 本期嘉宾:王巍 CEO/联合创始人 广东光声科技有限公司王巍博士,广东光声科技有限公司CEO/联合创始人。2018年至今,就读于华南师范大学激光生命科学教育部重点实验室。从事光声成像仪器开发与落地转化,深度参与多项前沿科技项目,在光声成像技术上有多年持续的积累。2022年至今,作为广东光声科技有限公司的创始人之一,参与转化专利10余项,开发了全新的光声多模态小动物成像仪,具有丰富的产学研落地转化经验。仪器信息网:选择小动物活体成像技术赛道创业契机是什么?王巍:光声成像技术已经经过数十年的沉淀,但市场上仍没有相关成熟的光声显微活体成像仪器转化,前期已有非常多的高校和医院电话咨询我们团队,想与我们在科研领域深入合作,有一定的潜在市场空间,加之学校团队已经在这个领域积累多年,拥有非常丰富的仪器开发经验,我们已经是站在巨人的肩膀上做事,所以决定将已经积累的技术转化到市场上应用。光声成像由于它独特的成像优势,非常适合活体成像,我们是临床和科研小动物活体成像并驾齐驱在做,但由于临床转化时间较长,又由于科研市场的迫切需求,所以我们率先开发了光声多模态小动物成像系统,积累市场口碑。仪器信息网:从学生到创业者的身份转变感受如何?王巍:学生是生活在象牙塔里边的一类人群,可以不断试错,背后有导师和学校在托举,可以犯错,可以不断积累经验。但创业者是走在“刀尖”上的一类人,在资金有限的情况下,需要准确判断、坚定执行、承担后果。所以大多数创业者都会觉得创业难,所以需要不忘初心,保持热情,在已经竞争得白热化的相关赛道里,找到自己的出路,或是直线超车,或是弯道超车。具体来说有两难:对于一项新的医疗影像技术面世来说,首先就是大多数创业者所说的“难”,而我们是“难上加难”。我们的技术既具有颠覆性、又具有时效性,一项新的医疗影像技术走向成熟有很长的路要走,他既需要重新建立诊断标准又需要颠覆原有影像诊断的方法和习惯,这是第一难。第二难就是,资金雄厚的大厂要追逐我们的进度甚至赶超我们的进度,我们守擂难,同时我们也面临着国外品牌原有市场的竞争,我们打擂难。仪器信息网:请介绍一下小动物活体成像技术的发展历史。王巍:小动物活体成像技术的发展经历了几个关键阶段。在20世纪50年代到70年代,研究人员开始利用X线和放射性同位素示踪技术对小动物进行成像。随后,20世纪80年代后期,放射性示踪技术的进展引入了PET和SPECT等新方法。到了20世纪90年代以后,生物荧光分子标记技术如荧光素二酮-荧光素酶体系的开发,为研究人员提供了检测生物标记物的荧光信号来研究小动物体内生物进程的能力。近年来,光学成像技术如荧光分子成像、光声成像和生物发光成像等广泛应用于小动物活体成像。同时,多模态成像技术的兴起将多种成像技术结合,为小动物活体成像提供了更精确和信息丰富的工具。这些进展使得小动物活体成像技术成为研究人员观察小动物体内生理、病理过程和药物疗效等方面的重要非侵入性和高分辨率工具。仪器信息网:请分析下当前全球及中国小动物活体成像分析系统市场规模及现状。王巍:小动物活体成像技术是指应用成像方法对活体状态下的组织、细胞、分子水平的生物过程进行定性和定量研究。根据最新调研报告显示,预计2029年全球小动物活体成像系统市场规模将达到1.48亿美元,未来几年年复合增长率CAGR为4.1%。全球范围内小动物活体成像系统生产商主要包括Perkin Elmer、Idexx Laboratories、Aspect Imaging、Fujifilm Visualsonics、Trifoil Imaging、Bruker、Photon、Sunny Optical、Spectral Instruments Imaging、MILABS等。2022年,全球前五大厂商占有大约54.0%的市场份额。目前,全球核心厂商主要分布在欧美地区。就产品类型而言,目前光学成像是最主要的细分产品,占据大约66%的份额。就需求来源而言,目前实验室是最主要的需求来源,占据大约78%的份额。仪器信息网:如何看待小动物活体成像技术的壁垒以及国产化替代?王巍:技术壁垒主要集中在以下几个方面:1. 技术创新:小动物活体成像技术发展较为成熟,因此企业需要在技术上进行创新,开发更加先进、创新的成像技术和仪器。2. 设备制造:小动物活体成像仪器制造较为复杂,根据不同的成像技术需要采用不同的材料和工艺,如何保证设备质量和稳定性是制造方面需要考虑的重要问题。3. 市场定位:小动物活体成像市场规模较小,且市场需求不稳定,企业需要准确把握市场动态和技术趋势,发掘更多的市场机会。针对小动物活体成像国产化替代的问题,对于国产企业而言:1. 技术创新:通过技术创新和开发新型成像技术,提升设备分辨率、灵敏度和深度等性能指标,满足不同用户的实验需求。2. 降低成本:加强设备制造流程优化和效率提升,提高设备制造质量和效率,并且适当降低设备价格,提高市场竞争力。3. 市场营销:积极开展市场调研和推广,抓住市场机遇,开拓新的市场空间,根据市场需求提供个性化解决方案。总的来说,小动物活体成像市场仍处于初级发展阶段,市场空间较小,但在科研、药物开发等领域具有广阔的应用前景。通过技术创新和市场拓展,国产企业有望在小动物活体成像领域取得更大的突破。仪器信息网:如何看待当前中国小动物活体成像仪器市场,随着国产初创创新企业的不断涌现,应该如何进行差异化竞争?王巍:当前中国小动物活体成像仪器市场呈现出持续增长的趋势,随着国内初创企业的兴起,市场竞争也日益激烈。在面对这种情况下,差异化竞争是一种有效的策略。技术创新:通过不断进行技术创新,提供更加先进、创新的成像技术和仪器。例如,开发更高分辨率、更高灵敏度的成像设备,探索新的成像模式和应用领域,以满足用户的不同需求。产品特色:打造独特的产品特色和品牌形象,例如独特的设计风格、人性化的操作界面、多样化的附加功能等,以吸引用户的关注并增强产品竞争力。客户定制化:积极倾听客户需求,提供个性化的解决方案和服务。与客户密切合作,了解其实验需求并根据其特定需求进行定制开发,建立长期良好的合作关系。服务体验优化:注重客户体验,提供全方位的售前、售中和售后服务。包括产品培训、技术支持、设备维护等,以提升客户的满意度和忠诚度。仪器信息网:目前贵司主推的小动物活体成像产品有哪些?并谈谈该产品的核心竞争力。王巍:作为光声科技最核心的产品技术,光学/光声/超声三模态成像是集合了光学显微成像,⾊素、⾎管等内源性光吸收物质的光声成像,以及声阻抗差异的超声成像于⼀体的三模态活体⼩动物成像系统。光声科技更多核心技术优势如下:1、 实现微⽶级分辨率@毫⽶级成像深度在⽆需造影剂的情况下,仍然可以对3 mm内的组织结构进⾏微⽶级的⾼分辨率成像,并根据软件实时显⽰调整焦点的位置。2、强大的三维图像信息逐层解析功能通过实时⼆维断层数据的显⽰叠加,进⼀步获取局部组织的三维结构图像,使⽤数据处理软件,可进⼀步对⼆维以及三维图像进⾏分析。3、可实现⽆创⾮标记成像成像部位只需要涂抹少量⽔(耦合剂)对信号进⾏匹配,⽆需注射造影剂即可实现测试部位的⽆创成像。4、专属加热-麻醉⼀体化⼩动物固定台专⻔为更好的保护模型动物⽽设计的加热-⿇醉⼀体化装置。5、可定制光源的成像系统光声科技可根据不同需求,定制相应单波⻓,多波长,可调谐波⻓光源的成像系统。仪器信息网:光声科技小动物活体成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?王巍:光声多模态小动物成像仪适用于广泛的生物医学研究领域,包括但不限于:1、肿瘤生长过程监控 应⽤光声多模态⼩动物成像仪,实现了小鼠耳部肿瘤滋养血管生长情况的监控,验证了肿瘤滋养血管的弯曲度、密度、深度与肿瘤生长时间的关系。 2、 肿瘤治疗过程监控应⽤光声多模态⼩动物成像仪,实现了小鼠部肿瘤光动⼒ (PDT)治疗过程中滋养⾎管消融情况的监控,揭示了肿瘤滋养⾎管的弯曲度、密度深度与PDT治疗时⻓的关系。3、⼩动物脑功能成像应用光声多模态⼩动物成像仪,实现了小鼠部深处血管“缺血-再灌注”的动态监控,展⽰了本仪器在脑血管理基础研究中的⼴阔应⽤前景。4、评估皮损血供程度应用光声多模态⼩动物成像仪,实现了小鼠全腿及背部⾎供程度的评估,突破了影像技术对于评估损伤组织⾎供程度的瓶颈,提高了快速手术干预的可能性。5、活体动物虹膜、巩膜成像应用光声多模态⼩动物成像仪,能够实现对活体⼩动物 (如小鼠) 及⼤动物(如兔)眼部虹膜及巩膜⾎管⽹成像。6、 特殊波⻓的肿瘤特异性光声成像 (定制版) 可定制光声多模态⼩动物成像仪,利⽤特异性纳⽶探针,针对性的提高肿瘤区域对于特殊波长光声成像信号幅值,实现大深度、⾼灵敏度的肿瘤特异性光声成像。此外,更多应用如乳房肿瘤标本⽆标记成像;早期⿊⾊素瘤肝微转移的⽆标记成像;动态监测缺⾎性脑卒中早期的结构和功能变化;对缝合损伤前后活体⼤⿏眼的多模态成像观测;活体动物视⽹膜、脉络膜、虹膜、巩膜成像;肝脏中细胞的标记成像...... 目前光声多模态小动物成像技术已协助北京科技大学、北京理工大学、浙江大学第一附属医院、海南大学、广东省人民医院、广州医科大学附属六院、香港理工大学、赣南医学院等十余家科研院所与医院完成了相应的科学研究。仪器信息网:请点评小动物活体成像技术路线的各自差异、特点和优势?王巍:不同的方法在成像原理和方法上有着独特的差异,每种技术路线都拥有其独特的优势和适用领域。非侵入性成像技术(如X光/CT、MRI):- 特点:非侵入性成像技术通过引入无创成像方法,可以提供高分辨率的解剖结构图像。这些方法依赖于动物体内对X射线或磁场的响应来生成图像。- 优势:非侵入性成像技术对于观察和分析小动物器官和组织的解剖结构非常有帮助。它们能够提供三维图像,从而促进对生物学结构和病理变化的研究。荧光成像技术(如荧光分子成像、荧光蛋白成像):- 特点:荧光成像技术通过标记生物分子或细胞,利用其自发发光或与特定荧光探针的相互作用,实现对生物活性和荧光信号的直接可视化。- 优势:荧光成像技术具有高灵敏度、实时成像和多模态成像的能力。这些技术在研究生物过程、疾病发展和药物疗效等方面非常有用。核素成像技术(如PET、SPECT):- 特点:核素成像技术利用放射性同位素标记分子,并检测其放射性信号来获得图像。这些技术侧重于分析生物分子的生物分布和代谢过程。- 优势:核素成像技术具有高灵敏度、定量性和组织穿透能力。这些特点使它们在研究生物分子的动力学和代谢过程方面发挥重要作用。光声成像技术:- 特点:光声成像技术结合了超声波和光学相互作用,实现了显微镜级的分辨率和组织深度成像。该技术通过检测生物组织对激光脉冲的吸收来生成图像。- 优势:光声成像技术具有高对比度、高分辨率、无创和实时成像等优势。这些特点使其在研究血流动力学、肿瘤学和神经科学等领域有广泛应用。王巍认为,研究人员需根据其研究目标和需求选择适合的成像技术,同时多种技术的结合也可以提供更全面的图像信息,进一步加深对生物过程和疾病机制的理解。仪器信息网:未来小动物活体成像技术发展趋势如何?最看好哪些应用细分?王巍:未来小动物活体成像技术有望在以下方面取得进一步的发展:首先是多模态成像:未来的发展趋势之一是将不同的成像技术进行整合,实现多模态成像。多模态成像可以提供更丰富的信息,帮助研究人员深入研究生物过程和疾病机制。第二,基于机器学习的图像分析:随着机器学习和人工智能的快速发展,将其应用于小动物活体成像图像的分析将成为未来的重要方向。通过训练算法来自动分析和解释图像数据,有助于减少主观误差和提高研究效率。第三,高分辨率和实时成像:未来的成像技术将不断追求更高的分辨率和更快的成像速度。这将使研究人员能够观察动态生物过程和细微的结构变化。还有就是分子成像:分子成像是一种可以直接可视化和研究生物分子活动的技术。将分子成像与其他成像技术相结合,可以实现对生物分子的定量分析和动态跟踪,从而深入理解生物过程和疾病机制。在应用细分上,以下几个领域可能受益于小动物活体成像技术的发展:① 癌症研究:小动物活体成像技术在肿瘤生长、转移、治疗效果评估等方面具有重要应用。未来的发展将促进对肿瘤的早期检测、动态监测以及个体化治疗的研究。② 药物研发:活体成像技术可以在研发新药过程中发挥关键作用,帮助评估药物在动物体内的分布、代谢和药效,以及药物对疾病模型的治疗效果。③ 神经科学:小动物活体成像技术对于研究脑神经回路、神经变性和神经药理学等方面具有重要意义。未来的发展将推动对大脑功能和疾病机制的深入了解。④ 免疫学研究:小动物活体成像技术可以帮助研究人员观察和评估免疫细胞的活动和相互作用。这对于理解免疫系统的功能和疾病中的免疫反应具有重要意义。但需要注意的是,以上仅为一些可能受益于小动物活体成像技术发展的应用细分,具体的发展趋势和应用领域还需要进一步的研究和实践验证。仪器信息网:贵司小动物活体成像分析系统的发展历程是怎样的?有哪些里程碑事件?王巍:广东光声科技有限公司(下简称光声科技)成立于2022年,技术来源于华南师范大学激光生命科学教育部重点实验室,公司的研发团队有着十余年的光声成像设备研发经验,50%以上具有相关学科博士学位。光声科技专注于光声成像科研与医疗设备的科技成果转化与落地,现拥有单波长(532 nm)、双波长(532+1064 nm)、多波长(可调谐波长)光声成像活体动物科研系统的自主研发能力,并且还整合了光学显微镜及超声显微镜成像技术,形成了一套以光声成像为主的多模态活体成像体系,可为医学与基础科研领域中的肿瘤消融与药物代谢研究、脑科学研究、动物体浅表微循环研究、神经药理研究等一系列前沿领域提供精准、高端、全面的成像设备与成像服务。公司成立一年来,先后被评为“科技型中小企业”、获批佛山市南海区“蓝海人才计划”A类项目,进入佛山市科研仪器开放共享平台。光声科技自成立以来一直以创新和产品协同发展的理念经营,突破了多项技术难题,产品广受各大科研院所与医院的青睐:光声科技的发展里程碑:2022年3月,成立广东光声科技有限公司;2022年10月,首款双波长(532+1064nm)光声小动物成像系统正式面世;2022年12月,首款多模态(光学+光声+超声)光声小动物成像系统正式面世,与北京科技大学、北京理工大学、浙江大学第一附属医院等多家高校和医院参与论文研究,产品性能与售后服务,得到了用户和市场的广泛认可;2023年1月,首台光声多模态小动物成像系统中标;2023年5月,光声多模态皮肤影像系统样机落地,标志着光声科技正式步入精准皮肤临床研究领域;2023年7月,首款搭载散斑成像的光声多模态小动物成像仪中标,展示了光声科技扎实的科研能力与技术整合能力,为活体成像研究领域的仪器开发找到了新的思路。2023年8月至今,光声科技始终坚持多模态成像理念,开发了多款应用于皮肤疾病研究的成像系统。仪器信息网:请介绍一下光声科技的融资情况以及当前企业发展面临的问题和挑战。王巍:通过各级政府牵头举办的创新创业类赛事,公司已经积累非常多的潜在投资人的意向投资,投资人较为倾向类似于光声成像这类新兴的影像技术衍生出的影像设备。公司目前正在稳步跟进投资,预计半年后将实现1000万元的天使轮融资,这部分资金主要用于团队拓展、医疗器械证照及仪器迭代更新。仪器信息网:请谈一谈贵司未来3-5年的发展规划和布局。王巍:公司未来3-5年将稳步推进光声多模态活体小动物成像仪器的更新与迭代,注重成像速度与成像深度的指标优化。同时,公司未来五年内将推出国内首款应用于皮肤临床的光声多模态皮肤影像系统,将光声成像技术应用于皮肤疾病的诊断、治疗状态评估等方向。并且,公司还会发挥自身光学学科及声学学科优势,打造一些列衍生的应用于皮肤临床的光学、声学成像仪器,打造皮肤影像学新纪元。
  • 文献速递ㅣ动物活体成像系统在纳米医学领域中的应用一
    全文字数:1852阅读时间:6分钟● 快讯近日,湘雅二医院药学部湖南省转化医学与创新药物工程技术研究中心向大雄教授团队在纳米医学领域取得系列研究成果,在国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)及《Journal of Controlled Release》(IF=9.77,JCR1区)上连续发表两篇研究性论文。两篇论文第一作者及通讯作者单位均为中南大学湘雅二医院,向大雄教授为通讯作者,团队2018级博士研究生吴军勇、2019级博士研究生李泳江为共同第一作者。文章一图1|国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)三阴性乳腺癌含有致密的肿瘤基质,是药物渗透和细胞毒性T淋巴细胞浸润的主要障碍,因此化疗和免疫治疗通常难以发挥作用。研究发现中性粒细胞弹性蛋白酶能快速破坏致密的细胞外基质,克服肿瘤基质屏障,使药物或免疫细胞进入肿瘤内部发挥作用。然而游离的弹性蛋白酶缺乏靶向性,因此向大雄教授团队开发了嵌合肿瘤细胞膜蛋白的仿生脂质体(LMP),并在表面结合弹性蛋白酶(NE-LMP),利用肿瘤细胞膜蛋白同源靶向及渗透与滞留效应(EPR)可以有效将NE靶向至小鼠原位乳腺癌内部并降解肿瘤基质。与紫杉醇及与PD-1免疫检查点抑制剂联合应用表现出显著增强的化学-免疫协同疗效,显著延长了小鼠的生存期。同时,这一联合应用策略还可以明显抑制肿瘤肺转移。文章中,标记DiR的NE-LMP在原位乳腺荷瘤小鼠中的生物分布和肿瘤靶向作用的活体实验成像,使用了广州博鹭腾AniView100多模式动物活体成像系统拍摄。活体结果显示DiR标记的NE-LMP在给药后很快到达肿瘤部位(2小时),并在8小时积累最多;体外器官结果显示DiR标记的NE-LP也到达肿瘤部位,但荧光强度不如DiR标记的NE-LMP,证明了NE-LMP的优越肿瘤靶向作用。图2|NE-LMP的生物分布(A) NE-LMP和NE-LP的体内生物分布和肿瘤靶向作用(B) NE-LMP和NE-LP的体外生物分布(C) 体外组织中荧光强度的量化目前上市用于临床的纳米载体大部分是脂质体,向大雄教授团队利用简单易制备的脂质体作为核心,表面嵌合特殊功能蛋白,这是一种“自下而上”的组装思路,具有前沿的创新性和实用性。图3|用于增强肿瘤化学免疫治疗的膜蛋白弹性蛋白酶结合仿生脂质体的制备示意图文章二图4|国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)多形性胶质母细胞瘤(GBM)是恶性程度最高的脑部肿瘤,目前缺乏有效的治疗方式,常规的化疗药物难以跨越血脑屏障(BBB)发挥作用。外泌体(Exos)是由细胞分泌,粒径在30-150nm的纳米囊泡,作为药物载体具有多种优势。脑微血管内皮细胞是BBB主要组成成分,其分泌的外泌体可以跨越BBB,用其载药可以将药物递送至脑内。然而,Exos提取纯化过程较为繁琐,产量较低,作为药物载体极大限制了应用。为了弥补这一缺陷,向大雄教授团队采用连续挤压细胞的方式生产仿生纳米囊泡(BNVs),其具有与Exos相似的粒径、外观和蛋白表达。本研究将Exos和BNVs进行深入比较,在脑部肿瘤的药物递送中进行了直接对比。结果表明,来源于脑微血管内皮细胞的BNVs是天然Exos的合格替代品。二者的载药能力相似,但BNVs的产率是Exos的500倍。携带阿霉素的天然Exos和BNVs在斑马鱼和体内皮下/原位异种移植小鼠肿瘤模型中表现出良好的抑瘤作用。文章中,评估和比较Exos和BNVs在小鼠肿瘤模型中脑肿瘤靶向能力的活体实验成像,使用了广州博鹭腾AniView100多模式动物活体成像系统拍摄。尾静脉对原位GBM小鼠注射给予DiR标记的Exos、BNVs或游离DiR,并在注射后6小时、12小时和24小时使用AniView100拍摄获得小鼠体内和体外器官荧光图像。结果显示DiR标记的Exos和BNVs在6小时达到GBM,并在24小时积累更多,而游离DiR在大脑中没有显示荧光信号,表明Exos和BNVs都可以突破BBB并靶向大脑中的肿瘤部位。图5|Exos和BNVs的生物分布和肿瘤靶向作用(A) Exos和BNVs在GBM小鼠中的体内生物分布(n=3)(B) Exos和BNVs在原位GBM小鼠中的体外生物分布(n=3)。H:心脏;S:脾;K:肾脏;B:大脑;GI:胃肠道(C) 原位GBM小鼠中Exos和BNVs的脑分布(n=3)鉴于自体来源的BNVs的低免疫原性、高产量等特性,可将其作为纳米医学中有效的Exos替代物,以克服Exos制剂研究过程中难以扩大生产的缺陷。图6|文章图形概要恶性肿瘤是严重危害人类健康的重大疾病,近年来。发病率和死亡率逐年上升,而临床常规的治疗方式(化疗、放疗、免疫治疗)特异性差,毒副作用较大,使用常受到限制。精心设计的纳米载体可以实现肿瘤的准确靶向,用以调控肿瘤的微环境或杀灭肿瘤细胞,达到减毒增效,然而常规的有机或无机纳米载体属于外源性材料,常引起机体的免疫响应,易被吞噬而失去效果。鉴于此,向大雄教授团队近年来着眼于仿生纳米递药系统研究,设计了一系列以外泌体、囊泡、细胞膜和蛋白等内源性材料为基础的纳米载体,实现了肿瘤的准确治疗。文献链接:https://doi.org/10.1016/j.jconrel.2021.07.004https://doi.org/10.1002/adhm.202100794博鹭腾助力科研实验
  • 发布FOBI整体荧光成像系统,小动物活体成像系统新品
    FOBI整体荧光成像系统可以对动植物体发出的荧光信号进行采集成像。FOBI内置四种不同的荧光通道(蓝、绿、红、红外),应用于各种荧光蛋白和染料的标记分析。能快速实时得到直观、高品质的图像和视频。1、应用范围广:肿瘤、免疫、药物开发等生命科学领域各个都可应用;荧光成像信号强,曝光时间短,无须事先转染荧光素酶基因,在活体成像研究中比生物发光成像应用更广。2、实时:曝光时间短,成像快,可实时进行动物手术操作。3、真彩色:使用彩色CCD图像传感器,能获得全方位真彩色图像,对比度更高,图像更清晰。4、操作简单,功能实用:信号背景一键消除,软件界面简洁无复杂操作过程;可录制视频用于回顾分析和教学;仪器可改装用于较大动物。5、数据准确:采用LED散漫光光源,光均匀性好,信号采集误差小;软件去除荧光背景保证数据准确。6、小巧方便:仪器整体结构紧凑,体积小,重量轻,占用空间小,可自由选择实验场地,省去转移动物的麻烦。7、价钱便宜,维修成本低:采用实用的仪器部件和功能,节省成本,可自行选择仪器配置。8、用户多,有大量文献支持 :已有100多篇SCI文章发表,包括Cell等高分期刊。创新点:(1)相比其它产品的伪彩处理,FOBI是真正意义上的真彩色图; (2)仪器整体结构紧凑,性能稳定,体积小,重量轻,占用空间小; (3)软件自带的一键扣除荧光背景信号和荧光定量分析功能,可在成像过程中实时分析图像的相对荧光强度和荧光区域的面积; (4)专为荧光成像应用设计; (5)无论成像质量和文章发表数目均在专做荧光成像的同类产品中处于领先水平。 FOBI整体荧光成像系统,小动物活体成像系统
  • 速来!活体成像小动物模型开发+数据分析干货分享,锁定iSAI2024
    动物模型在临床前抗肿瘤药物评价体系中发挥着重要的作用。肿瘤动物模型的建立为研究肿瘤发生与转移的机制、筛选和评价抗肿瘤药物的药效提供了有力的工具。一般啮齿类动物小鼠,因为其具有繁育速度快,成本低,可进行基因修饰等诸多优点,基于其构建的各类肿瘤模型构成了临床前治疗性药物筛选的主要工具,而小动物活体成像数据分析被称为连接医学影像与生物医学的重要桥梁。仪器信息网将于2024年6月6日举办“第一届小动物活体成像技术与前沿应用”主题网络研讨会(iSAI2024),全日程现已公布(点击查看)。精彩报告提前知晓!本文为【动物模型开发/数据分析篇】,大会当天将由上海南方模式生物科技股份有限公司经理/副研究员慈磊博士与中国科学院高能物理研究所高级工程师聂彬彬博士两位嘉宾分别就活体成像小动物模型的开发、动物脑成像数据分析及应用展开报告,欢迎踊跃报名参加在线直播!参会报名链接二维码:https://www.instrument.com.cn/webinar/meetings/sai240606.html ——03 动物模型开发/数据分析篇——关键词:基因工程小鼠、脑影像数据分析慈磊 经理/副研究员上海南方模式生物科技股份有限公司个人简介:南模生物工业客户部经理,副研究员,同济大学生物学博士,已授权发明专利5项,发表SCI论文10余篇。主要从事小鼠疾病模型构建以及药效评价研究,具有多年肿瘤以及自免类药效模型构建及CRO服务经验,目前负责主持南模生物各类抗肿瘤以及炎症类药物临床前研究项目。大会报告:活体成像小动物模型的开发与应用通过构建报告基因小鼠模型,利用小鼠特异性启动子调控荧光素酶报告基因的表达,结合光学成像系统实时采集小鼠发出的荧光信号,进而追踪活体小鼠中该内源基因的表达。该基因工程小鼠不仅有助于建立针对治疗药物的临床前筛选平台,还可以明确这些基因表达的细胞类型,具有基础科研和临床应用的双重价值。聂彬彬 高级工程师中国科学院高能物理研究所个人简介:中国科学院高能物理研究所,高级工程师,课题组长。中国图学会医学图像与设备专业委员会秘书长;中华医学会核医学分会神经学组委员;中国生物医学工程学会放射学会青年委员会委员。多年来主要从事医学影像数据分析方法的研究及应用工作,作为课题负责人承担了国家自然科学基金四项,中国科学院青年项目一项;作为主要参与人参与了中国科学院先导专项一项,973课题两项,发表SCI论文百余篇。其建立的动物脑成像数据分析平台能够对多种成像模态的猕猴,树鼩,大鼠,小鼠的脑成像数据进行不同的数据处理,该软件平台于2014年起通过邮件注册的方式对外发布,截至目前,已经有150余家国内外单位注册使用。大会报告:动物脑成像数据分析及应用磁共振成像技术和正电子发射断层成像技术能够对动物进行在体成像,能够在正常的生理状态下观察动物的脑结构形态、脑功能活动、脑白质纤维束形态及走向等等,在重大脑疾病的发病机理、药物评估中具有不可替代的作用。脑影像的数据分析是连接医学影像与生物医学的重要桥梁,该报告主要介绍了动物脑成像研究中常用的数据分析方法及应用示例。点击获取稿件提纲为帮助广大实验室用户及时了解小动物活体成像前沿技术、创新产品与解决方案,增强业内专家与仪器企业之间的交流学习,仪器信息网特别组织策划“小动物活体成像技术” 主题约稿活动。欢迎投稿,投稿文章一经采纳,将收录至【小动物成像技术】专题并在仪器信息网相关渠道推广。投稿邮箱:刘编辑liuld@instrument.com.cn电话联系:13683372576(同微信)。
  • 文献速递|动物活体成像系统在纳米医学领域中的应用
    ● 快讯近日,同济大学医学院-纳米院李永勇教授团队在纳米医学领域取得新的研究成果,在国际知名期刊《Biomaterials》(IF=12.479,JCR1区)上发表研究性论文。图1|国际知名期刊《Biomaterials》(IF=12.479,JCR1区)新抗原长肽疫苗(NeoVax)具有扩大和拓宽肿瘤特异性细胞毒性T淋巴细胞(CTL)反应的潜力,成为对抗多种肿瘤类型的希望。然而,外源抗原会被体内的内溶酶体捕获,进而限制在抗原提呈细胞(APCs)中的胞浆递送,导致抗原的交叉呈递效率低下,无法对癌症进行有效的CTL反应。研究表明,获得性免疫系统可以通过激活NADPH氧化酶2(NOX2)复合体产生脂质氧化作用,使得外源抗原逃逸内溶酶体,进而赋予APCs促进外源抗原交叉呈递的能力。但是,NOX2激活的确切机制尚不清楚,阻碍了安全有效的干预策略的发展。受NOX2机制的启发,李永勇教授团队设计了一种名为NVscp的生物矿化纳米疫苗。NVscp通过在模型抗原卵清蛋白(Ova)自组装的纳米疫苗(Nvs)上原位生长过氧化钙而发展起来,具有超高的Ova抗原密度,并含有必要的过氧化钙佐剂(8.9%)。过氧化钙佐剂响应内溶酶体的酸性环境,触发ROS的释放,进而形成脂质氢过氧化物,导致内溶酶体脂质过氧化。因此,NVscp被赋予内溶酶体逃逸能力,以实现抗原交叉提呈的胞浆转运。体内实验表明,NVscp的大小可以有效地滞留在引流淋巴结(dLNs)中,从而增强不同的APCs(特别是髓窦巨噬细胞(MSMs,F4/80+CD169+))和树突状细胞(DCs,CD11c+F4/80-)的抗原交叉提呈,有效地促进肿瘤特异性CD8+CTL和CD4+T辅助细胞(Th1细胞)的激活,用于癌症免疫治疗。图2|NVscp的形成和NVscp诱导肿瘤免疫治疗机制的示意图文章中,评估NVscp在小鼠体内淋巴结的累积活体实验成像,使用了AniView100多模式动物活体成像系统拍摄。于小鼠关节皮下注射FITC标记的NVs和NVscp,在不同时间点采集腹股沟淋巴结(ILNs)荧光信号。结果显示Hock注射4h后,NVs和NVscp在病灶内迅速积累,两组荧光信号强度无差异。然而,NVs的荧光在注射24h后迅速减弱。对两组荧光信号强度定量分析,显示NVscp组的抗原积累大约是NVs组的2.8倍,猜测NVscp的积累增强可能与过氧化钙有效修饰后纳米疫苗的物理化学性质(表面电荷和组成)的改变有关。图3|NVscp在小鼠体内淋巴结累积的情况a、注射后2、4和24小时解剖ILNs的体外荧光图像b、对皮下注射后不同时间点ILNs的荧光强度进行量化,来测量疫苗动力学长期以来,癌症严重威胁人类健康和生命安全,在治疗癌症的过程中,疫苗发挥了举足轻重的作用。基于大多数蛋白质/多肽结构都含有促进钙生物矿化的羧基,受NOX2机制的启发,李永勇教授团队构建了一种有前途的技术手段,用于改善各种癌症疫苗模式的交叉呈现,包括多肽和蛋白质疫苗等无细胞平台。考虑到它的方便性、有效性和生物相容性,未来可能被广泛应用于癌症治疗。参考文献:1、https://doi.org/10.1016/j.biomaterials.2021.121089
  • 预算超1.72亿!11月高校48项动物活体成像仪采购意向汇总
    随着2000亿贴息贷款东风吹向全国各所高校单位,瞬间点燃了第四季度高校科学仪器市场。据统计,11月全国高校仪器采购热潮中共有48项动物活体成像仪采购意向,涉及清华、复旦、同济等18所高校,累计预算金额超过1.72亿元。复旦大学以采购总预算4310万元位居榜首,意向采购数量高达10台(套)。紧随其后的是同济大学,采购总预算3420万元,拟采购数量为7台(套)。清华大学排名第三,采购总预算1463万元,拟采购数量为5台(套)。18所高校意向采购动物活体成像仪项目详情如下:序号项目名称采购单位预计采购时间采购需求概况预算金额(万元)1高分辨率X射线活体显微断层成像系统复旦大学2022-12意向原文3502活体动物体成分定量检测仪复旦大学2022-12意向原文1603近红外II区活体荧光成像复旦大学2022-12意向原文2204红外自适应光学活体成像系统复旦大学2022-12意向原文6805高分辨率X射线活体显微断层扫描成像系统复旦大学2022-12意向原文4006活体小动物全脑成像系统复旦大学2022-12意向原文6507活体鼠脑深穿透高分辨钙成像多光子系统光源复旦大学2022-12意向原文2008高通量小动物活体成像与分析仪复旦大学2022-12意向原文3209活体成像共聚焦双光子显微镜复旦大学2022-12意向原文68010小动物活体三维多模式成像系统采购复旦大学2022-12意向原文650合计431011小动物活体Micro-CT成像系统同济大学2022-12意向原文30012小动物活体三维多模式成像系统同济大学2022-12意向原文65013小动物活体Micro-CT成像系统同济大学2022-12意向原文42014小动物活体三维多模式成像系统同济大学2022-12意向原文65015小动物活体三维多模式成像系统同济大学2022-12意向原文65016小动物活体三维活体成像系统同济大学2022-12意向原文40017小动物活体Micro-CT成像系统同济大学2022-12意向原文350合计342018高分辨X射线活体显微断层成像系统清华大学2022-12意向原文30019高速高分辨率三维活体显微系统清华大学2022-12意向原文35020头戴式单光子结合光遗传微型显微成像系统(小鼠活体钙成像2)清华大学2022-12意向原文11021头戴式小鼠活体钙成像(小鼠活体钙成像1)清华大学2022-12意向原文20722活体三位多模式功能结构二合一影像系统清华大学2022-12意向原文496合计146323全光谱激光活体成像系统华东师范大学2022-11意向原文23024小动物活体成像系统华东师范大学2022-11意向原文39025小动物活体成像设备华东师范大学2022-11意向原文50026高通量活体动物荧光筛选系统华东师范大学2022-11意向原文139合计125927小动物活体成像浙江大学2022-12意向原文17028小动物活体三维多模式成像系统浙江大学2022-12意向原文68029小动物活体成像仪浙江大学2022-12意向原文16230活体成像仪浙江大学2022-12意向原文160合计117231三维活体成像仪大连理工大学2022-11意向原文42532小动物活体Micro-CT成像仪大连理工大学2022-11意向原文365合计79033TX-小动物活体原位细胞动态分析成像系统华中科技大学2022-12意向原文49034TX-小动物活体光学(1区+2区)成像系统华中科技大学2022-12意向原文280合计77035生命医学实验平台--近红外二区小动物活体荧光成像系统东北大学2022-11意向原文16036生命医学实验平台--小动物活体micro CT成像系统东北大学2022-11意向原文549合计70937小动物活体成像系统湖南大学2022-12意向原文15038小动物高分辨率活体超声成像系统湖南大学2022-12意向原文450合计60039小动物活体光学成像系统东华大学2022-12意向原文19040近红外二区小动物活体成像系统东华大学2022-12意向原文160合计35041活体原位动态分析成像系统上海交通大学2022-12意向原文72042高分辨X射线活体显微断层成像系统东南大学2022-12意向原文38043小动物活体光学成像系统北京大学2022-12意向原文37544小动物活体Micro CT成像仪四川大学2022-12意向原文34545小动物活体光学成像系统天津大学2022-11意向原文16046近红外二区荧光活体成像系统北京理工大学2022-12意向原文15047小动物活体成像厦门大学2022-12意向原文15048小动物活体成像吉林大学2022-12意向原文120共计17243附:10月高校采购意向汇总:70台套动物活体成像系统,总金额超4亿元(点击查看)为帮助大家及时了解国内高校科学仪器市场需求,仪器信息网特别开设#高校仪器采购品类盘点 话题,汇总了各所高校重点仪器品类采购最新动态。点击图片,带走商机!
  • 文献速递|动物活体成像系统在纳米医学领域中的应用
    ● 快讯近日,同济大学附属东方医院乳腺肿瘤科主任董春燕教授课题组联合化学科学与工程学院石硕教授课题组开展了跨学科合作研究,证明纳米制剂可以用于三阴性乳腺癌(TNBC)的联合治疗,针对TNBC的多种治疗方式是一种创新的策略。相关研究成果已发表在国际知名期刊《Small》(IF: 13.3,JCR1区)。图1|国际知名期刊《Small》(IF: 13.3,JCR1区)传统的化疗具有肿瘤多药耐药性和非靶向毒性,不能显著改善TNBC的预后,且TNBC极具侵袭性和转移性,因此,迫切需要在TNBC治疗中寻找具有独特作用模式的治疗药物。铁下垂(Ferroptosis,又名铁死亡)是一种新的非凋亡性细胞死亡方式,由铁依赖的毒性过氧化脂质(Lipoid-ROS)积聚所致。由于其在杀死癌细胞方面的有效性,最近受到了广泛的关注,但是细胞内Fe2+含量不足严重影响了其效果。研究表明,谷胱甘肽过氧化物酶4(Gpx4)也可引起铁下垂。直接使用Gpx4抑制剂(如ML210)消耗谷胱甘肽,将使得Gpx4失活,最终引起过氧化脂质(LPO)大量生成,导致细胞铁死亡。博莱霉素(BLM)是一种糖肽类抗生素,与Fe2+等氧化还原活性金属离子结合后具有独特的抗癌活性,成为治疗多种人类恶性肿瘤的有效抗癌药物。然而其对正常组织的高毒性,尤其是对肺的毒性,使其在癌症治疗中的进一步临床应用仍具有极大的挑战性。为了更好的治疗TNBC,董春燕教授和石硕教授课题组跨学科合作研究,提出了多种治疗方式协同治疗TNBC的新策略。通过将单宁酸(TA)、BLM和Fe3+形成的金属-酚类网络与负载Gpx4抑制剂(ML210)的中空介孔普鲁士蓝(HMPB)纳米管混合,制备了HMPB/ML210@TA-BLM-Fe3+(HMTBF)纳米复合物,以促进TNBC的铁下垂/凋亡协同治疗作用。实验结果显示,HMTBF可以通过增强渗透性和滞留效应(EPR)有效地靶向肿瘤区域。肿瘤细胞内化后,TA介导的Fe3+/Fe2+转化可启动Fenton反应,使细胞内活性氧水平急剧上调,引起LPO积累,从而导致细胞铁死亡,同时释放的ML210能有效抑制Gpx4激活铁下垂途径的活性。此外,Fe2+与BLM的螯合作用导致BLM在肿瘤部位的原位毒化,进而触发肿瘤细胞的凋亡,与铁下垂协同治疗肿瘤。这些结果表明HMTBF纳米制剂可作为有效的铁下垂和凋亡诱导剂用于TNBC的联合治疗,对TNBC的治疗策略具有重要的参考意义!图2|实验方案示意图a)、HMTBF纳米复合物的制备b)和c)、肿瘤特异性ROS的产生、Gpx4抑制和BLM原位转变为活化的BLM用于协同铁下垂/凋亡TNBC治疗文章中,验证HMTBF在4T1荷瘤小鼠的生物分布和肿瘤靶向性活体实验成像,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。尾静脉注射小鼠游离ICG及ICG-HMTBF,并在注射后不同时间段使用AniView100获得小鼠体内、解剖器官和肿瘤的荧光图像。结果显示ICG-HMTBF在肿瘤部位的荧光信号在注射2h后开始出现,注射12h后逐渐增强并达到最大值,并在注射24h后仍保持较强的荧光信号(图a,b),表明ICG-HMTBF在特定的肿瘤组织中蓄积增强,滞留时间延长。相对地,游离ICG在肿瘤部位只出现极弱的荧光信号,并且在12h内进一步减弱,表明非特异性分布的游离ICG可迅速从体内清除。体外荧光图像和半定量数据显示,肿瘤部位的荧光强度约为其他器官的3.7-162.2倍(图c,d),说明HMTBF对肿瘤组织有明显的富集作用。此外,HMTBF注射4h后在肿瘤内的分布为9.9%ID/g,注射12h后达最大值,为典型的EPR效应所致。同时,由于网状内皮系统的捕获,HMTBF也分布在肝脏和脾脏。图3|HMTBF的体内外分布情况a)、ICG和ICG-HMTBF静脉给药后在小鼠体内的分布情况,红色圆圈代表肿瘤b)、肿瘤组织在不同时间点的荧光强度c)、解剖器官和肿瘤在12h的典型荧光图像d)、半定量分析解剖的脏器和肿瘤组织在12h的荧光强度论文链接:1、https://doi.org/10.1002/smll.202103919
  • 新品!博鹭腾小动物活体三维成像系统在广州发布!
    2022年3月26日,“第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会”在广州隆重举办。此次会议由广东省医药行业协会和广东省实验动物学会指导,广州博鹭腾生物科技有限公司主办,广州云星科学仪器有限公司协办。大会开幕大会开始,广东省食品医药联合党委书记张俊修先生首先上台致开幕辞。张书记对此次大会的举办表示了祝贺,也肯定了博鹭腾在国产动物活体仪器方面取得的重大成果。与此同时,张书记提出了几点期望与建议:一是响应国家号召,加强对科学技术道路的坚持;二是在中医方面,运用新的思维改进现有的研究成果;三是在西医方面,希望活体成像技术的进步能够为器官移植提供新思路和新方法。张俊修 先生广东省食品医药联合党委书记广东省实验动物秘书长朱才毅研究员对大会的成功举办表示热烈的祝贺,他指出小动物活体三维成像产品的发布,将有利于推动实验动物行业的进一步发展,特别能有效减少实验动物的使用量,符合动物伦理,体现了民族科技企业的强烈社会责任感。他希望博鹭腾能够按照伟中省长提出的,加快构建基础研究+技术攻关+加成果产业+科技金融+人才支撑全过程创新生态链,强化企业创新主体责任,探索产学研相结合的路子,推出更多更好的新产品,为建设更高水平的科技自立自强贡献力量和智慧。朱才毅 研究员广东省实验动物学会秘书长最后,广州博鹭腾生物科技有限公司总经理罗文波博士致辞。罗文波总经理强调了生命科学仪器在科学进步中的重要性,尤其是高端的科学仪器对重要行业的发展有着不可或缺的推动作用。不论是当前的发展趋势还是国家出台的相关政策,都对国产科学仪器寄予了厚望。博鹭腾正是要迎难而上,开拓创新,创国产生命科学仪器先锋,为生命科学乃至世界的科技进步贡献自己的力量。 罗文波 博士广州博鹭腾生物科技有限公司总经理学术分享在各位嘉宾精彩致辞结束后,迎来了“干货满满”的应用研讨会。本次会议采用线下分享和线上直播相结合的方式,邀请了来自广州医科大学、汕头市中心医院、湖南斯莱克景达实验动物有限公司、新疆医科大学、中山大学附属第五医院的五位专家,就活体成像技术在纤维化疾病研究中的应用、光学分子影像技术在乳腺外科手术导航中的应用、常见肿瘤动物模型构建以及应用、基于近红外光辅助的活体成像与光活化治疗研究、近红外荧光成像用于食管癌术中导航的研究进行了深入的分享。专家们精彩绝伦的讲座,为本次研讨会注入了新的力量,使现场嘉宾和线上观众都收获颇多,对活体成像也有了更加深入的了解和认识。苏金 教授广州医科大学呼吸疾病国家重点实验室课题组长、博士生导师《活体成像技术在纤维化疾病研究中的应用》邱斯奇 副主任医师汕头市中心医院科研大数据中心副主任、硕士生导师《光学分子影像技术在乳腺外科手术导航中的应用》聂晶 博士湖南斯莱克景达实验动物有限公司研发部总监《常见肿瘤动物模型构建以及应用》努尔尼沙阿力甫 副教授新疆医科大学医学工程技术学院副院长、博士生导师《基于近红外光辅助的活体成像与光活化治疗研究》李丹 副研究员中山大学附属第五医院广东省生物医学影像重点实验室副主任、博士生导师《近红外荧光成像用于食管癌术中导航的研究》新品发布仪式最后是本次会议最为激动人心的新品发布仪式。随着倒计时的结束,幕布落下,Aniview Kirin现身。从此刻起, AniView Kirin小动物活体三维成像系统将正式加入博鹭腾AniView活体成像家族。来自博鹭腾的市场部经理魏宇清先生对新产品进行了详细介绍,魏经理将AniView Kirin的特点归纳为六点,灵敏、精准、形象、出色、温暖、安全。这几大特点不仅体现在优异的硬件参数上,同样也体现在智能的软件算法、人性化的设计以及优秀的使用体验等方面。魏宇清 先生广州博鹭腾生物科技有限公司市场部经理这是国产唯一集光谱分离算法与三维立体成像于一体的高端活体成像系统,打破了国外产品的技术垄断,从此高端活体成像系统领域拥有了属于中国人自己的声音。AniView Kirin小动物活体三维成像系统博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 文献速递|动物活体成像系统在细胞外囊泡与神经退行性疾病关系研究中的应用
    ● 快讯近日,同济大学医学院附属上海市第十人民医院神经内科赵延欣教授及刘学源教授课题组在细胞外囊泡与神经退行性疾病关系研究领域取得了新的进展。该项研究从小细胞外囊泡的角度为阿尔兹海默症中发生的兴奋抑制失衡提供了新见解。相关研究成果已发表在国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR 2区)。图1|国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR2区)细胞外囊泡 (EV) 是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质。根据它们的大小,通常分为三种类型,小EVs (sEVs) (50-150 nm)、大EVs (100-1000 nm) 和凋亡小体 ( 5 μm)。其中,sEVs 通常可通过血脑屏障 (BBB),成为中枢神经系统 (CNS) 细胞之间通讯的关键介质,有证据表明,sEV 中的微小RNA (miRNA)参与到众多细胞和生物过程,例如神经元细胞的生长和凋亡。目前,E/I(兴奋/抑制)失衡假设被概念化为谷氨酸能和氨基丁酸(GABA)能突触输入之间的不平衡。E/I 失衡被认为是神经退行性疾病脑功能障碍的基础,包括阿尔茨海默病 (AD)、帕金森病 (PD)、精神分裂症和其他神经疾病。谷氨酸兴奋性毒性和 GABA 能神经元功能障碍似乎是 AD 中发生的神经元细胞死亡的关键原因。但是关于 E/I 失衡对AD的影响,其中的机制仍不明确。为了对该机制进行进一步阐释,赵延欣教授及刘学源教授团队在本研究中用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。然后,将不同来源的 sEV 添加到用 Aβ(β淀粉样蛋白)处理的神经元或注射到 AD 模型小鼠中。此后对经 Aβ 治疗的小鼠和神经元进行了评估。经GABA 处理的神经元释放的 sEVs 减轻了 Aβ 诱导的损伤,而谷氨酸处理的神经元释放的 sEVs 加重了 Aβ 的毒性。此外,本研究通过 miRNA 测序比较了从谷氨酸/GABA/PBS 处理的神经元中分离的 sEV 的 miRNA 组成。该研究进一步表明,sEV 中 miR-132 的变化加速了表征病理的生化改变。图2|实验方案示意图分离原代神经元后,用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。将不同来源的 sEV 添加到用 Aβ 处理的神经元或注射到 AD 模型小鼠中,并对小鼠进行MWM测试。文章中,在评估在小鼠体内系统传递的 sEVs 的分布的实验中,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。该实验中使用近红外染料DiR进行标记,同时进行了阴性对照实验(仅注射 DiR,不注射 sEV)。通过 APP/PS1 小鼠的尾静脉注射 DiR 标记的 sEV,使用Aniview100活体成像系统在注射后 24 小时拍摄小鼠的图像并评估分布情况。在带有 DiR 标记的 sEV 的小鼠的大脑和重要器官中均检测到荧光。随后,处死小鼠,取出器官并成像,目的为识别荧光信号来源的器官并使信号干扰最小化。此外,为了排除游离染料干扰实验结果的可能,在收集器官前用不含 sEV 的游离 DiR处理小鼠。实验结果显示,脑、心、肝、肺、脾、肠、肾均呈不同程度荧光。图3|sEV的体内外分布情况在注射 DiR 标记的 sEV 后 24 小时,使用活体成像系统对A - C活小鼠进行成像。a)、小鼠背面成像b)、小鼠腹侧成像c)、收集指定器官后使用活体成像系统成像本研究中证明了 sEV 的功能可以受神经递质平衡状态的调节,并对神经元中的 Aβ 毒性有不同的影响。并且该研究从 sEV 的角度为 AD 中发生的 E/I 失衡提供了新见解,并表明通过GABA 能系统对 sEV 进行生物学改造可能是预防或减轻 AD 发病机制的治疗途径。论文链接:https://doi.org/10.1186/s12951-021-01070-5
  • X光多模小动物活体成像实现脏器空间定位与骨骼检测,助力拓宽生命科学探索前沿——上海勤翔科学仪器有限公司
    近年来,光学成像技术如荧光分子成像、光声成像和生物发光成像等广泛应用于小动物活体成像。同时,多模态成像技术的兴起将多种成像技术结合,为小动物活体成像提供了更精确和信息丰富的工具。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别制作【小动物活体成像技术创新突破进行时】专题(点击查看),并策划“小动物活体成像技术”主题征稿活动,以期进一步帮助广大用户从多维度深入了解小动物活体成像技术应用、主流品牌、市场动态以及相关内容。本期征稿来自上海勤翔科学仪器有限公司,就小动物光学成像系统检测原理以及就勤翔小动物活体成像系统技术发展历程进行回顾。——01——分子成像研究背景1999年,美国哈佛大学 Weissleder等人提出了分子影像学 (molecular imaging)的概念,即应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究 。传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性 分子事件。分子成像则是利用特异性分子探针追踪靶目标并成像。这种从非特异性成像到特异性成像的变化,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。分子成像的主要优点如下:第一,分子成像能够反映细胞或基因表达 的空间和时间 分布,从而了解活体动物体内的相关生物学过程、特异性基因功能和相互作用。第二,由于可以对同一个研究个体进行长时间反复跟踪成像,既可以进步数据的可比性,避免个体差异对试验结果的可影响,又不需要杀死模式动物 ,节省了大笔科研用度。第三,尤其在药物开发方面,分子成像更是具有划时代的意义。根据统计结果,由于进临床研究的药物中大部分由于安全题目而终止,导致了在临床研究中大量的资金浪费,而分子成像技术的问世,为解决这一困难提供了广阔的空间,将使药物在临床前研究中通过利用分子成像的方法,获得更具体的分子或基因述水平的数据,这是用传统的方法无法了解的领域,所以分子成像将对新药研究的模式带来革命性变革。其次,在转基因动物 、动物基因打靶 或制药研究过程中,分子成像能对动物的性状进行跟踪检测,对表型进行直接观测和(定量)分析。——02——小动物活体成像系统分类及检测原理动物活体成像系统目前主要分为光学成像、核素成像(PET/SPECT)、核磁共振成像(MRI)、计算机断层摄影(CT)成像和超声(ultrasound)成像五大类。光学成像和核素成像适合研究分子、代谢和生理学事件,称为功能成像。超声成像和CT适合于解剖学成像,称为结构成像,MRI则介于两者之间。其中,光学成像是临床前小动物活体成像最常用的技术,主要包含生物发光法和荧光法两种。➤ 生物发光是利用荧光素酶基因标记细胞,通过基因表达产生的蛋白酶与相应底物发生化学反应产生光信号。➤ 荧光发光采用荧光物质或荧光物质标记的抗体、纳米材料、药物等导入到活体体内,通过外界激发光源激发获取成像。光学成像灵敏度高、快速且易于执行,与许多其他成像方式相比,相对便宜。其主要缺点是穿透深度,在可见染料的情况下,穿透深度只有几毫米。单一的成像模式往往只能提供有限的信息,当多种成像模式结合起来互补时,可以在解剖结构和定位的背景下提供分子特征、代谢和功能的信息,为科学研究提供了更加全面和详细的信息。——03——小动物活体光学成像系统检测原理勤翔小动物活体成像系统依靠搭载的高灵敏度制冷相机捕捉实验动物的光信号,成像原理主要包括生物发光(自发光)、荧光(需外源激发光照射)和X射线检测。生物发光是指通过转基因的方法,把荧光素酶报告基因导入到目的细胞中(比如肿瘤细胞),给实验动物接种该肿瘤细胞,在成像之前再给实验动物注射底物荧光素,荧光素酶可以使得底物荧光素氧化而发光,从而被相机检测到。荧光法是用荧光基团标记检测目标,这种荧光基团既可以是荧光染料(比如可以用cy5标记纳米载体),也可以是GFP报告基因(比如通过转基因的方式把GFP报告基因转入待检测的细胞)。每种荧光基团都有特定的激发波长和发射波长,成像时在特定激发波长的光(激发光)照射下,荧光基团会被激发而发射出另一种波长的光(发射光),可以用滤光片特异的捕捉发射光从而完成检测。名称优点缺点生物发光①特异性强②低背景,极高灵敏度③精确定量①标记手段和标记物单一②信号弱,对相机要求高③实验要求高④成本高荧光①信号强②标记物选择多,标记方式更灵活③成本低①背景高,灵敏度较低②荧光染料可能有毒性③较难精确定量——04——勤翔小动物活体成像系统的发展历程上海勤翔科学仪器有限公司成立于2006年,总部位于上海,是一家集研发、生产、销售、服务为一体的高新技术企业,致力于为生命科学领域提供专业的数字成像系统及图像分析解决方案。2011年,Clinx 勤翔在国内率先交付了第一台定制小动物活体成像系统,2024年,Clinx勤翔再攀高峰,推出全新8000X系列X光多模式小动物活体成像系统,从硬件上来说,不仅仪器外观做了重新设计,气体麻醉系统也做了整合,整体上更加时尚美观,而且从荧光光源布局到样品台材质等方方面面都做了优化升级。从功能上来说,新增了X射线检测功能,进一步丰富了小动物活体成像系统的应用。同时软件也做了较大的升级,能够支持生物发光、荧光、X光的多通道叠加显示,曝光方式更加智能,使用便利性大大增强。X射线的检测原理是利用了不同物质对于X射线的吸收率不同。当X射线穿过动物身体时,受到不同程度的吸收,如骨骼吸收的X射线比肌肉吸收的量要多。那么通过动物身体后,X射线量就不一样,这样便携带了动物身体各部密度分布的信息,接收器可以接收到这些信息并把它们转换成数字图像输出,主要应用于骨骼系统的检查。——05——颜值与实力并存:X光/荧光/生物发光合而为一勤翔小动物活体成像系统主推的型号是IVScope 8000X,它搭载高灵敏度制冷CCD相机和f0.8大光圈镜头,配备温控系统和麻醉系统,配合密闭暗箱,可以在动物正常生理状态下进行光信号检测。它除了可以满足传统生物发光和荧光检测之外,还支持X射线检测,可以对实验动物的骨骼进行成像观察。IVScope 8500X(主机+气麻)勤翔X光多模式小动物活体成像系统IVScope 8000X系列品牌:CLINX型号:IVScope8500X/8200X产品优势和核心竞争力包括:1、深度制冷CCD相机,峰值量子效率高达95%,系统拥有极高的灵敏度和信噪比2、系统除了支持传统的生物发光和荧光检测外,还可以同时对5只小鼠进行X射线检测,一台机器满足多种实验场景的需要3、软件全部自主研发,更加符合国人的操作习惯。除了常规的拍摄功能,还支持批量图像的定量分析、自动输出动力学曲线、自动生成视频、自动拼图、多通道叠加显示以及多账号多权限管理等功能。后期还可以免费升级。小鼠结肠癌不同治疗效果比对干细胞检测大鼠骨骼检测X光和多通道荧光的叠加显示2024年6月6日,在仪器信息网举办的“第一届小动物活体成像技术与前沿应用”主题网络研讨会(iSAI2024)上,勤翔应用支持袁亦晨讲师将在线全面讲解Clinx勤翔新品IVScope 8000X系列X光多模式小动物活体系统的技术特点和应用,可点击下方链接或扫描海报中二维码提前报名,直播间将送出勤翔定制的精美礼物。会议链接/扫码报名:https://www.instrument.com.cn/webinar/meetings/sai240606.html——06——技术积淀+利好政策:国产高端制造业的崛起随着近几年国家政策的大力支持,高端科研设备的进口替代现象越来越明显,一方面节约了大量的科研经费,另一方面有力支持了国产高端制造业的崛起。正是因为前期大量的技术积累,勤翔的小动物活体成像系统越来越受到用户的欢迎,勤翔的小动物活体成像设备正在以下单位的科研一线发挥巨大作用。医院系统有:北京协和医院、四川大学华西医院、四川大学华西第二医院、上海长征医院、上海第七人民医院、南方医科大学顺德医院、广西医科大学第二附属医院、华中科技大学同济医学院附属梨园医院等。高校科研系统有:华南师法大学、广东工业大学、南华大学、辽宁中医药大学、枣庄学院、重庆医科大学、四川大学等。生物公司有:广东朝利良生物科技有限公司、北恒生物、万类生物、瑞吉生物、津科生物、福建安布瑞生物科技有限公司等。目前还有大量用户正在排队等待试用。勤翔典型用户迄今为止,勤翔小动物活体成像系统已支持客户发表多篇SCI文献,涉及的科研领域包括癌相关基因的靶点研究、干细胞治疗、化疗药物开发、骨质疏松治疗、脊髓修复等等,为科研转化提供了有力的理论依据。Clinx勤翔聚焦数字成像领域创新技术研发,致力于为科研人员提供全线自主研发的高性能数字成像产品和专业的技术服务。就在5月27日,Clinx勤翔宣布正式聘任英国帝国理工大学汤孟兴教授为首席科学顾问。汤孟兴教授在生物医学工程技术领域享有盛誉,组建了超声成像和传感实验室,主要研究方向包括医学超声超分辨率成像、造影成像、分子成像、声光成像以及生物电阻抗成像等各种成像技术等。至今在国际专业期刊上发表文章逾百篇,现担任包括医学超声杂志 IEEE T UFFC 和Ultrasound in Medicine and Biology 国际期刊的副主编和编辑顾问委员会委员。汤博士在生物医学及成像技术领域拥有资深的科研经验、广阔的视野和前沿的科学探索,他的加入将赋能勤翔研发团队完成更多更富挑战性的研究工作,从而为科研人员提供更多前沿科研工具,助力全球生命科学研究。小动物活体成像技术专题征稿进行中!为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别策划“小动物活体成像技术”主题征稿活动,以期进一步帮助广大用户从多维度深入了解小动物活体成像技术应用、主流品牌、市场动态以及相关内容。投稿邮箱:liuld@instrument.com.cn征稿提纲:https://www.instrument.com.cn/news/20230925/685455.shtml参考文献1、Rui Yan, Yujiao Guo, Xichao Wang, Guohai Liang, Anli Yang,and Jinming Li(2022).Near-Infrared Light-Controlled and Real-Time Detection of Osteogenic Diferentiation in Mesenchymal Stem Cells by Upconversion Nanoparticles for Osteoporosis Therapy.ACS Nano.DOI:10.1021/acsnano.2c029002、Yujiao Guo, Rui Yan, Xichao Wang, Guohai Liang, Anli Yang, and Jinming Li(2022).Near-Infrared Light-Controlled Activation of Adhesive Peptides Regulates Cell Adhesion and Multidifffferentiation in Mesenchymal Stem Cells on an Up-Conversion Substrate.Nano Lett.DOI:10.1021/acs.nanolett.1c045343、Wu, Yongquan Shi, Aiping Li, Yuanyan Zeng, Hong Chen, Xiaoyong Wu, Jie Fan, Xiaolin (2018). A Near-Infrared Xanthene Fluorescence Probe for Monitoring Peroxynitrite in Living Cells and Mouse Inflammation Model. The Analyst, doi:10.1039/C8AN01107A 4、Wu, Yongquan Shi, Aiping Zeng, Hong Li, Yuanyan Li, Huifang Chen, Xiaoyong Wong, Wai-Yeung Fan, Xiaolin (2019). Development of near-infrared xanthene fluorescence probe for the highly selective and sensitive detection of cysteine. Dyes and Pigments,doi:10.1016/j.dyepig.2019.107563 5、Yuanyan Li, Yongquan Wu, Luyan Chen, Hong Zeng, Xiaoyong Chen, Weican Lun, Xiaolin Fan and Wai-Yeung Wong(2019).A time-resolved near-infrared phosphorescent iridium(III) complex for fast and highly specific peroxynitrite detection and bioimaging applications.Journal of Materials Chemistry B,doi: 10.1039/c9tb01673b6、Wu, Yongquan Shi, Aiping Liu, Huiying Li, Yuanyan Lun, Weican Zeng, Hong Fan, Xiaolin (2020). A novel near-infrared xanthene-based fluorescent probe for detection of thiophenol in vitro and in vivo. New Journal of Chemistry, doi:10.1039/d0nj03370g7、Y. Li, Y. Wu, J. Wu,W. Lun, H. Zeng and X. Fan, A near-infrared phosphorescent iridium(III) complex for fast and time-resolved detection of cysteine and homocysteine,Analyst, 2020,doi: 10.1039/C9AN02469G8、Zihan Yang, Xichao Wang,Guohai Liang, Anli Yang and Jinming Li(2021).Photocontrolled chondrogenic difffferentiation and long-term tracking of mesenchymal stem cells in vivo by upconversion nanoparticles.J. Mater. Chem. B.DOI: 10.1039/d1tb02074a9、Yi Liu1, Yeying Wang, Bing Xiao1, Guoke Tang, Jiangming Yu, Weiheng Wang, Guohua Xu, and Xiaojian Ye(2021).pH-responsive delivery of H2 through ammonia borane-loaded mesoporous silica nanoparticles improves recovery after spinal cord injury by moderating oxidative stress and regulating microglial polarization.Regenerative Biomaterials.DOI:10.1093/rb/rbab05810、Qi M, Sun L-a, Zheng L-r, Zhang J,Han Y-l, Wu F, Zhao J, Niu W-h,Fei M-x, Jiang X-c and Zhou M-l (2022)Expression and potential role of FOSB in glioma.Front. Mol. Neurosci. 15:972615.doi: 10.3389/fnmol.2022.97261511、Chen L, Xu N, Wang P, et al.Nanoalbumin–prodrug conjugates prepared via a thiolation_x0002_and-conjugation method improve cancer chemotherapy and immune checkpoint blockade therapy by promoting CD8+T-cell infiltration. Bioeng Transl Med. 2023 8(1):e10377. doi:10.1002/btm2.1037712、Zixuan Zhou , Jingnan Xun, et al.Acceleration of burn wound healing by micronized amniotic membrane seeded with umbilical cord-derived mesenchymal stem cells.Materials Today Bio.Volume 20, June 2023, 10068613、Li J, Wang F, et al. OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine. Mater Today Bio. 2023 Nov 8 23:100859. doi: 10.1016/j.mtbio.2023.100859.
  • 第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会
    在去年发布的「十四五规划」的国家战略中,生命科学被纳入引领性科技领域的重点攻关项目,而正在呼吁生物医药行业健康发展的议题也引起了广泛关注。动物活体成像技术作为基础医学、材料科学、药效评估等领域的基础研究方式,受到越来越多的应用。 博鹭腾作为专业从事动物活体成像设备研发与生产的高新技术企业,一直致力于对动物活体成像相关技术的开发与推广,现已研发出国际先进的小动物活体三维成像系统。 为了加速动物活体成像技术的发展,进而推动整个生命科学研究行业的进步,博鹭腾特举办《第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会》。【会议流程】08:30-09:00 | 签到入座09:00-09:05 | 主持人开场09:05-09:10 | 领导致辞 张俊修 广东省食品医药行业联合党委书记09:10-09:15 | 领导致辞 朱才毅 广东省实验动物学会秘书长09:15-09:20 | 总经理致辞 罗文波 博士 广州博鹭腾生物科技有限公司09:20-09:40 |《活体成像技术在纤维化疾病研究中的应用》 苏金 教授 广州医科大学呼吸疾病国家重点实验室09:40-10:00 |《光学分子影像技术在乳腺外科手术导航中的应用》 邱斯奇 博士 汕头市中心医院10:00-10:20 |《常见肿瘤动物模型构建以及应用》 聂晶 博士 湖南斯莱克景达实验动物有限公司10:20-10:35 | 茶歇10:35-10:55 |《活体成像仪在动物模型构建及临床前评价中的应用》 谢水林 副研究员 华南理工大学10:55-11:15 |《近红外荧光成像用于食管癌术中导航的研究》 李丹 副研究员 中山大学11:15-11:25 | 新产品发布仪式11:25-11:45 |“AniView Kirin”介绍 小动物活体三维成像系统11:45-12:00 | 合影【举办单位】指导单位:广东省医药行业协会 广东省实验动物学会 主办单位:广州博鹭腾生物科技有限公司协办单位:广州云星科学仪器有限公司
  • 文献速递|动物活体成像系统在纳米医学领域中的应用
    ● 快讯近日,同济大学化学系-上海市化学品分析、风险评估与控制重点实验室石硕教授团队在纳米医学领域取得新的研究成果,在国际知名期刊《Journal of Nanobiotechnology》(IF=10.435,JCR2区)上发表研究性论文。图1|国际知名期刊《Journal of Nanobiotechnology》(IF=10.435,JCR2区)化学动力学疗法(CDT)是一种利用Fenton或类Fenton催化剂将过氧化氢(H2O2)转化为有毒的羟自由基(OH)来杀伤肿瘤细胞的方法,在肿瘤治疗中具有广阔的应用前景。但是,由于肿瘤细胞内H2O2水平不足,其治疗效果受到明显限制。β-拉帕醌(Lapa)在烟酰胺腺嘌呤二核苷酸(磷酸)NAD(P)H:醌氧化还原酶-1(NQO1)的催化下能够发挥补充H2O2的功能,为解决这一问题提供了新的思路。然而,高水平的活性氧会导致DNA的广泛损伤,引发聚腺苷二磷酸核糖聚合酶(PARP)的“过度激活”,导致H2O2供应中断,进而导致CDT的疗效降低。为了解决这个问题,石硕教授团队开发了一种自扩增纳米催化体系(ZIF67/Ola/Lapa),可以共同提供PARP抑制剂奥拉帕利(Ola)和NQO1生物活性药物Lapa,用于可持续产生H2O2和增强CDT(“1+1+1 3”)。结果显示,Ola对PARP的有效抑制下,可以协同Lapa让NQO1介导的氧化还原循环促进H2O2的持续生成。反过来,高浓度的H2O2进一步与钴(Co2+)反应,通过类Fenton反应生成剧毒的OH,极大地提高了CDT的疗效。体内外结果表明,ZIF67/Ola/Lapa在NQO1过表达的MDA-MB-231肿瘤细胞中具有良好的抗肿瘤活性。最重要的是,由于NQO1在正常组织中低表达,该纳米复合材料对活体的毒性非常小。图2| ZIF67/Ola/Lapa纳米颗粒形成和基于Lapa和Ola(PARPi)协同作用持续产生由NQO1介导的H2O2增强CDT疗效的机制示意图文章中,验证ZIF67/Ola/Lapa纳米颗粒在MDA-MB-231荷瘤小鼠体内的分布和肿瘤靶向性活体实验成像,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。尾静脉注射小鼠ICG标记的ZIF67/Ola和ZIF67/Ola/Lapa,并在注射后不同时间段使用AniView100获得小鼠体内、解剖器官和肿瘤的荧光图像。结果显示ZIF67/Ola组小鼠在注射24h后肿瘤部位的荧光信号基本消失,而ZIF67/Ola/Lapa组的荧光信号在注射1h后开始出现,6h后逐渐增强,并达到最大值,甚至在注射24h后仍在肿瘤组织中保持显著较高的荧光强度,表明ZIF67/Ola/Lapa在肿瘤组织中具有较长的滞留能力。进一步的体外荧光成像结果显示,ZIF67/Ola/Lapa主要由肝脏和肾脏代谢,在肿瘤的荧光强度是ZIF67/Ola的1.8倍,显示了良好的肿瘤聚集能力。这些结果表明,制备的ZIF67/Ola/Lapa能够优先有效地在肿瘤组织中蓄积,且血液循环时间延长。图3| ZIF67/Ola/Lapa纳米颗粒的体内外分布情况a、ICG-ZIF67/Ola和ICG-ZIF67/Ola/Lapa静脉给药后在小鼠体内的分布情况,红色圆圈代表肿瘤。b、肿瘤组织在不同时间点的荧光强度。c、解剖器官和肿瘤在12h的典型荧光图像。d、半定量分析解剖的主要脏器和肿瘤组织在12h的荧光强度。与光动力或声动力治疗相比,CDT可以在没有外部能量输入(光或超声)和氧气的情况下独立进行。这使得它能够克服组织穿透深度有限、肿瘤微环境缺氧和非特异性等缺点,在肿瘤治疗中具有更广阔的应用前景。针对目前主要通过提高瘤内H2O2浓度以增强CDT的疗效,可能会导致效果不佳和非特异性毒性,石硕教授团队通过在CDT试剂中原位生产补充H2O2的官能团,从而提高抗癌效果,为利用设计结合PARP抑制剂与NQO1生物活性药物的多功能CDT药物来治疗肿瘤提供了新的思路。参考文献:1、https://doi.org/10.1186/s12951-021-00998-y
  • 文献速递|动物活体成像系统在载药纳米超声造影剂研制中的应用
    近日,中山大学附属第七医院肾泌尿外科中心庞俊教授团队在载药纳米超声造影剂研究中取得成果,在国际知名期刊《ACS Applied Materials & Interfaces》(IF=9.229,JCR1区)上发表研究性论文。图1|国际知名期刊《ACS Applied Materials & Interfaces》(IF=9.229,JCR1区)超声(US)由于其安全性、非放射性、实时监测和低成本而被广泛用于临床诊断成像。然而,传统的超声造影剂(UCAs)只能用于血池成像,且由于尺寸相对较大,无法实现肿瘤区域的血管外成像。此外,仅应用常规UCAs也不能达到预期的治疗目的。基于纳米粒子(NPs)的UCAs因其无创性、精确靶向、可见性和装载小分子的便利性而受到越来越多的关注。产生气体的NPs具有很高的回声敏感性,二硫键可以用于还原响应性NPs药物递送系统制备。目前,已报道的同时具有超声成像和治疗功能的医用NPs大多仅基于pH响应性药物释放,并且药物释放速率不完全。基于上述考虑,庞俊教授团队制备了包裹二硫聚合物、碳酸氢钠(NaHCO3)水溶液和化疗药物盐酸阿霉素盐(DOXHCl)的NPs(DOX@HADT-SS-NaHCO3NPs)。NaHCO3在酸性条件下能产生CO2,提供回声信息;更重要的是,双重pH/GSH响应性药物释放可以进行癌症治疗,最终实现前列腺癌US成像和治疗的一体化。图2|制造聚合物步骤和通过产生回声CO2气泡放大超声对比度并发挥按需治疗作用的NPs示意图文章中,标记Cy5.5的HADT-SS-NaHCO3NPs在C4-2荷瘤裸鼠体内的生物分布活体实验成像,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。当C4-2荷瘤裸鼠的肿瘤体积达到100mm3时,静脉给药注射游离Cy5.5和Cy5.5@HADT-SS-NaHCO3NPs溶液。活体结果显示用Cy5.5@HADT-SS-NaHCO3NPs处理的小鼠肿瘤中的荧光信号从0.5到4小时逐渐增加,并在4小时达到峰值,然后随着时间的推移逐渐减弱。相比之下,整个时期肿瘤部位未观察到明显的游离Cy5.5荧光信号,游离Cy5.5荧光信号主要出现在肝脏。定量荧光信号也证实了Cy5.5@HADT-SS-NaHCO3NPs在肿瘤和肝脏中分布的趋势,揭示了HADT-SSNaHCO3NPs通过EPR效应在肿瘤组织中的特异性积累。图3|负载Cy5.5的HADT-SS-NaHCO3NPs(A)和具有等效Cy5.5浓度(0.2 mg/kg)的游离Cy5.5溶液(B)在C4-2荷瘤小鼠中的体内生物分布。静脉注射后0.5、1、2、4、8、12、24、48和72小时,用AniView100获得的小鼠背部和前部的体内荧光图像,一列代表同一只裸鼠的正面和背面。(C)和(D)为肿瘤组织和肝脏荧光强度的定量分析US造影剂已广泛应用于肿瘤的诊断和鉴别诊断。商业US由于体积大,成像时间短,应用受到限制;同时,仅应用常规的US造影剂并不能达到预期的治疗目的。庞俊教授团队设计的HADT-SS-NaHCO3NPs在酸性pH条件下表现出明显增强的超声对比度和抗肿瘤效果,为前列腺癌的有效超声成像诊断和治疗提供了一种有效的潜在药物。文献链接:https://pubs.acs.org/doi/10.1021/acsami.1c00077
  • 文献速递ㅣ动物活体成像系统在白血病耐药机制研究中的应用
    慢性髓系白血病(Chronic myeloid leukemia, CML)是一种由造血干细胞染色体t(9;22)(q34;q11)易位引起,并在分子水平上形成Bcr-Abl融合基因的骨髓增生性疾病。使用酪氨酸激酶抑制剂(Tyrosine kinase inhibitors, TKIs)可以缓解疾病,但TKIs耐药性是治疗失败或诱发急性白血病的主要问题。根据Abl激酶结构域点突变的不同,TKIs的耐药机制主要包括Bcr-Abl依赖型和非Bcr-Abl依赖型。Bcr-Abl依赖型的耐药性最常见,它会干扰小分子酪氨酸激酶抑制剂伊马替尼(Imtatinib, IM)结合和随后的激酶抑制。然而,超过50%的耐药CML患者中并没有Bcr-Abl突变。▲ 慢性髓系白血病蛋白激酶C(Protein kinases C, PKCs)在细胞周期调节、增殖、凋亡和造血干细胞分化等多种细胞过程中发挥作用,并和Bcr-Abl协调参与对恶性细胞转化至关重要的几种信号通路。实验和临床证据表明,使用PKC抑制剂可以有效地治疗CML。最近,不同的PKC亚型也被报道参与CML细胞的耐药,但是,PKC信号在CML TKIs耐药中的作用并不清楚。▲ 蛋白激酶C的晶体结构近日,贵州医科大学王季石教授课题组根据先前的研究结果:一种泛PKCs抑制剂星孢菌素(Stauroporine)在低浓度下可以有效地逆转K562R细胞(没有任何突变)的IM耐药,因此推测Bcr-Abl非依赖型IM耐药可能是由PKC亚型介导。在此基础上,鉴于白血病干细胞(Leukemia stem cells)在CML TKIs耐药中起基础性作用,研究首次在Bcr-Abl非依赖型TKI耐药的CML患者CD34+细胞中检测到9种PKCs亚型的表达。对PKC亚型异常表达所介导的机制进行深入研究时,使用博鹭腾AniView100多模式动物活体成像系统拍摄的活体成像实验结果,从体内进一步证明PKC-β的过表达与肿瘤耐药密切相关,表明靶向PKC-β过表达可能是克服CML耐药的一种新的治疗机制。相关成果已发表在期刊《Journal of Cellular Physiology》。▲抑制PKC-β可增强IM对CML细胞的体内杀伤作用(a) 博鹭腾AniView100拍摄的不同药物处理的CML小鼠模型中白血病细胞的活体示踪成像图。LY333531: PKCβ 抑制剂。(b) 流式细胞仪检测各组小鼠CD33+和CD45+细胞。(c) 直方图显示流式细胞仪检测的各组小鼠CML细胞的差异。(d) 各组小鼠的生存曲线。(e、f) 比较各组小鼠脾脏体积和重量。(g、h) Wright‘s染色检测各组小鼠外周血中CML的进展情况。统计学处理采用t检验。**表示p0.01,*表示p0.05。参考文献1、Ma D, et al. PKC‐β/Alox5 axis activation promotes Bcr‐Abl‐independent TKI‐resistance in chronic myeloid leukemia[J]. Journal of Cellular Physiology, 2021.2、Zubair M S, et al. Cembranoid Diterpenes as Antitumor: Molecular Docking Study to Several Protein Receptor Targets[C]// International Conference on Computation for Science & Technology. 2015.
  • ​科研用小动物活体成像系统全国共享资源调查分析
    动物模型对医学的发展意义重大,通过对动物本身的生命现象研究进而推进到人类,探索人类生命的奥秘,更是生命科学研究的支撑条件之一。1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念—应用影像学方法,它使活体动物体内成像成为可能。近年来,随着活体成像技术广泛应用于研究观测特异性细胞、追踪靶细胞、药物和基因治疗最优化等,各类小动物活体成像系统不断涌现,为生命科学研究提供了有力保障。根据技术不同系统主要分为光学成像、 核素成像(PET、SPECT)磁共振成像 (MRI)、CT成像、超声成像、磁粒子成像(MPI),在一定程度上,这些技术大多不存在竞争取代,而是互补共存的关系。其中,光学成像技术在小动物活体成像系统中应用最为广泛。基于此,本文聚焦国内高校和科研院所共享的小动物活体成像系统,对科研用光学成像技术为核心的系统进行统计分析,在一定程度上或可得出国内科研用小动物活体成像系统的使用情况。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)光学成像技术光学成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。小动物活体成像系统通过非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为,观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。共享小动物活体成像系统集中教育强省统计高校和科研院所在全国仪器共享平台上传的数据,截止2021年6月15日,平台上小动物活体成像系统(光学成像)的总数量为119台,涉及24个省份、直辖市、自治区。其中,北京、江苏、浙江、广东的小动物活体成像系统(光学成像)数量大于10台,仪器资源依然集中分布在高等教育强省,存在资源分布不均的问题。珀金埃尔默最受高校欢迎 从全国共享小动物活体成像系统(光学成像)品牌分布来看,高校和科研院所更青睐进口。珀金埃尔默独占近二分之一的市场,Caliper、carestream healthy、Berthold、Bruker、KODAK占比41.53%,CRI等品牌瓜分剩余八分之一的市场。据悉,2011年,珀金埃尔默收购了专注于生命科学研究、成像和检测服务的Caliper Life Sciences公司,在动物成像领域更进一步。所以,珀金埃尔默相当于占比66.1%,在高校和科研院所更受欢迎。省份品牌分布零散从全国共享小动物活体成像系统(光学成像)数量top7省份的仪器品牌分布来看,珀金埃尔默在北京、江苏、浙江、广东、上海、湖南的高校和科研院所中均有很强的竞争力,在福建的品牌覆盖度低,可能与宣传力度和高校科研方向等因素有关。从北京品牌分布来看,大趋势与全国共享小动物活体成像系统(光学成像)品牌分布相同,珀金埃尔默以绝对优势占据60%,carestream healthy、Bruker、Visualsonics、GE、Princeton Instruments等品牌分布零散,但在高校和科研院所的仪器采购中也存在一定的竞争力。
  • 生命科学仪器盘点之小动物活体成像仪
    p style=" text-align: justify "   1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究 ,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。以此为基础发展起来的小动物活体成像技术,可广泛应用于癌症与抗癌药物研究、免疫学与干细胞研究、细胞凋零、病理机制及病毒研究、基因表达和蛋白质之间相互作用、转基因动物模型构建、药效评估、药物甄选与预临床检验、药物配方与剂量管理、肿瘤学应用、生物光子学检测、食品监督与环境监督等诸多方面。 br/ /p p style=" text-align: justify "   生命科学研究领域常用的小动物成像设备如:核磁共振成像MRI、计算机断层成像CT、计算机X线成像PET、单光子发射断层扫描SPET和光学成像仪器设备等,为该领域研究提供了各种成像方式。仪器信息网编辑盘点了市面上主流厂商的小动物活体成像仪,供广大生命科学领域用户参考。(排名不分先后) /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) "    strong 1、布鲁克BioSpec 3T MRI/MRS 小动物活体成像仪 /strong /span /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201812/uepic/e3830a5c-cc5f-4122-a71f-690254f724d7.jpg" title=" image001.jpg" alt=" image001.jpg" / span style=" color: rgb(192, 0, 0) " /span /p p style=" text-align: justify "   专为大小鼠研究设计的BioSpec 3T采用了布鲁克最新MRI技术和软件应用包,可以提供多模态成像选项。场强为3特斯拉,拓展了多功能临床前MRI 和 MRS(局部频谱学) 系统的应用范围。值得一提的是,该仪器采用无制冷剂的设计,摆脱了对液氦或液氮的需要,在断电时拥有长达四小时的磁体保持时间。与此同时,紧凑、易于安装的BioSpec 3T填补了偏重于解剖结构成像的1特斯拉磁体和适用于尖端科研的高场MRI之间的空白。BioSpec 3T与PET等其他成像技术完全兼容, 利于实验室扩展使用更广泛的成像研究方案。 /p p style=" text-align: justify "    a href=" https://www.instrument.com.cn/netshow/C251642.htm" target=" _blank" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 点击查看该仪器更多相关信息 /span /a /p p style=" text-align: justify "    span style=" color: rgb(192, 0, 0) " strong 2.珀金埃尔默 IVIS Spectrum CT 小动物活体三维多模式成像系统 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0792bc90-1a0a-49e8-8e23-f8c6094638a1.jpg" title=" image002.jpg" alt=" image002.jpg" / /p p style=" text-align: justify "   珀金埃尔默IVIS Spectrum CT集光学和microCT成像于一体,同时具备荧光和生物发光3D断层成像功能, 其特有的动物体表扫描技术能够获取真实的动物体表拓扑结构。此外,直观的软件操作界面和成像设置向导使操作流程变得十分简便。该仪器可实现生物发光成像、多光谱荧光和光谱分离成像、基于Cerenkov辐射原理的放射性核素成像、快速低辐射microCT成像和DyCE& #8482 动态对比度增强成像等。 /p p style=" text-align: justify "    a href=" https://www.instrument.com.cn/netshow/C168443.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 点击查看该仪器更多相关信息 /span /a /p p style=" text-align: justify "    span style=" color: rgb(192, 0, 0) " strong 3.德国耶拿UVP iBox& reg Scientia& #8482 小动物活体成像仪 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/678fa54e-fdb5-4557-b7a9-014aed7949fa.jpg" title=" image003.jpg" alt=" image003.jpg" / /p p style=" text-align: justify "   德国耶拿在11月慕尼黑生化展上发布的UVP iBox& reg Scientia& #8482 小动物活体成像仪,具有如下特点:非侵入性的快速观察活体荧光信号和生物发光信号 包括GFP/RFP在内的21种滤光片可供选择,更换方便,保证在全光谱范围内(可见光,近红外)都能准确成像 超冷CCD和大光圈定焦镜头,即使在目标信号较弱时也能拍出清晰的画面 配备的温控板可以让小鼠保持正常生理体温,确保小鼠成像时结果的准确性 软件使用方便,对于需要多次成像的试验,可通过预设模板的方法进行一键成像 在线麻醉系统可以实现在线麻醉,防止体外麻醉对小鼠带来损伤 一次可同时进行多达5只小鼠的成像。该产品可广泛应用于癌症与抗癌药物研究等方面。 /p p style=" text-align: justify "    a href=" https://www.instrument.com.cn/news/20181031/474332.shtml" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 点击查看该仪器更多相关信息 /span /a /p p style=" text-align: justify "   strong   span style=" color: rgb(192, 0, 0) " 4. 纽迈科技Macro MR12大口径核磁共振分析与成像系统 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/dd0770f7-3ca0-4aa5-9c99-4681328b21ad.jpg" title=" image004.jpg" alt=" image004.jpg" / /p p style=" text-align: justify "   Macro MR12是纽迈公司推出的大口径核磁分析与成像系统,集分析和成像于一体,整体具备C型大空腔磁体与推拉式进样设计,方便小动物的实验操作,能满足不同尺寸样品的测试需求。同时该产品采用了稀土钕铁硼材料永磁体,配套最新一代全数字化谱仪,在提高样品图像的分辨率的同时,保证其稳定性。MacroMR12可用于多组造影剂成像及弛豫率的分析,也可用于生命科学领域的活体动物临床前研究(如大鼠、小兔子、小狗和小猫等)。 /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/netshow/C166284.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 点击查看该仪器更多相关信息 /span /a /p p style=" text-align: justify "    span style=" color: rgb(192, 0, 0) " strong 5. 寰彤1.5T小动物核磁共振成像仪 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0fa84b05-ead1-4cf5-b29b-37a2a4260741.jpg" title=" image005.jpg" alt=" image005.jpg" / /p p style=" text-align: justify "   寰彤小动物核磁共振成像仪在核磁共振影像实验中可实现四维(分子影像)核磁共振谱成像,三维空间成像,也可实现对小鼠,小动植物体等样品的三维、二维核磁共振成像实验。特点是在实验样品弛豫时间测量的同时,对实验样品图像可进行多角度观察、任意角度保存。产品具有三维成像数据采集和图像反演三维立体重建(伪彩色图像重建)的功能,广泛应用于生命科学、医学影像、生物医药和医药临床前预实验等科研工作。 /p p style=" text-align: justify "   span style=" color: rgb(0, 112, 192) "   /span a href=" https://www.instrument.com.cn/netshow/C249992.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 点击查看更多该仪器相关信息 /span /a /p p style=" text-align: justify "    span style=" color: rgb(192, 0, 0) " strong 6.Thmorgan小动物活体成像系统 SPECT/PET/CT /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/abc3497a-adfa-44b6-86b2-88b1f77fd7dd.jpg" title=" image006.jpg" alt=" image006.jpg" / /p p style=" text-align: justify "   Thmorgan小动物活体成像系统融合了PET、SPECT、CT成像技术。三种成像模式的结合使其具备低剂量、超高分辨率的CT成像功能和SPECT、PET同时高分辨率成像功能,此外该仪器能实现高能量同位素亚毫米成像能力(如:& lt 0.5 mm 131I,& lt 0.6 mm 67Ga,& lt 0.7 mm213Bi)。其扫描速度较以往产品有明显提升,其SPECT/PET器官扫描小于1s,全身扫描小于8s而CT全身扫描小于5s。Thmorgan小动物活体成像系统SPECT/PET/CT主要应用范围有:小动物活体成像及精确定量研究、药学研究(药代动力学、药效学、药物的吸收分布代谢及排泄等)、蛋白质及基因表达研究、肿瘤学研究、新型材料和示踪剂的靶向性研究等。 /p p style=" text-align: justify "    a href=" https://www.instrument.com.cn/netshow/C247319.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 点击查看该仪器更多相关信息 /span /a /p p style=" text-align: justify "    span style=" color: rgb(192, 0, 0) " strong 7.美谷分子MIIS 小动物活体成像系统 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a370b19e-8bb7-40cf-8725-7db29b3264df.jpg" title=" image007.jpg" alt=" image007.jpg" / /p p style=" text-align: justify "   美谷分子MIIS小动物活体成像系统可帮助用户完成那些需要从小动物或植物中检测微弱荧光和发光信号的研究应用。该仪器配备图像获取和分析软件MetaMorph-MIIS,其特殊之处在于可控制 Z 轴定位,滤光片转轮和光源,并且还能获取时间序列和进行高速成像。深度制冷 CCD 和高性能 sCMOS 照相机作为检测器,辅以高亮度 LED 来检测荧光信号,不仅具有高灵敏度,避免紫外波段常见的光毒性,也提供了极高的稳定性。此外,该仪器具备高度扩展性,可以在暗箱内安装多种可选模块如小动物应用中的热板、电动载物台来支持多种视野成像和聚焦功能, 以及对应小动物麻醉气模块。这一系列的特点均为获取高质量活体成像图片提供了保障。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/netshow/C229476.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " 点击查看更多该仪器相关信息 /a /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 8. MOLECUBES小动物PET/SPECT/CT成像系统 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/410ac4a6-518a-4057-83ee-78bcbb9ee922.jpg" title=" image009.jpg" alt=" image009.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " MO /span span style=" text-indent: 2em " LECUBES小动物PET/SPECT/CT成像系统可应用于生物医药学实验室的肿瘤显像、受体显像、代谢显像、基因表达显像和药物研究等。MOLECUBES台式仪器的所有软、硬部件均为自主研发,其设计紧凑、操作方便,在高通量下依然能够保证运行正常,最高通量可满足4只小鼠或1只大鼠的高分辨率全身成像效果。该系列产品可通过组合实现单模式成像(PET/CT/SPECT)、双模式成像(PET-CT/SPECT-CT)和三模式成像(PET-SPECT-CT/PET-PET-CT/PET-CT-CT/SPECT-CT-CT)。 /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C276532.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 点击查看更多该仪器相关信息 /span /a /p p style=" text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 9.奥龙Micro Focus小动物活体成像系统 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7bf52e2b-a658-4d29-a1f9-e68040e550ce.jpg" title=" image010.png" alt=" image010.png" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 承担过多个国家科学仪器重大专项的丹东奥龙,主要以X射线产品为主,而旗下Micro Focus小动物活体成像系统主要用于小动物X射线成像,是一款微焦点(Micro Focus)成像系统,可实现一键自动曝光并配备图片处理工作站。该仪器操作简单且安全,因此无需专业的X射线操作知识,也无额外的X射线防护要求。 /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C242286.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " 点击查看更多该仪器相关信息 /span /a /p p style=" text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 10.博鹭腾AniView 100动物活体成像系统 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f044ae2e-f66d-4bbf-b2ae-088563f98cf3.jpg" title=" image011.jpg" alt=" image011.jpg" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 作为博鹭腾今年新上市的产品,AniView100动物活体成像系统可用于测量各种癌症模型中肿瘤的生长和转移,能够无创伤定量检测原位瘤、转移瘤及自发瘤。该系统最大可实现6只小鼠或1只兔子同时成像,并且内置动物温控床、X-ray动物结构成像系统、气体麻醉模块,可根据实验需求快速选用相应系统。 /span br/ /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C308896.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " 点击查看更多该仪器相关信息 /span /a /p p style=" text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 11.INDEC BiosystemsFluor Vivo荧光小动物活体成像系统 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/cb8481f4-462e-474e-8456-4b904f5c38d6.jpg" title=" image012.png" alt=" image012.png" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " INDEC Biosystems荧光小动物活体成像系统Fluor Vivo系列可提供一套从个体水平到细胞水平的体内成像的解决方案。其技术优势主要有:可为用户定制全波长范围内通道,可实现GFP和RFP同时成像,并进行实时光谱分离,去除背景荧光,有效提升信噪比。此外还具备毫秒级快速成像,实时动态监测,可保留成像视频。 /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C208676.htm" target=" _blank" span style=" color: rgb(0, 112, 192) " 点击查看更多该仪器相关信息 /span /a /p p style=" text-align: justify "    span style=" color: rgb(192, 0, 0) " strong 12.英国 MR Solution小动物核磁成像系统 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/47a47401-01d7-46e5-ae6d-d85020cc2337.jpg" title=" image008.jpg" alt=" image008.jpg" / /p p style=" text-align: justify "   英国MR Solution 公司针对临床前小动物 MR 核磁成像市场,从 2012 年起陆续推出采用无液态制冷剂超导技术、场强可调的临床前1.5T、3.0T、4.7T 及 7.0 T 的小动物 MR 成像系统。其创新高性能超导磁体不需液态氮或液态氦制冷,1.5T、3.0T、4.7T 及 7.0T 场强可选磁场均匀度,稳定性强,可调整场强。该产品可实现获取高分辨率、高信噪比及极佳的软组织对比度的图片,其专为小动物实验设计的通用动物造影床可与多种成像系统相容。MR Solution小动物核磁成像系统可广泛适用于各系统脏器的成像与多序列多参数应用平台,符合科研上的需求。 /p p style=" text-align: justify "    span style=" color: rgb(0, 0, 0) " strong 小结 /strong :本文盘点的八款仪器中具备单模式成像功能的产品有:布鲁克BioSpec 3T MRI/MRS、德国耶拿UVP iBox& reg Scientia& #8482 、纽迈科技Macro MR12、寰彤1.5T小动物核磁共振成像仪、美谷分子MIIS小动物活体成像仪和英国 MR Solution小动物核磁成像系统等 其中也不乏有多模式成像相结合的产品如珀金埃尔默IVIS Spectrum CT(集光学和microCT成像于一体)、Thmorgan小动物活体成像系统( SPECT、PET与CT三模式结合)等。目前单模式成像产品依旧是市场主流,但多种成像手段相结合的多模式成像研究已成为科研领域热点,因此具备多模式成像功能(或具备高扩展性)的活体成像仪器设备将是未来发展趋势。 /span /p
  • 新品推荐 | 3D小动物活体成像系统ERI TM 600
    何为电子共振成像(ERI)?电子顺磁共振(EPR)是当今材料表征手段之一,该技术通过检测样品中的未成对电子在磁场线圈中的跃迁所产生的顺磁图谱来研究物质结构信息和动态信息。初这种技术主要用于研究复杂原子的电子结构、晶体结构、原子偶矩及分子结构等问题。在随后的发展中逐渐向化学和生物学领域扩展,主要用于阐明复杂的有机化合物中的化学键和电子密度分布以及动植物中存在自由基等问题。随着医学的发展,生物组织内的氧含量被发现与诸多疾病有着直接关系,而EPR能够很好地应用于这一检测。在EPR基础上研发的电子共振成像(ERI)是一种使用特定磁场对外部注射的自旋探针进行成像的技术。这种技术使用的自旋探针往往基于一个孤电子的氮氧化物或三苯基类化合物,能够在生物体内因内环境的不同而发出不同的信号。因此能够用于活体实时监测生物体内的组分含量信息,诸如氧含量、氧化还原水平,pH变化,氧化应激水平等。 ERI的制造一直是一个难题,相较于传统的磁共振成像(MRI)来说,ERI需要的磁体更大,冷却技术要求难度更高,因此实现大尺度样品的成像十分困难。目前市面上的ERI设备腔体难以容纳一整只动物,因此难以实现小动物活体顺磁成像。近期Novilet公司研发的全新一代顺磁成像系统ERI TM 600成功攻克了ERI大样品活体成像的难题。将样品腔的直径扩大到了5 cm,其体积与传统顺磁共振波谱仪相当,为ERI活体成像技术扫清了障碍。电子共振成像有何优势?随着自旋探针的开发,现在已经有多种可用于成像的自旋探针问世,使得ERI也可用于生物成像。这种成像技术相较于荧光成像来说具有许多优势:自旋探针具有高度特异性,在成像中具有很高的信噪比,不易受到生物本身的影响;自旋探针代谢速度快、毒性低,对活体影响小;顺磁技术成像速度快、检测精度高(可达亚微米的分辨率),具有更好的时间、空间分辨率。 电子共振成像有何应用?● 肿瘤成像和监测● 神经退行性疾病的诊断● 监测缺氧和氧浓度区域及其机制● ROS成像和氧化应激反应的研究● 基于自旋探针的小动物成像● 脑部病变中的氧化应激水平检测
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!
  • 东胜创新代理的"Kodak 多光谱活体成像系统)"获得生命科学十大创新产品殊荣
    东胜创新公司代理的"Kodak 多光谱活体成像系统(Multispectral Fx)"获得《The Scientist》评选的"2008年度生命科学十大创新产品"殊荣 &mdash &mdash 多模式分子成像技术加速药物研发的步伐 来自纽黑文12月10日的消息, Carestream 分子影像部的Kodak 多光谱活体成像系统荣获来自《The Scientist》杂志评选的"2008年度生命科学十大创新产品"的殊荣。评委会专家从一系列生命科学创新技术中评选出2008年度Top 10 创新产品, 获胜者名单可查阅《The Scientist》12月份期刊。 《The Scientist》总编Alison McCook先生说到:"《The Scientist》非常荣幸能够从2008年度生命科学的市场中,将集创新性、想象力以及应用性于一身的最优秀的创新产品甄选出来。我们的评委会专家都是前沿技术的使用者,能够将此十项产品列为Top 10创新产品是因为此十项产品将会对生命科学领域产生巨大的影响。" Kodak多光谱活体成像系统能够帮助研究者在目标物发生形态改变之前,就能精确地检测和监控目标物的分子水平的活性的变化,以此加速发展有效的疾病治愈手段。 Carestream 分子影像部研发总监Bill McLaughlin说到:" Kodak多光谱活体成像系统是多年研发的巅峰之作。来自《The Scientist》的&lsquo 2008年度生命科学十大创新产品&rsquo 的殊荣不仅是对曾经推进分子影像技术发展的科学家们和工程师们的嘉奖,同样也是对我们的客户&mdash &mdash 这些一线的研究者们能够感受这难以置信的强大的应用的鼓励。" Kodak多光谱活体成像系统促使生命科学领域的研究者们对特殊疾病和治疗方法的研究从体外延伸至体内&mdash &mdash 从对体外样本研究发展至活体内的研究&mdash &mdash 这也得益于具有分析和比较等多重功能的先进的应用软件。Kodak多光谱成像系统是目前唯一一款集多光谱荧光成像、生物学发光成像、数码X光成像以及同位素成像功能于一身的小动物活体成像系统。 了解更多Kodak活体成像系统的信息,请登陆:http://mi.carestreamhealth.com &mdash &mdash 2008年度,美国Carestream Health公司(原伊士曼柯达医疗集团公司)发布新款最高端的多光谱荧光活体成像系统(In-Vivo Multispectral Imaging Systems FX),此款系统是基于激发光的多光谱解析技术来实现多光谱分析的,该技术能够鉴定和分离不同的荧光素并且能够消除非特异荧光的干扰。精细的软件能够自动地生成和分析一系列不同激发波长下的荧光成像图片,这些荧光图片与X光或白光的成像图片相叠加以判断荧光信号具体的定位。该成像系统多种成像模式中除了多光谱荧光成像,还包括生物学发光成像和同位素成像,这种多功能成像系统能够为研究者带来更多的研究方法和研究方向的选择! 生物通网站还举办了"2008生命科学十大创新产品"的国内评选活动,欢迎广大读者踊跃投票,支持Kodak多光谱活体成像系统。 活动链接:www.ebiotrade.com/custom/ebiotrade/2008-10products/index.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制