当前位置: 仪器信息网 > 行业主题 > >

在线量产型磁控溅射系统

仪器信息网在线量产型磁控溅射系统专题为您提供2024年最新在线量产型磁控溅射系统价格报价、厂家品牌的相关信息, 包括在线量产型磁控溅射系统参数、型号等,不管是国产,还是进口品牌的在线量产型磁控溅射系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线量产型磁控溅射系统相关的耗材配件、试剂标物,还有在线量产型磁控溅射系统相关的最新资讯、资料,以及在线量产型磁控溅射系统相关的解决方案。

在线量产型磁控溅射系统相关的资讯

  • 既能蒸发又能溅射,nanoPVD磁控溅射系统,各种制备方式自由切换!
    自从2020年Quantum Design中国子公司将英国Moorfield nanotechnology公司生产的台式高精度薄膜制备与加工系统引进国内市场以来受到了国内科研工作者的广泛关注。Moorfield Nanotechnology推出的台式设备体积小巧但性能可以和大型设备相媲美,并且自动化程度高、操作简单、性能可靠、配置灵活。设备所具有的这些优点正是现代实验所需要的。Moorfield Nanotechnology长期收集用户的需求并对产品线进行不断的优化丰富,以满足各种个性化的实验需求。近年来,越来越多的前沿研究中需要用到多种薄膜制备手段,而传统的设备往往只有一种薄膜制备功能,制备一个样品就需要先后在不同的设备中进行操作,并且容易对样品的性质造成破坏。针对这样的需求,Moorfield Nanotechnology公司全新推出了台式高精度溅射与热蒸发系统——nanoPVD ST15A。该系统可以集成金属/绝缘体溅射、金属热蒸发、有机物蒸发功能,在同一台设备中可以实现多种制备手段的组合,将薄膜制备带入了新的高度。系统通过7英寸触摸屏控制,自动化程度高,各种制备方式可以自由切换,甚至可以同时进行。用户可以通过灵活的制备手段在在同一台设备中制备不同的薄膜或者是复合薄膜。nanoPVD ST15A外观图设备技术特点☛ 台式设备配置灵活☛ 磁控溅射、热蒸发、有机物蒸发☛ 三种制备手段可灵活组合☛ 可制备金属、有机物、电介质薄膜☛ 多达3个流量计控制过程气体☛ 高精度自动气压控制选件☛ 全自动触屏操作系统☛ 基片大至4英寸☛ 可选基片加热☛ 本底真空☛ 可选晶振膜厚标定功能☛ 定义保存多个制备程序☛ 全面的安全性设计☛ 超净间兼容☛ 稳定的性能左:nanoPVD ST15A 双蒸发源与磁控溅射组合,右:系统的样品台与挡板背景介绍Moorfield Nanotechnology是英国材料科学领域高性能仪器研发公司,成立25年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。Moorfield公司近十年来与曼彻斯特大学诺奖技术团队紧密合作,推出的台式高精度薄膜制备与加工系列产品由于其体积小巧、性能优异、易于操作更是受到很多科研单位的赞誉。这些设备已经进入了欧洲多所科研院所的实验室,诸如曼彻斯特大学、剑桥大学、帝国理工学院、诺森比亚大学、巴斯大学、埃克塞特大学、哈德斯菲尔德大学、莱顿大学、亚森工业大学、西班牙光子科学研究所、英国国家物理实验室等单位都是Moorfield Nanotechnology的用户和长期合作者。诸多的用户与合作者让产品的性能和设计理念得到了高速发展,并迈入全球化的进程。Quantum Design中国子公司与Moorfield Nanotechnology正式合作,作为中国的代理和战略合作伙伴,为中国用户提供高性能的设备与优质的服务。除了台式设备之外我们还提供多种大型设备和定制服务。目前国内已有包括清华大学、西湖大学、大连理工大学、广东工业大学、中科院等多个单位采购了不同型号的Moorfield高性能薄膜制备与加工设备。产品链接1、台式高性能多功能PVD薄膜制备系列—nanoPVD
  • 260万!东南大学计划采购磁控溅射镀膜仪
    一、项目基本情况项目编号:0664-2260SUMEC787D项目名称:东南大学微纳系统国际创新中心磁控溅射镀膜仪采购预算金额:260.0000000 万元(人民币)最高限价(如有):260.0000000 万元(人民币)采购需求:东南大学微纳系统国际创新中心采购磁控溅射镀膜仪 一套本项目接受进口产品。合同履行期限:合同签约后12个月到货安装调试合格。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目若符合扶持福利企业、促进残疾人就业、支持中小微企业、支持监狱和戒毒企业等政策, 将落实相关政策。3.本项目的特定资格要求:(1)供应商必须是所投产品的制造商或代理商,若投标人不是投标产品制造商的,投标人必须具有下列授权文件之一(本条只适用于进口产品):a.供应商必须提供制造商出具的授权函正本; b.制造商的国内全资子公司出具的授权函正本; c.制造商对授权的区域代理商出具的授权函复印件及该区域代理商出具的授权函正本; d.投标人取得的产品代理证书复印件(正本备查)。4.拒绝下述供应商参加本次采购活动:(1)供应商单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。(2)凡为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目的采购活动。(3)供应商被“信用中国”网站(www.creditchina.gov.cn)、“中国政府采购网"(www.ccgp.gov.cn)列入失信被执行人、税收违法黑名单、政府采购严重违法失信行为记录名单。三、获取招标文件时间:2023年01月05日 至 2023年01月11日,每天上午9:00至11:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上方式:在线获取售价:¥600.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2023年01月29日 09点30分(北京时间)开标时间:2023年01月29日 09点30分(北京时间)地点:南京市长江路198号苏美达大厦辅楼303会议室,五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜申请人的资格要求:1、满足《中华人民共和国政府采购法》第二十二条规定:(1)具有独立承担民事责任的能力(提供法人或者其他组织的营业执照,自然人的身份证明);(2)具有良好的商业信誉和健全的财务会计制度(提供参加本次政府采购活动前半年内(至少一个月)的会计报表或者上一年度的财务审计报告,成立不足一年的提供开标前六个月内的银行资信证明原件。);(3)具有履行合同所必需的设备和专业技术能力(根据项目需求提供履行合同所必需的设备和专业技术能力的证明材料); (4)有依法缴纳税收和社会保障资金的良好记录(提供参加本次政府采购活动前半年内(至少一个月)依法缴纳税收和社会保障资金的相关材料);(5)参加政府采购活动前三年内,在经营活动中没有重大违法记录(提供参加本次政府采购活动前3年内在经营活动中没有重大违法记录的书面声明)(格式见后附件)。(6)法律、行政法规规定的其他条件。2、凭以下材料获取:(1)获取采购文件材料:1、营业执照【复印件加盖公章,扫描件】2、介绍信或者法定代表人授权书【原件加盖公章,扫描件,开具日期不得早于公告日期】3、委托代理人身份证【复印件加盖公章,扫描件】4、采购文件获取登记表word版【详见招标公告附件】(2)凡有意参加本次采购活动的供应商必须提供第(1)条规定证件登记并获取,不按规定获取的视为获取失败。3、我司提供了在线获取采购文件服务,操作流程如下:(1)、用微信关注我司公众号“苏美达达天下”。(2)、进入公众号-“在线服务”-“在线购标”。(3)、输入本项目的项目编号,举例:0664-2260SUMEC787D,点击查询。添加您所要获取的采购文件到购物车,输入投标单位名称、领购人信息以及发票信息,提交订单并确认微信支付,支付完成后将报名材料扫描件和登记表word版一并发至采购代理机构联系人:焦立阳,邮箱:jiaoly_work@163.com 即可,我们将会把采购文件电子版发送到领购人的邮箱。注意事项:(1)确保领购人邮箱真实准确无误,电子版采购文件将发送到此邮箱。(2)目前标书费发票支持开标现场领取或者顺丰到付。(3)“苏美达达天下”付款平台填写的投标单位名称必须与开票信息一致。如不一致投标人自行承担后果。请认真填写领购人信息及发票信息。(4)非采购代理机构或平台公司原因,发票一经开具不予退换。4、疫情防控期间注意事项(本项目采取在线流程):在线流程:因疫情原因,本项目进行线上开标,请供应商尽量提前准备投标文件,以便及时送达代理机构指定的地点。供应商按照不见面开标通知(附件1)的要求参加开标会议。如因投标文件未及时送至代理机构造成的后果由供应商自负。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:东南大学地址:南京市玄武区四牌楼2号联系方式:技术咨询:微纳系统国际创新中心:贺老师 电话:025-83792632 分机号8806; 实验室与设备管理处:刘加彬 电话:025-83792693。2.采购代理机构信息名称:苏美达国际技术贸易有限公司地址:南京市长江路198号苏美达大厦联系方式:项目联系人:杨 扬、焦立阳 电话:025-84532455、025-845324523.项目联系方式项目联系人:杨 扬、焦立阳电话:025-84532455、025-84532452
  • 300万!上海期智研究院计划采购磁控溅射仪
    一、项目基本情况项目编号:0705-2240 02012003项目名称:上海期智研究院磁控溅射仪采购预算金额:300.0000000 万元(人民币)最高限价(如有):300.0000000 万元(人民币)采购需求:包件号项目数量简要技术规格备注1磁控溅射仪1套配置304L不锈钢超高真空不锈钢反应腔体,预留RHEED、RGA等接口,后续可按需升级。沉积腔室可升级集成9个2英寸超高真空溅射靶枪。预算:人民币300万元。 合同履行期限:交货期:收到预付款后8到10个月内。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(1) 投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;(2) 投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的唯一授权;(3) 投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;(4) 本项目不允许联合体投标;(5) 本项目不允许分包和转包(代理商中标后提供由其投标文件中承诺的投标产品制造商生产的产品不视为转包)。 3.本项目的特定资格要求:(1) 投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;(2) 投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的唯一授权;(3) 投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;(4) 本项目不允许联合体投标;(5) 本项目不允许分包和转包(代理商中标后提供由其投标文件中承诺的投标产品制造商生产的产品不视为转包)。三、获取招标文件时间:2022年08月02日 至 2022年08月09日,每天上午8:30至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:上海国际招标有限公司电子采购平台方式:电子发售售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年08月31日 09点30分(北京时间)开标时间:2022年08月31日 09点30分(北京时间)地点:上海国际招标有限公司电子采购平台五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜供应商首次注册应按要求提供《供应商注册专用授权函和承诺书》(可从供应商注册页面下载)和营业执照等扫描件,供应商应当提前准备,尽早办理,以免影响领购招标文件。已注册的潜在投标人可从网站采购公告栏的相应公告或者网站上方“SITC电子采购平台”中进入在线领购招标文件流程。若公告要求提供其他领购资料的,潜在投标人应当上传相关资料的原件扫描件,否则招标代理有权拒绝向其出售招标文件。无需提供领购资料的项目,潜在投标人提交领购申请并支付费用到账后即可下载电子招标文件。项目经理会将纸质招标文件快递给潜在投标人,电子发票将发至投标人登记的邮箱。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海期智研究院     地址:上海市徐汇区云锦路701号40-41层        联系方式:徐瑞;021-54652653      2.采购代理机构信息名 称:上海国际招标有限公司            地 址:中国上海延安西路358号美丽园大厦14楼            联系方式:胡羡聪、刘洲烨;86-21-32173682            3.项目联系方式项目联系人:胡羡聪、刘洲烨电 话:  86-21-32173682
  • 240万!成都大学附属医院红外光谱仪、磁控溅射镀膜机、X-射线衍射仪采购项目
    项目编号:N5101012023000011项目名称:红外光谱仪、磁控溅射镀膜机、X-射线衍射仪采购项目采购方式:公开招标预算金额:2,400,000.00元采购需求:详见采购需求附件合同履行期限:采购包1:自合同签订生效后起10日内采购包2:自合同签订生效后起10日内采购包3:自合同签订生效后起10日内本项目是否接受联合体投标:采购包1:不接受联合体投标采购包2:不接受联合体投标采购包3:不接受联合体投标8a69c98f85909e000185957d38207018.docx
  • 先导集团拟建半导体设备产业园,生产磁控溅射、离子蚀刻等设备
    据广州南沙发布消息,6月28日,广州市南沙区在明珠湾大桥桥面举办重大项目集中签约动工竣工(投产)暨明珠湾大桥通车活动。76个项目于当天集中签约、动工竣工(投产),涵盖新能源汽车、芯片等先进制造产业。在当天的签约仪式上,10个重点项目分两批进行现场签约,总投资额160亿元,达产产值796亿元,其中包括湾区半导体高端设备智造基地。据介绍,湾区半导体高端设备智造基地是先导集团拟在南沙投资建现代化的半导体设备产业园,项目建成后拥有生产各类镀膜沉积设备、磁控溅射设备、离子蚀刻设备及交钥匙工程的综合生产能力。先导集团目前已掌握核心专利和工艺技术,项目产品将拥有100%自主产权,满足半导体产业链国产化替代的需求。广州南沙发布消息指出,目前,南沙正积极促进第三代半导体与新能源汽车产业的融合创新,成立第三代半导体创新中心,形成以晶科电子、芯粤能、爱思威为代表,以联晶智能、芯聚能为龙头的从晶圆生产到芯片设计、封装及应用的第三代半导体全产业链,为将来三千亿级新能源汽车产业集群发展提供“芯”能量。
  • 超亿采购中磁控溅射占主流——半导体仪器设备中标市场盘点系列之PVD篇
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 28px " 薄膜沉积是集成电路制造过程中必不可少的环节,传统的薄膜沉积工艺主要有物理气相沉积( /span span style=" text-indent: 28px " PVD /span span style=" text-indent: 28px " )、化学气相沉积( /span span style=" text-indent: 28px " CVD /span span style=" text-indent: 28px " )等气相沉积工艺。物理气相沉积 /span span style=" text-indent: 28px " (Physical Vapour Deposition /span span style=" text-indent: 28px " , /span span style=" text-indent: 28px " PVD) /span span style=" text-indent: 28px " 技术是在真空条件下,采用物理方法,将材料源 /span span style=" text-indent: 28px " —— /span span style=" text-indent: 28px " 固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。 /span /p p style=" text-indent: 28px text-align: justify " 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐蚀、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。 /p p style=" text-align: justify text-indent: 2em " 仪器信息网近期特对一年内的 span PVD /span 设备的中标讯息整理分析,供广大仪器用户参考。 span style=" color: rgb(127, 127, 127) font-size: 14px " (注:本文搜集信息全部来源于网络公开招投标平台,不完全统计分析仅供读者参考。) /span /p p style=" text-align: center text-indent: 0em " span style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 240px " src=" https://img1.17img.cn/17img/images/202012/uepic/a2ad4457-7ade-41a5-b0c8-6b0bfc0f3001.jpg" title=" 1.png" alt=" 1.png" width=" 400" height=" 240" border=" 0" vspace=" 0" / & nbsp & nbsp /span /p p style=" text-align: center " strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif color:#444444" 各月中标量占比 /span /strong /p p style=" text-indent: 28px text-align: justify " span 2019 /span 年 span 10 /span 月至 span 2020 /span 年 span 9 /span 月,根据统计数据, span PVD /span 设备的总中标为 span 218 /span 台,涉及金额上亿元。 span 2019 /span 年 span 10 /span 月至 span 12 /span 月,平均中标量约 span 25 /span 台每月。 span 2020 /span 上半年,由于疫情影响, span 1 /span 月至 span 4 /span 月中标市场持续低迷,平均中标量约 span 5 /span 台每月,其中二月份无成交量。随着国内疫情稳定以及企业复产复工和高校复学的逐步推进, span PVD /span 设备中标市场活力回升,从二月份到七月份中标量不断增长,其中 span 7 /span 月 span PVD /span 中标量达 span 27 /span 台。第三季度的 span PVD /span 设备采购基本恢复正常,平均中标量约 span 24 /span 台每月。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 400px height: 252px " src=" https://img1.17img.cn/17img/images/202012/uepic/98f0aae5-cd0b-4c37-a638-6e07e56be8b6.jpg" title=" 2.png" alt=" 2.png" width=" 400" height=" 252" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif color:#444444" 采购单位性质分布 /span /strong /p p style=" text-indent: 28px text-align: justify " 从 span PVD /span 设备的招标采购单位来看,高校是采购的主力军,采购量占比高达 span 68% /span ,而企业和科研院所的采购量分别占比 span 12% /span 和 span 19% /span 。值得注意的是,企业和科研院所采购设备的单价较高,集中于高端设备,高校采购低端设备比例略高。企业方面的采购单位主要为电子产业,高校方面的采购单位以大学为主。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 400px height: 265px " src=" https://img1.17img.cn/17img/images/202012/uepic/16cf7cf8-1078-4811-92cb-06cb57740068.jpg" title=" 3.png" alt=" 3.png" width=" 400" height=" 265" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif color:#444444" 招标单位地区分布 /span /strong /p p style=" text-indent: 28px text-align: justify " 本次盘点,招标单位地区分布共涉及 span 25 /span 个省份、自治区及直辖市。广东、北京、浙江、江苏和湖北为 span PVD /span 设备采购排名前 span 5 /span 的地区,其中广东的采购量最大,达 span 32 /span 台。在这些地区中,上海、浙江和江苏的 span PVD /span 设备采购以高校为主力,北京以科研院所和高校采购为主力,只有湖北以企业采购为主。这主要是因为湖北武汉聚集了国内一批半导体企业,如武汉天马微电子有限公司和湖北长江新型显示产业创新中心有限公司,致力于打造“中国光谷”。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 400px height: 233px " src=" https://img1.17img.cn/17img/images/202012/uepic/35dfbb36-d83c-4bcf-894d-3a587cdd8da8.jpg" title=" 4.png" alt=" 4.png" width=" 400" height=" 233" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif color:#444444" 不同类型 span PVD /span 设备占比 /span /strong /p p style=" text-indent: 28px text-align: justify " span PVD /span 设备种类繁多,包含了磁控溅射、蒸发镀膜、真空镀膜等类型。根据搜集到的中标数据可知,磁控溅射占据了中标 span PVD /span 设备的主流、高达 span 72% /span 的 span PVD /span 设备采购为磁控溅射。一般的溅射法可被用于制备金属、半导体、绝缘体等多种材料,且具有设备简单、易于控制、镀膜面积大和附着力强等优点。上世纪 span 70 /span 年代发展起来的磁控溅射法更是实现了高速、低温、低损伤。因为是在低气压下进行高速溅射,必须有效地提高气体的离化率。磁控溅射通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率。 /p p style=" text-indent: 28px text-align: justify " 本次 span PVD /span 设备中标盘点,涉及品牌有泰科诺、 span Kurt J. Lesker /span 、创世威纳、 span Moorfield /span 、 span Leica /span 、合肥科晶、 span VEECO Instruments Inc. /span 、 span Teer Coatings Ltd. /span 、 span QUORUM /span 、 span style=" font-size:15px" Syskey /span span style=" font-size:15px" 、 span Applied Materials ,lnc. /span 、 span ULVACInc /span 、株式会社昭和真空 /span 等。 /p p style=" text-indent: 29px text-align: justify " span style=" font-size:15px" 其中,各品牌比较受欢迎的产品型号有: /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/08db5967-4529-4f60-88a7-518f97a384c8.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center text-indent: 0em " strong span a href=" https://www.instrument.com.cn/netshow/sh102205/C242800.htm" span style=" font-size:15px" span 三靶射频磁控溅射镀膜仪 /span /span /a /span /strong /p p style=" text-indent: 29px text-align: justify " span style=" font-size:15px" 这是一款小型台式 span 3 /span 靶等离子溅射仪 span ( /span 射频磁控型 span ) /span ,配有三个 span 1 /span 英寸的磁控等离子溅射头和射频( span RF /span )等离子电源,此款设备主要用于制作非导电薄膜,特别是一些氧化物薄膜。对于新型非导电薄膜的探索,它是一款廉价并且高效的实验帮手。这款 span 1 /span 英寸的射频溅射镀膜仪主要是用于在单晶基片上制备氧化物膜,所以并不需要太高的真空度。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/c7c1521d-c5b9-4668-b178-66ac2ce7cd98.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center text-indent: 0em " strong span a href=" https://www.instrument.com.cn/netshow/sh101374/C191053.htm" span style=" font-size:15px" span 双靶磁控溅射仪 /span /span /a /span /strong /p p style=" text-indent: 29px text-align: justify " span style=" font-size:15px" & nbsp /span span style=" font-size: 15px " 双靶磁控溅射仪是沈阳科晶自主新研制开发的一款高真空镀膜设备,可用于制备单层或多层铁电薄膜、导电薄膜、合金薄膜、半导体薄膜、陶瓷薄膜、介质薄膜、光学薄膜、氧化物薄膜、硬质薄膜、聚四氟乙烯薄膜等。 /span span style=" font-size: 15px " VTC-600-2HD /span span style=" font-size: 15px " 双靶磁控溅射仪配备有两个靶枪,一个弱磁靶用于非导电材料的溅射镀膜,一个强磁靶用于铁磁性材料的溅射镀膜。与同类设备相比,且具有体积小便于操作的优点,且可使用的材料范围广,是一款实验室制备各类材料薄膜的理想设备。 /span /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/2ed2b9b6-bb58-4779-ab5e-aa97cdaaaa2b.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center text-indent: 0em " strong span a href=" https://www.instrument.com.cn/netshow/SH104149/C283599.htm" span style=" font-size:15px" span 科特莱思科热阻蒸发镀膜系统 /span /span /a /span /strong /p p style=" text-indent: 29px text-align: justify " span style=" font-size:15px" 这款仪器由预真空进样室(可选)前开门蒸发腔体、冷凝泵和干泵、多个热阻蒸发源或 span OLED /span 低温蒸发源、 span 6” /span 基片、基片旋转、基片偏压(可选)、离子源清洗基片(可选)、基片加热 span 1000 /span 度 span ( /span 可选 span ) /span 等部分构成。晶振沉积速率及膜厚控制可选择系统手动或自动控制等方式,能够沉积金属、半导体和绝缘材料,还可沉积多层膜及合金薄膜。 /span span style=" font-size: 15px " & nbsp /span /p p style=" text-indent: 29px text-align: justify " span style=" font-size:15px" 点击此处进入 /span span a href=" https://www.instrument.com.cn/list/sort/241.shtml" span style=" font-size:15px" span 【 span 半导体行业专用仪器 span 】 /span /span /span /span /a /span span style=" font-size:15px" 专场,获取更多产品信息。 /span /p p style=" text-indent: 29px text-align: center " span style=" font-size:15px" 更多资讯请扫描下方二维码,关注【材料说】 /span /p p style=" text-indent: 28px text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/2a630f7c-a2f9-4376-bd8c-911592840aa9.jpg" title=" 材料说.jpg" alt=" 材料说.jpg" / /p
  • 森馥科技助力北京海淀区建成电磁辐射在线监测系统
    为全面准确掌握辖区内电磁辐射环境状况,最大限度地消除居民对电磁辐射指标是否超标的顾虑,北京市海淀区率先在全市建设完成了电磁辐射环境在线监测系统,10月上旬已进入试运行阶段。据了解,这一系统分别在海淀环保局、海淀环保科技园、八里庄设立了3个子监测站,每个子站监测覆盖范围约100平方公里,可以实现对辖区内通信移动基站、高压变电站(线)的电磁辐射指标进行24小时不间断连续监测,并通过无线数据传输,把数据实时传输到海淀环保局监控大屏幕上,便于环境辐射监管部门实时掌握和居民了解辖区内电磁辐射环境质量状况。经过一段时间的试运行,目前电磁辐射环境在线监测系统性能稳定,数据可靠,监测数据显示辖区内电磁辐射指标大幅低于国家规定的安全限值。此次海淀区电磁辐射在线监测系统的整体解决方案由森馥科技提供。作为国内自主研发的国产产品,海淀区电磁辐射在线监测系统的正常运行,不仅昭示着中国电磁辐射监测仪器国产化的强势崛起,同时展示了中国电磁辐射自主品牌——森馥科技优秀的研发制造能力。
  • 解读四|原子尺度实时表征与调控助力自旋芯片和集成电路产业发展——2023年度中国仪器仪表学会科学技术奖获奖项目
    为了支撑集成电路产业快速发展,集成电路高端装备制造已经上升为国家战略。破解集成电路产业“卡脖子”问题,一大关键是实现高端装备制造的自主可控。(1)自主创新面向后摩尔时代集成电路领域高水平科技自立自强的重大需求,亟需打破垄断、突破相关高端装备关键制造技术。北京航空航天大学赵巍胜教授团队创新突破超高精度复杂薄膜制备、多靶超高真空共溅射技术,超高真空下超快磁光测量技术,离子束调控设备高真空集成、离子束能量连续精确调节技术,超高真空互联和无磁传输技术,研制全球首套原子尺度界面自旋电子的原位实时表征与调控系统,应用于自旋芯片相关技术研究,并对关键技术突破进行产业化应用推广。超高真空磁控溅射设备(2)追求卓越团队从2017年开始进行自旋芯片制造和测试核心设备工程化开发:超高真空磁控溅射设备,薄膜沉积精度达到单原子层级别;多物理场高分辨率磁光克尔显微镜,关键技术指标如磁场反应特征时间达到400 ns;晶圆级磁光克尔测试仪可用于自旋芯片生产过程中的晶圆薄膜性质精确表征。系列自旋芯片材料制备和表征仪器的研制成功和推广应用,填补了相关领域的空白,促进了我国自旋芯片和集成电路产业的独立自主发展。晶圆级磁光克尔测试仪(3)产学研结合目前团队基于技术推广应用,联合致真精密仪器(青岛)有限公司和合肥致真精密设备有限公司两家仪器设备公司,完成超高真空高精度磁控溅射仪等3类设备的研制和量产,相关成果已应用于清华大学、中科院物理所、北京超弦存储器研究院、中国电科集团、电子科技大学、上海科技大学、中国计量大学、吉林大学等行业顶尖单位,实现了集成电路领域若干“卡脖子”设备的国产替代,推动了自旋芯片产业发展,取得了显著的经济效益和社会效益,累计创造经济产值7000余万元。2023年10月,“原子尺度界面自旋电子的原位实时表征与调控系统”项目荣获中国仪器仪表学会科技进步一等奖。
  • Centec工业在线及过程控制系统进入中国市场
    德国Centec 集团是一家专注从事用于工业在线及过程控制装置设计及生产的高科技公司,生产线位于德国和捷克。在全球化市场中快速发展,装置广泛应用于食品、饮料、制药、化工、能源等行业。 应用于水软化及离子交换、反渗透、电脱离子、超过滤、注射用水蒸馏、膜技术除水中气泡、柱和真空除水中气泡、碳酸化和脱碳酸盐化、氮化、麦汁充氧和酵母计量、高重力掺混、多流混合、加药、高温灭菌、无菌过滤、脱醇、原位清洗(CIP)、原位消毒(SIP)、纯蒸汽产生等等,Centec 公司根据需求提供最佳方案,满足于GMP和FDA要求。 Centec公司同时提供高精度传送器,可应用于实验室和工业在线,高精度测量产品的指标,确保产品符合高标准的要求,同时非常有效节省能源和原材料。传送器包括以下的检测: ☆ OXYTRANS &ndash 液体和气体中氧气 ☆ CARBOTEC &ndash 液体中溶解的二氧化碳 ☆ RHOTEC &ndash 液体的密度 ☆ SONATEC &ndash 液体的音速 ☆ COMBITEC &ndash 结合SONATEC和RHOTEC两者功能 三种组分或多种组分的液体需要测量密度和音速,测量密度或音速时,也可以显示出其他指标的测量值,如糖度、酒精度、酸度和碱度。 Centec公司在自动化处理领域具有丰富的经验,同时可根据实际需求定制工业在线及过程控制装置,相关资料可以在雷迪美特中国有限公司的资料中心下载。请电:400-628-2898 或 Email:analysis@126.com
  • 灵活多变的溅射、蒸发一体化台式设备——nanoPVD ST15A
    近年来,随着量子材料研究的兴起对薄膜制备方法的需求更加的多样化,而传统的薄膜制备设备往往只有一种薄膜制备功能,制备一个样品就需要先后在不同的设备中进行操作,并且容易对样品的性质造成破坏,也需要更多的科研经费投入。英国Moorfield Nanotechnology公司立足于多种成熟的薄膜制备设备,并长期收集用户的需求并对产品线进行不断的优化丰富,以满足各种个性化的实验需求。针对目前日趋多样化的需求,Moorfield Nanotechnology公司全新推出了台式高精度溅射与热蒸发系统——nanoPVD ST15A。该系统可以集成金属/绝缘体溅射、金属热蒸发、有机物蒸发功能,在同一台设备中可以实现多种制备手段的组合,将薄膜制备带入了新的高度。有别于传统台式系统仅用于制备电极等简单用途,nanoPVD ST15A系统是真正的学术研究级设备,可以制备多种高质量的薄膜样品。体统通过7英寸触摸屏控制,自动化程度高,各种制备方式可以自由切换。用户可以通过灵活的制备手段在在同一台设备中制备不同的薄膜或者是复合薄膜。nanoPVD ST15A外观图设备技术特点☛ 台式设备配置灵活☛ 磁控溅射、热蒸发、有机物蒸发☛ 三种制备手段可灵活组合☛ 可制备金属、有机物、电介质薄膜☛ 多达3个流量计控制过程气体☛ 高精度自动气压控制选件☛ 全自动触屏操作系统☛ 基片大至4英寸☛ 可选基片加热☛ 本底真空左:nanoPVD ST15A 双蒸发源与磁控溅射组合,右:系统的样品台与挡板 背景介绍Moorfield Nanotechnology是英国材料科学领域高性能仪器研发公司,成立25年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。Moorfield公司近十年来与曼彻斯特大学诺奖技术团队紧密合作,推出的台式高精度薄膜制备与加工系列产品由于其体积小巧、性能优异、易于操作更是受到很多科研单位的赞誉。这些设备已经进入了欧洲多所科研院所的实验室,诸如曼彻斯特大学、剑桥大学、帝国理工学院、诺森比亚大学、巴斯大学、埃克塞特大学、伦敦玛丽女王大学、哈德斯菲尔德大学、莱顿大学、亚森工业大学、西班牙光子科学研究所、英国国家物理实验室等单位都是Moorfield Nanotechnology的用户和长期合作者。诸多的用户与合作者让产品的性能和设计理念得到了高速发展,并迈入全球化的进程。Quantum Design中国子公司与Moorfield Nanotechnology正式合作,作为中国的代理和战略合作伙伴,为中国用户提供高性能的设备与优质的服务。除了台式设备之外我们还提供多种大型设备和定制服务。目前国内已有包括清华大学、西湖大学、大连理工大学、广东工业大学、中科院等多个单位采购了不同型号的Moorfield高性能薄膜制备与加工设备。
  • 基于V型纳米孔表面增强拉曼基底的微纳塑料检测
    微塑料通常被定义为尺寸小于5 mm的塑料碎片,在海洋、陆地、淡水系统中均有所发现,对环境安全和生物健康均有一定程度的影响。更令人担忧的是,微塑料通过机械磨损、光降解和生物降解等作用会进一步分解,形成尺寸更小的微塑料甚至是纳米塑料。它们的危害可能更大,因为它们可以穿过生物膜并容易在不同组织间转移,如果吸入空气中的微纳塑料甚至可以穿过肺组织。据已有的研究显示,应用在微塑料检测的传统技术仅能检测到10 μm 左右的大小,远远不能满足当前和未来研究的需要。因此,迫切需要开发适用于小尺寸微纳塑料的检测新方法。表面增强拉曼光谱(SERS)技术是一种强有力的基于拉曼光谱的原位分析技术。一般来说,分子的拉曼效应很弱。然而,当这些分子被吸附在贵金属(例如金和银)的粗糙表面时,分子的拉曼效应会大大提高。甚至可以在单分子水平上获得高灵敏度。在我们之前的研究工作中,首次报道利用SERS技术实现了环境纳米塑料的检测(EST, 2020, 54(24): 15594)。但是,采用的商业化Klarite基底的高昂成本使其不适宜广泛大规模的应用。因此,本研究利用一种低成本的具有大量有序的V型纳米孔阵列的阳极氧化铝(AAO)模板,通过磁控溅射或离子溅射将金纳米粒子沉积在模板上,开发得到用于小尺寸微纳塑料检测的 SERS 基底(AuNPs@V-shaped AAO SERS substrate)。由于AAO模板中纳米孔阵列特殊的V型结构以及有序规则的排列,使得AuNPs@V-shaped AAO SERS基底可以提供大量“热点”和额外的体积增强拉曼效应,在检测微塑料时表现出高 SERS 灵敏度。图1 摘要图本研究首先使用不同尺寸(1 μm、2 μm和5 μm)的聚苯乙烯(PS)和聚甲基丙烯酸甲酯(PMMA)两种标准样品在AuNPs@V-shaped AAO SERS基底和硅基底上进行检测,并计算相应的增强因子(图2、图3)。结果显示,单个PS和PMMA两种颗粒在硅基底上均不能检测到1 μm的尺寸大小,且其他尺寸的拉曼信号强度也相对较弱。而在AuNPs@V-shaped AAO SERS基底上,在相同的检测条件下,各尺寸的单个PS和PMMA颗粒的拉曼信号强度大大增强,且1 μm的PS和2 μm的PMMA都有拉曼信号检出。增强因子的计算结果显示,使用AuNPs@V-shaped AAO SERS基底检测单个微塑料颗粒可获得最大20倍的增强效果。此外,通过比较磁控溅射和离子溅射两种沉积方式所分别形成的基底检测微塑料的拉曼光谱结果和增强因子计算结果,我们可以得出磁控溅射所形成的基底具有更好的检测性能。这个结果可以联系到SERS基底的扫描电镜表征结果(图4)进行解释,磁控溅射所形成的金纳米层更加细腻平整,而离子溅射所形成的金纳米层出现了一定的团聚,导致形貌结构较为粗糙,因此信号强度有所减弱。图2:PS的拉曼检测。(a)不同尺寸的单个PS颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PS颗粒在硅基底上的形态分布;(c)不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PS颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PS颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图3:PMMA的拉曼检测。(a)不同尺寸的单个PMMA颗粒在硅基底上的拉曼光谱;(b)显微镜下不同尺寸的单个PMMA颗粒在硅基底上的形态分布;(c)不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的拉曼光谱;(d)不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的拉曼光谱;(e)显微镜下不同尺寸的单个PMMA颗粒在磁控溅射形成的SERS基底上的形态分布;(f)显微镜下不同尺寸的单个PMMA颗粒在离子溅射形成的SERS基底上的形态分布;(g)增强因子的箱线图。图4:AAO模板和SERS基底的扫描电镜表征。(a)空白的AAO模板;(b)经过离子溅射形成的SERS基底;(c)经过磁控溅射形成的SERS基底;(d)(e)微塑料标准样品在基底上的形态分布。之后,本研究采集了雨水作为大气样品,对基底检测实际样品的能力进行了测试。采集到的雨水样品经过过滤、消解等前处理后,被滴加在基底上进行后续的拉曼检测,获得若干疑似微塑料的拉曼光谱。通过将这些采集到的拉曼光谱与标准微塑料样品的拉曼光谱进行比对,找到了雨水样品中所含有的微纳塑料颗粒,证实了大气中微塑料颗粒的存在以及基底检测实际样品的能力。图5:雨水样品的检测。(a)在基底上发现的疑似微塑料颗粒,尺寸约为2 μm × 2 μm;(b)疑似微塑料颗粒的拉曼光谱。该研究了提出了一种新型的适用于环境微纳塑料检测的低成本SERS基底,具备热点均一、增强效果好的优点,有望推广到环境各介质中微纳塑料的检测,为尺寸更小的纳米塑料检测分析提供了新方法。
  • 海克斯康CIMT 2013多种参展测量产品集锦
    CIMT 2013 锁定展位海克斯康展位: W2-111   Leica绝对激光跟踪仪 Leica 工业测量系统公司计量分部凭借其覆盖面广的工业测量产品而著称,包括激光跟踪仪与全能测量系统、高精度工业级经纬仪和全站仪,能够与通用的CAD文件、建造与检测工具以及逆向工程软件相融合。采用先进的激光测量技术,Leica 工业计量产品能够更方便、更准确的完成质量控制、部件匹配、装配以及大小尺寸部件的制造等任务。   绝对激光跟踪仪是Leica 工业测量系统推出的一系列便携式测量系统:高性能Leica AT901 绝对激光跟踪仪,利用激光进行精确的测量和检测,其测量范围可以包容直径达160 米的球形测量空间。Leica AT901 通过三种方式测得物体的三维坐标:通过跟踪一个带镜面的小球,也就是大家所熟知的反射球 通过跟踪Leica T-Probe产品,一种手持式可移动的无线通讯接触式传感器 通过跟踪Leica T-Scan 产品,一种非接触式的高速激光扫描仪,从而为便携大尺寸测量应用提供了多种解决方案 Leica AT401 绝对激光跟踪仪以其优异的性能成为超大空间尺寸内(包容直径达320 米)的精密测量设备,凭借内部电池供电以及对恶劣环境的适应能力,它可以在各种工作条件下保持最高精度的测量。   Leica 绝对激光跟踪仪最新配备PowerLock 技术。采用主动式视觉技术,能够自动锁定任何移动的目标而不需要操作人员的干预。这样,Leica 绝对激光跟踪仪能够在其视场内自动锁定目标,从而帮助操作人员把主要精力集中在被测物体,而不用担心激光跟踪仪和断光。   海克斯康计量绝对关节臂测量技术:绝对便携测量   超过 20 年的便携式测量经验,海克斯康计量是关节臂测量机的发明者和市场领导者。轻巧便携的系统设计让测量变得快速、便捷和经济。   海克斯康计量绝对关节臂是海克斯康计量最新推出的现场计量产品,成为迄今为止最轻便、最高精度、最灵活、技术最新的关节臂测量系统。率先使用绝对编码器技术,为关节臂的每个位置指派绝对值。启动无需初始化,开机即可测量。   全新的海克斯康计量绝对关节臂测量机,具有无以伦比的可靠性和空间测量精度,测量范围从 2.0 m - 4.5 m,空间长度精度可达 0.023 mm,能够满足大多数工业检测要求。   为满足不同用户的需要,海克斯康计量绝对关节臂提供了三种配置:   n 满足通用测量需要、以触发测量为主的六轴绝对臂   n 集合触发与激光扫描功能为一体的激光内置型七轴绝对臂   n 可外接激光扫描测头的外接型七轴绝对臂   GLOBAL Silver:更高效的精密计量   GLOBAL Silver (亮箭系列)测量机是海克斯康计量推出的最新一代GLOBAL测量机。GLOBAL Silver采用海克斯康集团全球最新测量机技术,拥有更高的测量效率,测量应用能力更广泛,环境适应能力更宽,同时,测量操作更便利友好。   得益于优化的运动算法、改进的软件功能及最新的电子控制技术,GLOBAL Silver较之前的GLOBAL系列测量机,提高了35%的扫描速度,同时保证了一贯稳定的高精度级别。该系列测量机新添加了车间型精密测量机型——GLOBAL Silver SF,该机型采用更为先进的温度补偿技术,能够适应15℃-30℃的宽温带车间环境 针对现场粉尘油污等恶劣环境条件,Silver SF配有灵活轻巧、可重装的防尘罩、无中断激光安全保护带和自动上下料等系统,为高效率安全无人值守操作提供无限可能。   GLOBAL系列测量机自2001年上市,已经获得全球4万用户,并在中国达到5000余台销量,在三坐标测量机行业占据了绝对的市场地位。该次技术升级换代,GLOBAL Silver再次为测量行业树立了新的标杆,释放之初已受到广大新老客户的青睐。   GLOBAL Mini:小型高精密计量之选   GLOBAL Mini,海克斯康计量最新推出的小型数控活动桥式测量机,采用经过验证的机械结构、先进的运动控制系统和功能完善的软件技术,为小尺寸高精密计量提供了完美解决方案。   通过配备触发与扫描技术,GLOBAL Mini 可实现各种类型零部件的精密测量和复杂形状评价,该设备行程为300×400×300(mm),最大精度可达1.0+3L/1000(μm),非常适用于精密加工制造业、电子与医疗器械、光学、制表业等行业小型零部件计量。   ROMER 71系列绝对臂:更易获取的便携式在线测量   为了满足制造业不同用户的需求,海克斯康计量扩充其ROMER关节臂产品线,推出了最新的ROMER 71系列绝对关节臂。该系列关节臂将作为ROMER关节臂入门级产品系列,以最佳的性价比,为制造业现场在线质量检测提供易获取的快速有效的计量工具。   ROMER 71延续ROMER绝对编码器技术,开机即可测量,能够让用户在最短的停机时间获取设备最大的应用工效 机身为碳纤维材料制造,整体重量仅有7.9 公斤,轻便小巧的机身确保了其良好的便携性能,同时,还具有优异的稳定性和可靠性。   目前,ROMER 71具有2.5 和3.5 米两种可选量程,点测重复性高达50 微米,能够兼容所有主流计量软件,适用于各类测量需求。投放市场伊始,ROMER 71系列关节臂已经引起包装设计、高校科研教学、车类行业(密闭空间检测)、家具家电、铸造锻造、塑料制造等各行业用户关注。   Optiv复合式影像测量系统:高效的多传感器测量技术   Optiv 复合式影像测量系统,通过在一台设备中整合影像、激光、白光和接触式测量技术,可根据工件的三维几何形状、材料、反光性能和精度要求选择最合适的传感器进行检测,从而为用户提供了足够的灵活性、精度以及与众不同的复合式传感器测量技术。   Optiv 影像测量仪可提供双 Z 轴设计,具有两个独立的垂直轴。将测量传感器分节在两个 Z 轴,简化了测量复杂的三维零部件时传感器的运动,能够缩短测量周期并提高系统的灵活性。   Optiv提供了四个系列,满足了不同类型的用户的需求:   n Optiv Classic:结构紧凑,经济实用,提供了最优化的性价比   n Optiv Performance:能完成多种测量任务,提供了完整的复合多传感器选择,是在计量室以及生产现场完成各种尺寸测量的第一选择   n Optiv Advantage:提供了最广泛的各种选项,集复合传感器技术和高精度为一身   n Optiv Reference:为精度和技术要求提供了优质保障,为具有极为严格公差要求的工件提供了高精度三维测量方案。   在机测量系统 :加工过程中的工序测量   德国m&h在机测量系统,秉承以客户需求为导向的技术创新,自创立以来,已经成为全球在机测量和刀具在机检测市场的领先者。   m&h机床测头可以用于铣床、加工中心、车床、车铣复合机床、磨床、专用机床和机器人等设备的在机工件测量。对于各种规模的企业来说,加工过程不仅要在加工前对毛坯进行找正,还要在加工工程中实时监控加工件上的几何特征是否超差。因此,在机测头的应用很好的辅助了日常加工工作,有效减少了加工周期,降低了成本,并实现产能的提升。   m&h测头还能够直接在机床上检测所用刀具的长度和半径,检测结果能够自动传输到控制系统的刀具数据库里,可完成定期刀具检测并及时对刀具破损进行识别,从而提高了加工可靠性。   m&h在机测量系统还包括界面友好的三维测量软件,通过为用户提供特殊测量任务支持与系统安装的咨询,为用户提供了加工过程中的“精度之源”。   Cognitens白光测量系统   Cognitens白光测量系统,致力于为制造业尤其是汽车行业提供一流的非接触式三维光学测量解决方案。其独有的专利技术,能够在苛刻的工业环境中,利用二维光学成像重建工件的三维数学模型。这种革命性的测量系统,具有独特的高速数据获取能力,可完成工业设计、产品开发和质量评估、现场测量、过程检测、模具的设计与试制、现场根源分析和车辆试产支持等各种测量与检测任务。   Cognitens 最新推出的 WLS400 系列产品为三维光学测量带来新的标准,采用独特的蓝光技术,单次拍摄覆盖面积大,能够在车间环境下高精度、可靠运行,提供丰富而全面的三维信息。Cognitens WLS400 提供了两种机型:Cognitens WLS400M,手动版白光测量系统,用于三维测量,质量检验和数字化工程 Cognitens WLS400A,配合机器人,提供了自动、快速、柔性的现场快速测量方案。
  • 海谱纳米光学:全球首款微型光谱芯片正式量产
    物理世界的数字化时代正奔涌而来。2D、3D视觉技术将物体的颜色、形状、大小、尺寸、位置等信息转换为AI时代的大数据,但物质成分的数字化进程却停步不前。如今,可解码万物“指纹”的革命性视觉成像技术—高光谱成像正打破这一僵局。高光谱成像突破人眼限制,可实现万物成分检测,为机器视觉提供更真实、更准确的物理世界信息,为人类提供更高维度观察世界的方式。近日,《南方日报》等媒体持续聚焦海谱纳米光学(以下简称“海谱”)微型高光谱成像MEMS芯片及快速增长的高光谱成像市场。从专注研发到高光谱产品的工程化、市场化,海谱跨过创业公司“死亡之谷”的背后,折射的是国产MEMS芯片在全球高端芯片竞技场的突围。从深圳市海谱纳米光学科技有限公司(Hypernano,简称海谱)获悉,2022年初,该公司宣布正式全球率先量产了第一代微型高光谱成像MEMS(微机电系统,Micro-Electro-Mechanical System)芯片,高光谱工业相机及高光谱相机模组即将推向市场。▲海谱纳米光学据悉,基于微型高光谱成像MEMS芯片技术,海谱推出的高光谱成像模组在波长精度、拍摄速度、空间分辨率、半峰宽、视场角等专业技术指标上达到全球领先水平,体积比传统光谱相机缩小了近1000倍,是业界尺寸最小的高光谱相机模组。半导体老兵深圳创业跨越“死亡之谷”海谱创始人兼CEO黄锦标介绍,公司于2019年1月创立,以“光谱芯视觉,感知超极限”为使命,专注于高光谱成像技术的设计与研发。▲黄锦标黄锦标毕业于南开大学微电子专业,有着20多年半导体技术和市场经验,曾担任多家半导体公司高管,有着很强的系统开发和市场开拓的经验。而海谱研发团队在MEMS领域拥有近20年的芯片设计与工艺制造经验,团队核心成员包括多名顶尖MEMS专家及深圳孔雀人才。2022年3月,海谱完成数千万元A轮融资,投资方包括昆仑资本、远方资本、湾信资本。业内人士介绍,MEMS芯片最常用的是承担传感功能,在整个大的信息系统里有点类似于人的感官系统。从行业而言,欧美是MEMS产业、技术与产品的发源地,处于全球领先地位,中国MEMS产业起步较晚,MEMS产业还处于发展的起步阶段,我国不仅在精度和敏感度等性能指标上与国外存在巨大差距,应用范围也多局限于中低端领域。因而有芯片创业难,MEMS芯片创业更难的说法。不过,尽管我国MEMS传感器厂商面临诸多挑战,但从上游设计、中游制造、下游封装等领域国产替代的空间巨大。▲海谱微型高光谱成像MEMS芯片正因为身处MEMS产业这一高精尖行业,海谱从成立初期的3年,经历了高科技创业公司所面临的“死亡之谷”考验,即从技术研发到产品量产的种种挑战。“创业公司的技术再领先,也要把它变成一个工程化且可市场化的产品,这个过程有很多坑,只有迈过去,技术才具有商业价值。”黄锦标称。黄锦标介绍,海谱走到去年年底时,最核心的技术芯片开始量产。同时,将芯片应用于相机的相关模组也已准备完毕,相当于公司在技术工程化产品这个初创公司最大的槛,已经迈了过去。填补国内微型高光谱MEMS芯片领域空白说起海谱的技术,首先还要科普一下光谱技术。光谱学始于英国科学家牛顿,是人类借助光认知世界的重要方式,地球上不同的元素及其化合物都有自己独特的光谱特征,光谱因此被视为可以辨别物质的成分信息。光谱学的最大特色之一,是研究光与物质产生相互作用的学科,通过物理的方法可以获取物体的成分,在应用上可以非接触和非破坏地进行检测。典型的如天文对象、高温物体、放电气体… … 在分子和原子层次上物质作分析研究,主要是用光谱方法。比如人类用光谱相机拍摄遥远星球的表面物质。▲高光谱原理黄锦标介绍,高光谱成像技术则将成像技术与光谱技术相结合,可获取高光谱分辨率的连续、窄波段的图像数据。其原理是将成像技术与光谱技术相结合,在探测目标二维空间信息的同时,获取其每一个空间位置上的光谱信息,从而实现对物质成分的直接检测。物质光谱信息具有指纹特性,即不同的物质拥有不同的光谱,因此高光谱成像为机器视觉的物质感知、识别和分析提供了新路径,是继2D、3D视觉技术之后的下一代革命性视觉成像技术。2019年,海谱在深圳成立后,开启第一款微型高光谱成像MEMS芯片的研发设计与流片。2020年初,海谱宣布正式量产第一代微型高光谱成像MEMS芯片,填补了国内在微型高光谱成像MEMS芯片领域的空白。传统光谱成像设备一般手工组装,存在体积大、价格昂贵、无法批量生产等问题,海谱微型高光谱成像MEMS芯片具备高空间分辨率、高透光率等性能优势,解决了光谱成像设备体积、成本等问题 芯片化量产还可有效降低高光谱成像设备的台间差,实现芯片至整机全自动组装。由此,海谱突破性地实现了MEMS特殊工艺的突破,解决了高光谱成像工业化、低成本和量产化的业界难题,研发能力覆盖芯片设计、光学模组、产品相机、算法研发、完整应用解决方案等高光谱全链条技术,可为全球多领域客户提供一站式高光谱成像解决方案。“传统的光谱成像设备是一个大仪器 海谱的相机模组才一片指甲大,而且更便宜,不管从体积还是价格、便利性都跨越民用的门槛,也是中国在这个细分芯片赛道上做到了世界领先的位置。”黄锦标这样比较。▲高光谱成像技术可检测物质成分芯片产品覆盖全光谱波段,万物皆可测目前,公司已推出几款芯片,形成全光谱覆盖,实现万物皆可测。黄锦标介绍,高光谱成像MEMS芯片及模组可以应用于工业检测、医疗健康、安防环保、食品检测、IOT等多场景。例如在工业检测领域,高光谱技术可在非接触的情况下实现食品检测分拣、质量等级筛选等功能,以往几分钟或数小时的检测结果如今可实时在线获取。在医疗健康,高光谱设备可赋予普通显微镜高光谱视觉能力,同时还可实现癌症筛查、手术辅助成像等功能。在安防环保领域,高光谱技术可对水质、环境进行实时监测,实现对水质的定性、定量观测,实现云图可视化效果。在食品检测领域,高光谱成像技术可对肉类、果蔬、粮油等进行材质分析,检测果蔬的糖度、水分、硬度、酸度等指标,智能分析肉类的新鲜程度。值得留意的是,海谱不仅有硬件团队,也有AI算法团队,这也保证了芯片获取数据后可以计算建模,得到一致性较高的结果。为何一个默默无名的初创科技公司,可以填补芯片产业空白,实现全球技术领先?黄锦标介绍,高光谱成像MEMS芯片是一个多学科的技术突破,不单单涉及微电子,还有化学、材料、机械、光学等。但是,公司一直聚焦于高光谱成像技术这一细分领域,而且公司核心研发团队此前20年专注于该细分技术的研发,有着世界领先的技术沉淀。“中国芯片暂时落后于国外,实际上差在积累不够,除了资本、政策和市场加持,需要很多科研人员、工程师长年累月地在实验室和芯片产线上辛勤付出,这样才有领先技术突破。”黄锦标称,作为一名90年代从大学毕业后进入半导体行业的老兵,见证了深圳20来年半导体行业的萌生、发展和蓬勃,希望通过自主科技创新,支持国产技术在半导体“无人区”技术实现更多突破。【深创者说@黄锦标】“我们一直强调,一个技术是否具有先进性、突破性,一定要有用,要为市场和消费者提供所认可的解决方案。海谱将微型高光谱成像MEMS芯片与人工智能算法结合,来为消费者转译物体的成分信息。比如我们人眼或者普通相机拍一块肉,就是一张普通照片,但是安装我们芯片的相机拍出的照片,经过算法读取,会转换出一个普通人可理解的结果,告诉你这块肉是否新鲜。我们坚持不会做终端产品。现在国内尤其深圳已经有很多全球知名的硬件终端产品公司,我们的定位是生产芯片以及解决方案,来服务这些硬件终端产品公司。在我们看来,现在中国卡脖子,是卡在缺少上游核心芯片或器件的技术和制造能力。海谱立志于去做这样的一个角色。
  • 长春光机所极紫外多层膜膜厚分布超高精度控制研究获进展
    p   近日,中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室金春水研究团队在极紫外多层膜膜厚分布超高精度控制研究方面取得新进展:通过采用遗传算法,实现了Φ200mm曲面基底上极紫外多层膜膜厚分布控制精度优于± 0.1%,镀膜引起的不可补偿面形误差小于0.1nmRMS,相关指标达到国际先进水平。相关结果在线发表于近期的Optics Letters(dx.doi.org/10.1364/OL.40.003958)上。 /p p   极紫外多层膜反射镜是极紫外光刻系统的核心光学元件。极紫外光刻系统需要高性能的极紫外多层膜,包括高反射率、低应力、高稳定性和高均匀性。对于极紫外光刻系统中的投影物镜,必须对镀制在其上的极紫外多层膜进行超高精度的膜厚分布控制,以便实现波长匹配和减小镀膜引起的面形误差。 /p p   该研究团队采用遗传算法,完成了磁控溅射源特性参数的反演和用于控制膜厚分布的公转调速曲线的反演,避免了直接测量磁控溅射速率空间分布的繁琐过程,减少了极紫外多层膜膜厚控制工艺的迭代次数,大大降低了获得超高膜厚分布精度极紫外多层膜反射镜的工艺成本。 /p p   该工作得到了“国家科技重大专项-02专项”项目经费的支持。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/insimg/23f88bde-dfca-408c-bbba-0cd143198760.jpg" title=" W020151215486777681302.png" width=" 600" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 225px " / /p p style=" text-align: center " 长春光机所极紫外多层膜膜厚分布超高精度控制研究获进展 /p p br/ /p
  • 江苏省首台走航式海洋放射性在线监测系统下海应用测试
    7月11日至12日,江苏省核与辐射安全监督管理中心(以下简称江苏核管中心)在连云港组织首台走航式海洋放射性在线监测系统海上测试,取得圆满成功。   海洋放射性监测传统采用人工采集水样、运至实验室开展分析测量的方式,监测周期长,特别是涉及离岸较远的管辖海域和远洋海域监测时,耗时更长。近年来,在线监测由于其节约人力、可实时监测的优点,日趋受到重视。该方法通常采用海上浮标平台搭载水下辐射探测器进行测量,但只能定点测量,如面临事故造成的大范围海域核污染时,要想快速得到核污染分布情况必须在目标海域投放大量浮标监测设备,投入成本高。   本次测试的走航式海洋放射性在线监测系统由江苏省自主研发,可用于海洋核污染预警监控和应急监测,搭载于各类船只,开展大范围海域放射性巡测,大大提高监测效率。系统采用高灵敏水下辐射探测器阵列,在船载移动测量条件下有效提高探测效率、降低放射性核素探测限;同时利用先进的多探测器信号融合算法与谱数据分析方法,提高核素识别与活度测量的准确性。测试获取了连云港近岸、近海多处海域海水放射性核素的走航监测基础数据,为下一步开展更大范围海域监测和相关研究工作奠定了基础。
  • 新型X射线仪器实现磁涡旋精细成像!
    【研究背景】磁性涡旋体是具有拓扑特性的粒子状孤子,因其在自旋电子学等领域的潜在应用而受到广泛关注。与传统的磁性材料相比,磁性涡旋体不仅具有更丰富的自旋结构和动态行为,还能在低能耗信息处理和存储中发挥重要作用。然而,随着材料厚度的增加,涡旋体的三维自旋结构及其复杂性也随之增强,给研究带来了挑战。因此,如何深入理解和表征这些三维自旋结构,成为推动自旋电子学发展的关键。近日,来自劳伦斯伯克利国家实验室Peter Fischer团队在磁性涡旋体的三维自旋结构研究中取得了新进展。该团队设计并制备了一个直径为800纳米、厚度为95纳米的多层盘,成功实现了对其三维自旋结构的定量分析。利用软X射线层析成像技术,该团队显著提高了对磁涡旋体自旋数的测量精度,成功获取了深度依赖的径向分布结果。这些结果为未来3D自旋电子器件的开发提供了重要的实验基础,开辟了设计和调控具有增强功能的三维拓扑自旋电子器件的新机遇。通过进一步的研究和探索,磁性涡旋体的应用前景将更加广阔,推动自旋电子学的发展。【仪器亮点】本文通过软X射线层析成像原理,具体来说,利用X射线磁性圆二色性(XMCD)信号和线性偏振光图像的结合,首次研发了三维自旋纹理成像仪器,从而成功表征了磁涡旋的复杂三维自旋结构,最终揭示了磁涡旋在不同厚度和几何结构下的变化特征。这一新仪器能够有效克服传统二维成像技术的局限性,为深入研究三维拓扑自旋结构提供了全新的手段。本文针对磁涡旋和其他磁性纹理现象,通过软X射线层析成像的详细分析,得到了高分辨率的三维自旋分布图谱,进而挖掘了自旋纹理在不同材料和结构中存在的多样性及其潜在的物理机制。在研究中,作者利用直流磁控溅射法制备了具有不同层厚度的三层膜样品,并通过电子束光刻技术将其图案化为纳米尺度的盘形结构。这些精确的样品制备方法为后续的层析成像实验奠定了基础,使得对磁性结构的深入分析成为可能。在此基础上,研究团队通过结合软X射线层析成像技术和先进的X射线显微镜方法,着重研究了磁涡旋的深度依赖特征。通过对800 nm直径和95 nm厚度的多层膜样品进行定量分析,研究人员能够获得详细的自旋数目分布及其与材料厚度的关系。这些发现为理解磁涡旋在未来自旋电子学器件中的应用提供了重要的理论依据。综上所述,本文不仅展示了通过新仪器开发在三维磁性材料研究中的应用潜力,也为拓展自旋电子学领域的研究提供了重要的工具。通过这种创新的层析成像技术,未来将能够探索更多复杂的自旋结构及其相互作用,从而推动自旋电子学器件的发展与应用。通过克尔光学参量振荡optical parametric oscillation,OPO超高分辨率光学频率梳的光谱转换参考文献:David Raftrey et al. ,Quantifying the topology of magnetic skyrmions in three dimensions.Sci. Adv.10,eadp8615(2024).DOI:10.1126/sciadv.adp8615
  • “地空一体化”扬尘在线监控系统
    扬尘是由于地面上的尘土在风力、人为带动及其他带动条件下而进入大气的开放性污染源,是环境空气中总悬浮颗粒物的重要组成部分,也是雾霾形成的主要原因之一。城市扬尘源具有开放性、空间多源性、广泛性、排放随机性等特征。当前城市区域扬尘来源分为一次扬尘和二次扬尘。一次扬尘是在处理散状物料时,由于诱导空气的流动,将粉尘从处理物料中带出而污染局部地带。二次扬尘是由于流动空气及设备部件转动生成的气流,把沉落的粉尘再次扬起而导致的。城市扬尘种类  工地扬尘主要成分粒径分布排放特点影响程度矽尘、水泥厂、木屑粉尘、石膏粉尘、岩棉泡沫尘等粒径10um的颗粒物约占65%;粒径1um的颗粒物约占95%面源排放25%~40%市区施工工地对城市环境空气质量影响较大     交通扬尘主要成分粒径分布排放特点影响程度块、沙土、垃圾、废物、生物碎屑、路面老化破损、尾气排放、机动车刹车片、轮胎磨损等粒径10um的颗粒物约占47%;粒径1um的颗粒物约占95%线源排放25%~35%;主干交通车流、人流量大,对城市环境空气质量影响较大。   工业粉尘、烟尘主要成分粒径分布排放特点影响程度金属粉尘、木材粉尘,水泥粉尘、生物粉尘、金属融粒,木油煤不完全燃烧产生的烟尘等粒径分布范围广,机械加工和粉碎产生的粉尘粒径较大,不完全燃烧产生的烟尘和冶金产生的金属融粒粒径较小。室内排放为主,封闭性较好,烟尘主要通过点源对外排放15%~30%一般离市区比较远,封闭性较好,对城市环境空气质量影响较小。 城市扬尘监控现状  当前城市扬尘在线监测手段可进行颗粒物浓度、噪声、视频、温湿压、风等多重参数综合监测,但由于城市扬尘排放具有无组织排放、排放源类型复杂、易扩散及存在偷排、漏排现象等特点,导致城市扬尘监控仍面临以下问题:  监控难:工地多、无组织,扬尘布点监控难,监测人力少;  分析难:局地以及外源传输的一次、二次粗、细颗粒物混杂,扬尘监控网络未建立,数据积累不足,监测数据简单堆积,需要逐一甄别,效率低;近地面点式监测,难以说清楚区域内扬尘的来源、分布和变化趋势;  追责难:收集证据难,且未建立明确的评价指标、体系以及依法追责制度,难以实现追责和有效管理。 “地空一体化”扬尘在线监控系统   中科光电“地空一体化”扬尘在线监控系统由扬尘噪声在线监控系统和颗粒物扫描激光雷达两大部分组成。  扬尘噪声在线监控系统  扬尘噪声在线监控系统智能化地集成了颗粒物、噪声、云台摄像机、风速风向传感器,温湿度传感器等监测设备,可全面布设在区域内各主要建筑工地、道路、码头、混凝土搅拌站、重点工业工矿企业等颗粒物污染排放源附近,实时获得tsp、pm10、pm2.5、噪声、视频、温度、湿度、风速风向等近地面数据;  颗粒物扫描激光雷达  颗粒物扫描激光雷达不断扫描,通过监测区域内的消光系数,退偏振度、边界层高度、能见度等信息,获得区域立体空间内扬尘分布,沉降情况,还可以识别粗细粒子,判断是二次源还是一次源,了解区域间扬尘的输送,从而实现对整个城市区域内扬尘来源、现状、发展变化趋势的掌握。  应用“地空一体化”扬尘在线监测系统,微观上可进行浓度数据和视频实时查看、报警抓拍;宏观上可实现对城市区域空间内的扬尘污染作全天候监控,为巡查人员监控取证、行政干预、应急响应、纠纷处置,为管理部门确定扬尘来源、了解扬尘减排治理措施的效果,为政府制定政策规划、空气质量改善行动计划,为各部门信息联网共享、协同管理提供了技术支撑和依据。 “地空一体化”扬尘在线监控系统 “地空一体化”扬尘在线监控系统平台  “地空一体化”扬尘在线监控系统平台包括实时监测、工地管理、设备管理、历史查询、统计分析、视频观看、报警处理、评价方法等多项功能,同时,系统平台将颗粒物扫描激光雷达的垂直监测、垂直扫描、水平扫描、一定仰角(如45°)探测、走航观测等探测模式进行高度集成,实现了区域内扬尘分布、来源、变化趋势的全方位立体化监测。高效、精细的实时监控,为政府监察部门的多维取证、依法追责提供有效数据支撑。登录页面实时监测——近地面数据实时监测——水平遥感污染源监测实时监测——走航道路交通监测历史查询设备管理“地空一体化”扬尘在线监控系统系统优势  基于物联网思维的智能联动技术,云台摄像机除了预置位抓拍之外,还可以根据颗粒物和噪声报警信息,风速风向信息、智能判断方向进行抓拍,更加准确获取污染源头的位置信息,满足实时性与精细化监管的需求。  近地面监测和立体监测的集成创新。多要素多手段综合监测,不仅有量化数据,视频图像取证,还有区域立体空间的颗粒物分布现状、发展变化趋势分析,微观和宏观结合,证据丰富有力,结论一目了然,突破无组织排放监控的技术难题。  基于大数据挖掘、分析的环保云应用平台。可以实现海量扬尘监测数据、环境空气监测站数据的多角度统计分析和比较,满足大数据的价值挖掘和应用,实现监测系统的云端运营、大数据的云端分析,为政府、企业提供环境治理的技术咨询,同时手机app的应用能让公众随时掌握所在地的颗粒物、噪声等环境指标。  核心设备采用行业标杆公司顶级产品,成熟稳定可靠,使用寿命长。该产品内置了加热器控制湿度水平,不仅保护电子和光学系统,还可以排除湿度对测量结果的影响,测量更加准确;  海量数据的高速存储,本地数据存储容量大于等于1t,通讯接口具备可扩展。  停电后可长期保存系统设置参数,电源恢复后可自动启动,进入工作状态。  “地空一体化”扬尘在线监控系统实现了建筑工地扬尘污染在线监测、管理一体化,提升了科学管理的效率和能力。该系统对掌握建筑工地扬尘污染现状的真实状况,以及采取控尘措施的效果具有权威性。该系统可用定量化、可视化的数据反映扬尘污染治理的水平,是建设智慧环保的有效手段。
  • 北京启用施工工地扬尘在线监控系统
    p   日前,由北京市环保局购买第三方服务,北京城市建设研究发展促进会负责运营维护的北京市施工工地在线监控系统正式启用。 /p p   为加强扬尘污染控制,推动空气质量持续改善,北京市环保局利用财政资金,通过公开招标方式安装及运行扬尘在线监测系统,对扬尘污染行为进行抓拍,实现24小时监控,及时掌握重点扬尘源单位的颗粒物浓度排放情况,督促扬尘源单位做好扬尘控制工作。截至目前,全市已在各区和北京经济技术开发区的多个重点工地安装监控,涉及水务类、交通类、房建和市政基础设施、城市副中心、新机场建设工地及预拌混凝土搅拌站等扬尘源单位。 /p p   系统的监测内容主要包括:全天候监控扬尘源单位,在线巡检施工工地扬尘行为,及时提醒现场负责人及主管部门,编制数据报表, 合理布置监测点位,对重点扬尘源单位进行现场巡检督查等。该系统实时监测施工工地扬尘排放情况,通过视频摄像头对施工单位进行在线巡检并针对曾经被提醒过的工地和被通报的工地进行重点监测。发现扬尘问题后,值班员通过短信和电话提醒的方式,及时督促施工单位做好降尘措施。 /p p   截至2018年1月,三个多月时间内,该系统电话互动次数761次,检查视频9072次,摘抄数值2991次,形成周、期报,空气重污染期间日报等各类报告23份。 /p p   为加强扬尘污染控制,北京市环保局于1月18日印发的北京市大气污染综合治理领导小组办公室关于建筑施工工地扬尘在线监控情况相关通报要求,督促各区落实属地责任、加大督查检查力度,促使相关扬尘源单位对扬尘行为及时整改,促进建设施工单位行业自律。 /p
  • HORIBA在线讲座|深度学习光谱技术在材料领域的应用(荧光/拉曼)【6月17日】
    想解决这些问题吗?如何利用荧光技术检测发光材料的荧光增强?如何利用荧光光谱测定光学微腔自吸收效应?如何表征宽禁带结构半导体的光电特性?如果你对以上问题感兴趣,那就来参加HORIBA举办的在线讲座吧!本次讲座我们特别邀请了北京工业大学副研究员、博士生导师闫胤洲老师和郑州大学材料学院沈永龙老师,分享科研过程中荧光和拉曼应用研究经历,课程结束后更有现场交流,干货满满~前沿课题分享,导师现场答疑!如果你在科研中有什么疑问,不要错过这次机会~只需电脑和网络,无需付费光谱应用知识就能轻松享,还不赶紧来报名!1课程安排14:00-14:30荧光光谱技术在介电微腔荧光增强及宽禁带结构半导体材料表征中的应用——闫胤洲老师14:30-14:40问题交流&答疑14:50-15:20拉曼光谱在材料领域的应用——沈永龙老师15:20-15:30问题交流&答疑2讲座内容报告主题:荧光光谱技术在介电微腔荧光增强及宽禁带结构半导体材料表征中的应用报告摘要:本报告将介绍本课题组采用荧光光谱技术在介电微腔荧光增强及宽禁带结构半导体光电特性表征方面的研究进展。在荧光材料表面构建介电微球腔阵列实现发光材料的荧光增强,利用荧光光谱技术阐述了微球腔聚焦、光学回音壁及定向天线效应在荧光增强中的贡献,提出了非表面等离激元介入的荧光定向发射增强的新方法。在宽禁带半导体微米管微腔器件表征方面,通过变温荧光技术实现了半导体中受主态相关的激子发光峰指认,采用紫外超短脉冲泵浦半导体回音壁微腔实现了低阈值紫外激射探测,利用角分辨稳态/瞬态紫外荧光技术揭示了微米管结构半导体光学微腔自吸收效应,为高效耦合微纳光子器件的研发奠定基础。3嘉宾介绍北京市海聚工程青年人才,北京市科技新星。承担多项国家自然科学基金项目、北京市科委及教委项目,主要研究领域包括:介电微腔光散射调控技术,介观半导体光电器件制备及表征技术,光学超分辨成像技术,3D打印技术等。在基于介电微腔的光学超分辨成像和光散射光谱增强技术等方面取得多项研究成果,相关成果在ACS Nano, Light: Science & Applications, NPG Asia Materials, ACS Applied Materials & Interfaces, Optics Express等期刊发表论文40余篇,他引300余次。沈永龙,2010-2015年就读于英国博尔顿大学材料科学专业,2015年获哲学博士学位。主要研究方向为:氧化物半导体及其器件、薄膜材料、材料结构高分辨表征。长期从事氧化物半导体薄膜研究,主要采用磁控溅射办法制备具有不同物理性能的半导体薄膜材料,以及相关半导体器件的研制。作为项目负责人先后获得国家自然科学基金—青年项目和国家博后基金面上项目资助,在Acta materialia, JMCA和Applied Catalysis B:Environmental等发表多篇文章。现在主要负责中心实验室大型设备(拉曼,透射电镜,球差电镜,X射线衍射,FIBs)培训,日常维护,操作等。4报名方式识别查看二维码快速报名注:本次培训课程仅接受仪器使用者报名。别急,还没结束,我们的拉曼课题正在准备中,更多活动信息,敬请期待下次通知! HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的Jobin Yvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • HORIBA在线讲座|深度学习光谱技术在材料领域的应用(荧光/拉曼)【6月17日】
    想解决这些问题吗?如何利用拉曼光谱测定半导体的结构信息? 如何利用荧光技术检测发光材料的荧光增强?如何表征宽禁带结构半导体的光电特性?如果你对以上问题感兴趣,那就来参加HORIBA举办的在线讲座吧!本次讲座我们特别邀请了北京工业大学副研究员、博士生导师闫胤洲老师和郑州大学材料学院沈永龙老师,分享科研过程中荧光和拉曼应用研究经历,课程结束后更有现场交流,干货满满~前沿课题分享,导师现场答疑!如果你在科研中有什么疑问,不要错过这次机会~只需电脑和网络,无需付费光谱应用知识就能轻松享,还不赶紧来报名!1课程安排14:00-14:30荧光光谱技术在介电微腔荧光增强及宽禁带结构半导体材料表征中的应用——闫胤洲老师14:30-14:40问题交流&答疑14:50-15:20共聚焦显微拉曼光谱在金属氧化物半导体结构中的应用——沈永龙老师15:20-15:30问题交流&答疑2讲座内容报告主题1:荧光光谱技术在介电微腔荧光增强及宽禁带结构半导体材料表征中的应用——闫胤洲老师报告摘要:报告将介绍如何在荧光材料表面构建介电微球腔阵列实现发光材料的荧光增强,并利用荧光光谱进行表征;以及通过变温及时间分辨荧光技术研究半导体中相关的激子发光峰指认和微腔表征这两个部分。报告主题2:共聚焦显微拉曼光谱在金属氧化物半导体结构中的应用。——沈永龙老师报告摘要:通过拉曼光谱分析谱峰的位置,位移,半高宽,相对强度,确定半导体的空间结构,应力,缺陷和结晶度等。同时通过固定频率记录拉曼光谱强度随空间点的变化,可以获得结构及缺陷在材料中的分布。3嘉宾介绍闫胤洲北京工业大学副研究员北京工业大学博士生导师、北京市海聚工程青年人才,北京市科技新星,承担多项国家自然科学基金项目、北京市科委及教委项目。研究方向:介电微腔光散射调控技术,新型结构半导体光电器件,光学超分辨成像技术,3D打印技术等。在基于介电微腔的光学超分辨成像和光散射光谱增强技术等方面取得多项研究成果,相关成果在ACS Nano, Light: Science & Applications, NPG Asia Materials, ACS Applied Materials & Interfaces, Optics Express等期刊发表论文40余篇,他引300余次。沈永龙郑州大学材料学院2010-2015年就读于英国博尔顿大学材料科学专业,2015年获哲学博士学位。研究方向氧化物半导体及其器件、薄膜材料、材料结构高分辨表征。长期从事氧化物半导体薄膜研究,主要采用磁控溅射办法制备具有不同物理性能的半导体薄膜材料,以及相关半导体器件的研制。先后获得国家自然科学基金—青年项目和国家博后基金面上项目资助,在Acta materialia, JMCA和Applied Catalysis B:Environmental等发表多篇文章。现在主要负责中心实验室大型设备(拉曼,透射电镜,球差电镜,X射线衍射,FIBs)培训,日常维护,操作等。4报名方式识别查看二维码快速报名注:本次培训课程仅接受仪器使用者报名。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的Jobin Yvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 凌工科技发布凌工智能型冷却水循环机(LC2500)新品
    一、产品介绍 凌创(LC)系列智能型冷却水循环机可广泛应用于各类精密仪器设备冷却,循环水质结净,换热效率高,循环冷却水恒流或恒压模式可选,自动调节冷却水流量或压力,精确在线显示循环冷却水流量及压力;采用自主研发的智能控制系统,循环冷却水温度、流量或压力控制精度高;可与需冷却设备之间通讯,通讯协议RS485、RS232、Can通讯可选,本地或远程调节循环冷却水温度、流量、压力等参数。二、主要特点智能化控温、控流、控压;采用PID控温,控温精度达±0.1℃;外形美观、操作方便;可远程设置温度、流量、压力等参数;可远程启停设备;可扩展电导率在线检测,实时检测循环水质状态;三、应用领域分析仪器领域:原子吸收光谱仪(AAS)、电感耦合等离子体发射光谱仪(ICP)、电感耦合等离子体质谱仪(ICP-MS)、扫描仪、透射电镜(TEM)、氧氮氢分析仪 实验仪器领域:疲劳试验机、高频熔样机、凯氏定氮仪、索氏提取器、脂肪提取仪、旋转蒸发仪、不锈钢(玻璃)反应釜、发酵罐、回流提取装置、蒸馏冷凝器、电泳仪、手套箱 激光设备领域:激光打标机、激光切割机、激光雕刻机、激光打印机、激光投影仪、激光器 真空设备领域:真空镀膜机(包括真空离子蒸发/磁控溅射/MBE分子束外延/PLD激光溅射沉积)、真空炉、等离子刻蚀机、真空泵(分子泵/扩散泵/旋片泵/罗茨泵/干泵) 机床设备领域:CNC机床电主轴/液压站/润滑站/切削加工液/减速箱、CNC机床伺服电机/直线电机/力矩电机 注塑设备领域:小型注塑机、小型挤出机 包装机械领域:PCB钻孔机、铣边/槽机、贴片机、充磁机创新点:1、冷却水自动恒流、恒压模式可选:流量、压力可以精确自动调节,流量控制精度± 0.2L/min,压力控制精度± 5Kpa; 2、冷却水电导率检测:通过检测冷却水电导率大小自动判断循环水质情况,及时提醒用户更换循环水,提高被冷却仪器的使用寿命和散热效率,使得被冷却设备运行更加安全、稳定; 3、多种通讯协议可选:RS485、RS232、以太网、CAN通讯可选,本地+远程控制冷却水温度、流量、压力及产品故障报警信息; 凌工智能型冷却水循环机(LC2500)
  • 纳米薄膜材料制备技术新进展!——牛津大学也在用的薄膜沉积系统,有什么独特之处?
    一、纳米颗粒膜制备日前,由英国著名的薄膜沉积设备制造商Moorfield Nanotechnology公司生产的套纳米颗粒与磁控溅射综合系统在奥地利的莱奥本矿业大学Christian Mitterer教授课题组安装并交付使用。该设备由MiniLab125型磁控溅射系统与纳米颗粒溅射源共同组成,可以同时满足用户对普通薄膜和纳米颗粒膜制备的需求。集成了纳米颗粒源的MiniLab125磁控溅射系统 传统薄膜材料的研究专注于制备表面平整、质地致密、晶格缺陷少的薄膜,很多时候更是需要制备沿衬底外延生长的薄膜。然而随着研究的深入,不同的应用方向对薄膜的需求是截然不同。在表面催化、过滤等研究方向,需要超大比表面积的纳米薄膜。在这种情况下,纳米颗粒膜具有不可比拟的优势。而传统的磁控溅射在制备纯颗粒膜方面对于粒径尺寸,颗粒均匀性方面无法实现控制。气相沉积法、电弧放电法、水热合成法等在适用性、操作便捷性、与传统样品处理的兼容性等方面不友好。在此情况下,Moorfield Nanotechnology推出了与传统磁控溅射和真空设备兼容的纳米颗粒制备系统。不同条件制备的颗粒粒径分布(厂家测试数据)不同颗粒密度样品(厂家测试数据)纳米颗粒制备技术特点:▪ 纳米颗粒的大小1 nm-20 nm可调;▪ 多可达3重金属,可共沉积,可制备纯/合金颗粒;▪ 材料范围广泛,包括Au、Ag、Cu、Pt、Ir、Ni、Ti、Zr等▪ 拥有通过控制气氛制造复合纳米粒子的可能性(类似于反应溅射)▪ 的纳米颗粒层厚度控制,从亚单层到三维纳米孔▪ 纳米颗粒结构——结晶或非晶、形状可控纳米颗粒膜的应用方向:▪ 生命科学和纳米医学: 癌症治疗、药物传输、抗菌、抗病毒、生物膜▪ 石墨烯研究方向:电子器件、能源、复合材料、传感器▪ 光电研究:光伏研究、光子俘获、表面增强拉曼▪ 催化:燃料电池、光催化、电化学、水/空气净化▪ 传感器:生物传感器、光学传感器、电学传感器、电化学传感器 二、无机无铅光伏材料下一代太阳能电池的大部分研究都与铅-卤化物钙钛矿混合材料有关。然而,人们正不断努力寻找具有类似或更好特性的替代化合物,想要消除铅对环境的影响,而迄今为止,这种化合物一直难以获得。因此寻找具有适当带隙范围的无铅材料是很重要的,如果将它们结合起来,就可以利用太阳光谱的不同波长进行发电。这将是提高未来太阳能电池效率降低成本的关键。近期,牛津大学的光电与光伏器件研究组的HenrySnaith教授与Benjamin Putland博士研究了具有A2BB’X6双钙钛矿结构的新型无机无铅光伏材料。经过计算该材料具有2 eV的带隙,可用做光伏电池的层吸光材料与传统Si基光伏材料很好的结合,使光电转换效率达到30%。与有机钙钛矿材料相比,无机钙钛矿材料具有结构稳定使用寿命更长的优势。而这种新材料的制备存在一个问题,由于前驱体组分的不溶性和复杂的结晶过程容易导致非目标性的晶体生长,因此难以通过传统的水溶液法制备均匀的薄膜。Benjamin Putland博士采用真空蒸发使这些问题得以解决。使用Moorfield Nanotechnology的高质量金属\有机物热蒸发系统,通过真空蒸发三种不同的前驱体,研究人员成功沉积制备出了所需要的薄膜。真空蒸发具有较高的控制水平和可扩展性,使得材料的工业化制备成为可能。所制备的薄膜在150℃退火后,XRD图。所制备的薄膜在150℃退火后,表面SEM图 三、Moorfield 薄膜制备与加工系统简介Moorfield Nanotechnology是英国材料科学领域高性能仪器研发公司,成立二十多年来专注于高质量的薄膜生长与加工技术,拥有雄厚的技术实力,推出的多种高性能设备受到科研与工业领域的广泛好评。高精度薄膜制备与加工系统 – MiniLab旗舰系列和nanoPVD台式系列是英国Moorfield Nanotechnology公司经过多年技术积累与改进的结晶。产品的定位是配置灵活、模块化设计的PVD系统,可用于高质量的科学研究和中试生产。设备的功能和特点:▪ 蒸发设备:热蒸发(金属)、低温热蒸发(有机物)、电子束蒸发▪ 磁控溅射:直流&射频溅射、共溅射、反应溅射▪ 兼容性:可与手套箱集成、满足特殊样品制备▪ 其他功能设备:二维材料软刻蚀、样品热处理▪ 设备的控制:触屏编程式全自动控制
  • 磁性随机存储器(MRAM)和斯格明子研究的最新利器!可精确调控磁性薄膜或晶圆磁性的离子辐照磁性精细调控系统Helium-S®
    今年1月,三星电子在学术期刊 Nature 上发表了全球基于 MRAM(磁性随机存储器)的存内计算研究。存内计算由于毋需数据在存储器和处理器间移动,大大降低了 AI 计算的功耗,被视作边缘 AI 计算的一项前沿研究。三星电子的研究团队通过构建新的 MRAM 阵列结构,用基于 28 nm CMOS 工艺的 MRAM 阵列芯片运行了手写数字识别和人脸检测等 AI 算法,准确率分别为 98% 和 93%。研究人员表示,MRAM 芯片应用于 in-memory computing(内存内计算)电脑,十分适合进行神经网络运算等,因为这种计算架构与大脑神经元网络较为相似。 MRAM 器件在操作速度、耐用性和量产等方面具有优势,但其较低的电阻使 MRAM 存储器在传统的存内计算架构中无法达到低功耗要求。在本篇论文中,三星电子的研究人员构建了一种基于 MRAM 的新存内计算架构,了这一空白,这是MRAM研究的又一新突破。 近期,国内的众多课题组也在MRAM研究上取得了许多重量的工作。例如北航的赵巍胜课题组在2020年发表在APL上的——具有垂直各向异性的氦离子辐照W-CoFeB-MgO Hall bars中的自旋轨道矩(SOT)驱动的多层转换一文中,运用了特的氦离子辐照技术对W(4 nm)/CoFeB (0.6 nm)/MgO (2 nm)/Ta (3 nm)多层膜进行了结构的调控,通过对调控前后以及过程中磁学和电学性质变化的研究,表明这种使用离子辐照调控多层电阻的方法在实现神经形态和记忆电阻器件领域显示出巨大的潜力。图中Kerr 图像显示了 SOT 诱导的磁化转换过程中Hall bars电流的增加,白色虚线表示纵向电流线和横向电压线。红色方框对应于氦离子辐照区域。(ii) 和 (iv) 中的黄色箭头代表畴壁运动的方向。 离子辐照除了在MRAM研究领域小试牛刀外,在斯格明子的研究中也令人眼前一亮。 法国自旋电子中心(SPINTEC) 和法国Spin-Ion公司合作发表在NanoLetters上的一篇文章,题目为:氦离子辐照让磁性斯格明子“走上正轨”。文中指出,氦离子辐照可被用于在“赛道上”“创造”和“引导”斯格明子,文章证明了氦离子辐照带来的垂直磁各向异性和DMI的变小,可导致稳定的孤立斯格明子的形成。图中红色轨道尺寸为6000×150 nm2,间距为300 nm,用氦离子辐照的区域。图中显示了氦离子辐照的红色轨道区域不同磁场下的MFM图像。 以上两篇文章采用的离子辐照设备来自法国Spin-Ion公司。法国Spin-Ion公司于2017年成立,源自法国研究中心/巴黎-萨克雷大学的知名课题组。Spin-Ion公司采用Ravelosona博士的创新技术,在磁性材料的离子束工艺方面有20年的经验,拥有4项和40多篇发表文章。Spin-Ion公司推出的产品——可用于多种磁性研究的离子辐照磁性精细调控系统Helium-S® ,可通过紧凑和快速的氦离子束设备控制原子间的位移。该设备使用特有的离子束技术在原子尺度上加工材料,可通过离子束工艺来调控薄膜和异质结构。目前全球已有20多家科研和工业的用户以及合作伙伴使用该技术。2020年Spin-Ion公司在中国也已安装了套系统,Helium-S® 有的技术能力正吸引来自相关科研圈和工业领域越来越多的关注。 产品主要应用领域:磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM), 自旋轨道矩磁性随机存储(SOT-MRAM), 磁畴壁磁性随机存储(DW-MRAM)等自旋电子学:斯格明子,磁性隧道结,磁传感器等磁学相关:磁性氧化物,多铁性材料等其他:薄膜改性,芯片加工,仿神经器件,逻辑器件等 产品特点:● 可通过紧凑和快速的氦离子束设备控制原子间的位移,通过氦离子辐照可调控磁性薄膜或晶圆的磁学性质。● 可提供能量范围为1-30 keV的He+离子束● 采用创新的电子回旋共振(ECR)离子源● 可对25毫米的试样进行快速的均匀辐照(如几分钟)● 超紧凑的设计,节省实验空间● 也与现有的超高真空设备互联 测试数据:调控界面各向异性性质和DMI 低电流诱发的SOT转换获取 控制斯格明子和磁畴壁的动态变化 用户单位 已经购买该设备的国内外用户单位:University of California San Diego (USA)University of California Davis (USA)New York University (USA)Georgetown University (USA)Northwestern University (USA)University of Lorraine (France)SPINTEC Grenoble (France)University of Cambridge (UK)University of Manchester (UK)Beihang University (China)Nanyang Technological University and A*STAR (Singapore)University of Gothenburg (Sweden)Western Digital (USA)IBM (USA)Singulus Technologies (Germany) 文章列表:[1]. Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)[2]. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)[3]. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)[4]. Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)[5]. Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)[6]. Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)[7]. Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)[8]. Suppression of all-optical switching in He+ irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona, J. Phys. D: Appl. Phys. 51, 215004 (2018)[9]. Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)[10]. Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)[11]. Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)[12]. Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)[13]. Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J Akerman, Appl. Phys. Lett. 116, 072403 (2020)[14]. Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)[15]. Magnetic fieldfrustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)[16]. Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)[17]. Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)[18]. Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nano Lett. 2021 Apr 14 21(7):2989-2996 参考文献:[1]. Nature 601, 211-216(2022)[2]. Appl. Phys. Lett 116, 242401 (2020)[3]. Nano Lett. 2021 Apr 14 21(7):2989-2996
  • “光谱仪在能源、电池领域中的应用”在线讲座问题集锦(6)
    锂电池以其特有的性能优势已在便携式电子设备中得到了普遍应用,其中大容量的锂电池还被用于电动汽车,预计未来将成为其主要的动力电源之一。此外,它还可用于人造卫星、航空航天和储能等方面。 11月7日,HORIBA Scientific举办了光谱应用系列在线讲座(6)——“光谱仪在能源、电池领域中的应用”,涉及辉光光谱、拉曼光谱技术。至此,“2014探索In的光谱应用”系列活动圆满结束。本次活动涵盖了如今热门的6大应用领域及7种光谱技术,为参与者提供了一个绝好的学习光谱技术机会。现将本次讲座问题整理后供大家参考。课程一:辉光光谱Q:赵老师:请问可以分析粒径在几百纳米的粉末样品吗?A:辉光放电光谱仪可直接分析的样品呈固体块状/片状,不可以分析粉末样品。当然可以将粉末样品磨碎混合铜粉压片成均匀块体分析。Q:Lucy-SH:辉光放电光谱仪和椭圆偏振光谱仪有什么区别?A:辉光放电光谱仪是有损分析技术且专注于分析镀层元素随深度的分布,可获得镀层元素、界面污染、表面处理、层间扩散、镀层均一性,定量后还可获得镀层元素含量及镀层厚度;椭圆偏振光谱仪是无损分析技术,它专注于分析镀层样品的厚度、光学常数(n,k)、粗糙度、孔隙率、界面信息、组分、结晶度、梯度变化及各向异性等。Q:中南大学-材料院-张老师:磁控溅射后的样品可以做吗?样品要平整到什么程度?A:可以。样品仅需要看上去平整即可进行分析。Q:张老师:请简要介绍一下辉光放电谱仪与SIMS比较的优缺点?A:两种技术都为表面镀层分析技术。辉光放电光谱仪分析速度快(几分钟),可测试元素周期表中所有元素,操作简单、维护方便、价格便宜。SIMS分析速度慢(几个小时),可测试所有元素、同位素,分析化合物组分及分子结构,操作复杂含有超高真空设备、维护成本高、价格昂贵。联合使用可多方位表征样品。Q:哈尔滨工业大学-能源学院-张老师:经Ar粒子轰击过的样片,比如您粒子中的0.3nm的镀膜材料,是否测量完成就被破坏了?A:辉光放电光谱仪是一种有损分析,Ar等离子体的阳离子会持续轰击样品表面,将镀层元素剥蚀,终产生一个溅射坑。课程二:拉曼光谱Q:中科院生态中心-王老师:测量液体拉曼光谱,对装样品的玻璃器皿光面毛面状况有特别讲究吗?A:测量液体样品时根据样品量的多少可以选择不同的容器,当样品量少时,放在毛细管中即可(毛细管壁薄的情况下样品信号会相应更强)。通常使用的玻璃器皿都是光面的。如果液体挥发性不强,没有腐蚀性,也可以滴在硬币表面或者玻璃表面。这时毛面的玻璃由于利于散射,可以得到更强的信号。Q:清华大学-材料系-陈老师:锂电池的充放电中提到拉曼可以检测锂离子的扩散,拉曼也可以检测离子吗?A:可以。通常情况下拉曼光谱是不用于离子检测的。但当离子和其它物质发生作用时,可以通过其它物质信号的改变来反推离子的扩散或浓度情况。例如在锂电池中,通过对石墨D峰的检测可以对锂离子扩散进行相应判断。由于拉曼光谱可以对分子所处的微环境进行表征,在一定的实验设计下,它是可以对离子、pH值、温度等信息进行表征的。关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 《高适应性智能化数字X射线3D在线检测关键部件及系统研制》项目启动会召开
    近日,由广州计量院牵头的国家重点研发计划“国家质量基础设施体系”重点专项《高适应性智能化数字X射线3D在线检测关键部件及系统研制》项目启动会暨实施方案论证会在北京召开。这是广州计量院首次牵头承担的一项国家重点研发计划项目。科技部、国家市场监管总局、广州市市场监管局、清华大学、北京大学、中国科学院、中国计量科学研究院、行业知名专家、项目承担单位代表等约40余人参加了会议。数字化X射线检测技术是《中国制造2025》中明确提出的重点无损检测技术发展方向之一。该项目围绕X射线检测设备的多层集成电路及芯片在线实时3D成像与检测等重大需求,研制国家《“十四五”智能制造发展规划》中指定的智能检测装备和仪器,直接支撑着国家五大新兴战略产业。该项目由广州计量院牵头,联合清华大学、北京京东方光电科技有限公司、广东省科学院智能制造研究所、中国航空工业集团公司北京长城计量测试技术研究所等共8家单位,重点解决了大剂量X射线照射下探测器中的宽禁带氧化物TFT阈值电压漂移过大问题、3D成像的雷登空间不完备锥束CT数据重建问题、数字化校准证书如何兼顾国际认可及国内可用问题等卡脖子问题。攻克3C制造工业等应用场景下的高质量数据获取、快速重建、智能化检测等共性关键技术,构建数字校准证书的国际互认体系。国家市场监管总局科技财务司徐成华一级调研员代表总局提要求国家市场监管总局科技财务司徐成华一级调研员对项目顺利立项启动表示祝贺,肯定了项目团队的实力,代表总局要求确保项目取得重大科研进展,为促进无损检测技术的发展做出贡献。广州市市场监管局科技处副处长、三级调研员吴汝哲致辞支持本项目高质量完成广州市市场监管局科技处副处长、三级调研员吴汝哲表示,此项目是广州市场监管系统首次获批国家重点研发计划项目,感谢上级部门对本项目的支持,将支持本项目高质量完成。项目负责人、国家特殊津贴专家胡良勇教授级高级工程师介绍项目项目负责人、享受国家特殊津贴专家胡良勇教授级高级工程师介绍,该项目重点聚焦研究宽禁带氧化物平板探测器的制备、集成、计量等关键技术问题,开展IGZTO平板探测器、高精度高速3D成像与检测、高效多轴协同控制、在线校准补偿、数字校准证书等研发。显著提升阵列式平板探测器在帧率、灵敏度、耐辐照等技术指标的综合性能。运用3D成像算法、装备及系统集成、数字化计量校准、核心零部件研发四项关键技术,克服氧化物探测器耐辐照寿命短、稳定性差等难题,开发高精度高速X射线成像及智能化检测新算法,研制适用于多场景的数字化高速3D检测集成系统。项目团队介绍项目情况该项目依托21个国家级科研平台、43个省部级科研平台。项目团队曾获国家级奖2项、省部级奖24项,集成X射线探测器、3D数字化智能化成像与检测算法、多场景原位在线系统集成、数字化计量校准等领域的双一流高校、科研院所、检测机构及领军企业,发挥“产学研检用”融合、多学科多行业协同创新优势。项目启动会评审专家组听取项目介绍项目启动会评审专家组由科技部指定项目专家郑建明教授、清华大学刘以农教授、中国计量科学研究院戴新华研究员、北京大学姜明教授、中国科学院高能物理研究所魏存峰研究员共5位专家组成。专家组对项目及各课题的实施方案进行了充分讨论,认为项目具有研制基于IGZTO的耐辐照数字X射线探测器,研发“X射线源-被检样品-探测器)的多轴协同扫描技术,研发FAIR数字化校准证书DCC及国际互认体系,达到TraCIM银牌水平,一致同意项目及五个课题的实施方案通过论证。接下来,项目研究团队将继续围绕国家科技创新部署,采用“理论方法创建—关键技术突破—系统平台构建—示范应用”的技术路线开展研究,推动实现高可靠性、高适应性、智能化数字X射线3D在线检测,促进数字化X射线无损检测工作迈入高质量发展新阶段。项目团队及项目启动会评审专家组合照X射线整机调试车间照片
  • 赛默飞发布Thermo Scientific 6800微型水质在线自动监测系统新品
    Thermo ScientificTM 6800 微型水质在线自动监测系统是集空调、电源、工控、清洗于一体,运用现代自动监测技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统。可监测的水质指标不仅包括常规五常数(水温、pH、溶解氧、电导率、浊度),还可根据监测需要装备高锰酸盐指数、氨氮、CODcr、总铜、总镍、六价铬、总磷、总氮、氰化物等若干参数,最多可同时搭载除五参数之外的 8 个化学法参数的背板进行测量。应用• 市政污水• 工业废水• 环境监测• 地表水• 饮用水功能特点• 占地面积小,最小仅需1 平方米左右占地面积,可根据业主需求进行移动位置,更换监测地点• 恒温光纤技术,测量系统温漂小,长期稳定性好• 高危废液和清洗废液分离,减少后续高危废液的处理量,大幅降低废液回收处理的成本。• 具备远程反控功能,可配置声光报警系统,对异常状态及数据进行报警• 可选配质控样自动核查功能,减少运维工作量• 具备日志功能,可查看测量记录,校准记录,报警记录和操作记录等• 具备各类辅助功能,如反吹、除藻、集成超标留样、配水监测、智能试剂瓶、扫码功能、防雷等(部分选配)订货信息(部分)订货号 描述6800MN高锰酸盐指数分析仪6800COD CODcr 水质在线分析仪6800NH3 氨氮水质在线分析仪6800TP总磷水质在线分析仪6800TN总氮水质在线分析仪6800PH五参数pH 探头6800COND 五参数电导率探头6800TURB 五参数浊度探头6800DO 五参数溶解氧探头* 配置选型请详询Thermo Fisher Scientific 销售及技术人员。创新点:Thermo ScientificTM 6800 微型水质在线自动监测系统是集空调、电源、工控、清洗于一体,运用现代自动监测技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统。可监测的水质指标不仅包括常规五常数(水温、pH、溶解氧、电导率、浊度),还可根据监测需要装备高锰酸盐指数、氨氮、CODcr、总铜、总镍、六价铬、总磷、总氮、氰化物等若干参数,最多可同时搭载除五参数之外的 8 个化学法参数的背板进行测量。 功能特点 • 占地面积小,最小仅需1 平方米左右占地面积,可根据业主需求进行移动位置,更换监测地点 • 恒温光纤技术,测量系统温漂小,长期稳定性好 • 高危废液和清洗废液分离,减少后续高危废液的处理量,大幅降低废液回收处理的成本。 • 具备远程反控功能,可配置声光报警系统,对异常状态及数据进行报警 • 可选配质控样自动核查功能,减少运维工作量 • 具备日志功能,可查看测量记录,校准记录,报警记录和操作记录等 • 具备各类辅助功能,如反吹、除藻、集成超标留样、配水监测、智能试剂瓶、扫码功能、防雷等(部分选配) Thermo Scientific 6800微型水质在线自动监测系统
  • 重庆市成功研制农村饮用水安全在线监控系统
    近日,由重庆工业自动化仪表研究所承担的市级重大科技攻关项目&ldquo 农村饮用水安全在线监控系统关键技术研究及示范&rdquo 通过验收。   针对我国村镇集中供水的实际需要,重庆工业自动化仪表研究所联合重庆市应用技术有限公司合作开展技术攻关,从可靠、耐用、廉价、易控入手,成功研制自动投加絮凝剂、消毒剂的CIAIS-SK200自动控制器样机、CIAIS-SK201远程水泵控制器样机和CIAIS-WR200远程水位监测仪样机 成功开发饮用水水质安全在线监控及管理软件并在长寿区投入应用 建立饮用水水质安全在线监控信息管理示范平台和生活饮用水在线监督监测示范平台。该项目已获专利授权3项,软件著作权登记2项。通过项目的实施,为重庆博通水利信息网络有限公司等50多家企业和单位提供技术咨询和服务100多次,服务长寿区50个村镇约20000人次,产生直接经济效益300万元。项目成果的转化,直接向全市广大农村服务,对改善农村用水环境,提高农村人居生活质量和健康水平,促进新农村建设和民生工程建设具有重要意义。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。官网:https://www.bmftec.cn/links/10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制