当前位置: 仪器信息网 > 行业主题 > >

兆声大基片湿法去胶系统

仪器信息网兆声大基片湿法去胶系统专题为您提供2024年最新兆声大基片湿法去胶系统价格报价、厂家品牌的相关信息, 包括兆声大基片湿法去胶系统参数、型号等,不管是国产,还是进口品牌的兆声大基片湿法去胶系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合兆声大基片湿法去胶系统相关的耗材配件、试剂标物,还有兆声大基片湿法去胶系统相关的最新资讯、资料,以及兆声大基片湿法去胶系统相关的解决方案。

兆声大基片湿法去胶系统相关的资讯

  • 盛美上海推出新型化合物半导体系列设备加强湿法工艺产品线
    盛美半导体设备(上海)股份有限公司(以下简称盛美上海)(科创板股票代码:688082),一家为半导体前道和先进晶圆级封装(WLP)应用提供晶圆工艺解决方案的领先供应商,今推出了支持化合物半导体制造的综合设备系列。公司的150-200 毫米兼容系统将前道集成电路湿法系列产品、后道先进晶圆级封装湿法系列产品进行拓展,可支持化合物半导体领域的应用,包括砷化镓 (GaAs)、氮化镓 (GaN) 和碳化硅 (SiC) 等工艺。化合物半导体湿法工艺产品线包括涂胶设备、显影设备、光阻去胶设备、湿法蚀刻设备、清洗设备和金属电镀设备,并自动兼容平边或缺口晶圆。“随着不同市场的需求增长,化合物半导体行业正在迅猛发展。” 盛美上海董事长王晖博士表示,“通过对这个行业的调研,我们意识到,应利用现有的前道集成电路湿法和后道先进晶圆级封装湿法系列产品中重要的专业知识和技术,来提供满足化合物半导体技术要求的高性价比、高性能产品。我们认为,化合物半导体设备市场为 盛美上海提供了重要的增长机会,因为 GaAs、GaN 和 SiC 器件正成为未来电动汽车、5G 通信系统和人工智能解决方案日益不可或缺的一部分。”盛美上海的化合物半导体设备系列Ultra C 碳化硅清洗设备:盛美上海的Ultra C碳化硅清洗设备采用硫酸双氧水混合物 (SPM) 进行表面氧化,并采用氢氟酸 (HF) 去除残留物,进行碳化硅晶圆的清洗。该设备还集成盛美上海的SAPS 和 Megasonix™ 技术实现更全面更深层次的清洗。Ultra C 碳化硅清洗设备可提供行业领先的清洁度,达到每片晶圆颗粒≤10ea0.3um,金属含量< 1E10atoms/cm3水平。该设备每小时可清洗超过 70 片晶圆,将于 2022 年下半年上市。Ultra C 湿法刻蚀设备:可为砷化镓和磷化铟镓 (InGaP) 工艺提供<2% 的均匀度,< 10% 的共面度及< 3% 的重复度。Ultra C 湿法刻蚀设备可提供行业领先的化学温度控制、刻蚀均匀性。该设备将于 2022 年第三季度交付给某重要客户,并由其进行测试。Ultra ECP GIII 1309 设备:盛美上海的Ultra ECP GIII 1309 设备集成了预湿和后清洗腔,支持用于铜、镍和锡银的铜柱和焊料,以及重分布层 (RDL) 和凸点下金属化 (UBM) 工艺。设备实现了晶圆内和模内小于3%的均匀度和小于2% 的重复度。该设备已于 2021 年中交付给客户,并满足客户技术要求。Ultra ECP GIII 1108 设备:Ultra ECP GIII 1108 设备提供金凸块、薄膜和深通孔工艺,集成预湿和后清洗腔。设备采用盛美上海久经考验的栅板技术进行深孔电镀,以提高阶梯覆盖率。它可达到晶圆内和模内< 3%的均匀度和< 2% 的重复度。腔体和工艺槽体经过专门设计,可避免金电镀液的氧化,且工艺槽体具有氮气吹扫功能,可减少氧化。该设备已于去年年底交货给关键客户。Ultra C ct 涂胶设备:盛美上海的Ultra C ct 涂胶设备采用二次旋转涂胶技术,可实现均匀涂胶。设备拥有行业领先的优势,包括精确涂胶控制、自动清洗功能、冷热板模块以及每个腔体的独立过程控制功能。Ultra C dv 显影设备:在化合物半导体工艺中,盛美上海的Ultra C dv 显影设备可进行曝光后烘烤、显影和硬烤的关键步骤。设备利用盛美上海的先进技术,可按要求实现+/-0.03 LPM的流量和 +/-0.5 摄氏度的温度控制。Ultra C s刷洗设备:Ultra C s 刷洗设备以盛美上海先进的湿法清洗技术为基础,实现优秀的污染物去除效果。该设备通过氮气雾化二流体清洗或高压清洗实现高性能,以更有效地清洗小颗粒。此外,设备还可兼容盛美上海专有的兆声波清洗技术,以确保优良的颗粒去除效率(PRE),且不会损坏精细的图形结构。Ultra C pr 湿法去胶设备:盛美上海的Ultra C pr湿法去胶设备利用槽式浸泡和单片工艺,确保高效地进行化合物半导体去胶。该设备最近由一家全球领先的整合元件制造商(IDM)订购,用于去除光刻胶,这进一步验证了盛美上海的技术优势。Ultra SFP无应力抛光设备:Ultra SFP 为传统的化学机械抛光在硅通孔 (TSV) 工艺和扇出型晶圆级封装 (FOWLP)应用提供了一种环保替代方案。在 TSV 应用中,盛美上海的无应力抛光 (SFP) 系统可通过运用专有的电抛光技术去除低至 0.2µm 的铜覆盖层,再使用传统的 CMP 进一步去除剩余铜至阻挡层,并通过湿法刻蚀去除阻挡层,从而显著降低耗材成本。对于 FOWLP,相同的工艺可以克服由厚铜层应力引起的晶圆翘曲,并应用于RDL中铜覆盖层并平坦化 。
  • 中国电科45所湿法设备进入国内主流8英寸芯片产线
    近日,中国电科45所(以下简称45所)研制的双8英寸全线自动化湿法整线设备进入国内主流FAB厂。该整线设备满足8英寸90nm~130nm工艺节点,适用于8~12英寸BCD芯片工艺中的湿化学制程。晶圆尺寸与工艺线宽代表湿法设备的工艺水准,45所研制的整线设备具备了8寸主流FAB厂湿法设备运行标准,自动化程度高,系统集成度高,覆盖了8英寸BCD芯片工艺中的湿化学工艺制程,实现了全自动湿法去胶、湿法腐蚀、湿法金属刻蚀、RCA清洗、Marangoni干燥等工艺。设备是半导体产业的基石,据SEMI统计,2021年全球半导体制造设备销售额创历史新高,达到1026亿美元,同比增长了44%。在全球芯片扩产潮的推动下,晶圆厂的设备支出将继续提升,预计全球市场2022年将达到1175亿美元,2023年将增至1208亿美元。旺盛的市场需求,为本土半导体设备企业带来了发展契机。中电科电子装备集团有限公司董事长、党委书记景璀表示,基于半导体设备行业“技术密集、人才密集、资金密集,回报周期长”的特点,国内先进的设备企业已经形成“研发先行,产业跟进,金融支撑”的发展模式,并具备以下三个特点:一是半导体设备行业集中度高。据中国电子专用设备工业协会统计,国内前十家半导体设备公司销售收入占国产设备企业销售收入总额的80%。设备龙头企业与制造领军企业在工艺与设备开发方面深度合作,不断强化龙头企业地位。二是国产半导体设备细分品种不断丰富,逐步步入产业化替代阶段。例如,北京烁科中科信公司目前已实现中束流、大束流、高能及第三代半导体等特种应用全系列离子注入机自主创新发展,工艺段覆盖至28nm。三是资本市场对半导体设备科技创新和产业化的支撑力度日益增强。2019年以来,多家企业借助科创板迅速实现IPO上市,募集资金,加速科研投入,产业化进一步提速。
  • 去角质棉片真的能焕肤吗?
    爱美人士除了日常洁肤和护肤步骤外,不少人也会定期做皮肤深层清洁。如果有暗疮问题,还会选购一些去角质产品,去清除面上死皮和黑头粉刺,希望可以改善暗疮印。近年市面上涌现各式各样的去角质棉片,怎样才能购买到适合自己肤质和需要的产品?看完这篇,学会看成分选购产品。◆ 留神成分 细阅说明以往较常见的去角质护肤品主要透过物理性方法去除皮肤表面角质,例如以磨砂粒子在皮肤上搓揉,用物理方式去除角质或提供较表层的清洁作用,帮助清洁毛孔,可以令皮肤看起来有即时洁净和光亮的效果;部分亦会以化学成分分解角质,软化及去除皮肤表面的角质细胞,亦有部分产品结合物理和化学两种方式去除皮肤表面的角质。1. 磨砂粒子/物理性去角质成分较常用的磨砂粒子或研磨剂有矽石、植物种子粉末或硬壳粉末、矽藻土、海盐、糖、浮石、石英、微晶纤维素、米糠等。2. 常见的化学性去角质成分及其特性以往的去角质产品较常使用传统果酸作为重要的有效成分;而近年市面见到的产品则较多采用或结合相对较温和的果酸成分、多羟基酸、β-羟基酸和脂羟基酸等。【传统果酸:又称α-羟基酸alpha-hydroxy acids,AHAs】属水溶性,由于大部分成分萃取自某些水果,故此被统称为果酸,有去角质的作用。分子量较细小的果酸(如乙醇酸),对皮肤的刺激程度较高。【多羟基酸:poly-hydroxy acids,PHAs】属较新式的果酸,分子量较传统果酸大,故引致刺激反应的机会较低,具保湿效能及抗氧化功能,较适合敏感肤质、玫瑰痤疮和湿疹患者使用。【β-羟基酸:beta-hydroxy acids,BHAs】属脂溶性,较果酸更易渗入皮脂腺,于改善暗疮问题的效果较理想。【脂羟基酸:lipo-hydroxy acids,LHAs】分子量较传统水杨酸大,可以减低对使用者带来的刺激,较适合敏感肤质、玫瑰痤疮和湿疹患者使用。3. 慎用去角质棉片近年市面涌现多款去角质棉片,消委会在去年购买了28款去角质焕肤或爽肤棉片(下文简称为「去角质棉片」)产品。24款为免冲洗式去角质棉片,其中21款只需要取出包装被沾有美容液的棉片,用后毋须冲洗;另有3款为内含2个步骤的护理套装,按次序使用后亦毋须冲洗;余下4款则在擦拭皮肤后须用清水冲洗。消委会检视了这些去角质棉片的标签资料,并对其成分进行分析,帮助消费者留意其中的细节,方便评估和挑选合适的产品。◆ 2款标示含有较高浓度的乙醇酸 未必适合自行使用样本中有17款标示添加了AHAs成分,包括较多样本使用的为乙醇酸、乳酸和苹果酸等。当中乙醇酸是分子量最细小的AHAs成分,皮肤渗透率高,理论上能较有效去除皮肤角质,但对皮肤的刺激性亦相对较高;而乳酸和苹果酸都具保湿功能,刺激性乙醇酸低。有2款源自美国的样本所标示的乙醇酸含量分别为10%和20%。若参考美国化妆品成分分析委员会(CIR)的建议,家用护肤品中乙醇酸、乳酸及其化合物总量应相等于10%或以下(pH≥3.5),才适合供消费者安全地自行使用。而内地的《化妆品安全技术规范》则规定,AHAs及其化合物总量的最大允许使用浓度为6%(pH≥3.5)。此外,AHAs产品的酸碱度是影响其刺激程度的重要因素。酸碱度愈低,虽然可能增加去角质的程度,但刺激皮肤的机会亦会愈高。调查发现,只有少数样本包装或其他官方网页有说明有效成分的浓度或产品的酸碱度。◆ 使用方法及时间各有不同 消费者宜细阅说明本次调查亦发现不同样本在使用频率、敷面及冲洗前驻留时间、是否需要冲洗等用法上差异甚大。样本中,逾8成样本说明棉片可以每日使用,当中10款建议每日使用1次,9款说明可以每日用2次,更有个别样本说明每日使用1至3次。另外,有13款产品说明可当作面膜使用,而当中11款建议的敷面时间亦有明显差异,由最短1分钟至最长10分钟不等,但亦有5款样本说明不适合作敷面用途。在4款冲洗式样本中,有2款分别建议让美容液驻留在脸上2至3分钟和20分钟,当中1款更指在使用3星期后,可视乎皮肤耐受程度而考虑敷一整晚,其余2款则未有说明冲洗前的驻留时间。慎用产品!!焕肤去角质Q&AQ:需要定期去除角质层吗?A:并不是每一个人都有需要定期使用去角质产品。皮肤角质更生周期的长短因人而异,随着年龄增长,更生速度会逐渐减慢。若过度频密去除角质,可能会令皮肤角质受损,削弱皮肤的天然保湿能力,反而可能衍生皮肤干燥的问题,令皮肤泛红、有灼热感受,甚至增加皮肤受外物刺激,引致皮肤发炎的机会。Q:如何应肤质选购去角质产品?A:有皮肤科专科医生指,去角质产品主要分物理性、化学性或将两者结合,适当使用可令皮肤变得有光泽和平滑。若是第一次使用新产品,消费者应按个人面部肤质、皮肤问题、喜好和需要作选择。建议先在局部范围试用产品,确保质地容易推展,不会令皮肤感到严重刺痛,亦不会引致刺激或过敏问题。皮肤干燥、容易有过敏反应和暗疮问题的人士,选用化学去角质成分浓度较低的产品。而物理性去角质成分较易造成刺激或令暗疮情况恶化。Q:去除角质或焕肤后,如何保养肌肤?A:进行去角质或焕肤护理程序后,建议尽快为皮肤作保湿护理。皮肤在去除角质后,可能较容易受阳光日晒影响,故此外出时必须作足够的防晒措施,涂抹可以同时抵御紫外线UVA和UVB的防晒乳霜,并且避免曝晒。使用注意事项&bull 如正服用治疗暗疮的药物,或曾接受入侵性美容,应向医护人员查询是否适合使用去角质或焕肤产品。&bull 避免同时混合使用多种去角质产品。&bull 用后尽快为皮肤作保湿护理,并在外出时作足够的防晒措施,避免曝晒。&bull 谨记按产品说明使用去角质产品,留意使用次数和驻留时间,以及在擦拭时注意力度,避免因过度擦拭而刺激皮肤。&bull 部分成分有机会对眼睛造成刺激或损害,使用产品时要避开眼睛,在靠近眼周的部位(例如鼻头和额前等位置)使用产品时应加倍小心。&bull 若皮肤曾经对化学去角质成分有刺激反应,建议在正式使用产品前,先在小范围使用;如用后有持续刺痛或严重刺激反应,应立即停用并求医。编辑视角:近年来,去角质棉片因其便捷的使用方式和立竿见影的效果,成为众多爱美人士的护肤新宠。然而,面对市场上琳琅满目的产品,消费者往往难以选择适合自己的去角质棉片,甚至在使用过程中出现肌肤问题。那么在选择去角质棉片时,需要关注去角质棉片的种类和成分;同时要根据肤质、皮肤问题进行选购,避免盲目跟风造成肌肤损伤;最后注意去角质棉片的使用方法和注意事项,避免过度去角质造成肌肤损伤。选择适合自己的产品,正确使用,呵护肌肤健康。
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style=" text-indent: 2em " 涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。 /p p style=" text-indent: 2em " 激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。 /p p style=" text-indent: 2em " /p p style=" text-indent: 2em " 1 实验部分 /p p style=" text-indent: 2em " 1.1 主要原料及仪器 br/ /p p style=" text-indent: 2em " 钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。 /p p style=" text-indent: 2em " 1.2 试验方法 /p p style=" text-indent: 2em " (1) 干法测试 /p p style=" text-indent: 2em " 称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。 span style=" text-indent: 2em " (2) 湿法测试 /span /p p style=" text-indent: 2em " 湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。 span style=" text-indent: 2em " 1.3 粒径分布参数 /span /p p style=" text-indent: 2em " Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。 /p p style=" text-indent: 2em " 2 结果与讨论 /p p style=" text-indent: 2em " 2.1 钛白粉粒径分布的测试 /p p style=" text-indent: 2em " 2.1.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title=" 1.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。 /p p style=" text-indent: 2em " 2.1.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title=" 2.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。 /p p style=" text-indent: 2em " 2.1.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title=" 3.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。 /p p style=" text-indent: 2em " 2.1.4 钛白粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。 /p p style=" text-indent: 2em " 2.2 滑石粉粒径分布的测试 /p p style=" text-indent: 2em " 2.2.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title=" 4.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。 /p p style=" text-indent: 2em " 2.2.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.4 滑石粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。 /p p style=" text-indent: 2em " 2.3 石墨烯粒度分布的测试 /p p style=" text-indent: 2em " 2.3.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title=" 7.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。 /p p style=" text-indent: 2em " 2.3.2 湿法测试(不加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title=" 8.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。 /p p style=" text-indent: 2em " 2.3.3 湿法测试(加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title=" 9.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。 /p p style=" text-indent: 2em " 2.3.4 石墨烯2种测试方法之间的差异 /p p style=" text-indent: 2em " 从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。 /p p style=" text-indent: 2em " 2.4 涂料粒径分析干法和湿法之间的差异 /p p style=" text-indent: 2em " 干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。 /p p style=" text-indent: 2em " 2.5 干法和湿法测试的重复性比较 /p p style=" text-indent: 2em " 2.5.1 干法测试重复性 /p p style=" text-indent: 2em " 重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title=" 10.webp.jpg" / /p p /p p style=" text-indent: 2em " 2.5.2 湿法测试重复性 /p p style=" text-indent: 2em " 选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title=" 11.webp.jpg" / /p p /p p style=" text-indent: 2em " 目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。 /p p style=" text-indent: 2em " 影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。 /p p style=" text-indent: 2em " 3 结语 /p p style=" text-indent: 2em " 讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。 /p p style=" text-indent: 2em " 在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。 /p
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 果纳半导体“基片承载装置和贴膜设备”专利公布
    天眼查显示,上海果纳半导体技术有限公司“基片承载装置和贴膜设备”专利公布,申请公布日为2024年7月23日,申请公布号为CN118380370A。背景技术半导体加工过程中,在基片部分前道工序完成后,需要直接对基片进行贴膜封装,然后进行存储、运输或直接进入下一步的加工工序。基片贴膜封装需要保证贴膜后的基片表面无气泡,且需要保证基片的水平度。这就对基片的平整度提出了要求,只要保证基片在贴膜前的平整度,才能保证基片贴膜的质量。因此需要一种承载装置,基片放置在其上时,能够被整平。发明内容本发明公开了基片承载装置和贴膜设备,基片承载装置包括第一区域,第一区域设置有第一柔性垫,第一柔性垫包括仅供基片中间区域放置的第一放置面;第二区域,第二区域位于第一区域的外侧,第二区域设置有吸附模块。吸附模块包括第二柔性垫,第二柔性垫具有与第一放置面位于同一高度位置的第二放置面,第二柔性垫上沿厚度方向开设有多个尺寸不同的真空吸附孔;多个尺寸不同的真空吸附孔为第二柔性垫在靠近基片边缘或拐角区域提供大于第二柔性垫其他区域的吸附力。承载装置能对基片进行稳定的吸附,并在吸附过程中整平基片,以提高贴膜质量。
  • 上海微系统所在硅基胶体量子点片上发光取得重要进展
    PbS胶体量子点(CQDs)由于具有带隙宽、可调谐以及溶液可加工性强等优点,已广泛应用于气体传感、太阳能电池、红外成像、光电探测以及片上光源的集成光子器件中。然而PbS CQDs普遍存在发射效率低和辐射方向性差的问题,因此科学家们尝试利用半导体等离子体纳米晶或全介质纳米谐振腔来增强PbS CQDs的近红外荧光发射,使其成为更高效、更快的量子发射器。但是普遍存在光场限制能力弱,Q值低的问题。   针对这些问题,近日中国科学院上海微系统与信息技术研究所武爱民研究员团队与浙江大学金毅副教授团队合作在Nanophotonics发表最新文章,将BIC引入到PbS CQDs发光应用中,提出了一种支持对称保护BIC的硅超表面通过激发相邻的高Q泄露导波模式来增强室温下PbS CQDs的自发辐射的方案,实现了硅基量子点近红外片上发光。   该超表面由亚波长尺寸的硅棒周期性排列而成(图1a),结构具有各向异性且与偏振相关。其反射率是入射光角度和波长的函数,当TE偏振激发时,对称保护型BIC会出现在布里渊区的Γ点处(图1b),对应的电场分布如图1c所示。基于洛伦兹拟合方法分别从仿真和实验反射谱中提取出Q值曲线(图1d),两者趋势一致,且激发的高Q导波模式可以有效的增强量子点的发射。由图1e的实验结果可以看出,制备的超表面使包覆的PbS CQDs的荧光辐射显著增强,并且在波长1408 nm处的发射峰的Q值高达251。随后,研究人员利用实验简单演示了该系统的传感潜力。将稀疏度为4/1000 μm2,直径为60 nm的Au纳米颗粒随机分布在涂敷PbS CQDs的超表面顶部,通过与不含Au纳米颗粒的样品相比,PL峰从1408 nm红移到1410 nm,且强度出现明显的增强(图1f)。该研究成果不仅为实现支持BIC的介电超表面可以有效地增强PbS CQDs的发射性能提供了设计指导与实验验证,并为PbS CQDs在硅基片上光源和集成传感器等各种实际应用提供了新思路。   研究团队提出的基于BIC超表面增强PbS CQDs近红外发射的新方法,是一种普适、高效、功能广泛的方法。该方法证明了BIC系统在荧光增强方面的有效性,它是提高PbS胶体量子点在光源和荧光传感器等各种应用中的最好选择之一。通过提高制造精度或者合并的BIC可以进一步提高增强效果,并且可以通过改变几何尺寸来调节工作波长。这种无源超表面结构可以在商用CMOS平台上以简单的工艺制造,因此它可以结合到硅光子集成中,用于硅基片上光源以及荧光传感器,在多通道通信,近场传感和红外成像等领域都有广阔的应用前景。   相关成果以“Fluorescence Enhancement of PbS Colloidal Quantum Dots from Silicon Metasurfaces Sustaining Bound States in the Continuum”为题在线发表在Nanophotonics (https://doi.org/10.1515/nanoph-2023-0195)上。   这项工作的作者包括 Li Liu, Ruxue Wang, Yuwei Sun, Yi Jin*, Aimin Wu*,其中上海微系统所博士研究生刘丽为该文章的第一作者,浙江大学金毅副教授和上海微系统所武爱民研究员为论文的共同通讯作者。上述研究工作得到了国家重点研发计划项目(2021YFB2206502)、中科院青促会(2021232)、上海市学术带头人项目(22XD1404300)和国家自然科学基金委(61875174,62275259)的支持。图1:(a)硅超表面的结构示意图;(b)TE偏振激发时,反射率是入射角和入射波长的函数。在Γ处形成了一个对称保护型BIC,对应波长为1391 nm;(c)对称保护型BIC的Ey电场分布。灰线表示结构边界;(d)与BIC相邻的泄露导波模式在同一能带上的Q值随入射角度的变化。虚线为实验结果,实线为仿真结果。插图为硅超表面的SEM图像;(e)在同一块SOI衬底表面旋涂PbS CQDs,超表面结构区域(黑色曲线)和无结构区域(红色曲线)的实测PL谱。插图为顶部涂敷PbS CQDs的超表面的SEM图像;(f)在超表面结构上引入随机Au纳米颗粒前(红色曲线)和后(黑色曲线)的实测PL谱。插图为表面随机分布Au纳米颗粒的顶部涂敷PbS CQDs的超表面的SEM图像。
  • 累计出货超300台!盛美半导体湿法设备2000腔顺利交付
    “盛美半导体设备”官方公众号消息,10月18日盛美半导体湿法设备2000腔顺利交付!累计出货超过300台设备。资料显示,盛美是国内集成电路湿法设备龙头企业。在清洗机和电镀机等领域,该公司形成了集成电路专用清洗系列设备(包括单片、槽式、单片槽式组合清洗、背面清洗、刷洗等)、前道铜互连及先进封装电镀设备、先进封装湿法设备和立式炉管设备等产品线,覆盖了集成电路前道、先进封装和晶圆制造领域。盛美董事长王晖表示,近几年,盛美半导体在清洗、镀铜和炉管等多个领域不断取得重大突破,并跻身全球半导体设备供应商前列。今天很高兴与大家共同见证盛美湿法设备2000腔成功交付这一重要时刻,这标志着盛美在行业细分市场树立了新标杆 ,同时在半导体设备领域跨越新征程、开启新篇章。
  • 中科院微电子所过亿元仪器设备采购大单揭晓
    自2010年1月20日起至2010年11月29日,中国科学院微电子研究所共发布十四批仪器设备采购项目招标公告,其中已发布中标及成交结果公告的信息统计如下: 包号 仪器设备名称 中标供应商名称 中标金额 第二批 第1包 等离子体喷涂实验系统 廊桥实业(香港)有限公司 $52.876万元 第三批 第1包 高分辨率场发射扫描电镜 天美(中国)科学仪器有限公司 $107.07万元 第六批 第1包 等离子体增强化学气相沉积系统 伯东企业(上海)有限公司 $19.7万元 第七批 第2包 涂胶显影机 沈阳芯源微电子设备有限公司 ¥295万元 第4包 步进光刻机 上海微高精密机械工程有限公司 ¥398万元 第5包 光学轮廓仪 维易科精密仪器国际贸易(上海)有限公司 $11.2万元 第6包 电子束蒸发台 爱韩华(无锡)电子有限公司 ¥165万元 第8包 全自动清洗机 弘塑科技股份有限公司 $63万元 第9包 等离子去胶机 Mattson Technology Inc $37.5万元 第八批 第1包 信号分析仪 安捷伦科技新加坡销售(私人)有限公司 $12.15万 第九批 第1包 超低能离子注入机 维利安精密仪器维修(上海)有限公司 199万$ 第2包 金属栅刻蚀机、氧化硅/氮化硅刻蚀机 Lam Research International Sarl 380万$ 第3包 化学机械研磨机 汉民科技股份有限公司 168万$ 第4包 单片清洗机、单片湿法腐蚀设备 Lam Research International Sarl 165万$ 第5包 单片清洗机 盛美半导体设备(上海)有限公司 44万$ 第十批 第1包 化学清洗线、蚀刻线、显影线、去膜线 铨億机械股份有限公司 $50.5万元 第2包 半自动曝光机 上海欧托科国际贸易有限公司 $42.52万元 第3包 机械钻孔机 金富宝亚太有限公司 $13.80万元 第5包 真空压膜机 联策科技(股份)有限公司 $40.251万元 第6包 封装基板等离子清洗机 盈泰国际(集团)有限公司 $13万元 第7包 精密压机 博可机械(上海)有限公司 $14.58万元 第8包 化铜线、镀铜线 安美特(中国)化学有限公司上海青浦分公司 ¥280万元 第十一批 第1包 半自动清洗机 北京七星华创电子股份有限公司 ¥160万元 第2包 扩散炉系统 北京七星华创电子股份有限公司 ¥405万元 第3包 多晶硅低压化学气相淀积系统 镭社有限公司 $45.05万元 第4包 膜厚仪 Spectramax International Limited $31.80万元 第6包 多晶硅刻蚀机 北京北方微电子基地设备工艺研究中心有限责任公司 ¥1139.4942万元 第十二批 第1包 矢量信号发生器 微波技术有限公司 $133080元 第2包 高性能示波器 微波技术有限公司 $177000元 第3包 芯片自动测试捆绑套件 中科泛华测控技术有限公司 $17万元 第十三批 第1包 导电扫描探针显微镜系统 德国布鲁克AXS有限公司 $18.92万元 第十四批 第1包 基于ARM Core的原型验证开发平台 深圳市亿道电子技术有限公司 $30万元 第2包 宽带数字示波器 美国力科公司 $98249.7元 第3包 193nm激光器 Coherent Inc. $15.3万元   采购人名称:中国科学院微电子研究所   采购代理机构全称:东方国际招标有限责任公司   项目联系人:窦志超   联系电话:010-68725599-8447
  • 湿法脱硫协同除尘机理及超低排放技术路线选择
    p   随着国家三部委《全面实施燃煤电厂超低排放和节能改造工作方案》的实施,燃煤电厂烟气治理设备超低排放改造工作突飞猛进,成绩显著。在实施湿法脱硫(WFGD)超低排放方面,各环保公司纷纷开发了脱硫喷淋塔技术改造提效升级的多种新工艺,如单塔双循环技术、双托盘技术、单塔双区(三区)技术、旋汇耦合技术等,特别在脱硫塔核心部件喷淋系统上,采用增强型的喷淋系统设计(如增加喷淋层、提高覆盖率、提高液气比等)。脱硫效率从以前平均在95%左右提高到99%甚至更高。特别引人关注的是,在超低排放脱硫系统脱硫效率大幅提高的同时,其协同除尘效果也显著提高,一批改造后脱硫系统的协同除尘效率(净效率,已包含脱硫系统逃逸浆液滴的含固量)达到了70%,甚至有更高的报道。 p & nbsp & nbsp & nbsp & nbsp 面对这样的事实,与之相关的问题亟需得到解答与澄清: p & nbsp & nbsp & nbsp & nbsp (1)超低排放湿法脱硫协同除尘的核心机理是什么? p & nbsp & nbsp & nbsp & nbsp (2)湿法脱硫协同除尘技术是否有局限性?应用中应注意哪些问题? p & nbsp & nbsp & nbsp & nbsp (3)超低排放技术路线选择中如何把握好湿法脱硫协同除尘与湿式电除尘器的关系? p & nbsp & nbsp & nbsp & nbsp 本文旨在追根溯源,一方面回顾总结过去在这方面的研究 一方面从机理出发,研究喷淋系统(及除雾器)对颗粒物脱除的作用。并采用理论模型计算与实际工程案例比较的方法,论证湿法脱硫喷淋系统是协同除尘的主要贡献部件,同时分析湿法脱硫协同除尘的局限性及与湿式电除尘器的关系,为超低排放技术路线选择提供有益的参考意见。 p & nbsp & nbsp & nbsp & nbsp 湿法脱硫协同除尘的研究简要回顾 p & nbsp & nbsp & nbsp & nbsp 清华大学热能系对脱硫塔除尘机理的研究较多,脱硫塔内单液滴捕集飞灰颗粒物的相关研究,主要建立了综合考虑惯性、拦截、布朗扩散、热泳和扩散泳作用的单液滴捕集颗粒物模型并进行了数值模拟计算,分析了温度、液滴直径和颗粒粒径对单液滴捕集过程及效率的影响规律。清华大学王晖等通过测试执行GB13223-2011标准WFGD进出口颗粒物的分级浓度的研究表明,WFGD可有效捕集大颗粒,但对PM2.5的捕集效率较低,且分级脱除效率随粒径减小而明显下降。华电电力科学研究院魏宏鸽等于2011~2013年对39台锅炉(机组容量为25~1000MW)的执行GB13223-2011标准WFGD开展了除尘效率测试试验,结果显示,不同试验机组WFGD的协同除尘效率为18~68%,平均协同除尘效率为49%。国电环保研究院王东歌等通过对我国4座电厂5台不同容量的执行GB13223-2011标准WFGD进出口烟气总颗粒物浓度进行了测试,结果表明,WFGD对烟气中总颗粒物的去除效率介于46.00%~61.70%之间,平均达到55.50%。夏立伟等对某电厂超低排放改造前的WFGD进行了协同除尘效果测试,结果显示,WFGD协同除尘效率为53%。 p & nbsp & nbsp & nbsp & nbsp 上述研究结果一致表明:WFGD具备协同除尘能力 执行GB13223-2011标准WFGD平均协同除尘效率大致在50%左右 湿法脱硫协同除尘的主要机理是喷淋液滴对颗粒物的捕获机理。这种认识在WFGD实施超低排放之前是行业内比较公认的。 p & nbsp & nbsp & nbsp & nbsp 湿法脱硫喷淋液滴协同除尘机理 p & nbsp & nbsp & nbsp & nbsp 1、湿法脱硫喷淋液滴捕集颗粒物的机理与模型喷淋塔除尘机理与湿法除尘设备中重力喷雾洗涤器相似。一定粒径(范围)的喷淋液滴自喷嘴喷出,与自下而上的含尘烟气逆流接触,粉尘颗粒被液(雾)滴捕集,捕集机理主要有重力、惯性碰撞、截留、布朗扩散、静电沉降、凝聚和沉降等。烟气中尘粒细微而又无外界电场的作用,可忽略重力和静电沉降,主要依靠惯性碰撞、截留和布朗扩散3种机理。前人的研究结果表明,Devenport提出的孤立液滴惯性碰撞效率模型、马大广的拦截效率模型、嵆敬文的布郎扩散捕集效率模型与实验结果吻合较好,因此我们根据上述相关模型计算单个液滴的综合颗粒分级捕集效率,然后结合实际工程参数参考岳焕玲提出的液滴群和多层喷淋层中不同粒径液滴的颗粒分级捕集效率模型进行了的计算,相关计算模型见表1所示。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230061.jpg" width=" 500" height=" 465" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230934.jpg" width=" 500" height=" 478" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609231751.jpg" width=" 500" height=" 186" / /center p /p p /p p & nbsp /p p   2、湿法脱硫喷淋层对颗粒物捕集效率影响因素 p & nbsp & nbsp & nbsp & nbsp (1)颗粒物粒径及分级浓度分布对喷淋层协同粉尘脱除效率的影响 p & nbsp & nbsp & nbsp & nbsp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比L/G=14.283L/m3时,不同粒径范围(900~5000μm)液滴群对颗粒物分级脱除效果曲线如图1所示。 p & nbsp & nbsp & nbsp & nbsp 随着颗粒物分级粒径的增大,脱除效率明显增加,900μm粒径液滴群对1μm颗粒物的脱除效率不到5%,而对10μm颗粒物的脱除效率可达70%以上,因此,烟尘颗粒的分级浓度特性对喷淋层的协同除尘效率影响很大,小颗粒(& lt 2.5μm)比重越大,脱硫塔的协同除尘效率越低。随着液滴粒径增大,因其数量占比大幅减小,发生惯性碰撞、拦截和扩散效应的概率随之降低,对同一粒径颗粒物分级脱除效率随之降低。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609233040.jpg" width=" 416" height=" 343" / /center p & nbsp & nbsp & nbsp & nbsp (2)液气比对颗粒物协同脱除效率的影响 /p p & nbsp & nbsp & nbsp & nbsp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比选为8、12、16、20L/m3,不同液气比条件下不同粒径范围(900~5000μm)喷淋雾滴群对2.5μm颗粒物脱除效果曲线如图2所示。 /p p style=" TEXT-ALIGN: center" img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609240974.jpg" width=" 402" height=" 337" / /p p & nbsp & nbsp & nbsp & nbsp 上述计算结果表明,随着液气比的增大,吸收塔单位截面上喷淋浆液量越大,喷淋液滴数目增加,表面积增加,与颗粒物接触机会增加,脱除效率明显增大。对于900μm左右粒径的液滴,液气比从8L/m3增加到16L/m3,对2.5μm颗粒分级脱除效率从14.35%增加到26.64%,脱除率增加了84%。因此增大液气比有助于提高湿法脱硫对粉尘和细颗粒(PM2.5)的协同脱除作用。 /p p & nbsp & nbsp & nbsp & nbsp 3、超低排放WFGD与执行GB13223-2011标准WFGD协同除尘效率的比较 /p p & nbsp & nbsp & nbsp & nbsp 为了分析问题,我们假定有一个脱硫工程需要做超低排放改造,设定进口SO2浓度为2450mg/Nm3,进口粉尘浓度20mg/Nm3,出口SO2浓度在超低排放改造前后分别设定为200mg/Nm和35mg/Nm3,选用双头空心喷嘴(液滴体积平均粒径1795μm),脱硫塔进口飞灰颗粒物浓度分布参考清华大学对某个实际工程的颗粒物质量累积分布测试结果。 /p p & nbsp & nbsp & nbsp & nbsp 根据上述假定,我们计算了超低排放WFGD与执行GB13223-2011标准WFGD喷淋层的协同除尘效率、喷淋层对PM2.5的脱除效率,同时把除雾器出口液滴中的含固量考虑在内,测算了超低排放WFGD与执行13223-2011标准WFGD的协同除尘效率,结果如表2所示。 /p center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609242531.jpg" width=" 600" height=" 340" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609243491.jpg" width=" 600" height=" 322" / /center p & nbsp & nbsp & nbsp & nbsp 表2计算可以给我们以下几点认识: /p p & nbsp & nbsp & nbsp & nbsp (1)WFGD对飞灰颗粒物协同脱除的主要贡献是喷淋层。根据前述WFGD喷淋雾滴捕集颗粒物的机理分析与模型计算,喷淋层对较大粒径颗粒的脱除效率是较高的,而这一部分颗粒占重量浓度的大部分,所以计算结果显示,对执行GB13223-2011标准WFGD,喷淋层协同除尘效率74.95%,超低排放WFGD喷淋层协同除尘效率83.30% /p p & nbsp & nbsp & nbsp & nbsp (2)WFGD的整体协同除尘效率需要考虑WFGD逃逸液滴中的石灰石、石膏等固体颗粒物分量。在进口粉尘浓度条件不变的情况下,由于超低排放WFGD改造安装了高效除雾器,超低排放WFGD协同除尘效率可保持在72.05%,而执行GB13223-2011标准WFGD由于我们假设的原除雾器设计效率较低,出口液滴排放浓度较高,其协同除尘效率降到了37.45%。为了保障WFGD整体的协同除尘效率和较低的颗粒物总排放浓度,需要应用高效除雾器把WFGD出口液滴排放浓度降到足够低。 /p p & nbsp & nbsp & nbsp & nbsp (3)对于我们特别关注的细颗粒物(PM2.5),执行GB13223-2011标准WFGD喷淋层的协同脱除效率为42.74%,超低排放WFGD喷淋层的协同脱除效率为61.83%,提效44.67%,分析超低排放WFGD喷淋层脱除细颗粒物效率较高的主要原因,在于大幅增加了WFGD的液气比,使得喷淋雾滴总的表面积增加,与细颗粒接触的概率增加,从而明显提高了颗粒物特别是PM2.5的协同脱除效率。 /p p /p p /p p   表3是我国部分超低排放WFGD工程的协同除尘效果,其中A为华能南通电厂4号机组(350MW)B为华能国际电力股份有限公司玉环电厂1期1000MW机组,C为首阳山公司二期300MW机组。实际WFGD工程的协同除尘测试效率与理论计算结果存在一定的差别,但是趋势是一致的,部分案例数据还比较接近。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609250410.jpg" width=" 600" height=" 157" / /center p & nbsp & nbsp & nbsp & nbsp 超低排放WFGD与执行GB13223-2011标准WFGD比较,无论是通过理论计算比较,还是通过工程实际测试结果来比较,证明超低排放WFGD对执行GB13223-2011标准WFGD提高协同除尘效率的大致幅度是一致的。这也间接地证明了喷淋层是WFGD协同除尘作用的主力军。 /p p & nbsp & nbsp & nbsp & nbsp 湿法脱硫用机械类除雾器协同除尘机理 /p p & nbsp & nbsp & nbsp & nbsp 1、除雾器的工作机理及主要作用除雾器是WFGD的重要设备,安装于脱硫塔顶部,常采用机械除雾器,用以去除烟气携带的小液滴,保护下游设备免遭腐蚀和结垢。 /p p & nbsp & nbsp & nbsp & nbsp 除雾器对协同除尘的主要作用在于捕集逃逸液滴的同时捕集了液滴中颗粒物(石灰石、石膏及被液滴包裹的烟尘等)。SO2与颗粒物的超低排放对WFGD的除雾器组件提出了更高要求,一方面,通过增加液气比与喷淋层数、提高喷淋覆盖率等措施实现高效脱硫,但在另一方面一定程度上增加了进入除雾区的液滴总量,使其负荷增加。同时为了保证WFGD出口烟气的颗粒物达到超低排放浓度要求,实际超低排放WFGD工程一般会应用多级或组合型(管式、屋脊式、水平烟道式)高效除雾器以保证WFGD出口液滴浓度处在较低水平,以尽量减少逃逸液滴中的颗粒物对排放的贡献。 /p p & nbsp & nbsp & nbsp & nbsp 2、WFGD除雾器协同除尘的贡献讨论当今高效除雾器能将WFGD出口液滴排放浓度控制得比较低已得到工程实际的验证。但有人可能要问,这一类的除雾器对喷淋层出口的飞灰颗粒物是否有较高的直接脱除作用呢?我们认为,应该说会有一定作用。但是,从本文对喷淋层协同除尘效果分析可以看出,未被喷淋层捕集的飞灰颗粒物的平均粒径非常小。在现实燃煤电厂超低排放治理条件下,脱硫前的除尘器出口飞灰颗粒物浓度一般控制在20mg/m3左右,平均粒径约是3.02μm,经过脱硫塔喷淋层协同除尘作用后,喷淋层出口的飞灰颗粒物平均粒径& lt 1μm。从分析可知,机械除雾器对液滴的临界分离粒径在20~30μm左右,可以推断,机械除雾器对喷淋层出口的飞灰颗粒物直接脱除(液滴包裹的除外)作用很有限,不太可能成为协同除尘的主要贡献者。 /p p & nbsp & nbsp & nbsp & nbsp 超低排放技术路线的选择 /p p & nbsp & nbsp & nbsp & nbsp 1、WFGD的主要功能定位与协同除尘的局限性WFGD的主要功能定位是脱硫,工程项目设计时要确定设计输入与输出条件,在设计煤种上会选含硫量较高的煤种进行设计,根据要求的出口SO2浓度设计脱硫效率,从而设计整个脱硫系统(包括喷淋层系统和运行参数),对除尘作用基本上是协同的概念。从我们前述计算与测试数据来源,大多数是以全负荷运行状态而言。实际上,WFGD运行是与煤的含硫量、发电负荷紧密联系的,根据WFGD实际进口SO2浓度进行控制,调节循环泵开启的个数,控制喷淋量与浆液pH。这样可能导致协同除尘效率不是很稳定,运行中二者难以兼顾。当采用WFGD后没有配置湿式电除尘器的超低排放治理技术路线工程中,WFGD就是除尘的终端把关设备,在某种特定应用煤种情况下(如低硫煤、高灰分、高比电阻粉尘),WFGD进口比较低的SO2浓度与较高的飞灰颗粒物浓度同时出现,WFGD的运行将难以兼顾,不大可能为了维持较高的除尘效率将喷淋层全负荷投运,这就是WFGD协同除尘的局限性。WFGD的主要功能定位就是脱硫,除尘仅仅是协同作用,不可把除尘的终端把关全部责任交给WFGD。 /p p & nbsp & nbsp & nbsp & nbsp 2、湿式电除尘器对超低排放与多污染物协同控制的重要作用湿式电除尘器(WESP)安装于WFGD下游,WESP除尘原理与干式电除尘收尘原理相同,都是依靠高压电晕放电使得粉尘颗粒荷电,荷电粉尘颗粒在电场力的作用下到达收尘极。在工作的烟气环境和清灰方式上两者有较大区别,干式电除尘器主要处理含水很低的干气体,WESP主要处理含水较高乃至饱和的湿气体 干式电除尘器一般采用机械振打或声波清灰等方式清除电极上的积灰,而WESP则通过喷淋系统连续喷雾在收尘极表面形成完整的水膜将粉尘冲刷去除。由于WESP进口烟气温度低且处于饱和湿态,水雾与粉尘结合后比电阻大幅下降,使得WESP对粉尘适应能力强,同时不存在二次扬尘,因此无论前部条件是否波动,WESP对细颗粒和WFGD除雾器逃逸液滴均具备较高的脱除效率,WESP还能有效捕集其它烟气治理设备捕集效率较低的污染物(如PM2.5、SO3酸雾和Hg等),可作为烟气多污染物治理终端把关设备。实际工程中WESP应用较广,除尘效果显著,甚至可达到更低排放要求,例如河北国华定洲发电有限责任公司1号机组(600MW)配套WESP出口粉尘排放浓度低于1mg/m3。 /p p & nbsp & nbsp & nbsp & nbsp 3、是否配置湿式电除尘器是超低排放技术路线选择中的一个重要问题根据我们的经验可以列出以下几点作为考虑是否需要配置WESP的主要因素: /p p & nbsp & nbsp & nbsp & nbsp (1)脱硫前除尘器的除尘效率是否有较大余量?如有较大余量,就可以在不利条件下启用除尘器余量,不用过分依赖WFGD的协同除尘作用 /p p & nbsp & nbsp & nbsp & nbsp (2)煤种的条件:实际供应的煤种含硫量是否波动较小?含硫量波动小,意味着协同除尘效率比较稳定,依靠度较高 /p p & nbsp & nbsp & nbsp & nbsp (3)影响除尘器除尘效率的煤种条件和飞灰条件是否相对稳定?如果经常可能使用影响除尘性能的困难煤种,那脱硫系统的协同除尘负担就重。 /p p & nbsp & nbsp & nbsp & nbsp (4)是否考虑未来对SO3等其他污染物的控制要求? /p p & nbsp & nbsp & nbsp & nbsp 如果有以上(1)~(3)的不利条件,同时考虑到未来对SO3等可凝结颗粒物和其他污染物的控制要求,那么论证配置WESP的必要性是应该的。 /p p & nbsp & nbsp & nbsp & nbsp 目前,关于超低排放技术路线的选择有很多探讨,实际工程上的问题和条件是很复杂的,除了技术条件,还有现场场地条件、煤种来源稳定性、负荷波动状况等等其他因素需要考虑。所以我们认为超低排放技术路线选择的核心就是具体问题具体分析。 /p p & nbsp & nbsp & nbsp & nbsp 超低排放技术路线中的关键问题是多污染物协同控制,在各主要治理设备中理清主要功能和协同功能非常重要,一定要考虑当主要功能与协同功能有矛盾时如何处理,还是要保留有应对措施。比如,在煤种多变的条件下,保留一个适当规格的WESP作为终端把关,是一个较符合实际的选择。 /p p /p p /p p   4、湿法脱硫协同除尘与湿式电除尘器在除尘中相互关系计算举例 p & nbsp & nbsp & nbsp & nbsp 为了说明WFGD与湿式电除尘器在除尘中的相互关系,我们举了个计算例子,按第3节“湿法脱硫喷淋液滴协同除尘机理”的关于超低排放脱硫系统的基本假设,取超低排放WFGD出口烟气液滴浓度为15mg/m3(含固量15wt%),计算液气比分别为10、12.5、15、17.5和20L/m3的WFGD进出口粉尘浓度关系曲线(注:这里是简化计算,实际应考虑塔内其他部件对烟尘的捕集作用),结果见图3所示。 p & nbsp & nbsp & nbsp & nbsp WFGD的液气比越大,喷淋层协同除尘效率越高,越容易达到超低排放。对于特定液气比条件下的WFGD,WFGD进出口粉尘浓度呈线性关系,当其进口粉尘浓度在一定范围以内(较低)时,对应的出口粉尘浓度处于图中垂直网格区域,此时由高效除雾器配合即可满足WFGD出口粉尘浓度达到超低排放要求 但是在斜线网格区域时就不能满足WFGD出口粉尘浓度≤5mg/m3。 /p p style=" TEXT-ALIGN: center" img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609254032.jpg" width=" 413" height=" 301" / /p p & nbsp & nbsp & nbsp & nbsp 这个结果可以供设计参考,考虑实际用煤的含硫量(特别要注意低含硫量煤种)可以估算实际应用的液气比,考虑最差煤种可以估算进口粉尘浓度最高值,这样可以帮助判断是否需要配置WESP作为除尘终端把关设备。上述结果也可以供实际运行控制时参考,在正常的煤种条件下,充分发挥WFGD的协同除尘作用,同时控制好WESP的运行参数 在低硫煤、飞灰条件对除尘器不利条件下,用好WESP起到终端把关作用实现超低排放(≤5mg/m3)。 /p p & nbsp & nbsp & nbsp & nbsp 通过以上分析,我们得出如下结论: /p p & nbsp & nbsp & nbsp & nbsp (1)WFGD协同除尘的主要贡献是喷淋层,其除尘的核心机理是雾化液滴对飞灰颗粒物的惯性碰撞、拦截和扩散效应。通过理论计算和工程案例数据比较可看出,由于超低排放WFGD喷淋层应用了高液气比、多层喷淋层、高覆盖率等措施以及高效除雾器的配合,协同除尘效率可达到70%左右。 /p p & nbsp & nbsp & nbsp & nbsp (2)湿法脱硫装置的主要功能定位是脱硫,除尘是协同功能。当燃用低硫煤煤种、对除尘器不利飞灰两种情况同时出现时,WFGD的脱硫与协同除尘较难兼顾,所以在粉尘超低排放技术方案选择时,不应过度依赖WFGD的协同除尘作用(设计上直接应用70%协同除尘效率是有风险的)。 /p p & nbsp & nbsp & nbsp & nbsp (3)机械除雾器主要通过高效脱除来自喷淋层的雾滴抑制WFGD出口液滴中固体含量对排放粉尘的贡献,其液滴的临界分离粒径在20~30μm左右,对粒径更小的喷淋层出口飞灰颗粒物(≤10μm)的脱除作用很有限,起到辅助除尘作用。 /p p & nbsp & nbsp & nbsp & nbsp (4)湿式电除尘器对颗粒物、雾滴及其他(SO3等)污染物具有高效捕集能力,在超低排放中作为终端把关设备可以应对煤种、工况变化的复杂情况。 /p p & nbsp & nbsp & nbsp & nbsp (5)超低排放技术路线选择的核心是具体问题具体分析,在各主要治理设备中理清主要功能和协同功能非常重要,在中国煤种普遍波动较大的现实条件下,更要仔细认清协同控制中协同功能的局限性,不能简单地套用一些国外经验。 /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p
  • 湿法脱硫:治理燃煤烟气污染却成巨大污染源
    p   在今年三月份的全国两会期间,李克强总理在陕西代表团参加审议时说:“雾霾的形成机理还需要深入研究,因为我们只有把这个机理研究透了,才能使治理措施更加有效,这是民生的当务之急。我们不惜财力也要把这件事研究透,然后大家共同治理好,一起打好蓝天保卫战。” /p p   “我在国务院常务会议几次讲过,如果有科研团队能够把雾霾的形成机理和危害性真正研究透,提出更有效的应对良策,我们愿意拿出总理预备费给予重奖!这是民生的当务之急啊。我们会不惜财力,一定要把这件事研究透!” /p p   “我相信广大人民群众急切盼望根治雾霾,看到更多蓝天。这需要全社会拧成一股绳,打好蓝天保卫战!” /p p   从2013年初算起,中国治理大气污染的大规模行动已经进行了四年多,各地政府和相关企业,为之投入了巨大的人力物力。京津冀地区,在几个重点的燃煤烟气污染领域,如钢铁冶金(重点是烧结机)、焦炭、水泥、燃煤发电厂、燃煤蒸汽和热水锅炉、玻璃行业,这几年给几乎所有的大烟囱都带了口罩——加装燃煤烟气处理系统。收效虽有,但大家总觉得与治理的深度和广度差距太大。我与某地环保局的专业工作人员聊天时,曾听到对方的困惑:几乎所有的大型燃煤设施,都已经上了烟气处理措施。在重压之下,有几个企业敢大规模偷排啊?大气中的PM2.5的浓度怎么还是这么高啊?这些颗粒物到底是从哪里来的? /p p   在中国,已经有很多科学论文介绍,中国的大气颗粒物监测中经常发现有大量的硫酸盐。北京的严重雾霾天气,硫酸盐的比例有时甚至远超50%。 /p p   曾经有专家认为大气中大量的硫酸铵颗粒物是在大气中由二氧化硫和氨气合成的。而氨气是从农业种植业和养殖业中逃逸出来的。还有中外合作的科研团队的结论是,北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。可农业种植和养殖业的氨逃逸不是最近几年才突然增长,通过这几年的大气污染治理措施,大气中二氧化硫和二氧化氮的含量是逐渐下降的。显然,这些结论很牵强附会。篇幅所限,我就不深入分析了。 /p p   我谈谈自己的经历。 /p p   去年夏天我在某市出差,前天晚上下了一场暴雨,第二天空气“优”了一天,但第三天空气质量就跨越两个级别,达到轻度污染,第四天就是中度污染了。夏季没有散煤燃烧采暖造成的污染,而该市主要的燃煤烟气设备都有有效的颗粒物减排措施。虽然大气中的二氧化硫和氨能合成二次颗粒物,可大气中二氧化硫的浓度并不高,暴雨也能把地里的氨大部分都带走,大气中不可能有这么多的氨气,而且颗粒物的增长也不应该这么快。 /p p   我在一个企业调查时,用肉眼就清晰地发现,某大型燃煤设施经湿式镁法脱硫后的烟气中的水雾蒸发之后,仍拖着一缕长长的淡淡的蓝烟。这是烟气中的水雾在空气中蒸发之后,水雾中的硫酸镁从中析出,留在了空中。 /p p   而在另外几个企业,我则看到,用湿式钙法脱硫技术处理的烟气中的水雾蒸发后,留下一缕白色的颗粒物烟尘。其中有一次我在一个钢铁企业考察时,因为气象的原因,经湿法脱硫的烧结机燃烧烟气沉降到地面上,迅速闻到一股呛人的粉尘气味。 /p p   这种现象很多专业人士都注意到了。某省一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。 /p p   2015年我的德国能源署同事在中国的调研工作中清晰地发现了这个情况,并在2016年载入了科研报告:“很多燃煤热力站的烟气净化主要在洗气塔中进行,没有在尾部安装过滤装置。由于洗气塔的净化效果有限,并且只适用于分离水溶性物质,因此,中国企业广泛采用未加装过滤装置的洗气塔的方式并不可靠”。 /p p   更糟糕的是,我们看到,很多企业为了降低不菲的烟气脱硫废水处理成本,不对湿法脱硫的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐却全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢! /p p   今年5月17日下午,中国生物多样性保护与绿色发展基金会与国际中国环境基金会总裁何平博士联合组织了一次“燃煤烟气治理问题与对策研讨会”。我也应邀参加了这次会议。在这次会议上,大家纷纷指出了一个重要的大气污染源,燃煤烟气湿法脱硫。 /p p   其中山东大学的朱维群教授介绍了他从经湿法脱硫后的烟气里检出了大量硫酸盐的实验结果。与会的其他两个公司也介绍了类似的发现。其中一个来自东北某省会城市的公司介绍,最近两年,该市每年在供暖锅炉启动运行的第一天,就出现大气中的颗粒物含量迅速上升现象。而这些锅炉都有烟气处理工艺,从监测仪表上看,颗粒物的排放比前些年大幅下降。而二氧化硫和二氧化氮要合成二次颗粒物不会这么快。可以断定,是在烟气处理过程中的湿法脱硫工艺合成了大量的颗粒物。该公司负责人还调侃说,他曾给市环保局建议,把全市的燃煤烟气湿法脱硫停止运行试一天做个试验,肯定大气中的颗粒物浓度会大幅下降。 /p p   我也介绍了我和同事们在河北进行大气污染治理时发现的类似现象,并介绍了我们于2016年在有关报告中建议的治理方法:“基于德国的经验,建议采用(半)干法烟气净化技术取代湿法洗气塔。具体而言,我们建议采用APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺”。 /p p   十分凑巧的是,就在举办这个会议的当天晚上,华北某市的环保局局长(尊重他的意愿,我不能公开他的姓名和所在的城市)来北京出差,约我聊一聊治霾问题。一见面,他就开门见山告诉我一件令他困惑了几年并终于揭晓的谜: /p p   几年来,他一直怀疑现在的燃煤烟气处理工艺有问题,因为在这些已经采用了燃煤烟气处理工艺的烟囱附近的空气质量监测站,发现大气中颗粒物的浓度要明显高于其他地区监测站监测的结果。不久前,他所在城市的一家大型燃煤发电厂刚刚安装了超净烟气处理设施。但在超净烟气处理设施运行的当天,附近大气质量监测站检测出的大气中的颗粒物浓度比起其他地区的监测站,有了突然的大幅升高。于是他让环保检测人员到现场从烟囱里抽出烟气到实验室里检测。结果,发现有大量的冷凝水,在将这些冷凝水蒸发后,得到了大量的硫酸盐,其数量相当于在每立方米的烟气中,有100~300毫克/的以硫酸盐为主的颗粒物。而国家规定的燃煤锅炉烟气中的颗粒物排放上限(依锅炉的功率和是否新建或既有)分别为20~50毫克/立方米 燃煤电厂烟气超净排放标准的颗粒物排放上限甚至只有5~10毫克/立方米。也就是说,湿法脱硫产生的二次颗粒物造成烟气中的颗粒物浓度超过不同的国家标准上限几倍至几十倍! /p p   超净烟气中水分含量更高,带出的冷凝水和溶盐更多,烟气的温度也更低,所以在烟囱附近沉降的颗粒物更多。 /p p   既然是超净排放,烟气中怎么还会有这么多的颗粒物?烟气中的颗粒物可都是有在线监测的。难道是偷排?还真不是偷排。 /p p   原因很简单:国家的烟气检测规范规定,烟气中的颗粒物浓度是在烟气除尘之后湿法脱硫之前进行检测。这也有道理,因为在湿法脱硫工艺之后,大量的水雾被带到烟气中,这些水雾在普通的烟气检测技术方法中,往往会被视为颗粒物,造成巨大的测量误差。即便有高级仪器能区分湿烟气中的水雾和颗粒物,也很难测定水雾中的硫酸盐含量。除非能检测水雾中的盐含量。但这太困难了。即使有检测装置能够在线检测出来水雾中的硫酸盐浓度,成本也太惊人了。 /p p   燃煤烟气在经过湿法脱硫后,会含有大量的水雾,水雾中溶解有大量的硫酸盐和并含有脱硫产生的微小颗粒物,其总量总高可达几百毫克。 /p p   以上的事实,对大气中的颗粒物中有大量的硫酸盐、甚至经常有超过50%比例的硫酸盐的现象做出了合理的解释:大气中绝大部分的硫酸盐并不是二氧化硫和氨气在大气中逐渐合成的,而是在湿法脱硫装置中非常高效迅速地合成的。 /p p   也就是说,湿法脱硫虽然减少了二氧化硫——这个在大气中能与碱性物质合成二次颗粒物的污染物,但却在脱硫工艺中直接合成出大量的一次颗粒物。在已经普遍安装了燃煤烟气处理装置的地方,湿法脱硫在非采暖季已经成为大气中最大的颗粒物污染源。万万没想到,烟气治理,治理出更多的颗粒物来,甚至出现在超净烟气处理的工艺中,真是太冤了。 /p p   难怪下了这么大的力气治理燃煤烟气污染,大气中的颗粒物浓度降不下来,原因就是燃煤烟气污染治理本身,并不是燃煤的企业和环保部门的工作人员治理大气污染不积极、不认真 而是方法错了。方法错了,南辕北辙。这充分说明,铁腕治霾,一定要建立在科学的基础上。方法不科学,很可能腕越铁,霾越重。 /p p   有疑问吗?有疑问不必争辩,找人对湿法脱硫之后的燃煤烟气进行取样,拿到实验室去一检测就清楚了。实践是检验真理的唯一标准。 /p p   现在雾霾治不了,很多地方的环保部门就采用“特殊手段”。其中一种手段是用水炮。可是,一些人不知道,硫酸盐是水合盐,在湿度高时,硫酸盐分子会吸收大量的水分,增大体积,这也就是为什么很多地方在空气湿度升高后,颗粒物的浓度会突然大幅增加的原因。我有个朋友是环保专家,他告诉我,有一次,他所在的地区大气颗粒物浓度过高,他的上司要派人到监测站附近打水炮降颗粒物,他赶忙拦住:“现在湿度高,越打水炮,硫酸盐颗粒物吸水越多,颗粒物浓度越高。” /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667799730726.jpg" width=" 571" height=" 395" style=" width: 571px height: 395px " / /center p   更下策的办法是给监测仪器上手段,直接对仪器作假,譬如给颗粒物探测头上缠棉纱。第一个作假被抓住并被公布的环保局官员,就是在我的家乡西安,我的心情很不平静。在这里,我不是为作假者开脱,而是为他们的无奈之举感到深深的悲哀。 /p p   湿法脱硫的技术包括钙法、双碱法、镁法、氨法。这些工艺都或多或少地在湿法脱硫过程中合成大量的硫酸盐,只是其中所含硫酸盐的种类(硫酸钠、硫酸镁、硫酸铵、硫酸钙)和比例有所不同。 /p p   我用最常用的钙法脱硫的烟气处理(超净排放需要增加脱硝的处理工序)流程图,简要地解释一下湿法脱硫产生大量的硫酸盐的过程: /p p    /p center img alt=" 2" src=" http://img.caixin.com/2017-07-10/1499668426791886.jpg" width=" 562" height=" 234" / /center p br/ /p p   湿法脱硫产生大量二次颗粒物的问题,从上世纪七八十年代起,在德国也出现过。德国发现了这个问题后,研究解决方案,选择了两条解决问题的路径: /p p   1. 在原来湿法脱硫的基础上打补丁。其具体措施是: /p p   1) 加强水处理措施,对每次脱硫后的废水去除其中颗粒物和溶解的盐 /p p   2) 加装烟气除雾装置(例如旋风分离器) /p p   3) 加装湿法静电除尘器 /p p   4) 采取了以上的方法后,烟气中仍然有可观的颗粒物。于是为了避免颗粒物在烟囱附近大量沉降,又加装了GGH烟气再热装置,将烟气加热,升到更高的高度,以扩散到更远的地方——虽然扩大了污染面积,但减轻了在烟囱附近的空气污染强度。当然烟气再加热,又要消耗大量的热能。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667818346916.jpg" width=" 584" height=" 241" / /center p br/ /p p   但国内外都发现了GGH烟气再热装置结垢堵塞的现象,于是在发生结垢堵塞要对GGH再热装置进行清洗(结垢就是颗粒物,这也证实了湿法脱硫后的烟气中含有大量的颗粒物)时,需要有烟气旁路。而中国的环保部门为了防止偷排,关闭了旁路。所以,检修锅炉要停机,很多燃煤电厂为了防止频繁的锅炉停机,只好拆除了GGH烟气再热装置,由于烟气温度过低,因此烟气中的大量颗粒物在烟囱附近沉降,这也就是前述的某市环保局长发现的在燃煤电厂附近区域空气监测站发现大气中有较高的颗粒物含量的原因。 /p p   但这个方法只适合于大型燃煤锅炉,如燃煤电厂的大型燃煤锅炉。因为采用上述的技术措施,工艺复杂,电厂的大锅炉,由于规模大,脱硫废水和废渣的处理成本还能承受。对于小的燃煤锅炉在经济上根本承受不了,且不说还要加装价格不低的湿式静电除尘器。因此,在德国,非大型燃煤电厂的锅炉几乎都不采用这种在原湿法脱硫工艺的基础上打补丁的方法,而是采用下述的第二种方法。 /p p   2. 第二种方法就是干脆去除祸根湿法脱硫工艺,采用(半)干法烟气综合处理技术。德国比较成功的是APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺,综合脱硫、硝、重金属和二恶英。这种工艺是在上世纪末发明的,本世纪开始逐渐成熟并得到推广。其具体措施是: /p p   1) 燃煤烟气从锅炉出来用旋风分离器进行大致的除尘后,即进入到APS烟气综合处理罐,进行综合脱硫、硝、重金属和二恶英(垃圾焚烧厂和钢铁工业的烧结机排放的烟气中有大量的二恶英) /p p   2) 而后用袋式除尘器将处理用的大量脱污染物的粉末和少量的颗粒物一并过滤回收,多次循环使用(平均约100次左右)。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667826241238.jpg" width=" 567" height=" 179" / /center p br/ /p p   德国现在普遍采用这种(半)干法综合烟气处理工艺。即便是从前采用给湿法脱硫打补丁的燃煤电厂,也逐步地改为(半)干法综合烟气处理工艺。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667836914688.jpg" width=" 597" height=" 403" style=" width: 597px height: 403px " / /center p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667844142957.jpg" width=" 460" height=" 496" style=" width: 460px height: 496px " / /center p   上面两张图片是在德国凯泽斯劳滕市中心的热电联供站的屋顶上拍摄的,热电联供站既有燃煤锅炉,也有燃气锅炉。其中燃煤锅炉满足基础热力负荷,而燃气锅炉提供峰值热力负荷。上面两张照片上的两个烟囱当时都在排放燃煤烟气,不过这些燃烧烟气经过了APS半干法烟气综合烟气系统的处理,颗粒物排放浓度当时只有1毫克/立方米左右,所以用肉眼根本看不到排放的烟气。2016年,凯泽斯劳滕市的年均大气PM2.5浓度为13微克/立方米。 /p p   燃煤烟气采用先进的半干法烟气综合烟气系统,完全可以达到中国燃煤烟气超净排放的标准,即:颗粒物& lt 5~10毫克/立方米烟气,SOx& lt 35毫克/立方米烟气 NOx& lt 50毫克/立方米烟气。如果烟气中有二恶英,则烟气中的二恶英浓度甚至可以降低到0.05纳克/立方米以下(在实际项目中经常可以降到0.001纳克/立方米以下),而欧盟标准的上限是0.1纳克/立方米烟气。 /p p   湿法脱硫这个新的巨大的大气污染源被发现是坏事也是好事。坏事是知道很多的钱白花了,污染却没减多少,甚至有所增加,很遗憾。好事是知道了大气污染的主要症结在哪里,知道了如何去治理 特别是知道了,大气质量会因此治理措施(在中国北方+散煤治理措施)得到根本性的改善。 /p p   这一污染并不难治,采用先进的(半)干法技术综合烟气处理技术,立马就能把这个问题解决。尽管有一些成本,但是可以接受的成本,因为这种处理技术,如果要达到同样的环保排放标准,成本比采用湿法脱硫技术的烟气处理工艺还要低。如果现在就开始治理,冬奥会之前,把京津冀地区这个主要污染源基本治理好,再加上治理好散煤污染(在下一篇中详述),让大气质量上一个大台阶,把京津冀所有市县的年均PM2.5的浓度降到35微克/立方米一下,应该不难实现。 /p p   最后我要强调的是,这个主要大气污染源的发现,并非我一个人或者我们这个中德专家团队所为,而是一批工作在治霾第一线的专家和环保官员们(当然也包括我和我们这个团队)经过精心观察发现的,并逐步得到越来越清晰的分析结果。我只不过把我们分别所做的工作用这篇文章做一个简单的综述。在此,本文作者对所有为此做出了贡献的人(很遗憾,他们之中的很多人现在不愿意公布他们的姓名和单位——也许要待到治霾成功那一天他们才愿意公布)表示衷心的敬意和感谢! /p p strong style=" color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 作者为中德可再生能源合作中心(中国可再生能源学会与德国能源署合办)执行主任 /strong strong style=" color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 陶光远 /strong /p
  • 品类先锋用户心声|莱伯泰科-湿法消解新体验
    在科学仪器行业竞争日益激烈的现状下,为帮助仪器用户快速找出单品类仪器中的千里马or领头羊企业及产品,仪器信息网从2017年开始推出【品类先锋】服务,以“为用户推荐值得信赖的品牌及仪器”为核心宗旨,持续地挖掘、推荐细分领域的优质企业及仪器。今日分享的是电热消解仪品类先锋——莱伯泰科的用户心声,以下内容摘自“北京诺红诺德医药科技有限公司”艾敬亭老师分享的使用心得:莱伯泰科-湿法消解新体验我们实验中心一直用的是湿法消解的方式,即在样品处理的过程中,实验员需要用不同酸/混合酸/过氧化氢/其他氧化剂的混合液,在加热状态下将含有大量有机物的样品中的待测组分转化为可测定形态。我们之前用的是电炉子,电热板,后来由于样品太多,工作效率跟不上才重新买了新仪器,没想到这台仪器直接代替了2个实验员的工作。我们是于2020年4月买的D-MASTER,到现在近二年多的时间做了2万多样品,消解了近390批样品,每批60个样,通过大量的试验,证明了该仪器的优越性。今年8月份刚刚买了第二台这个仪器,已经安装开始使用了。D-master这个仪器,是在常压状态下消解样品,用户只需向消解管中称量所测样品,仪器按照软件指令完成自动添加试剂、摇匀样品、程序升温、赶酸、提升冷却、定容等一系列操作,软件操作简单,样品经D-master 处理后可直接进行AAS、ICP、ICP-MS等分析。从我的使用经验来看,它的优越性主要体现在以下4个方面:1、仪器采用创新的人工智能设计,让实验随时随地自主运行,是我的智能眼睛(1)无线控制,我无需守在实验室酸气弥漫的通风橱前控制仪器。(2)多端同时控制查看,手机、电脑、Pad可同时控制查看仪器状态,便于我在不同时间段监控实验。(3)预约开机功能,可以提前预置方法,让仪器在指定时间自主运行,真正实现让仪器替我加班。(4)视频监控系统,高清视频实时监看仪器运行状态,出现问题可立即停止仪器,修改方法,让我安心在家看仪器自己实验。2、仪器室全自动化样品处理过程,是我的智能手臂,让实验更简单(1)仪器可以自动添加试剂、自动混匀样品、自动升降、自动梯度升温、自动赶酸、自动定容,中途补酸可自动提升冷却,让繁琐的操作变成自动化操作。(2)方法运行结束可自动生成实验报告,有效提高实验人员工作效率。3、仪器采用创新的结构设计,杜绝酸气腐蚀,仪器运行更稳定,是我的长期实验室助理(1)仪器采用360°旋转机械臂,全密闭式结构设计,直接杜绝酸气和冷凝酸液对传动部位的腐蚀,保证仪器连续加液的稳定性。(2)仪器标配通风系统,不占用实验室通风橱空间,仪器电器件与通风系统隔离设计,确保仪器电器件不会被高温影响、不会被酸气腐蚀,仪器使用寿命更长。4、全方位的安全预警系统,保障实验过程顺利,是我安心实验的底气(1)语音提示系统,方法运行结束后语音提示,避免由于远程控制而忽略时间造成样品被余热蒸干的实验情况。(2)试剂余量实时监控,低于设定值则立即报警提示,补充试剂后报警消除。经过我大量的实验操作,和长期使用后仪器的表明,D-MASTER能满足我们做食品和药品的实验要求,建议有与我们样品相似的实验室可以用D-MASTER来试一下,的确是能够明显提高工作效率,降低我们实验员的工作强度,是湿法消解新体验。今天的分享就到这里结束啦。欢迎大家投稿,分享更多品类先锋仪器使用心得。投稿邮箱:wuqs@instrument.com.cn,一经采用,投稿人将获得仪器信息网提供的50—200元京东卡作为奖励,投稿人需备注姓名、所在单位。投稿要求:1、 所投文章必须完整且条理清晰,文中至少包含1张仪器图片(人与仪器合照更佳),且字数不少于500字。分享的心得需是仪器信息网品类先锋的仪器心得。(详情见附表)2、 内容至少包含以下文稿提纲中的任意三点,每个网友投稿数量不限。• 仪器发展简介• 仪器产品介绍、实际应用中解决了什么问题• 仪器推荐附:2022-2023年度品类先锋名录(排名不分先后)品类名客户名称紫外、紫外分光光度计、紫外可见分光光度计上海元析仪器有限公司上海美谱达仪器有限公司北京普析通用仪器有限责任公司原子荧光光谱仪(AFS)北京海光仪器有限公司原子吸收光谱(AAS)北京普析通用仪器有限责任公司液质联用(LC-MS)赛默飞色谱与质谱SCIEX中国液相色谱(LC)上海伍丰科学仪器有限公司华谱科仪(北京)科技有限公司热解析仪、热解吸仪、热脱附仪奥普乐科技集团(成都)有限公司北京中仪宇盛科技有限公司过程质谱/在线质谱上海舜宇恒平科学仪器有限公司气相色谱仪(GC)浙江福立分析仪器股份有限公司流动分析仪/流动注射分析仪(FIA SFA CFA)北京宝德仪器有限公司离子色谱(IC)青岛盛瀚色谱技术有限公司激光拉曼光谱(RAMAN)HORIBA 科学仪器事业部红外光谱(IR、傅立叶)赛默飞世尔科技分子光谱北京北分瑞利分析仪器(集团)有限责任公司核磁共振(NMR)布鲁克(北京)科技有限公司分子荧光光谱HORIBA 科学仪器事业部定氮仪、凯氏定氮仪、Dumas定氮仪艾力蒙塔贸易(上海)有限公司顶空进样器奥普乐科技集团(成都)有限公司吹扫捕集仪北京聚芯追风科技有限公司北京莱伯泰科仪器股份有限公司奥普乐科技集团(成都)有限公司PH计、酸度计上海仪电科学仪器股份有限公司(原上海精科雷磁)ICP-MS电感耦合等离子体质谱安捷伦科技(中国)有限公司ICP-AES/ICP-OES安捷伦科技(中国)有限公司自动电位滴定仪上海禾工科学仪器有限公司卡氏水分测定仪上海禾工科学仪器有限公司真空泵凯恩孚科技(上海)有限公司移液器、移液枪大龙兴创实验仪器(北京)股份公司研磨机、研磨仪、粉碎机、球磨机北京飞驰科学仪器有限公司北京格瑞德曼仪器设备有限公司蚂蚁源科学仪器(北京)有限公司旋转蒸发仪艾卡(广州)仪器设备有限公司(IKA 中国)洗瓶机/清洗机天津语瓶仪器技术有限公司美诺中国 Miele China微波消解仪培安有限公司上海屹尧仪器科技发展有限公司安东帕(上海)商贸有限公司北京莱伯泰科仪器股份有限公司天平德国赛多利斯集团平行真空蒸发仪天津市恒奥科技发展有限公司生物质谱广州禾信仪器股份有限公司离心机、实验室离心机湖南湘仪实验室仪器开发有限公司搅拌器、磁力搅拌器、电动搅拌器大龙兴创实验仪器(北京)股份公司废气/废水处理机四川优浦达科技有限公司电热消解仪、消化炉北京莱伯泰科仪器股份有限公司氮气发生器毕克气体仪器贸易(上海)有限公司氢气发生器毕克气体仪器贸易(上海)有限公司纯水器、超纯水器、纯水机、超纯水机上海乐枫生物科技有限公司高锰酸盐指数测定仪(CODMn)上海北裕分析仪器股份有限公司TOC分析仪/总有机碳分析仪艾力蒙塔贸易(上海)有限公司上海元析仪器有限公司COD测定仪/COD快速测定仪连华科技BOD测定仪/BOD快速测定仪连华科技总磷测定仪/总氮测定仪/总磷总氮测定仪连华科技水质分析仪/多参数水质分析仪连华科技氨氮测定仪/氨氮分析仪连华科技甲烷/非甲烷烃检测仪青岛明华电子仪器有限公司激光粒度仪HORIBA 科学仪器事业部丹东百特仪器有限公司珠海欧美克仪器有限公司比表面及孔径分析仪理化联科(北京)仪器科技有限公司贝士德仪器科技(北京)有限公司扫描探针显微镜SPM(原子力显微镜AFM、扫描隧道显微镜STM)Park帕克原子力显微镜高内涵细胞成像分析系统美谷分子仪器(上海)有限公司酶标仪/微孔板读板机美谷分子仪器(上海)有限公司生物安全柜力康集团
  • CCATM’2010分场报告会:湿法分析 ICP-AES、AAS、AFS、ICP-MS
    仪器信息网讯 2010年9月13-15日,由中国金属学会、中国机械工程学会主办,国际钢铁工业分析委员会支持,钢铁研究总院承办的“第十五届冶金及材料分析测试学术报告会及展览会(CCATM’2010)”在北京九华山庄隆重召开。 会议现场   大会同期举行了以“湿法分析:ICP-AES、AAS、AFS、ICP-MS”为主题的分会报告,来自冶金及材料分析测试领域的多位知名专家、企业代表及多家仪器厂商做了精彩的报告。现摘录部分精彩报告内容如下。 报告题目:电感耦合等离子体原子发射光谱仪的最新进展 报告人:中实国金实验室能力验证中心 郑国经教授   郑国经教授在其报告中,简要总结了近几年来电感耦合等离子体原子发射光谱仪(ICP-AES)的技术进展,指出进口ICP-AES的产品型号、种类、结构及主要功能已无显著变化,国外ICP-AES厂家已经转向以生产全谱直读ICP-AES和固体检测器型ICP-AES为主。国产ICP-AES的性能及制造水平均有了明显的提高,但在总体水平上仍落后于进口仪器,且型号较为单一,均使用光电倍增管作为光电转换器件。从市场情况而言,中阶梯光栅型ICP-AES的市场占有率在不断扩大,且占据主要地位,但扫描型ICP-AES以其均一的高分辨率仍具有吸引力,多道型ICP-AES凭借高稳定性,其市场也所有回暖。郑国经教授特别提出,希望国产厂商能在国家的支持下,尽快推出中阶梯光栅交叉色散型ICP-AES和CCD光电转换式的“全谱型”ICP-AES。从论文发表数量来看,ICP-AES在冶金分析领域中正得到越来越广泛的应用,它在如下方面具有实用发展前景:高含量成分的测定(与化学法可比);难处理样品的分析(结合微波溶样);各种冶金物料的分析等。 报告题目:远紫外(VUV)谱区在ICP-OES中的应用 报告人:德国斯派克分析仪器公司技术顾问 符廷发先生   符廷发先生指出VUV远紫外区(190-250nm)具有如下特点:1、在该区有丰富的可利用的谱线,发射谱线受到的干扰小;2、空气会强烈吸收;3、仪器光学系统中的各种透光器件会吸收波长低于190nm的光能。德国斯派克公司利用这些特点,特别设计推出了SPECTRO ARCOS型ICP-AES。SPECTRO ARCOS使用三个光栅,较使用双光栅而言分辨率提高了一倍,且无需吹扫和抽真空,因此具有开机即用的优势。利用SPECTRO ARCOS在真空紫外波段进行元素分析,可以有效避免谱线干扰。SPECTRO ARCOS的典型应用包括:钢铁样品中的磷的测定;钢铁样品中低硼、低铅的测定;氯、溴、碘等卤素元素的测定等。   报告题目:电感耦合等离子体四级杆质谱离子光学系统的现状与进展   报告人:钢铁研究总院 余兴先生   余兴先生在报告中指出ICP-MS的离子光学系统对仪器的分析性能有着重大的影响,各仪器厂商在离子光学仪器上设计各不相同,整体上存在着光子挡板类型、离子轴类型和90度偏转三种类型。无论采用哪种设计方式,都是为了增加离子传输效率、消除光子和中性粒子影响和提高仪器灵敏度的目的。采用离轴或彻底离轴的设计有利于灵敏度的提高,成为越来越成为仪器厂商青睐的离子光学系统 非离轴方式的结构简单、参数设置方便的优点也成为其继续存在的理由。   报告题目:火试金富集-电感耦合等离子体质谱法测定铜精矿中金、钯、铂含量   报告人:江苏出入境检验检疫局 赵伟先生   赵伟先生介绍电感耦合等离子体质谱法已是大家公认的理想的测定微量和超痕量元素的方法。铜精矿中贵金属元素含量极低,目前运用电感耦合等离子体质谱法测定铜精矿中贵金属的研究开展较少。研究了以火试金富集、微波消解溶解样品为基础的、电感耦合等离子体质谱法准确测定铜精矿中金、钯、铂。讨论了分析检出限、精确度及回收率,并利用这种方法测定了三种铜精矿样品中金、钯、铂元素的含量,结果令人满意。   报告题目:扇形磁场电感耦合等离子体质谱仪灵敏性的改进   报告人:赛默飞世尔科技 Mrs. Meike Hamester   Mrs. Meike Hamester介绍说扇形磁场电感耦合等离子体质谱仪(ICP-SFMS)代表着固体或液体试样、元素、同位素比或种类最高端的元素分析方法。高性能的双聚焦扇形磁场分析仪是研究相关应用不可或缺的工具,在现代实验室中使用已经非常成熟。Mrs. Meike Hamester在报告中描述了ICP-SFMS改进的技术细节,通过改进显著增强了测定的灵敏度、离子传输和检测功率。此外,Mrs. Meike Hamester还介绍了ICP-SFMS未来的发展。   激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)是一种固体原位微区分析新技术,通过激光对样品表面进行剥蚀,直接分析形成的气溶胶,可以大大缩小激光光束从而达到缩小剥蚀斑点的目的,将微创分析推进到极限,这也是该技术近年来取得飞速发展并得到广泛应用的一个原因。对于非平面表面分析而言,LA-ICP-MS可以大大满足分析中对空间分辨率和灵敏度的要求,而且其多元素同时分析的能力可同时提供更多的主、次、痕量元素信息,位置控制精度可达微米级,是进行原位统计分析的极佳工具。   报告题目:激光烧蚀电感耦合等离子体质谱应用于断口断面表面元素原位统计分布分析表征   报告人:钢铁研究总院 袁良经先生   袁良经先生在报告中介绍了通过LA-ICP-MS对标准样品表面进行四点定点分析,从而得到工作曲线,再利用得到的工作曲线对断口表面进行扫描分析,用样品移动台的精确定位得到样品表面的位置分析,用激光器的聚焦位置来模拟样品表面的深度信息,描述了样品表面形貌,从而得到样品表面元素原位统计分布分析状况。实现了对非平面表面元素的原位统计分布分析表征。   报告题目:LA-ICP-MS在地球化学、材料科学及生命科学研究中应用   报告人:中国地质大学(生物)胡圣虹教授   胡圣虹教授结合最新文献和其小组的研究工作介绍了LA-ICP-MS在地球化学、材料科学、生命科学中应用潜力。如在地球化学中玄武岩玻璃的整体分析、熔融包体的同位素测定及微体生物化石的微量元素分析 材料科学中多层薄膜材料、光纤材料的深度剖析分析 生命科学研究中免疫芯片中多个蛋白质的同时检测、人脑海马组织及帕金森病老鼠大脑组织中生物成像及植物组织中元素累积的成像分析研究等。   报告题目:激光烧蚀电感耦合等离子体质谱应用于低合金钢焊缝中元素分布分析   报告人:钢铁研究总院 韩美女士   韩美女士介绍研究组通过优化条件参数实现了LA-ICP-MS方法对低合金钢中Al、Ti、V、Ni等元素含量的准确测定,并将所建立的方法应用于焊缝及其附近的Al、Ti、V、Ni等元素含量的变化趋势研究,发现这些合金元素的含量在焊缝中存在着明显的过渡区间(95-360μm),且其含量在两块母材中差别越大,该元素含量在焊缝中过渡区间就越宽。
  • 德图隆重推出湿法脱硫出口SO2采样探针
    冲破技术难关 湿法脱硫出口SO2采样探针 ——全新Testo专利特殊低SO2采样探针 拥有50多年历史的德图公司,是世界上最大的便携式仪器制造商。在享有“测量专家”美誉的同时,德图公司始终根据市场和客户的需求,不断积极研发最新产品。近两年间,我们发现,湿法脱硫后SO2的测量是近两年来烟气测量中的典型问题。其原因为,湿法脱硫后气体湿度高(达到饱和湿度),温度低以及低SO2。这些因素是SO2气体测量中急需解决的难题。为了有效地解决测量中的这些问题,德图隆重推出了适用于湿法脱硫出口的全新测量解决方案,即“全新专利特殊低SO2采样探针”。正如其名,该采样探针已经在中国市场成功申请专利技术。 全新革命性测量方案 德图本着致力于未来的口号以及为用户提供最佳测量方案的原则,历经1年的研发,终于在2010年8月隆重推出了“全新专利特殊低SO2采样探针”,该技术的推出极大地简化了高湿低硫环境下SO2气体的测量。只需一个外观与普通采样探针极为相似的“全新专利特殊低SO2采样探针”,便可随时随地对高湿低硫环境下的SO2进行快速、便捷而精准的测量。该探针长700mm,其标准探针长度及重量与普通探针基本一致。配备标准2.2m耐硫采样管,最高耐温+200℃。整个测量系统无需使用交流电供电,测量便捷,响应快,并且能够保证测量精度。 全新测量方案的升级优势 在2009年6月德图即对高湿低硫环境下的SO2测量做出过解答:全加热型testo 350 Pro/XL,即标准testo 350 Pro/XL主机加全加热采样系统,其中含热采样管(加热温度+180℃)、加热手柄(加热温度+180℃),以及全加热采样软管(最高至+200 ℃,符合HJ/T397-2007标准)。这种全加热的测量方案在于对输气管路中的被测气体进行加热保温,随后进行过滤、除湿和气液分离的预处理,以防止采样气体中水分在连接管和仪器中冷凝干扰测定。 首先在价格方面,新系统省去了庞大的加热采样部分,也无需提供交流电,在节能的同时更为经济实惠。同时,新的测量测量系统的采样环节无需加热且响应快,大大节省了时间。在重量方面,也极为轻巧,便于携带。值得一提的是,新的测量系统经过多次比对试验,测量效果与全加热系统完全一致。 配备全新专利特殊低SO2采样探针的testo 350 Pro于德国Niederaussem 电厂湿法脱硫喷淋后端进行测量。 实验结果是:testo 350Pro配全新专利特殊低SO2采样探针,短时间测量可完全不使用交流电源,并且读数与在线或参比级光学仪器比对误差可达到±2 ppm。同时,测试结果还标明,即使在耐硫管的长度(10米)以及测量时长(22小时连续测量)的情况下,精度也不受影响。 随后,testo 350Pro再次转战至浙江两家电厂进行同样的测试,与此两家电厂的光学在线连续监测系统比对误差同样在±2 ppm。使用全新专利特殊低SO2采样探针可实现快速、精确并可靠的测量。 可见全新高湿低硫环境下SO2测量解决方案,不仅满足了特殊环境下的烟气测量分析,且改善了原有测量系统中的不足,为客户提供了有效、便捷、可靠的测量,堪称测量系统的一大革命。因为德图始终秉持着以客户的需求为本,不断追求创新与完善,与客户一起致力于未来。
  • 湿法脱硫产生二次颗粒物的机理与治理方法
    p   湿法脱硫是中国燃煤烟气主要的脱硫方法,中国绝大多数的燃煤电厂,工业燃煤锅炉、采暖热水锅炉、烧结机、玻璃窑使用这种方法脱硫,每年脱除的二氧化硫高达数千万吨,大大减少了大气中的二氧化硫浓度,因而减少了酸雨和在大气中碱性物质与二氧化硫合成的硫酸盐颗粒物。 /p p   但是,近年来,各地逐渐发现,大气中硫酸盐颗粒物在PM2.5中所占的比例显著升高,经常成为非采暖季大气中PM2.5的主要成分,很可能就是采暖季大气污染的罪魁祸首。从逻辑上讲,因为燃煤烟气大规模地脱硫,使得大气中二氧化硫的浓度降低了,在大气中合成的硫酸盐会大大降低。那么大气中这么多的硫酸盐是哪里来的?莫非是什么设备把硫酸盐排到了大气中? /p p   我们在一个燃煤烟气污染治理可行性研究的调查工作中发现,湿法脱硫工艺产生了大量极细的硫酸盐,排放到大气中。而同一时期,很多专业人士也发现了这个问题。某省的一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。 /p p   那么湿法脱硫工艺是如何产生极细的硫酸盐的?我下面试图用科普方式来解释。 /p p   燃煤烟气中的主要大气污染物是颗粒物、二氧化硫和氮氧化物。当然还有一些次要颗粒物,如汞等重金属。一些特殊的燃煤或固体燃料的燃烧过程如烧结机和垃圾焚烧,还会产生其它的污染物,如氟化氢、氯化氢、二恶英等,篇幅所限本文暂不涉及。 /p p   大部分燃煤烟气污染物减排的主要任务就是除尘(去除颗粒物)、脱硫(去除二氧化硫)和脱硝(去除氮氧化物)。 /p p   一般来说,在烟气污染物减排过程中脱硝是第一道工艺,因为除了低温脱硝工艺外,一般的脱硝工艺采用锅炉内(900~1100℃)的高温脱硝方法——非选择性催化还原法(SNCR),或者锅炉外(300~400℃)的中温选择性催化还原法(SCR)。这两种方法都需要加氨水或尿素水作为还原剂。氨逃逸就在此时发生,氨逃逸量与氨喷射和控制技术有关,同时也与要求氮氧化物脱除的排放上限成反比。在技术相同的情况下,要求排放的氮氧化物越少,氨的使用量就越多,逃逸量也就越多。氨逃逸会在湿法脱硫环节惹麻烦。 /p p   脱硝后,就开始进行烟气的换热降温,以回收烟气中的热量。一般先通过省煤器,将锅炉的进水加热,而后再经过空气预热器,将准备进入到锅炉里燃烧煤炭的空气加热,经过这两道节能换热过程后,烟气的温度下降到100℃左右,就开始进入第二道工序,除尘,即去除颗粒物,一般采用静电除尘或袋式除尘工艺。如果设计合理,设备质量合格,一般情况下,静电除尘器可以将烟气中的颗粒物浓度降至5毫克/立方米以下,袋式除尘器甚至可以将烟气中的颗粒物浓度降至1毫克/立方米以下。今天,除尘技术已经非常成熟。 /p p   烟气经过除尘后,就开始了第三道减排工艺,脱硫。湿法脱硫是现在中国普遍采用的脱硫方法。大部分湿法脱硫工艺是使用脱硫塔,把大量的水与石灰石(主要成分为碳酸钙)粉或生石灰粉(生石灰粉的主要成分是氧化钙,与水反应生成后的主要成分是氢氧化钙)混合,形成石灰石或熟石灰碱性乳液,从脱硫塔的上部喷洒,这些液滴向脱硫塔下滴落 在风机的作用下,含有大量二氧化硫的酸性烟气则从下向上流动,碱性乳液中的石灰石或熟石灰及其它少量的碱性元素(如镁、铝、铁和氨等)与二氧化硫的酸性烟气相遇,就生成了石膏(硫酸钙)及其它硫酸盐。由于石膏在水中的溶解率很低,因此,收集落到塔底的乳液,将其中的石膏分离出来,剩下的就是含有大量可溶性硫酸盐的污水,这些硫酸盐包括:硫酸镁、硫酸铁、硫酸铝和和硫酸铵等,需要去除这些硫酸盐后,污水才能排放或重新作为脱硫制备碱性乳液的水使用。 /p p   中间插一段儿:恰恰这些含有硫酸盐的污水的处理现在存在很大的问题。因为这些污水的处理耗资巨大,因此有很多燃煤企业或将这些污水未经处理排放到河流中,或者不经处理重新作为制备脱硫碱性乳液的水使用 前者严重地污染了水体,后者则将这些可溶盐排放到了空中(原因在下面解释)。我曾经去过一家企业考察燃煤锅炉,锅炉的运行人员告诉我们,锅炉污水零排放。一同考察的专家们讽刺到,污水中的污染物都排放到空中了。这个燃煤企业实际的做法是不对湿法脱硫产生的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐倒是全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢!这就是经过几年的大规模燃煤烟气处理,大气中的PM2.5没有大幅度下降的原因! /p p   接下来说:并不是所有的乳液都落到了塔底。因为进入到脱硫塔里的烟气温度很高,于是将大量的乳液液滴蒸发。越到脱硫塔的底部,烟气的温度就越高,乳液液滴的蒸发量就越大。不幸的的是,越到底部,乳液液滴中所含的硫酸盐也就越多(如果反复使用未经处理的含有大量硫酸盐的废水,则硫酸盐就更多了),由于乳液液滴的蒸发速度很快,一些微小液滴中的可溶性硫酸盐来不及结晶,液滴就完全蒸发,因此析出极细的硫酸盐固体颗粒,平均粒径很小,大量的颗粒物直径在1微米以下,即所谓的PM1.0。当然乳液中最大量的固体还是硫酸钙(石膏),不过其不溶于水,硫酸钙颗粒的平均粒径比较大。 /p p   这些含有硫酸钙颗粒和可溶盐的盐乳液的蒸发量非常巨大。对应一台100万千瓦的燃煤发电机组,在烟气脱硫塔中这些盐溶液的蒸发量每小时会达到100吨左右。因此,析出的极细颗粒物数量巨大。 /p p   这些极细的颗粒物随着烟气向脱硫塔上部流动,大部分被从上部滴落的液滴再次吸收和吸附(于是这些极细的颗粒物在脱硫塔中被反复地吸收/吸附和析出),但仍有可观的残留颗粒物随着烟气从塔顶排出。需要说明的是,颗粒物的粒径越小,残留的就越多。 /p p   有人会有疑问,从塔顶喷洒的液滴密度很大,难道不能将这些极细颗粒物都洗掉?遗憾的是,不能。早先锅炉的烟气除尘就用过水膜法,即喷射水雾除尘,除尘效果很差。道理很简单,同样的颗粒物重量浓度,颗粒物的粒径越小,颗粒物的数量就越多,从水雾中逃逸的比例就越大。 /p p   烟气出了脱硫塔后,在早先的燃煤烟气处理工艺中,就算完成烟气处理工艺了,烟气经过烟囱排放到大气中,当然,那些在湿法脱硫过程中产生的大量的二次颗粒物——硫酸盐们,也随着烟气排放到大气中。其中石膏颗粒物粒径较大,于是就跌落在距烟囱不远的周围,被称为石膏雨。那些粒径较小的可溶盐,则随风飘向远方,并逐渐沉降,提高了广大地区大气中颗粒物的浓度。烟气中的颗粒物浓度常常达到几百毫克/立方米,比起脱硫前烟气中的颗粒物,增加了好几倍甚至几十倍。所以有人讽刺,湿法脱硫把黑烟(烟尘)和黄烟(二氧化硫)变成了白烟(硫酸盐)。 /p
  • 年产40台设备,这个半导体湿法设备制造项目将落地合肥
    8月10日,合肥经济技术开发区管理委员会网站发布关于对合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)环境影响评价文件拟作出审批意见的公示。△Source:合肥经开区网站截图据披露,合肥至汇半导体应用技术有限公司将在合肥经济技术开发区建设半导体湿法设备制造项目(一期),项目总投资1.8亿元,投产后可年产30台年产批次式半导体湿法清洗设备和10台单片式半导体湿法清洗设备。天眼查显示,合肥至汇半导体应用技术有限公司成立于2019年,注册资本1000万元,是上海至纯洁净系统科技股份有限公司的全资子公司,经营范围包括半导体设备、机械设备、自动化设备、计算机及辅助设备、配电开关控制设备制造、销售、维修、调试及技术服务;工业自动化科技、计算机科技、半导体科技领域内的技术研发、技术咨询、技术转让、技术服务等。△Source:天眼查截图据悉,该项目最早可追溯至2019年。2019年5月,至纯科技发布公告称,为顺应我国半导体产业的发展,拟募集资金总额不超过3.56亿元,扣除发行费用后将用于半导体湿法设备制造项目和晶圆再生基地项目,而负责半导体湿法设备制造项目的实施主体正式合肥至汇。△Source:至纯科技公告截图公告显示,半导体湿法设备制造项目建设周期为2年,建成后,主要开展批次式半导体湿法清洗设备和单片式半导体湿法清洗设备的生产制造。至纯科技当时披露,该项目已经取得了合肥经济技术开发区经贸发展局的备案,并取得了合肥市环境保护局经济技术开发区分局出具的《关于合肥至汇半导体应用技术有限公司半导体湿法设备制造项目(一期)审核意见》,认为项目可以在合肥市环境保护局经济技术开发区实施。
  • 技术引领,“智”创未来 | 谱育科技亮相第九届全国湿法冶金工程技术交流会
    2021年6月18-20日,第九届全国湿法冶金工程技术交流会在福建厦门隆重召开。本次会议由中国有色金属学会、中南大学、矿冶科技集团有限公司、紫金矿业集团股份有限公司、厦门钨业股份有限公司、中国科学院过程工程研究所联合主办。来自湿法冶金领域的专家学者、领导和优秀企业代表等近600余名参会人士齐聚厦门,济济一堂。谱育科技应邀参会,与一众与会人士共同探讨湿法冶金的先进新技术研发、工程化应用等关键方向,解决有色金属资源开发利用中的重大技术问题,提高资源综合利用效率,致力于推动冶金企业产品质量把控和提升产业核心竞争力。大会期间,谱育科技全面展示了由实验室分析检测、生产过程在线监测、环保排放监测构成的有色冶金行业综合解决方案,将质谱、光谱、色谱、前处理、全自动等技术平台与现代化信息技术相融合,在湿法冶金过程中实现智能监测。6月19日下午,在大会主会场的交流现场,谱育科技的行业技术经理林黎向在座的专家同行分享了“ICP-OES/ICP-MS分析技术在湿法冶金在线监测中的应用”的主题报告。他表示,基于ICP-OES/ICP-MS 分析系统的在线应用方案是谱育科技根据湿法冶金行业客户需求重点推出的,致力于从根本上解决行业客户痛点。并在现场通过有色湿法冶金在线分析的技术难点问题解答,实际应用案例展示的形式,对方案进行了全面介绍。与此同时,本次湿法冶金大会在开篇首日即隆重举办了“2021全国湿法冶金星级装备”评选活动。谱育科技FAAS 8000 工厂自动化在线分析系统 在众多优秀同行的产品中突出重围,成功被评选为”创新星级品牌产品”。谱育科技新业务发展总监袁汉华(右二)作为公司代表上台领奖。【 有色冶金行业综合解决方案 】谱育科技基于雄厚的技术实力,推出了集有色金属企业提供实验分析检测、生产过程在线监测、环保排放监测为一体的全方位综合解决方案,促进有色金属企业转型升级和高质量发展。【 FAAS 8000工厂自动化分析系统 】2020年4月,谱育科技针对目前企业生产中人工监测的问题,打造了FAAS 8000 工厂自动化分析系统。系统采用“原位分布式采样+中心分析服务器”的架构,实现了工业生产过程中液体样品的多元素同时快速在线监测。系统通过攻克远程气动送样、秒级无损传输、高精度在线万级稀释等流路关键技术,实现了远距离、多点位、多元素的实时快速在线监测,为生产工艺优化、产品品质提升、企业节能降本提供有效保障。
  • 湿法冶金生产技术国家工程实验室成立
    由国家发展和改革委员会批准组建的湿法冶金清洁生产技术国家工程实验室成立暨首届理事会第一次会议近日在京举行。会议选举中科院副院长李静海院士为首届理事会理事长,中科院过程工程研究所张懿院士和常务副所长张锁江研究员为副理事长,聘任中科院过程工程研究所研究员齐涛为实验室主任。来自产业界和科技界16个理事单位60余位代表参加了会议。   李静海表示,实验室的成立对研究所来说是一件大事,对解决成果产业化提供了很好的机遇,研究所要发挥学科积累优势满足国家的重大需求,理顺与企业的合作机制,促进科研成果的产业化。他指出,来自企业的代表提出了很多中肯的意见,金融危机对企业影响很大,科研机构要依靠科学技术为企业排忧解难。衡量科研机构对企业贡献的标准是看有没有成果在企业发挥效益。他强调,无论是实验室建设,还是研究所发展,都要解放思想、更新理念。   该实验室以中科院过程工程研究所为依托单位,中国科学院为主管单位。建设目标与任务是:围绕我国金属矿产资源的高效、清洁、综合利用与行业节能减排的需要,以铬、铝等难冶两性金属资源为重点研究对象,开展以亚熔盐非常规介质为主的高效反应系统、多组分分离技术与设备、冶金固体废弃物综合利用与污染控制等研究,并进行大规模工程化技术转移,促进有色金属行业清洁生产,成为我国有色金属行业清洁生产技术研究和工程化的重要平台。建设期为3年。
  • 至纯科技称28nm湿法工艺设备完成认证 明年进军14/7nm
    日前国内半导体设备公司至纯科技在互动平台表示,目前至纯科技28纳米节点全部湿法工艺设备已认证完毕。至纯科技表示,国内目前有三家在湿法工艺设备端提供中高阶湿法制程设备,分别是至纯科技、北方华创和盛美,国内厂商的市场占比在逐年上升中。除了28nm工艺节点之外,上海证券报告中指出,至纯科技14nm及7nm工艺预计2022年可供客户验证,客户包括中芯国际、华虹集团、长鑫存储、华为、台湾力晶等行业领先者。2020年湿法设备出货量超过30台,新增订单5.3亿元,增长211.8%。官网介绍,至纯科技成立于2000年,是一家在上交所上市的高新技术企业,证券代码603690.SH。公司坐落于上海紫竹这个国家级科学园区内,注册资本2.08亿元,致力于为高端先进制造业企业提供高纯工艺系统的解决方案。系统解决方案涵盖了提供整个系统的设计、选型、制造、安装、测试、调试和系统托管服务。 至纯提供的系统和专业服务,广泛应用于半导体、微电子、生物医药、光伏、光纤、TFT-LCD、LED等领域。
  • 我国湿法冶金的开拓者陈家镛院士逝世 享年98岁
    p   北京8月26日,中国共产党党员、中国科学院院士、中国科学院过程工程研究所研究员陈家镛,因病医治无效,于2019年8月26日在北京逝世,享年98岁。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 296px " src=" https://img1.17img.cn/17img/images/201908/uepic/9c6877b3-5d83-44b6-a541-6b96ee6b83a6.jpg" title=" 622762d0f703918f4f63d3a65d587e9258eec493.png" alt=" 622762d0f703918f4f63d3a65d587e9258eec493.png" width=" 450" height=" 296" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 陈家镛院士 /strong /p p   陈家镛1922年2月17日生于四川省金堂县,1980年7月加入中国共产党。1943年毕业于国立中央大学化学工程系(重庆)并留校任教,1949和1951年先后获美国伊利诺伊大学化工系硕士和博士学位。1956年回国参与筹建中国科学院化工冶金研究所(现名过程工程研究所),曾任副所长。1980年当选中国科学院学部委员(院士)。 /p p   1939年中学毕业后,心怀科学与工业报国理想的陈家镛如愿考取了名师荟萃、专业拔尖的国立中央大学化学工程系。他在重庆遇到了杜长明、高济宇、李景晟、时钧等国内学界一流的老师。凭借学业上的过人天赋和勤奋刻苦,陈家镛赢得了老师们的称赞,毕业后得到了留校任教的机会。任化学系助教期间,在恩师高济宇的指导下,陈家镛试制成功了被国外垄断的农药滴滴涕(DDT)。 /p p   陈家镛是我国湿法冶金学科奠基人、化工学科开拓者之一。他针对国家经济建设中的重大急需,开拓了湿法冶金新工艺和新流程,并将化学工程学新原理和方法用于湿法冶金过程,为我国湿法冶金学科的建立和工程技术的发展奠定了基础。他积极倡导气液固多相反应器的反应工程学研究,并将其扩展到化工分离、生物化工、特种材料制备等新领域,取得令人瞩目的基础研究和应用成果。 /p p   陈家镛曾获1978年全国科学大会奖2项、1980年国家发明三等奖、1987年国家自然科学三等奖、1996年何梁何利基金科学与技术进步奖、2009年国家自然科学二等奖、2014年国家技术发明二等奖。 /p p   为向陈家镛的诸多贡献致敬,中以合作的首颗微重力化工实验卫星,命名为“陈家镛一号星”,于2017年2月15日在印度成功发射。 /p p br/ /p
  • 消解机器人,让工作轻松的智能伙伴!来自一线用户对D-MASTER湿法消解的新体验
    导读:“D-MASTER让我们体验到了最简单的湿法消解过程,最贴心的智能控制优势,也让我们能以最轻松的方式做实验、工作。”——江苏当升材料科技有限公司我们是2022年10月买的D-MASTER,到现在使用已满1年,而在这一年里又分别采购了2台这个仪器,在常州等不同的分厂使用。这1年多的时间里共做了1万多样品,消解了近200批次样品,每批50-60个样,每天生产线上都要定时采样。D-MASTER不论从稳定性还是耐用性,都经受住了考验,证实了该仪器的优越性。D-MASTER让我们体验到了最简单的湿法消解过程,最贴心的智能控制优势,也让我们能以最轻松的方式做实验、工作。在使用过程中,真心感觉D-MASTER是我们的编外同事,为我们做了很多我们懒得去做的工作:最贴心的功能-预约开机功能,它可以让仪器在任何指定时间自主运行消解,需要加班时D-MASTER主动请战,真正实现让仪器替我们加班最高等级的安全设计-各种预警,语音提示功能,运行方法前,自动计算试剂瓶内试剂量是否够用,主要维护件的维护保养时间自动定时提醒,还有方法结束后的语音提醒等最简单的样品处理过程-无需转移,在同一根管子里完成自动添加试剂、混匀样品、升降并梯度升温、自动赶酸、自动定容,只用我们称样最快的加液速度-360°旋转机械臂,加液速度快,定位准,采用全密闭式结构设计,直接杜绝酸气和冷凝酸液对传动部位的腐蚀,保证仪器连续加液的稳定性最少的酸气酸液接触-自带通风系统,我们再也不用在酸气酸液弥漫的通风橱前处理样品了,自带风机,自带过滤,观察小窗,更好的保护我们不被酸气酸液伤害经过我们长时间的大量的样品消解操作后,D-MASTER表现很好,能完全满足我们做新材料的实验要求,建议有与我们样品相似的实验室可以用大胆启用D-MASTER,的确是能够明显提高工作效率,降低我们实验员的工作强度,是湿法消解样品最轻松的一次体验,当之无愧的智能消解机器人。
  • 拟定增募资10亿元,某半导体设备商将扩产升级
    日前,芯源微披露其定增预案,拟向特定对象发行股票数量不超过公司总股本的30%,即本次发行不超过2520万股,募集总金额不超过10亿元(含本数),扣除发行费用后的净额将用于上海临港研发及产业化项目、高端晶圆处理设备产业化项目(二期)、补充流动资金。图片来源:芯源微公告截图其中,上海临港研发及产业化项目位于上海闵行经济技术开发区临港园区。本项目预计建设期为30个月,由公司全资子公司上海芯源微企业发展有限公司实施。本项目计划总投资额为6.40亿元,拟投入募集资金4.70亿元,其余以自筹资金投入。本项目建成并达产后,主要用于研发与生产前道ArF光刻工艺涂胶显影机、浸没式光刻工艺涂胶显影机及单片式化学清洗机等高端半导体专用设备。高端晶圆处理设备产业化项目(二期)位于辽宁省沈阳市浑南区。本项目预 计建设期为30个月,计划总投资额为2.89亿元,拟投入募集资金2.30亿元,其余以自筹资金投入。本项目建成并达产后,主要用于前道I-line与KrF光刻工艺涂胶显影机、前道Barc(抗反射层)涂胶机以及后道先进封装Bumping制备工艺涂胶显影机。为满足公司日益增长的运营资金需要,本次募集资金中的3.00亿元拟用于补充流动资金。本次募集资金补充流动资金将用于支持公司持续推出新产品、满足公司产业扩张需求等。公告指出,公司主要从事半导体专用设备的研发、生产和销售,产品包括光刻工序涂胶显影设备(涂胶/显影机、喷胶机)和单片式湿法设备(清洗机、去胶机、湿法刻 蚀机),可用于8/12英寸单晶圆处理(如集成电路制造前道晶圆加工及后道先进封装环节)及6英寸及以下单晶圆处理(如化合物、MEMS、LED芯片制造等环节)。公司专注于高端半导体专用设备领域,通过持续的技术研发和供应链建设,不断开拓新产品、新领域,提升公司的核心竞争力。本次募集资金投资项目围绕公司主营业务展开,对公司现有业务起到了补充和提升的作用,符合公司发展战略。上海临港研发及产业化项目建设后,公司将在前道先进制程设备研发及产业化领域实现进一步突破,推出更高工艺等级的前道涂胶显影设备与清洗设备产品,进一步强化公司在高端设备领域的技术优势并丰富产品结构。高端晶圆处理设备产业化项目(二期)建成后,公司将扩充前道晶圆加工及后道先进封装环节涂胶显影设备产能,满足业务规模快速增长的需求,进一步提升公司的盈利能力和综合竞争实力。此外,基于行业当前发展趋势和竞争格局的变化,公司近年来不断扩大的业务规模,未来几年公司仍处于成长期,生产经营、市场开拓、研发投入等活动中需要大量的营运资金。通过本次发行募集资金补充流动资金,可在 一定程度上解决公司因业务规模扩张而产生的营运资金需求,缓解快速发展的资金压力,提高公司抗风险能力。据公告介绍,经过多年的积累,公司在光刻工序涂胶显影设备和单片式湿法设备领域已具备一定的客户优势。在集成电路前道晶圆加工环节,公司生产的前道涂胶显影设备在多个关键技术方面取得突破,已陆续获得上海华力、中芯绍兴、厦门士兰集科、上海积塔、株洲中车、青岛芯恩、中芯宁波、昆明京东方等多个前道客户订单及应用。公司生产的集成电路前道晶圆加工领域用单片式清洗 机Spin Scrubber设备通过持续的改进、优化,已经达到国际先进水平并成功实现进口替代,已在中芯国际、上海华力、厦门士兰集科等多个客户处通过工艺验证,并获得国内多家Fab厂商的批量重复订单。在集成电路后道晶圆加工环 节,公司生产的后道涂胶显影设备与单片式湿法设备,已经从先进封装领域、LE领域拓展到MEMS、化合物、功率器件、特种工艺等领域,作为主流机型应用于台积电、长电科技、华天科技、通富微电、晶方科技、华灿光电、乾照光电、澳洋顺昌、中芯绍兴、中芯宁波等大厂。
  • 众瑞仪器发布ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)新品
    ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)产品简介ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。整机采用一体便携式设计,采样管和主机为一体,携带方便。可供环境监测部门对各种锅炉排放的气体浓度、排放量进行检测,也可应用于工矿企业进行各种有害气体浓度的测量。参考标准JJG968-2002 烟气分析仪检定规程HJ/T 397-2007 固定源废气监测技术规范DB37/T 2704-2015 固定污染源废气氮氧化物的测定紫外吸收法DB37/T 2705-2015 固定污染源废气二氧化硫的测定紫外吸收法DB37/T2641-2015 便携式紫外吸收法多气体测量系统技术要求及检测方法HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法GB13233-2011 火电厂大气污染物排放标准Q/0214 ZRB009-2017 烟气综合分析仪GB/T 37186-2018 气体分析 二氧化硫和氮氧化物的测定 紫外差分吸收光谱分析法HJ 1045-2019 固定污染源烟气( 二氧化硫和氮氧化物 )便携式紫外吸收法测量仪器技术要求及检测方法功能特点采用热湿法紫外差分原理检测SO2、NO、NO2和NH3,适合高湿低硫工况,完全避免冷凝除湿造成的烟气组分损失;带有皮托管、烟温传感器接口,能够自动测量烟温、流速和含湿量;内置含湿量传感器,可同步测量含湿量,实时折算干态浓度选配传感器(CO、CO2、H2S);内置电池,采样结束后自动完成反吹功能;内置蓝牙,通过手机或平板进行人机交互、数据存储;采样分析一体式结构,便携性好;数据显示和接口丰富:蓝牙打印、U盘导出、100万条数据存储、排放量折算、浓度折算;内置高效冷凝除水模块,防止O2传感器进水损坏,蠕动泵排水,自动化程度高;预热时间短,可以在现场快速达到测量要求;自主知识产权的高稳定吸收池,采用前端维护和调整结构,可靠性高,非专业人员也可进行气室擦拭和维护。采用钛合金真空隔热管,隔热效果好;配有高温探针,满足不同烟温工况。 创新点:ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)
  • 北方华创“晶圆卡盘和晶圆加工方法”专利公布
    天眼查显示,北京北方华创微电子装备有限公司“晶圆卡盘和晶圆加工方法”专利公布,申请公布日为2024年7月16日,申请公布号为CN118352289A。 背景技术高分子聚合物在微电子制造中有广泛的应用,例如:聚酰亚胺(PI)是一种综合性能良好的有机高分子材料,耐高温达400℃以上,并具有高绝缘性能,103Hz下的介电常数4.0,属于低介电常数材料,被广泛用于微电子制造领域:1、聚酰亚胺容易与氧气、NaOH等发生化学反应而被刻蚀掉,因此可被用作牺牲层来制备微机械系统(MEMS)中的悬空结构;2、利用聚酰亚胺的绝缘性能可用作电路之间的钝化层,如先进封装中的重新布线(RDL)技术,可将聚酰亚胺光敏改性后光刻制备图案化结构并避免不同电路之间互连;3、利用聚酰亚胺的低介电常数特性,可减少电路中的寄生电容,用于高频电子器件中的线路钝化。再如:光刻胶是一类具有光敏特性的高分子聚合物,在光照下其结构发生改性,可以被显影液剥离(正性光刻胶)或者保留(负性光刻胶),利用光刻胶的光敏特性可以将光刻板上的图形转移到晶圆上,再通过干法刻蚀或者薄膜生长等工艺将图案固定下来,最后光刻胶需要被去除。在上述应用中,常常需要等离子体干法刻蚀对高分子聚合物进行处理。例如:采用聚酰亚胺来实现先进封装中的重新布线技术时,需要等离子体干法刻蚀对聚酰亚胺表面进行改性处理,增大粗糙度和亲水性,以保证电镀重新布线金属时药液可以完全浸润整个晶圆;再如:利用光刻胶做干法刻蚀的掩膜后的去除过程中,由于光刻胶经过干法刻蚀后发生改性,难以使用溶剂溶解的方法进行湿法去除,而需要进一步利用等离子体去胶机进行去除。尤其是在扇出型封装中,晶圆的基底常采用树脂等聚合物制作,进而在制作晶圆的过程中,晶圆容易发生翘曲。当基底有翘曲时,刻蚀过程中的电荷积累引起的放电效应会严重影响刻蚀工艺结果,甚至导致刻蚀工艺停止而失败。发明内容本发明提供了一种晶圆卡盘和晶圆加工方法,涉及晶圆的刻蚀技术技术领域,为解决翘曲的晶圆在等离子刻蚀时易放电打火的问题而设计。晶圆卡盘包括边缘卡盘和中心卡盘,边缘卡盘分布在中心卡盘的至少一个径向的外侧,边缘卡盘传动连接有边缘卡盘驱动装置以调节边缘卡盘的高度。本发明提供的晶圆卡盘可以避免晶圆的边缘打火受损。
  • 未来已至 变革已来 | D-MASTER全自动消解仪 开启智能湿法消解新时代
    “我们在谈论未来的时候,未来已来,当我们讨论将至的可能性时,将至已至。面对席卷而来的未来浪潮,我们只有以变革的姿态迎接未来,决胜未来。”① 近十年来,随着人工成本的不断攀升,以及移动互联网技术日新月异的发展,仪器仪表行业尤其是分析仪器行业的从业者们越来越注重仪器设备的智能化、自动化和高效性,如果想要更进一步满足使用者的需求,同时顺应科学技术发展潮流,传统的分析化学前处理方式必将经历一场系统性的变革。 作为全球先进的样品前处理设备、分析仪器和解决方案供应商之一,莱伯泰科自2002年成立之初,便一直进行技术革新,锐意突破,致力于推动实验分析仪器从自动化、高通量、多功能向全流程自动化和智能化发展,迎接来自未来的挑战。2011年,莱伯泰科推出了第一款全自动消解仪,有效的解放了实验室人员的双手,并且在接下来的十年中历经了两次次技术革新,在2020年,推出了代表全自动消解仪3.0技术的新款仪器-- D-MASTER。 D-MASTER全自动消解仪的高自动化和高智能化更是开启了湿法消解的新时代。后续,D-MASTER还将搭载莱伯泰科首款质谱--LabMS 3000 ICP-MS,结合各行业的特点和需求,开展定制化和多元化服务,必将领创无机元素分析的新未来。 D-MASTER全自动消解仪六大优势:u 自动添加试剂系统360°旋转式机械臂,曲线形加液路径,定位更灵活,可满足更复杂的定位需求。u 自动升降摇匀系统高频率圆周震荡摇匀功能,使消解管内样品形成高速涡旋,充分将试管底部及挂壁样品溶解。u 高精度加热模块智能PID控温高低温报警功能,保证准确控温,具有提前预加热功能,可更有效的缩短实验时间,提高工作效率。u 自动定容系统超声波微距传感器,可自动校准定容参数,测量准确,具有高定容精度。u 专业通风系统HEPA级别净化装置,持续净化进入的空气,有效减少污染,将酸气封闭在通风系统内,节省实验室通风橱孔间。u 智能控制软件可中英文自由切换,图形模块化的软件界面,信息全面清晰,多重报警功能主界面实时显示,实验更安全。 ① 摘自华东师范大学教育学部主任袁振国《未来已来,将至已至——科技创新加速教育变革》
  • 2021上半年国产半导体设备商IPO情况盘点
    伴随全球信息化、网络化和知识经济的迅速发展,特别是在以物联网、人工智能、汽车电子、智能手机、智能穿戴、云计算、大数据和安防电子等为主的新兴应用领域强劲需求的带动下,全球半导体产业收入规模巨大。2018年全球半导体行业收入为4761.51亿美元,2019年受全球宏观经济低迷影响,半导体行业景气度有所下降,收入同比下降11.97%,为4191.48亿美元,预计2021年半导体行业开始复苏,2024 年预计全球半导体行业收入将达到 5727.88 亿美元。纵观全球半导体产业的发展历程,经历了由美国向日本、向韩国和中国台湾地区及中国大陆的几轮产业转移。目前中国大陆已成为全球最重要的半导体应用和消费市场之一。根据国际半导体协会(SEMI)的统计数据,2017年到2020年期间,全球将有62座新晶圆厂投产,其中将有26座新晶圆厂座落中国大陆,占比达42%。新晶圆厂从建立到生产的周期大概为2年,未来几年将是中国大陆半导体产业半导体设备在半导体行业产业链中占据重要的地位。半导体设备的技术复杂,客户对设备的技术参数、运行稳定性有苛刻的要求,以保障生产效率、质量和良率。按照摩尔定律,当价格不变时,集成电路上可容纳的元器件的数目,约每隔 18-24 个月便会增加一倍,性能也将提升一倍。相应的,集成电路行业的设备供应商也必须每隔 18-24 个月推出更先进的制造工艺;集成电路制造工艺的技术进步,反过来也会推动半导体专用设备企业不断追求技术革新。同时,集成电路行业的技术更新迭代也带来对于设备投资的持续性需求,而半导体专用设备的技术提升,也推动了集成电路行业的持续快速发展的快速发展期。集成电路产业面临着新型芯片或先进工艺的产能扩张需求,为半导体设备行业带来广阔的市场空间。值此半导体产业爆发之际,国产半导体设备商开启IPO之路,以期募集资金提升技术实力并扩张产能。上半年已有多家半导体设备商筹备会完成乐IPO之路。屹唐半导体设备IPO获受理屹唐股份科创板IPO申请近日获得上交所受理。屹唐股份是一家总部位于中国,以中国、美国、德国三地作为研发、制造基地,面向全球经营的半导体设备公司,主要从事晶圆加工设备的研发、生产和销售。2020年,屹唐股份干法去胶设备、快速热处理设备市占率分别为全球第一、第二。据招股书介绍,屹唐半导体主要设备相关技术达到国际领先水平,产品已应用在多家国际知名集成电路制造商生产线上并实现大规模装机。该公司干法去胶设备、快速热处理设备主要可用于90纳米到5纳米逻辑芯片、10纳米系列DRAM芯片以及32层到128层3D闪存芯片制造中若干关键步骤的大规模量产;干法刻蚀设备主要可用于65纳米到5纳米逻辑芯片、10纳米系列DRAM芯片以及32层到128层3D闪存芯片制造中若干关键步骤的大规模量产。屹唐股份此次拟募资30亿元,投向屹唐半导体集成电路装备研发制造服务中心项目、高端集成电路装备研发项目以及发展和科技储备资金。本次股票发行后拟在上交所科创板上市。芯碁微装成功登录科创板4月1日,芯碁微装成功登陆科创板,成为“国产光刻设备第一股”。据了解,芯碁微装是专业的光刻设备供应商,专注服务于电子信息产业中PCB领域及泛半导体领域的客户,为客户提供直接成像设备、直写光刻设备以及相应的维保服务。经过多年的深耕与积累,芯碁微装累计服务近70家客户,包括深南电路、健鼎科技、胜宏科技、景旺电子、维信诺、中电科、佛智芯、沃格光电、矽迈微电子、中国科学院半导体研究所、中国工程物理研究院激光聚变研究中心、中国电子科技集团公司第十一研究所等知名企业和研究机构。芯碁微装拟将IPO募集资金用于高端PCB激光直接成像(LDI)设备升级迭代项目、晶圆级封装(WLP)直写光刻设备产业化项目、平板显示(FPD)光刻设备研发项目和微纳制造技术研发中心建设项目。通过上述项目的实施,芯碁微装将进一步满足下游不断发展的光刻设备应用需求,为未来业绩的增长和业务发展打下坚实的基础。盛美半导体科创板IPO已提交注册作为国内半导体清洗设备龙头企业,盛美半导体设备(上海)股份有限公司上市之路一直备受关注。近日,盛美半导体科创板上市已正式提交注册。盛美半导体主要从事半导体专用设备的研发、生产和销售,主要产品包括半导体清洗设备、半导体电镀设备和先进封装湿法设备等。其坚持差异化竞争和创新的发展战略,通过自主研发的单片兆声波清洗技术、单片槽式组合清洗技术、电镀技术、无应力抛光技术和立式炉管技术等,向全球晶圆制造、先进封装及其他客户提供定制化的设备及工艺解决方案,有效提升客户的生产效率、提升产品良率并降低生产成本。盛美半导体拟募资18亿元用于盛美半导体设备研发与制造中心、盛美半导体高端半导体设备研发项目和补充流动资金。中科仪主动终止科创板IPO2021年5月12日,中科仪保荐人招商证券股份有限公司向上交所提交了《招商证券股份有限公司关于撤回中国科学院股份有限公司首次公开发行股票并在科创板上市申请文件的申请》,中科仪向上交所提交了《中国科学院沈阳科学仪器股份有限公司关于撤回首次公开发行股票并在科创板上市申请文件的申请》(沈科仪发〔2021〕11号),申请撤回申请文件。根据《上海证券交易所科创板股票发行上市审核规则》第六十七条的有关规定,上交所决定终止对中科仪首次公开发行股票并在科创板上市的审核。中科仪主要从事干式真空泵、真空仪器设备的研发、生产和销售,并提供相关技术服务。干式真空泵是半导体制造工艺设备的核心附属设备,为集成电路、光伏、LED、平板显示、锂电池等行业的生产设备提供所必需的高度洁净真空环境。公司真空仪器设备产品主要包括大科学装置、真空薄膜仪器设备、新材料制备设备三大类。中科仪原拟募集资金77100.02万元,其中57100.02万元用于干式真空泵产业化建设项目,20000.00万元用于补充营运资金。华海清科科创板IPO成功过会6月17日,据上交所科创板上市委2021年第39次审议会议结果显示,华海清科科创板IPO成功过会,将于上交所科创板上市。据招股书显示,华海清科是一家拥有核心自主知识产权的高端半导体设备制造商,主要从事半导体专用设备的研发、生产、销售及技术服务,主要产品为化学机械抛光(CMP)设备。CMP是先进集成电路制造前道工序、先进封装等环节必需的关键制程工艺,公司所生产CMP设备可广泛应用于12英寸和8英寸的集成电路大生产线,产品总体技术性能已达到国际先进水平。公司推出了国内首台拥有核心自主知识产权的12英寸CMP设备并实现量产销售,是目前国内唯一一家为集成电路制造商提供12英寸CMP商业机型的高端半导体设备制造商;公司所产主流机型已成功填补国内空白,打破了国际巨头在此领域数十年的垄断,有效降低了国内下游客户采购成本及对国外设备的依赖,支撑国内集成电路产业的快速发展。华海清科首次公开发行的股票不超过2666.67万股,占发行后总股本的25.00%。据招股书显示,华海清科拟募集资金10亿元,此次募集的资金将用于高端半导体装备(化学机械抛光机)产业化、高端半导体装备研发、晶圆再生扩产升级、补充流动资金等项目。汇成真空拟A股IPO 已进行上市辅导备案近日,广东监管局披露了关于广东汇成真空科技股份有限公司(以下简称:汇成真空)辅导备案登记受理信息,其辅导机构为东莞证券,已于6月21日办理了辅导备案登记。据了解,汇成真空是一家面向全球的真空应用解决方案提供商,研发、生产和销售各类真空设备、半导体设备、电子生产设备、光电设备、光伏设备、动力电池设备及产品相关配件的国家高新技术企业,专注设备与产品的相关制造工艺和应用技术、控制软件、工艺流程控制软件及相关生产自动化软件的研发、应用,并提供技术转让、技术咨询和技术服务。目前众多半导体设备商正踊跃寻求IPO,以期抓住中国半导体行业的快速发展机遇,充分发挥公司已有市场地位、技术优势、工艺积累和行业经验,密切关注全球半导体专用设备行业的前沿技术,确保公司产品品质、核心技术始终处于中国行业领先地位,并奋力赶超全球先进水平。同时,这些半导体设备企业也将在现有产品的基础上实现产品性能和技术升级,持续跟踪新兴终端市场的变化,确保公司产品与市场需求有效结合。
  • 批量样品,湿法消解,iGBlock-36为您带来“三个一”
    在重金属含量检测、元素分析等无机类样品检测项目的前处理流程中,湿法消解设备稳定性良好,批量处理能力强,使用成本低,与原子吸收光谱仪、原子荧光光谱仪、ICP-MS电感耦合离子质谱仪等分析仪器配套使用,广泛应用于各类理化实验室。设备换新不费心邀您即刻体验iGBlock-36智能消解全解析iGBlock-36湿法消解高效解决方案立体环绕式加热,石墨空间温度均一同时快速消解36位样品,可兼容各种材质的消解管双PID精确控温,迅速升温,加热温度可达420℃保证控温温度在±1℃,高效节能,降低热损失多重防护工艺,陶瓷表面光洁如一导热材质:经耐高温防腐陶瓷涂层的高纯石墨石墨模块的陶瓷涂层可有效避免石墨粉污染样品加热模块零电子元器件,整机喷涂PTFE防腐蚀涂层智能控制终端与加热模块分体,确保操作安全智能终端控制,远程监控稳健如一7寸高清触屏控制,实时显示消解温度双曲线监控方法界面中,可预设多个变温曲线和对应加酸提示支持DTLabs微信小程序远程监控消解进程,完成后自动通知应用标准广泛应用于各类重金属检测、元素分析前处理环境监测土壤、水质、污泥、固废等食品安全蔬果、肉类、水产、谷物、各种加工食品等药物分析中药材、中成药、胶囊等生化分析动物组织、血液、尿液、毛发等冶炼地质岩石、矿物、沉积物等部分应用标准GB 5009.94-2012 食品安全国家标准 植物性食品中稀土元素的测定GB 5009.12-2017 食品安全国家标准 食品中铅的测定GB 5009.15-2014 食品安全国家标准 食品中锑的测定HJ 1046-2019 水质 锑的测定 火焰原子吸收分光光度法HJ 1047-2019 水质 锑的测定 石墨炉原子吸收分光光度法HJ 766-2015 固体废物金属元素的测定 电感耦合等离子体质谱法 HJ 781-2016 固体废物22种金属元素的测定 电感耦合等离子体发射光谱法HJ 1080-2019 土壤和沉积物 铊的测定 石墨炉原子吸收分光光度法 HJ 1081-2019 土壤和沉积物 钴的测定 火焰原子吸收分光光度法… …
  • 年底现货大促销 化学发光凝胶成像系统
    上海山富科学仪器有限公司作为提供生命科学专业性仪器的公司,从事生物成像类仪器研发多年。 在黄山市经济开发区拥有占地15亩标准厂房与生产车间,生产部通过ISO9001:2008质量体系认证,医疗器械生产许可证,拥有凝胶成像两项技术专利成果,CE认证,08年开始对外的出口如今我司的产品遍布全球各大洲。 910 化学发光凝胶成像系统,现参加年终现货大促销,促销时间:2011年12月5日-2012年1月20日。价格从11万6直降3万元整,支持试用二周。确保您满意产品的最终成像效果,凡是在年底促销期间提交试用的客户,优惠价格都能保留到年后实际采购,如有意者欢迎随时与我司联系,踊跃参加促销活动。 910 化学发光凝胶成像是入门级别,能够兼容普通的荧光凝胶成像。使用变焦镜头。目前使用west blotting的用户越来越多,而传统的压片过程存在很多弊端。费时费力而且实验成本也大。 910化学发光可以完成快速成像,无需暗室与胶片,无需显影与定影。短短几分钟也能得出灵敏度与压片相媲美的影像结果。910可以完成5分钟的持续曝光。对于west blotting在压片过程中肉眼可见的样品,或者压片时间小于2分钟的样品都可以拍摄出来。 专业的化学发光软件,帮助您更好的定量目标蛋白。传统的胶片显影的动态范围窄,不适用于蛋白的精确定量分析,使用化学发光得到的图片能够提供宽的动态范围,进行精确的定量分析。 技术参数 摄像头:进口高分辨率低照度数码制冷CCD CCD尺寸:2/3英寸(10.2mm*8.3mm) SONY ICX285 冷却方式:半导体制冷 冷却温度:-35℃ 有效像素:1392*1040 采集位数:16bit 像素尺寸:6.45&mu m*6.45&mu m 像素合并:1*1,2*2,4*4 动态范围:三个数量级 灵敏度:20pg双链DNA 电动变焦镜头:日本进口电动6倍变焦 F1.0 2/3英寸大口径高通透镜头 照明模式:透射紫外,透射白光,反射白光 激发光源:312nm紫外透照台;均匀冷光源白光透射板;LED反射白光灯;紫外反射选配 滤光片数量:6位电动控制自动滤光片轮 滤光片:标配590nm超多层镀膜螺旋型标准滤光片 透射面积:紫外:21*26cm 白光:20*28cm 外形尺寸:430*430*620mm 主要特点 1 910采用密封条设计,确保暗箱的绝对密封,拍摄时不受环境光源的任何影响。 2 910采用进口2/3大尺寸CCD可以制冷-35℃,确保微弱的化学发光捕捉。 3 电动6位的滤光轮,为将来更多应用预留了空间。 4 保留了紫外透照的设计,在可以做化学发光的同时也兼容普通的凝胶成像。 化学发光凝胶全系列 型号 910 920 950 采集系统 进口高分辨率低照度数码制冷CCD 进口高分辨率低照度数码制冷CCD 进口高分辨率低照度数码制冷CCD CCD尺寸 10.2*8.3mm 10.2*8.3mm 15.2/*15.2mm 冷却方式 半导体制冷 三级制冷 三级制冷 冷却温度 -35℃ -55℃ -60℃ 有效像素 1392*1040 145万 1392*1040 145万 2048*2048 420万 像素尺寸(um V*H) 6.45*6.45 6.45*6.45 7.4*7.4 采集位数 16 bit 16 bit 16 bit 像素合并 1*1,2*2,4*4 1*1,2*2,4*4 1*1,2*2,4*4 接 口 USB 2.0 USB 2.0 USB2.0 镜 头 2/3英寸 日本进口电动6倍变焦镜头 F1.0 2/3英寸 日本进口定焦镜头 17mm F0.95 2/3英寸 日本进口定焦镜头 25mm F0.95 暗 箱 化学发光专用密封暗箱,确保适用于微弱光源长时间曝光下显影 滤光片数量 6位电动控制自动滤光片轮 标配滤光片 590nm超多层镀膜螺旋型标准滤光片 选配滤光片 537nm红色滤光片,460nm蓝色滤光片,699nm滤光片 照明模式 透射紫外,透射白光,反射白光 反射白光 反射白光 软件 ChemShot化学发光专用软件,全中文界面,支持Win2000/XP,集图像采集、编辑、分析和数据库管理功能为一体。 尺寸(mm)(W*D*H) 430*430*620 430*430*620 430*430*620 重量 32kg 32kg 32kg 认证 CE CE CE 上图为910,曝光2分钟图像。使用western blot 曝光标签,以及ECL染色剂,左边第一个点为AB原液混合,后面各点是分别等比例稀释结果。一共可见6个点,第七个点隐约可见。 软件功能简介 ChemiShot全功能控制分析软件,能对DNA/RNA,蛋白质电泳图像、荧光及化学发光成像,各种杂交膜图像、克隆计数、放射自显影、酶标板点杂交图像进行拍摄和分析; 可自动识别条带及其左右边界,自动生成峰值曲线图、数据表; 可进行分子量、百分比、含量计算并生成分子量数据库; 所有数据表均能保存为Excel格式和打印; 一 图像采集编辑功能: 1 中文界面,Windows操作系统。(也可提供英文界面) 2 可通过软件进行缩放、聚焦、光圈、透射紫外灯及反射灯的全自动控制 3 实时显示图像 4 通过软件控制选取不同滤镜 5 多种格式存储图像 6 可连接其它输入设备。 7 灰度调整:调节图像黑白对比度、亮度和灰度系数,达到最佳照片效果。 8 图像旋转:图像可左右,上下旋转。 9 图像反转:图像可黑白转换。 10 添加文字:可在图像上添加中英文。 11 可打印图像、图谱曲线、图表及数据报告。 二 电泳条带分析功能: 1 可自动或手动识别泳道,并能手动调整泳道边框,增删泳道,实现泳道的精确分离。 2 可去除背景,以达到最佳的分析效果 3 泳道(Lane)密度扫描:可同时进行多泳道密度扫描,自动辨别电泳条带,同时绘出扫描曲线。 4 分子量计算:输入Market泳道已知分子量(bp值),就可计算出其它泳道分子量(bp值)。 5 数据分析结果:可计算出每根条带的迁移率。 6 分析结果的数据可以用 Excel 文件形式输出。 三 图像数据库功能: 1 可以导入导出多种格式的图像文件 2 可以添加删除数据库图像文件 3 可以在数据库内按采集时间,图像类型进行检索 4 可以根据不同人员建立不同数据库保存图像,便于使用与管理 5 分析结果的数据以及所有图像能复制、粘贴、打印,具有与Excel、Word、画图、剪切板、PhotoShop的连接功能 6 无需借助其它软件即可进行加注文字、箭头、矩形框等,并可对已加注的历史图像反复修改。 更多详情,请登录我司网站了解更多。www.shbiotech.com 该活动最终解释权归上海山富所有。 ------ 上海山富科学仪器有限公司 联系电话:021-65550736 65558758 传真:021-65522489 上海市曲阳路851弄沪办大厦9号楼506室www.shbiotech.com
  • 360万!清华大学激光共聚焦显微镜和超声扫描显微镜采购项目
    项目编号:清设招第2022123号项目名称:清华大学激光共聚焦显微镜预算金额:160.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01激光共聚焦显微镜1套是设备用途介绍 :高精度表面分析,用于微观形貌、微观结构的表征;厚胶光刻显影工艺、刻蚀释放工艺、厚金属剥离工艺等3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像。简要技术指标 :1)具备8英寸及以下基片上3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像和测量功能;2)3D观测方式:共焦光路系统,光源:反射激光和反射LED光源,激光共聚焦模式、彩色成像模式、彩色光学DIC成像,具备光学测量及成像模块,3D观测方式具有白光;明场、暗场及共聚焦;单色共聚焦或多色真彩共聚焦观察方式;3)成像图像X/Y平面分辨率≤0.12µm、Z轴显示分辨率精度≤0.006μm;4)5x,10x,20x,50x,100x均为激光专用复消色差物镜。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。项目编号:清设招第2022125号项目名称:清华大学超声扫描显微镜预算金额:200.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01超声扫描显微镜1套是设备用途介绍 :利用材料内部组织因密度不同而对超声波声阻抗、超声波吸收与反射程度产生差异的特点,实现对材料内部缺陷的定性分析,在半导体封装及材料等行业中具有广泛的应用。对器件内部的结构、夹杂物、裂纹、分层、空洞等进行检测,是提供高分辨率无损检测的重要手段。简要技术指标 :1)最大扫描速率≥610mm/s;2)扫描精度:可设置最小扫描步进≤5μm,最大扫描步进≥500μm。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。
  • 跨界收购!高分子材料企业拟1.19亿元购半导体设备企业51%股权
    近日,一起跨界收购案引起关注。11月9日,至正股份收到上交所《关于对深圳至正高分子材料股份有限公司对外收购事项的问询函》。11月8日,公司称,拟以现金方式收购苏州桔云科技有限公司51%股权。公告披露,本次收购标的主营半导体专用设备,与公司目前主业无关。公告称,实施本次交易旨在从原有的电线电缆用高分子材料业务向半导体设备领域拓展,提升公司盈利能力。据了解,至正股份是专业从事环保型低烟无卤聚烯烃电缆高分子材料的高新技术企业,定位于中高端电线电缆用绿色环保型特种聚烯烃高分子材料市场,属于国内电线电缆用高分子材料领先企业中的专业企业。 公司主营业务为电线电缆、光缆用绿色环保型聚烯烃高分子材料的研发、生产和销售,公司产品被作为绝缘材料或外护套料广泛应用于电线电缆及光缆的生产过程中。公司目前产品主要分为以下三大类:光通信线缆、光缆用特种环保聚烯烃高分子材料;电气装备线用环保型聚烯烃高分子材料;电网系统电力电缆用特种绝缘高分子材料。11月10日,至正股份发布《深圳至正高分子材料股份有限公司拟以现金收购苏州桔云科技有限公司股权资产评估报告》。资料显示,苏州桔云成立于2019年6月,主要从事半导体专用设备的研发生产和销售,主要产品包括半导体清洗机、腐蚀机、烘箱、分片机、显影机、涂胶机等。公司于2020年推出半导体清洗设备、刻蚀设备和显影设备二代机型,现已成为长电科技、禾芯半导体、芯德半导体、全球化半导体设计与制造企业T公司等知名半导体企业的设备提供商,公司的产品能够有效提升客户的生产效率、产品良率并降低生产成本,已取得良好的市场口碑公司。设备主要使用于后道先进封装制程,包括湿法清洗设备和蚀刻设备、涂胶/去胶设备、显影设备等。未来公司将以清洗机与烘箱为主力产品,持续向前道工艺拓展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制